• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include "kfd_priv.h"
28 #include "kfd_mqd_manager.h"
29 #include "v9_structs.h"
30 #include "gc/gc_9_0_offset.h"
31 #include "gc/gc_9_0_sh_mask.h"
32 #include "sdma0/sdma0_4_0_sh_mask.h"
33 #include "amdgpu_amdkfd.h"
34 
get_mqd(void * mqd)35 static inline struct v9_mqd *get_mqd(void *mqd)
36 {
37 	return (struct v9_mqd *)mqd;
38 }
39 
get_sdma_mqd(void * mqd)40 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
41 {
42 	return (struct v9_sdma_mqd *)mqd;
43 }
44 
update_cu_mask(struct mqd_manager * mm,void * mqd,struct queue_properties * q)45 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
46 			struct queue_properties *q)
47 {
48 	struct v9_mqd *m;
49 	uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
50 
51 	if (q->cu_mask_count == 0)
52 		return;
53 
54 	mqd_symmetrically_map_cu_mask(mm,
55 		q->cu_mask, q->cu_mask_count, se_mask);
56 
57 	m = get_mqd(mqd);
58 	m->compute_static_thread_mgmt_se0 = se_mask[0];
59 	m->compute_static_thread_mgmt_se1 = se_mask[1];
60 	m->compute_static_thread_mgmt_se2 = se_mask[2];
61 	m->compute_static_thread_mgmt_se3 = se_mask[3];
62 	m->compute_static_thread_mgmt_se4 = se_mask[4];
63 	m->compute_static_thread_mgmt_se5 = se_mask[5];
64 	m->compute_static_thread_mgmt_se6 = se_mask[6];
65 	m->compute_static_thread_mgmt_se7 = se_mask[7];
66 
67 	pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
68 		m->compute_static_thread_mgmt_se0,
69 		m->compute_static_thread_mgmt_se1,
70 		m->compute_static_thread_mgmt_se2,
71 		m->compute_static_thread_mgmt_se3,
72 		m->compute_static_thread_mgmt_se4,
73 		m->compute_static_thread_mgmt_se5,
74 		m->compute_static_thread_mgmt_se6,
75 		m->compute_static_thread_mgmt_se7);
76 }
77 
set_priority(struct v9_mqd * m,struct queue_properties * q)78 static void set_priority(struct v9_mqd *m, struct queue_properties *q)
79 {
80 	m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
81 	m->cp_hqd_queue_priority = q->priority;
82 }
83 
allocate_mqd(struct kfd_dev * kfd,struct queue_properties * q)84 static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd,
85 		struct queue_properties *q)
86 {
87 	int retval;
88 	struct kfd_mem_obj *mqd_mem_obj = NULL;
89 
90 	/* For V9 only, due to a HW bug, the control stack of a user mode
91 	 * compute queue needs to be allocated just behind the page boundary
92 	 * of its regular MQD buffer. So we allocate an enlarged MQD buffer:
93 	 * the first page of the buffer serves as the regular MQD buffer
94 	 * purpose and the remaining is for control stack. Although the two
95 	 * parts are in the same buffer object, they need different memory
96 	 * types: MQD part needs UC (uncached) as usual, while control stack
97 	 * needs NC (non coherent), which is different from the UC type which
98 	 * is used when control stack is allocated in user space.
99 	 *
100 	 * Because of all those, we use the gtt allocation function instead
101 	 * of sub-allocation function for this enlarged MQD buffer. Moreover,
102 	 * in order to achieve two memory types in a single buffer object, we
103 	 * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
104 	 * amdgpu memory functions to do so.
105 	 */
106 	if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
107 		mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
108 		if (!mqd_mem_obj)
109 			return NULL;
110 		retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd,
111 			ALIGN(q->ctl_stack_size, PAGE_SIZE) +
112 				ALIGN(sizeof(struct v9_mqd), PAGE_SIZE),
113 			&(mqd_mem_obj->gtt_mem),
114 			&(mqd_mem_obj->gpu_addr),
115 			(void *)&(mqd_mem_obj->cpu_ptr), true);
116 
117 		if (retval) {
118 			kfree(mqd_mem_obj);
119 			return NULL;
120 		}
121 	} else {
122 		retval = kfd_gtt_sa_allocate(kfd, sizeof(struct v9_mqd),
123 				&mqd_mem_obj);
124 		if (retval)
125 			return NULL;
126 	}
127 
128 	return mqd_mem_obj;
129 }
130 
init_mqd(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)131 static void init_mqd(struct mqd_manager *mm, void **mqd,
132 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
133 			struct queue_properties *q)
134 {
135 	uint64_t addr;
136 	struct v9_mqd *m;
137 
138 	m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
139 	addr = mqd_mem_obj->gpu_addr;
140 
141 	memset(m, 0, sizeof(struct v9_mqd));
142 
143 	m->header = 0xC0310800;
144 	m->compute_pipelinestat_enable = 1;
145 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
146 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
147 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
148 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
149 	m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
150 	m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
151 	m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
152 	m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
153 
154 	m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
155 			0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
156 
157 	m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
158 
159 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
160 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
161 
162 	m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
163 			1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
164 			1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
165 
166 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
167 		m->cp_hqd_aql_control =
168 			1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
169 	}
170 
171 	if (q->tba_addr) {
172 		m->compute_pgm_rsrc2 |=
173 			(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
174 	}
175 
176 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
177 		m->cp_hqd_persistent_state |=
178 			(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
179 		m->cp_hqd_ctx_save_base_addr_lo =
180 			lower_32_bits(q->ctx_save_restore_area_address);
181 		m->cp_hqd_ctx_save_base_addr_hi =
182 			upper_32_bits(q->ctx_save_restore_area_address);
183 		m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
184 		m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
185 		m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
186 		m->cp_hqd_wg_state_offset = q->ctl_stack_size;
187 	}
188 
189 	*mqd = m;
190 	if (gart_addr)
191 		*gart_addr = addr;
192 	mm->update_mqd(mm, m, q);
193 }
194 
load_mqd(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)195 static int load_mqd(struct mqd_manager *mm, void *mqd,
196 			uint32_t pipe_id, uint32_t queue_id,
197 			struct queue_properties *p, struct mm_struct *mms)
198 {
199 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
200 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
201 
202 	return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
203 					  (uint32_t __user *)p->write_ptr,
204 					  wptr_shift, 0, mms);
205 }
206 
hiq_load_mqd_kiq(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)207 static int hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
208 			    uint32_t pipe_id, uint32_t queue_id,
209 			    struct queue_properties *p, struct mm_struct *mms)
210 {
211 	return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->kgd, mqd, pipe_id,
212 					      queue_id, p->doorbell_off);
213 }
214 
update_mqd(struct mqd_manager * mm,void * mqd,struct queue_properties * q)215 static void update_mqd(struct mqd_manager *mm, void *mqd,
216 		      struct queue_properties *q)
217 {
218 	struct v9_mqd *m;
219 
220 	m = get_mqd(mqd);
221 
222 	m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
223 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
224 	pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
225 
226 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
227 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
228 
229 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
230 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
231 	m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
232 	m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
233 
234 	m->cp_hqd_pq_doorbell_control =
235 		q->doorbell_off <<
236 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
237 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
238 			m->cp_hqd_pq_doorbell_control);
239 
240 	m->cp_hqd_ib_control =
241 		3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
242 		1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
243 
244 	/*
245 	 * HW does not clamp this field correctly. Maximum EOP queue size
246 	 * is constrained by per-SE EOP done signal count, which is 8-bit.
247 	 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
248 	 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
249 	 * is safe, giving a maximum field value of 0xA.
250 	 */
251 	m->cp_hqd_eop_control = min(0xA,
252 		order_base_2(q->eop_ring_buffer_size / 4) - 1);
253 	m->cp_hqd_eop_base_addr_lo =
254 			lower_32_bits(q->eop_ring_buffer_address >> 8);
255 	m->cp_hqd_eop_base_addr_hi =
256 			upper_32_bits(q->eop_ring_buffer_address >> 8);
257 
258 	m->cp_hqd_iq_timer = 0;
259 
260 	m->cp_hqd_vmid = q->vmid;
261 
262 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
263 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
264 				2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
265 				1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
266 				1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
267 		m->cp_hqd_pq_doorbell_control |= 1 <<
268 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
269 	}
270 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
271 		m->cp_hqd_ctx_save_control = 0;
272 
273 	update_cu_mask(mm, mqd, q);
274 	set_priority(m, q);
275 
276 	q->is_active = QUEUE_IS_ACTIVE(*q);
277 }
278 
279 
read_doorbell_id(void * mqd)280 static uint32_t read_doorbell_id(void *mqd)
281 {
282 	struct v9_mqd *m = (struct v9_mqd *)mqd;
283 
284 	return m->queue_doorbell_id0;
285 }
286 
destroy_mqd(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)287 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
288 			enum kfd_preempt_type type,
289 			unsigned int timeout, uint32_t pipe_id,
290 			uint32_t queue_id)
291 {
292 	return mm->dev->kfd2kgd->hqd_destroy
293 		(mm->dev->kgd, mqd, type, timeout,
294 		pipe_id, queue_id);
295 }
296 
free_mqd(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)297 static void free_mqd(struct mqd_manager *mm, void *mqd,
298 			struct kfd_mem_obj *mqd_mem_obj)
299 {
300 	struct kfd_dev *kfd = mm->dev;
301 
302 	if (mqd_mem_obj->gtt_mem) {
303 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem);
304 		kfree(mqd_mem_obj);
305 	} else {
306 		kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
307 	}
308 }
309 
is_occupied(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)310 static bool is_occupied(struct mqd_manager *mm, void *mqd,
311 			uint64_t queue_address,	uint32_t pipe_id,
312 			uint32_t queue_id)
313 {
314 	return mm->dev->kfd2kgd->hqd_is_occupied(
315 		mm->dev->kgd, queue_address,
316 		pipe_id, queue_id);
317 }
318 
get_wave_state(struct mqd_manager * mm,void * mqd,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)319 static int get_wave_state(struct mqd_manager *mm, void *mqd,
320 			  void __user *ctl_stack,
321 			  u32 *ctl_stack_used_size,
322 			  u32 *save_area_used_size)
323 {
324 	struct v9_mqd *m;
325 
326 	/* Control stack is located one page after MQD. */
327 	void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
328 
329 	m = get_mqd(mqd);
330 
331 	*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
332 		m->cp_hqd_cntl_stack_offset;
333 	*save_area_used_size = m->cp_hqd_wg_state_offset -
334 		m->cp_hqd_cntl_stack_size;
335 
336 	if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size))
337 		return -EFAULT;
338 
339 	return 0;
340 }
341 
init_mqd_hiq(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)342 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
343 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
344 			struct queue_properties *q)
345 {
346 	struct v9_mqd *m;
347 
348 	init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
349 
350 	m = get_mqd(*mqd);
351 
352 	m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
353 			1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
354 }
355 
init_mqd_sdma(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)356 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
357 		struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
358 		struct queue_properties *q)
359 {
360 	struct v9_sdma_mqd *m;
361 
362 	m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
363 
364 	memset(m, 0, sizeof(struct v9_sdma_mqd));
365 
366 	*mqd = m;
367 	if (gart_addr)
368 		*gart_addr = mqd_mem_obj->gpu_addr;
369 
370 	mm->update_mqd(mm, m, q);
371 }
372 
load_mqd_sdma(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)373 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
374 		uint32_t pipe_id, uint32_t queue_id,
375 		struct queue_properties *p, struct mm_struct *mms)
376 {
377 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
378 					       (uint32_t __user *)p->write_ptr,
379 					       mms);
380 }
381 
382 #define SDMA_RLC_DUMMY_DEFAULT 0xf
383 
update_mqd_sdma(struct mqd_manager * mm,void * mqd,struct queue_properties * q)384 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
385 		struct queue_properties *q)
386 {
387 	struct v9_sdma_mqd *m;
388 
389 	m = get_sdma_mqd(mqd);
390 	m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
391 		<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
392 		q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
393 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
394 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
395 
396 	m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
397 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
398 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
399 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
400 	m->sdmax_rlcx_doorbell_offset =
401 		q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
402 
403 	m->sdma_engine_id = q->sdma_engine_id;
404 	m->sdma_queue_id = q->sdma_queue_id;
405 	m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
406 
407 	q->is_active = QUEUE_IS_ACTIVE(*q);
408 }
409 
410 /*
411  *  * preempt type here is ignored because there is only one way
412  *  * to preempt sdma queue
413  */
destroy_mqd_sdma(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)414 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
415 		enum kfd_preempt_type type,
416 		unsigned int timeout, uint32_t pipe_id,
417 		uint32_t queue_id)
418 {
419 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
420 }
421 
is_occupied_sdma(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)422 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
423 		uint64_t queue_address, uint32_t pipe_id,
424 		uint32_t queue_id)
425 {
426 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
427 }
428 
429 #if defined(CONFIG_DEBUG_FS)
430 
debugfs_show_mqd(struct seq_file * m,void * data)431 static int debugfs_show_mqd(struct seq_file *m, void *data)
432 {
433 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
434 		     data, sizeof(struct v9_mqd), false);
435 	return 0;
436 }
437 
debugfs_show_mqd_sdma(struct seq_file * m,void * data)438 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
439 {
440 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
441 		     data, sizeof(struct v9_sdma_mqd), false);
442 	return 0;
443 }
444 
445 #endif
446 
mqd_manager_init_v9(enum KFD_MQD_TYPE type,struct kfd_dev * dev)447 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
448 		struct kfd_dev *dev)
449 {
450 	struct mqd_manager *mqd;
451 
452 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
453 		return NULL;
454 
455 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
456 	if (!mqd)
457 		return NULL;
458 
459 	mqd->dev = dev;
460 
461 	switch (type) {
462 	case KFD_MQD_TYPE_CP:
463 		mqd->allocate_mqd = allocate_mqd;
464 		mqd->init_mqd = init_mqd;
465 		mqd->free_mqd = free_mqd;
466 		mqd->load_mqd = load_mqd;
467 		mqd->update_mqd = update_mqd;
468 		mqd->destroy_mqd = destroy_mqd;
469 		mqd->is_occupied = is_occupied;
470 		mqd->get_wave_state = get_wave_state;
471 		mqd->mqd_size = sizeof(struct v9_mqd);
472 #if defined(CONFIG_DEBUG_FS)
473 		mqd->debugfs_show_mqd = debugfs_show_mqd;
474 #endif
475 		break;
476 	case KFD_MQD_TYPE_HIQ:
477 		mqd->allocate_mqd = allocate_hiq_mqd;
478 		mqd->init_mqd = init_mqd_hiq;
479 		mqd->free_mqd = free_mqd_hiq_sdma;
480 		mqd->load_mqd = hiq_load_mqd_kiq;
481 		mqd->update_mqd = update_mqd;
482 		mqd->destroy_mqd = destroy_mqd;
483 		mqd->is_occupied = is_occupied;
484 		mqd->mqd_size = sizeof(struct v9_mqd);
485 #if defined(CONFIG_DEBUG_FS)
486 		mqd->debugfs_show_mqd = debugfs_show_mqd;
487 #endif
488 		mqd->read_doorbell_id = read_doorbell_id;
489 		break;
490 	case KFD_MQD_TYPE_DIQ:
491 		mqd->allocate_mqd = allocate_mqd;
492 		mqd->init_mqd = init_mqd_hiq;
493 		mqd->free_mqd = free_mqd;
494 		mqd->load_mqd = load_mqd;
495 		mqd->update_mqd = update_mqd;
496 		mqd->destroy_mqd = destroy_mqd;
497 		mqd->is_occupied = is_occupied;
498 		mqd->mqd_size = sizeof(struct v9_mqd);
499 #if defined(CONFIG_DEBUG_FS)
500 		mqd->debugfs_show_mqd = debugfs_show_mqd;
501 #endif
502 		break;
503 	case KFD_MQD_TYPE_SDMA:
504 		mqd->allocate_mqd = allocate_sdma_mqd;
505 		mqd->init_mqd = init_mqd_sdma;
506 		mqd->free_mqd = free_mqd_hiq_sdma;
507 		mqd->load_mqd = load_mqd_sdma;
508 		mqd->update_mqd = update_mqd_sdma;
509 		mqd->destroy_mqd = destroy_mqd_sdma;
510 		mqd->is_occupied = is_occupied_sdma;
511 		mqd->mqd_size = sizeof(struct v9_sdma_mqd);
512 #if defined(CONFIG_DEBUG_FS)
513 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
514 #endif
515 		break;
516 	default:
517 		kfree(mqd);
518 		return NULL;
519 	}
520 
521 	return mqd;
522 }
523