1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55
intel_hdmi_to_i915(struct intel_hdmi * intel_hdmi)56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58 return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60
61 static void
assert_hdmi_port_disabled(struct intel_hdmi * intel_hdmi)62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65 u32 enabled_bits;
66
67 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68
69 drm_WARN(&dev_priv->drm,
70 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 "HDMI port enabled, expecting disabled\n");
72 }
73
74 static void
assert_hdmi_transcoder_func_disabled(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 enum transcoder cpu_transcoder)
77 {
78 drm_WARN(&dev_priv->drm,
79 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 TRANS_DDI_FUNC_ENABLE,
81 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83
g4x_infoframe_index(unsigned int type)84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 switch (type) {
87 case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 return VIDEO_DIP_SELECT_GAMUT;
89 case HDMI_INFOFRAME_TYPE_AVI:
90 return VIDEO_DIP_SELECT_AVI;
91 case HDMI_INFOFRAME_TYPE_SPD:
92 return VIDEO_DIP_SELECT_SPD;
93 case HDMI_INFOFRAME_TYPE_VENDOR:
94 return VIDEO_DIP_SELECT_VENDOR;
95 default:
96 MISSING_CASE(type);
97 return 0;
98 }
99 }
100
g4x_infoframe_enable(unsigned int type)101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 switch (type) {
104 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 return VIDEO_DIP_ENABLE_GCP;
106 case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 return VIDEO_DIP_ENABLE_GAMUT;
108 case DP_SDP_VSC:
109 return 0;
110 case HDMI_INFOFRAME_TYPE_AVI:
111 return VIDEO_DIP_ENABLE_AVI;
112 case HDMI_INFOFRAME_TYPE_SPD:
113 return VIDEO_DIP_ENABLE_SPD;
114 case HDMI_INFOFRAME_TYPE_VENDOR:
115 return VIDEO_DIP_ENABLE_VENDOR;
116 case HDMI_INFOFRAME_TYPE_DRM:
117 return 0;
118 default:
119 MISSING_CASE(type);
120 return 0;
121 }
122 }
123
hsw_infoframe_enable(unsigned int type)124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 switch (type) {
127 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 return VIDEO_DIP_ENABLE_GCP_HSW;
129 case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 return VIDEO_DIP_ENABLE_GMP_HSW;
131 case DP_SDP_VSC:
132 return VIDEO_DIP_ENABLE_VSC_HSW;
133 case DP_SDP_PPS:
134 return VDIP_ENABLE_PPS;
135 case HDMI_INFOFRAME_TYPE_AVI:
136 return VIDEO_DIP_ENABLE_AVI_HSW;
137 case HDMI_INFOFRAME_TYPE_SPD:
138 return VIDEO_DIP_ENABLE_SPD_HSW;
139 case HDMI_INFOFRAME_TYPE_VENDOR:
140 return VIDEO_DIP_ENABLE_VS_HSW;
141 case HDMI_INFOFRAME_TYPE_DRM:
142 return VIDEO_DIP_ENABLE_DRM_GLK;
143 default:
144 MISSING_CASE(type);
145 return 0;
146 }
147 }
148
149 static i915_reg_t
hsw_dip_data_reg(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,unsigned int type,int i)150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 enum transcoder cpu_transcoder,
152 unsigned int type,
153 int i)
154 {
155 switch (type) {
156 case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 case DP_SDP_VSC:
159 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 case DP_SDP_PPS:
161 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 case HDMI_INFOFRAME_TYPE_AVI:
163 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 case HDMI_INFOFRAME_TYPE_SPD:
165 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 case HDMI_INFOFRAME_TYPE_VENDOR:
167 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 case HDMI_INFOFRAME_TYPE_DRM:
169 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 default:
171 MISSING_CASE(type);
172 return INVALID_MMIO_REG;
173 }
174 }
175
hsw_dip_data_size(struct drm_i915_private * dev_priv,unsigned int type)176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 unsigned int type)
178 {
179 switch (type) {
180 case DP_SDP_VSC:
181 return VIDEO_DIP_VSC_DATA_SIZE;
182 case DP_SDP_PPS:
183 return VIDEO_DIP_PPS_DATA_SIZE;
184 case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 if (DISPLAY_VER(dev_priv) >= 11)
186 return VIDEO_DIP_GMP_DATA_SIZE;
187 else
188 return VIDEO_DIP_DATA_SIZE;
189 default:
190 return VIDEO_DIP_DATA_SIZE;
191 }
192 }
193
g4x_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 const struct intel_crtc_state *crtc_state,
196 unsigned int type,
197 const void *frame, ssize_t len)
198 {
199 const u32 *data = frame;
200 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 int i;
203
204 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 "Writing DIP with CTL reg disabled\n");
206
207 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 val |= g4x_infoframe_index(type);
209
210 val &= ~g4x_infoframe_enable(type);
211
212 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213
214 for (i = 0; i < len; i += 4) {
215 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 data++;
217 }
218 /* Write every possible data byte to force correct ECC calculation. */
219 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221
222 val |= g4x_infoframe_enable(type);
223 val &= ~VIDEO_DIP_FREQ_MASK;
224 val |= VIDEO_DIP_FREQ_VSYNC;
225
226 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229
g4x_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 const struct intel_crtc_state *crtc_state,
232 unsigned int type,
233 void *frame, ssize_t len)
234 {
235 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 u32 val, *data = frame;
237 int i;
238
239 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240
241 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 val |= g4x_infoframe_index(type);
243
244 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245
246 for (i = 0; i < len; i += 4)
247 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249
g4x_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 const struct intel_crtc_state *pipe_config)
252 {
253 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255
256 if ((val & VIDEO_DIP_ENABLE) == 0)
257 return 0;
258
259 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 return 0;
261
262 return val & (VIDEO_DIP_ENABLE_AVI |
263 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265
ibx_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 const struct intel_crtc_state *crtc_state,
268 unsigned int type,
269 const void *frame, ssize_t len)
270 {
271 const u32 *data = frame;
272 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275 u32 val = intel_de_read(dev_priv, reg);
276 int i;
277
278 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 "Writing DIP with CTL reg disabled\n");
280
281 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 val |= g4x_infoframe_index(type);
283
284 val &= ~g4x_infoframe_enable(type);
285
286 intel_de_write(dev_priv, reg, val);
287
288 for (i = 0; i < len; i += 4) {
289 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290 *data);
291 data++;
292 }
293 /* Write every possible data byte to force correct ECC calculation. */
294 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296
297 val |= g4x_infoframe_enable(type);
298 val &= ~VIDEO_DIP_FREQ_MASK;
299 val |= VIDEO_DIP_FREQ_VSYNC;
300
301 intel_de_write(dev_priv, reg, val);
302 intel_de_posting_read(dev_priv, reg);
303 }
304
ibx_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 const struct intel_crtc_state *crtc_state,
307 unsigned int type,
308 void *frame, ssize_t len)
309 {
310 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 u32 val, *data = frame;
313 int i;
314
315 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316
317 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 val |= g4x_infoframe_index(type);
319
320 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321
322 for (i = 0; i < len; i += 4)
323 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325
ibx_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 const struct intel_crtc_state *pipe_config)
328 {
329 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 u32 val = intel_de_read(dev_priv, reg);
333
334 if ((val & VIDEO_DIP_ENABLE) == 0)
335 return 0;
336
337 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 return 0;
339
340 return val & (VIDEO_DIP_ENABLE_AVI |
341 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344
cpt_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 const struct intel_crtc_state *crtc_state,
347 unsigned int type,
348 const void *frame, ssize_t len)
349 {
350 const u32 *data = frame;
351 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354 u32 val = intel_de_read(dev_priv, reg);
355 int i;
356
357 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 "Writing DIP with CTL reg disabled\n");
359
360 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 val |= g4x_infoframe_index(type);
362
363 /* The DIP control register spec says that we need to update the AVI
364 * infoframe without clearing its enable bit */
365 if (type != HDMI_INFOFRAME_TYPE_AVI)
366 val &= ~g4x_infoframe_enable(type);
367
368 intel_de_write(dev_priv, reg, val);
369
370 for (i = 0; i < len; i += 4) {
371 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372 *data);
373 data++;
374 }
375 /* Write every possible data byte to force correct ECC calculation. */
376 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378
379 val |= g4x_infoframe_enable(type);
380 val &= ~VIDEO_DIP_FREQ_MASK;
381 val |= VIDEO_DIP_FREQ_VSYNC;
382
383 intel_de_write(dev_priv, reg, val);
384 intel_de_posting_read(dev_priv, reg);
385 }
386
cpt_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 const struct intel_crtc_state *crtc_state,
389 unsigned int type,
390 void *frame, ssize_t len)
391 {
392 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 u32 val, *data = frame;
395 int i;
396
397 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398
399 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 val |= g4x_infoframe_index(type);
401
402 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403
404 for (i = 0; i < len; i += 4)
405 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407
cpt_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 const struct intel_crtc_state *pipe_config)
410 {
411 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414
415 if ((val & VIDEO_DIP_ENABLE) == 0)
416 return 0;
417
418 return val & (VIDEO_DIP_ENABLE_AVI |
419 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422
vlv_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 const struct intel_crtc_state *crtc_state,
425 unsigned int type,
426 const void *frame, ssize_t len)
427 {
428 const u32 *data = frame;
429 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432 u32 val = intel_de_read(dev_priv, reg);
433 int i;
434
435 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 "Writing DIP with CTL reg disabled\n");
437
438 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 val |= g4x_infoframe_index(type);
440
441 val &= ~g4x_infoframe_enable(type);
442
443 intel_de_write(dev_priv, reg, val);
444
445 for (i = 0; i < len; i += 4) {
446 intel_de_write(dev_priv,
447 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448 data++;
449 }
450 /* Write every possible data byte to force correct ECC calculation. */
451 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 intel_de_write(dev_priv,
453 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454
455 val |= g4x_infoframe_enable(type);
456 val &= ~VIDEO_DIP_FREQ_MASK;
457 val |= VIDEO_DIP_FREQ_VSYNC;
458
459 intel_de_write(dev_priv, reg, val);
460 intel_de_posting_read(dev_priv, reg);
461 }
462
vlv_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 const struct intel_crtc_state *crtc_state,
465 unsigned int type,
466 void *frame, ssize_t len)
467 {
468 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 u32 val, *data = frame;
471 int i;
472
473 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474
475 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 val |= g4x_infoframe_index(type);
477
478 intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479
480 for (i = 0; i < len; i += 4)
481 *data++ = intel_de_read(dev_priv,
482 VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484
vlv_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 const struct intel_crtc_state *pipe_config)
487 {
488 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491
492 if ((val & VIDEO_DIP_ENABLE) == 0)
493 return 0;
494
495 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 return 0;
497
498 return val & (VIDEO_DIP_ENABLE_AVI |
499 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502
hsw_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 const struct intel_crtc_state *crtc_state,
505 unsigned int type,
506 const void *frame, ssize_t len)
507 {
508 const u32 *data = frame;
509 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 int data_size;
513 int i;
514 u32 val = intel_de_read(dev_priv, ctl_reg);
515
516 data_size = hsw_dip_data_size(dev_priv, type);
517
518 drm_WARN_ON(&dev_priv->drm, len > data_size);
519
520 val &= ~hsw_infoframe_enable(type);
521 intel_de_write(dev_priv, ctl_reg, val);
522
523 for (i = 0; i < len; i += 4) {
524 intel_de_write(dev_priv,
525 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 *data);
527 data++;
528 }
529 /* Write every possible data byte to force correct ECC calculation. */
530 for (; i < data_size; i += 4)
531 intel_de_write(dev_priv,
532 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 0);
534
535 /* Wa_14013475917 */
536 if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 type == DP_SDP_VSC)
538 return;
539
540 val |= hsw_infoframe_enable(type);
541 intel_de_write(dev_priv, ctl_reg, val);
542 intel_de_posting_read(dev_priv, ctl_reg);
543 }
544
hsw_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 const struct intel_crtc_state *crtc_state,
547 unsigned int type, void *frame, ssize_t len)
548 {
549 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 u32 *data = frame;
552 int i;
553
554 for (i = 0; i < len; i += 4)
555 *data++ = intel_de_read(dev_priv,
556 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558
hsw_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 const struct intel_crtc_state *pipe_config)
561 {
562 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 u32 val = intel_de_read(dev_priv,
564 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 u32 mask;
566
567 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570
571 if (DISPLAY_VER(dev_priv) >= 10)
572 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573
574 return val & mask;
575 }
576
577 static const u8 infoframe_type_to_idx[] = {
578 HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 HDMI_PACKET_TYPE_GAMUT_METADATA,
580 DP_SDP_VSC,
581 HDMI_INFOFRAME_TYPE_AVI,
582 HDMI_INFOFRAME_TYPE_SPD,
583 HDMI_INFOFRAME_TYPE_VENDOR,
584 HDMI_INFOFRAME_TYPE_DRM,
585 };
586
intel_hdmi_infoframe_enable(unsigned int type)587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 int i;
590
591 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 if (infoframe_type_to_idx[i] == type)
593 return BIT(i);
594 }
595
596 return 0;
597 }
598
intel_hdmi_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 const struct intel_crtc_state *crtc_state)
601 {
602 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 u32 val, ret = 0;
605 int i;
606
607 val = dig_port->infoframes_enabled(encoder, crtc_state);
608
609 /* map from hardware bits to dip idx */
610 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 unsigned int type = infoframe_type_to_idx[i];
612
613 if (HAS_DDI(dev_priv)) {
614 if (val & hsw_infoframe_enable(type))
615 ret |= BIT(i);
616 } else {
617 if (val & g4x_infoframe_enable(type))
618 ret |= BIT(i);
619 }
620 }
621
622 return ret;
623 }
624
625 /*
626 * The data we write to the DIP data buffer registers is 1 byte bigger than the
627 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629 * used for both technologies.
630 *
631 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632 * DW1: DB3 | DB2 | DB1 | DB0
633 * DW2: DB7 | DB6 | DB5 | DB4
634 * DW3: ...
635 *
636 * (HB is Header Byte, DB is Data Byte)
637 *
638 * The hdmi pack() functions don't know about that hardware specific hole so we
639 * trick them by giving an offset into the buffer and moving back the header
640 * bytes by one.
641 */
intel_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,const union hdmi_infoframe * frame)642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 const struct intel_crtc_state *crtc_state,
644 enum hdmi_infoframe_type type,
645 const union hdmi_infoframe *frame)
646 {
647 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 u8 buffer[VIDEO_DIP_DATA_SIZE];
649 ssize_t len;
650
651 if ((crtc_state->infoframes.enable &
652 intel_hdmi_infoframe_enable(type)) == 0)
653 return;
654
655 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 return;
657
658 /* see comment above for the reason for this offset */
659 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 if (drm_WARN_ON(encoder->base.dev, len < 0))
661 return;
662
663 /* Insert the 'hole' (see big comment above) at position 3 */
664 memmove(&buffer[0], &buffer[1], 3);
665 buffer[3] = 0;
666 len++;
667
668 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670
intel_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,union hdmi_infoframe * frame)671 void intel_read_infoframe(struct intel_encoder *encoder,
672 const struct intel_crtc_state *crtc_state,
673 enum hdmi_infoframe_type type,
674 union hdmi_infoframe *frame)
675 {
676 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 u8 buffer[VIDEO_DIP_DATA_SIZE];
678 int ret;
679
680 if ((crtc_state->infoframes.enable &
681 intel_hdmi_infoframe_enable(type)) == 0)
682 return;
683
684 dig_port->read_infoframe(encoder, crtc_state,
685 type, buffer, sizeof(buffer));
686
687 /* Fill the 'hole' (see big comment above) at position 3 */
688 memmove(&buffer[1], &buffer[0], 3);
689
690 /* see comment above for the reason for this offset */
691 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 if (ret) {
693 drm_dbg_kms(encoder->base.dev,
694 "Failed to unpack infoframe type 0x%02x\n", type);
695 return;
696 }
697
698 if (frame->any.type != type)
699 drm_dbg_kms(encoder->base.dev,
700 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 frame->any.type, type);
702 }
703
704 static bool
intel_hdmi_compute_avi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 struct intel_crtc_state *crtc_state,
707 struct drm_connector_state *conn_state)
708 {
709 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 const struct drm_display_mode *adjusted_mode =
711 &crtc_state->hw.adjusted_mode;
712 struct drm_connector *connector = conn_state->connector;
713 int ret;
714
715 if (!crtc_state->has_infoframe)
716 return true;
717
718 crtc_state->infoframes.enable |=
719 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720
721 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 adjusted_mode);
723 if (ret)
724 return false;
725
726 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 frame->colorspace = HDMI_COLORSPACE_YUV420;
728 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 frame->colorspace = HDMI_COLORSPACE_YUV444;
730 else
731 frame->colorspace = HDMI_COLORSPACE_RGB;
732
733 drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734
735 /* nonsense combination */
736 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738
739 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 adjusted_mode,
742 crtc_state->limited_color_range ?
743 HDMI_QUANTIZATION_RANGE_LIMITED :
744 HDMI_QUANTIZATION_RANGE_FULL);
745 } else {
746 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 }
749
750 drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751
752 /* TODO: handle pixel repetition for YCBCR420 outputs */
753
754 ret = hdmi_avi_infoframe_check(frame);
755 if (drm_WARN_ON(encoder->base.dev, ret))
756 return false;
757
758 return true;
759 }
760
761 static bool
intel_hdmi_compute_spd_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 struct intel_crtc_state *crtc_state,
764 struct drm_connector_state *conn_state)
765 {
766 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 int ret;
768
769 if (!crtc_state->has_infoframe)
770 return true;
771
772 crtc_state->infoframes.enable |=
773 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774
775 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 if (drm_WARN_ON(encoder->base.dev, ret))
777 return false;
778
779 frame->sdi = HDMI_SPD_SDI_PC;
780
781 ret = hdmi_spd_infoframe_check(frame);
782 if (drm_WARN_ON(encoder->base.dev, ret))
783 return false;
784
785 return true;
786 }
787
788 static bool
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 struct intel_crtc_state *crtc_state,
791 struct drm_connector_state *conn_state)
792 {
793 struct hdmi_vendor_infoframe *frame =
794 &crtc_state->infoframes.hdmi.vendor.hdmi;
795 const struct drm_display_info *info =
796 &conn_state->connector->display_info;
797 int ret;
798
799 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 return true;
801
802 crtc_state->infoframes.enable |=
803 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804
805 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 conn_state->connector,
807 &crtc_state->hw.adjusted_mode);
808 if (drm_WARN_ON(encoder->base.dev, ret))
809 return false;
810
811 ret = hdmi_vendor_infoframe_check(frame);
812 if (drm_WARN_ON(encoder->base.dev, ret))
813 return false;
814
815 return true;
816 }
817
818 static bool
intel_hdmi_compute_drm_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 struct intel_crtc_state *crtc_state,
821 struct drm_connector_state *conn_state)
822 {
823 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 int ret;
826
827 if (DISPLAY_VER(dev_priv) < 10)
828 return true;
829
830 if (!crtc_state->has_infoframe)
831 return true;
832
833 if (!conn_state->hdr_output_metadata)
834 return true;
835
836 crtc_state->infoframes.enable |=
837 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838
839 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 if (ret < 0) {
841 drm_dbg_kms(&dev_priv->drm,
842 "couldn't set HDR metadata in infoframe\n");
843 return false;
844 }
845
846 ret = hdmi_drm_infoframe_check(frame);
847 if (drm_WARN_ON(&dev_priv->drm, ret))
848 return false;
849
850 return true;
851 }
852
g4x_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 bool enable,
855 const struct intel_crtc_state *crtc_state,
856 const struct drm_connector_state *conn_state)
857 {
858 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 i915_reg_t reg = VIDEO_DIP_CTL;
862 u32 val = intel_de_read(dev_priv, reg);
863 u32 port = VIDEO_DIP_PORT(encoder->port);
864
865 assert_hdmi_port_disabled(intel_hdmi);
866
867 /* If the registers were not initialized yet, they might be zeroes,
868 * which means we're selecting the AVI DIP and we're setting its
869 * frequency to once. This seems to really confuse the HW and make
870 * things stop working (the register spec says the AVI always needs to
871 * be sent every VSync). So here we avoid writing to the register more
872 * than we need and also explicitly select the AVI DIP and explicitly
873 * set its frequency to every VSync. Avoiding to write it twice seems to
874 * be enough to solve the problem, but being defensive shouldn't hurt us
875 * either. */
876 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877
878 if (!enable) {
879 if (!(val & VIDEO_DIP_ENABLE))
880 return;
881 if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 drm_dbg_kms(&dev_priv->drm,
883 "video DIP still enabled on port %c\n",
884 (val & VIDEO_DIP_PORT_MASK) >> 29);
885 return;
886 }
887 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 intel_de_write(dev_priv, reg, val);
890 intel_de_posting_read(dev_priv, reg);
891 return;
892 }
893
894 if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 if (val & VIDEO_DIP_ENABLE) {
896 drm_dbg_kms(&dev_priv->drm,
897 "video DIP already enabled on port %c\n",
898 (val & VIDEO_DIP_PORT_MASK) >> 29);
899 return;
900 }
901 val &= ~VIDEO_DIP_PORT_MASK;
902 val |= port;
903 }
904
905 val |= VIDEO_DIP_ENABLE;
906 val &= ~(VIDEO_DIP_ENABLE_AVI |
907 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908
909 intel_de_write(dev_priv, reg, val);
910 intel_de_posting_read(dev_priv, reg);
911
912 intel_write_infoframe(encoder, crtc_state,
913 HDMI_INFOFRAME_TYPE_AVI,
914 &crtc_state->infoframes.avi);
915 intel_write_infoframe(encoder, crtc_state,
916 HDMI_INFOFRAME_TYPE_SPD,
917 &crtc_state->infoframes.spd);
918 intel_write_infoframe(encoder, crtc_state,
919 HDMI_INFOFRAME_TYPE_VENDOR,
920 &crtc_state->infoframes.hdmi);
921 }
922
923 /*
924 * Determine if default_phase=1 can be indicated in the GCP infoframe.
925 *
926 * From HDMI specification 1.4a:
927 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931 * phase of 0
932 */
gcp_default_phase_possible(int pipe_bpp,const struct drm_display_mode * mode)933 static bool gcp_default_phase_possible(int pipe_bpp,
934 const struct drm_display_mode *mode)
935 {
936 unsigned int pixels_per_group;
937
938 switch (pipe_bpp) {
939 case 30:
940 /* 4 pixels in 5 clocks */
941 pixels_per_group = 4;
942 break;
943 case 36:
944 /* 2 pixels in 3 clocks */
945 pixels_per_group = 2;
946 break;
947 case 48:
948 /* 1 pixel in 2 clocks */
949 pixels_per_group = 1;
950 break;
951 default:
952 /* phase information not relevant for 8bpc */
953 return false;
954 }
955
956 return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 mode->crtc_htotal % pixels_per_group == 0 &&
958 mode->crtc_hblank_start % pixels_per_group == 0 &&
959 mode->crtc_hblank_end % pixels_per_group == 0 &&
960 mode->crtc_hsync_start % pixels_per_group == 0 &&
961 mode->crtc_hsync_end % pixels_per_group == 0 &&
962 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965
intel_hdmi_set_gcp_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 const struct intel_crtc_state *crtc_state,
968 const struct drm_connector_state *conn_state)
969 {
970 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 i915_reg_t reg;
973
974 if ((crtc_state->infoframes.enable &
975 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 return false;
977
978 if (HAS_DDI(dev_priv))
979 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 else if (HAS_PCH_SPLIT(dev_priv))
983 reg = TVIDEO_DIP_GCP(crtc->pipe);
984 else
985 return false;
986
987 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988
989 return true;
990 }
991
intel_hdmi_read_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 struct intel_crtc_state *crtc_state)
994 {
995 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 i915_reg_t reg;
998
999 if ((crtc_state->infoframes.enable &
1000 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 return;
1002
1003 if (HAS_DDI(dev_priv))
1004 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 else if (HAS_PCH_SPLIT(dev_priv))
1008 reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 else
1010 return;
1011
1012 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014
intel_hdmi_compute_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 struct intel_crtc_state *crtc_state,
1017 struct drm_connector_state *conn_state)
1018 {
1019 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 return;
1023
1024 crtc_state->infoframes.enable |=
1025 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027 /* Indicate color indication for deep color mode */
1028 if (crtc_state->pipe_bpp > 24)
1029 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031 /* Enable default_phase whenever the display mode is suitably aligned */
1032 if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 &crtc_state->hw.adjusted_mode))
1034 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036
ibx_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 bool enable,
1039 const struct intel_crtc_state *crtc_state,
1040 const struct drm_connector_state *conn_state)
1041 {
1042 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047 u32 val = intel_de_read(dev_priv, reg);
1048 u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050 assert_hdmi_port_disabled(intel_hdmi);
1051
1052 /* See the big comment in g4x_set_infoframes() */
1053 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055 if (!enable) {
1056 if (!(val & VIDEO_DIP_ENABLE))
1057 return;
1058 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 intel_de_write(dev_priv, reg, val);
1062 intel_de_posting_read(dev_priv, reg);
1063 return;
1064 }
1065
1066 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 "DIP already enabled on port %c\n",
1069 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 val &= ~VIDEO_DIP_PORT_MASK;
1071 val |= port;
1072 }
1073
1074 val |= VIDEO_DIP_ENABLE;
1075 val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 val |= VIDEO_DIP_ENABLE_GCP;
1081
1082 intel_de_write(dev_priv, reg, val);
1083 intel_de_posting_read(dev_priv, reg);
1084
1085 intel_write_infoframe(encoder, crtc_state,
1086 HDMI_INFOFRAME_TYPE_AVI,
1087 &crtc_state->infoframes.avi);
1088 intel_write_infoframe(encoder, crtc_state,
1089 HDMI_INFOFRAME_TYPE_SPD,
1090 &crtc_state->infoframes.spd);
1091 intel_write_infoframe(encoder, crtc_state,
1092 HDMI_INFOFRAME_TYPE_VENDOR,
1093 &crtc_state->infoframes.hdmi);
1094 }
1095
cpt_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 bool enable,
1098 const struct intel_crtc_state *crtc_state,
1099 const struct drm_connector_state *conn_state)
1100 {
1101 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105 u32 val = intel_de_read(dev_priv, reg);
1106
1107 assert_hdmi_port_disabled(intel_hdmi);
1108
1109 /* See the big comment in g4x_set_infoframes() */
1110 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112 if (!enable) {
1113 if (!(val & VIDEO_DIP_ENABLE))
1114 return;
1115 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 intel_de_write(dev_priv, reg, val);
1119 intel_de_posting_read(dev_priv, reg);
1120 return;
1121 }
1122
1123 /* Set both together, unset both together: see the spec. */
1124 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 val |= VIDEO_DIP_ENABLE_GCP;
1130
1131 intel_de_write(dev_priv, reg, val);
1132 intel_de_posting_read(dev_priv, reg);
1133
1134 intel_write_infoframe(encoder, crtc_state,
1135 HDMI_INFOFRAME_TYPE_AVI,
1136 &crtc_state->infoframes.avi);
1137 intel_write_infoframe(encoder, crtc_state,
1138 HDMI_INFOFRAME_TYPE_SPD,
1139 &crtc_state->infoframes.spd);
1140 intel_write_infoframe(encoder, crtc_state,
1141 HDMI_INFOFRAME_TYPE_VENDOR,
1142 &crtc_state->infoframes.hdmi);
1143 }
1144
vlv_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 bool enable,
1147 const struct intel_crtc_state *crtc_state,
1148 const struct drm_connector_state *conn_state)
1149 {
1150 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154 u32 val = intel_de_read(dev_priv, reg);
1155 u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157 assert_hdmi_port_disabled(intel_hdmi);
1158
1159 /* See the big comment in g4x_set_infoframes() */
1160 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162 if (!enable) {
1163 if (!(val & VIDEO_DIP_ENABLE))
1164 return;
1165 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 intel_de_write(dev_priv, reg, val);
1169 intel_de_posting_read(dev_priv, reg);
1170 return;
1171 }
1172
1173 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 "DIP already enabled on port %c\n",
1176 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 val &= ~VIDEO_DIP_PORT_MASK;
1178 val |= port;
1179 }
1180
1181 val |= VIDEO_DIP_ENABLE;
1182 val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 val |= VIDEO_DIP_ENABLE_GCP;
1188
1189 intel_de_write(dev_priv, reg, val);
1190 intel_de_posting_read(dev_priv, reg);
1191
1192 intel_write_infoframe(encoder, crtc_state,
1193 HDMI_INFOFRAME_TYPE_AVI,
1194 &crtc_state->infoframes.avi);
1195 intel_write_infoframe(encoder, crtc_state,
1196 HDMI_INFOFRAME_TYPE_SPD,
1197 &crtc_state->infoframes.spd);
1198 intel_write_infoframe(encoder, crtc_state,
1199 HDMI_INFOFRAME_TYPE_VENDOR,
1200 &crtc_state->infoframes.hdmi);
1201 }
1202
hsw_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 bool enable,
1205 const struct intel_crtc_state *crtc_state,
1206 const struct drm_connector_state *conn_state)
1207 {
1208 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 u32 val = intel_de_read(dev_priv, reg);
1211
1212 assert_hdmi_transcoder_func_disabled(dev_priv,
1213 crtc_state->cpu_transcoder);
1214
1215 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220 if (!enable) {
1221 intel_de_write(dev_priv, reg, val);
1222 intel_de_posting_read(dev_priv, reg);
1223 return;
1224 }
1225
1226 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229 intel_de_write(dev_priv, reg, val);
1230 intel_de_posting_read(dev_priv, reg);
1231
1232 intel_write_infoframe(encoder, crtc_state,
1233 HDMI_INFOFRAME_TYPE_AVI,
1234 &crtc_state->infoframes.avi);
1235 intel_write_infoframe(encoder, crtc_state,
1236 HDMI_INFOFRAME_TYPE_SPD,
1237 &crtc_state->infoframes.spd);
1238 intel_write_infoframe(encoder, crtc_state,
1239 HDMI_INFOFRAME_TYPE_VENDOR,
1240 &crtc_state->infoframes.hdmi);
1241 intel_write_infoframe(encoder, crtc_state,
1242 HDMI_INFOFRAME_TYPE_DRM,
1243 &crtc_state->infoframes.drm);
1244 }
1245
intel_dp_dual_mode_set_tmds_output(struct intel_hdmi * hdmi,bool enable)1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249 struct i2c_adapter *adapter;
1250
1251 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1252 return;
1253
1254 adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1255
1256 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1257 enable ? "Enabling" : "Disabling");
1258
1259 drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1260 }
1261
intel_hdmi_hdcp_read(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1262 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1263 unsigned int offset, void *buffer, size_t size)
1264 {
1265 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1266 struct intel_hdmi *hdmi = &dig_port->hdmi;
1267 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1268 hdmi->ddc_bus);
1269 int ret;
1270 u8 start = offset & 0xff;
1271 struct i2c_msg msgs[] = {
1272 {
1273 .addr = DRM_HDCP_DDC_ADDR,
1274 .flags = 0,
1275 .len = 1,
1276 .buf = &start,
1277 },
1278 {
1279 .addr = DRM_HDCP_DDC_ADDR,
1280 .flags = I2C_M_RD,
1281 .len = size,
1282 .buf = buffer
1283 }
1284 };
1285 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1286 if (ret == ARRAY_SIZE(msgs))
1287 return 0;
1288 return ret >= 0 ? -EIO : ret;
1289 }
1290
intel_hdmi_hdcp_write(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1291 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1292 unsigned int offset, void *buffer, size_t size)
1293 {
1294 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1295 struct intel_hdmi *hdmi = &dig_port->hdmi;
1296 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1297 hdmi->ddc_bus);
1298 int ret;
1299 u8 *write_buf;
1300 struct i2c_msg msg;
1301
1302 write_buf = kzalloc(size + 1, GFP_KERNEL);
1303 if (!write_buf)
1304 return -ENOMEM;
1305
1306 write_buf[0] = offset & 0xff;
1307 memcpy(&write_buf[1], buffer, size);
1308
1309 msg.addr = DRM_HDCP_DDC_ADDR;
1310 msg.flags = 0,
1311 msg.len = size + 1,
1312 msg.buf = write_buf;
1313
1314 ret = i2c_transfer(adapter, &msg, 1);
1315 if (ret == 1)
1316 ret = 0;
1317 else if (ret >= 0)
1318 ret = -EIO;
1319
1320 kfree(write_buf);
1321 return ret;
1322 }
1323
1324 static
intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port * dig_port,u8 * an)1325 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1326 u8 *an)
1327 {
1328 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1329 struct intel_hdmi *hdmi = &dig_port->hdmi;
1330 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1331 hdmi->ddc_bus);
1332 int ret;
1333
1334 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1335 DRM_HDCP_AN_LEN);
1336 if (ret) {
1337 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1338 ret);
1339 return ret;
1340 }
1341
1342 ret = intel_gmbus_output_aksv(adapter);
1343 if (ret < 0) {
1344 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1345 return ret;
1346 }
1347 return 0;
1348 }
1349
intel_hdmi_hdcp_read_bksv(struct intel_digital_port * dig_port,u8 * bksv)1350 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1351 u8 *bksv)
1352 {
1353 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1354
1355 int ret;
1356 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1357 DRM_HDCP_KSV_LEN);
1358 if (ret)
1359 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1360 ret);
1361 return ret;
1362 }
1363
1364 static
intel_hdmi_hdcp_read_bstatus(struct intel_digital_port * dig_port,u8 * bstatus)1365 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1366 u8 *bstatus)
1367 {
1368 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1369
1370 int ret;
1371 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1372 bstatus, DRM_HDCP_BSTATUS_LEN);
1373 if (ret)
1374 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1375 ret);
1376 return ret;
1377 }
1378
1379 static
intel_hdmi_hdcp_repeater_present(struct intel_digital_port * dig_port,bool * repeater_present)1380 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1381 bool *repeater_present)
1382 {
1383 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1384 int ret;
1385 u8 val;
1386
1387 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1388 if (ret) {
1389 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1390 ret);
1391 return ret;
1392 }
1393 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1394 return 0;
1395 }
1396
1397 static
intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port * dig_port,u8 * ri_prime)1398 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1399 u8 *ri_prime)
1400 {
1401 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1402
1403 int ret;
1404 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1405 ri_prime, DRM_HDCP_RI_LEN);
1406 if (ret)
1407 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1408 ret);
1409 return ret;
1410 }
1411
1412 static
intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port * dig_port,bool * ksv_ready)1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1414 bool *ksv_ready)
1415 {
1416 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1417 int ret;
1418 u8 val;
1419
1420 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421 if (ret) {
1422 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1423 ret);
1424 return ret;
1425 }
1426 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1427 return 0;
1428 }
1429
1430 static
intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port * dig_port,int num_downstream,u8 * ksv_fifo)1431 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1432 int num_downstream, u8 *ksv_fifo)
1433 {
1434 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1435 int ret;
1436 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1437 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1438 if (ret) {
1439 drm_dbg_kms(&i915->drm,
1440 "Read ksv fifo over DDC failed (%d)\n", ret);
1441 return ret;
1442 }
1443 return 0;
1444 }
1445
1446 static
intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port * dig_port,int i,u32 * part)1447 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1448 int i, u32 *part)
1449 {
1450 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1451 int ret;
1452
1453 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1454 return -EINVAL;
1455
1456 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1457 part, DRM_HDCP_V_PRIME_PART_LEN);
1458 if (ret)
1459 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1460 i, ret);
1461 return ret;
1462 }
1463
kbl_repositioning_enc_en_signal(struct intel_connector * connector,enum transcoder cpu_transcoder)1464 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1465 enum transcoder cpu_transcoder)
1466 {
1467 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1468 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1470 u32 scanline;
1471 int ret;
1472
1473 for (;;) {
1474 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1475 if (scanline > 100 && scanline < 200)
1476 break;
1477 usleep_range(25, 50);
1478 }
1479
1480 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1481 false, TRANS_DDI_HDCP_SIGNALLING);
1482 if (ret) {
1483 drm_err(&dev_priv->drm,
1484 "Disable HDCP signalling failed (%d)\n", ret);
1485 return ret;
1486 }
1487
1488 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1489 true, TRANS_DDI_HDCP_SIGNALLING);
1490 if (ret) {
1491 drm_err(&dev_priv->drm,
1492 "Enable HDCP signalling failed (%d)\n", ret);
1493 return ret;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static
intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port * dig_port,enum transcoder cpu_transcoder,bool enable)1500 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1501 enum transcoder cpu_transcoder,
1502 bool enable)
1503 {
1504 struct intel_hdmi *hdmi = &dig_port->hdmi;
1505 struct intel_connector *connector = hdmi->attached_connector;
1506 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1507 int ret;
1508
1509 if (!enable)
1510 usleep_range(6, 60); /* Bspec says >= 6us */
1511
1512 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1513 cpu_transcoder, enable,
1514 TRANS_DDI_HDCP_SIGNALLING);
1515 if (ret) {
1516 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1517 enable ? "Enable" : "Disable", ret);
1518 return ret;
1519 }
1520
1521 /*
1522 * WA: To fix incorrect positioning of the window of
1523 * opportunity and enc_en signalling in KABYLAKE.
1524 */
1525 if (IS_KABYLAKE(dev_priv) && enable)
1526 return kbl_repositioning_enc_en_signal(connector,
1527 cpu_transcoder);
1528
1529 return 0;
1530 }
1531
1532 static
intel_hdmi_hdcp_check_link_once(struct intel_digital_port * dig_port,struct intel_connector * connector)1533 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1534 struct intel_connector *connector)
1535 {
1536 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1537 enum port port = dig_port->base.port;
1538 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1539 int ret;
1540 union {
1541 u32 reg;
1542 u8 shim[DRM_HDCP_RI_LEN];
1543 } ri;
1544
1545 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1546 if (ret)
1547 return false;
1548
1549 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1550
1551 /* Wait for Ri prime match */
1552 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1553 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1554 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1555 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1556 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1557 port)));
1558 return false;
1559 }
1560 return true;
1561 }
1562
1563 static
intel_hdmi_hdcp_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1564 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1565 struct intel_connector *connector)
1566 {
1567 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1568 int retry;
1569
1570 for (retry = 0; retry < 3; retry++)
1571 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1572 return true;
1573
1574 drm_err(&i915->drm, "Link check failed\n");
1575 return false;
1576 }
1577
1578 struct hdcp2_hdmi_msg_timeout {
1579 u8 msg_id;
1580 u16 timeout;
1581 };
1582
1583 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1584 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1585 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1586 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1587 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1588 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1589 };
1590
1591 static
intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port * dig_port,u8 * rx_status)1592 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1593 u8 *rx_status)
1594 {
1595 return intel_hdmi_hdcp_read(dig_port,
1596 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1597 rx_status,
1598 HDCP_2_2_HDMI_RXSTATUS_LEN);
1599 }
1600
get_hdcp2_msg_timeout(u8 msg_id,bool is_paired)1601 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1602 {
1603 int i;
1604
1605 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1606 if (is_paired)
1607 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1608 else
1609 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1610 }
1611
1612 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1613 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1614 return hdcp2_msg_timeout[i].timeout;
1615 }
1616
1617 return -EINVAL;
1618 }
1619
1620 static int
hdcp2_detect_msg_availability(struct intel_digital_port * dig_port,u8 msg_id,bool * msg_ready,ssize_t * msg_sz)1621 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1622 u8 msg_id, bool *msg_ready,
1623 ssize_t *msg_sz)
1624 {
1625 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1626 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1627 int ret;
1628
1629 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1630 if (ret < 0) {
1631 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1632 ret);
1633 return ret;
1634 }
1635
1636 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1637 rx_status[0]);
1638
1639 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1640 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1641 *msg_sz);
1642 else
1643 *msg_ready = *msg_sz;
1644
1645 return 0;
1646 }
1647
1648 static ssize_t
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port * dig_port,u8 msg_id,bool paired)1649 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1650 u8 msg_id, bool paired)
1651 {
1652 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1653 bool msg_ready = false;
1654 int timeout, ret;
1655 ssize_t msg_sz = 0;
1656
1657 timeout = get_hdcp2_msg_timeout(msg_id, paired);
1658 if (timeout < 0)
1659 return timeout;
1660
1661 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1662 msg_id, &msg_ready,
1663 &msg_sz),
1664 !ret && msg_ready && msg_sz, timeout * 1000,
1665 1000, 5 * 1000);
1666 if (ret)
1667 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1668 msg_id, ret, timeout);
1669
1670 return ret ? ret : msg_sz;
1671 }
1672
1673 static
intel_hdmi_hdcp2_write_msg(struct intel_digital_port * dig_port,void * buf,size_t size)1674 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1675 void *buf, size_t size)
1676 {
1677 unsigned int offset;
1678
1679 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1680 return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1681 }
1682
1683 static
intel_hdmi_hdcp2_read_msg(struct intel_digital_port * dig_port,u8 msg_id,void * buf,size_t size)1684 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1685 u8 msg_id, void *buf, size_t size)
1686 {
1687 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1688 struct intel_hdmi *hdmi = &dig_port->hdmi;
1689 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1690 unsigned int offset;
1691 ssize_t ret;
1692
1693 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1694 hdcp->is_paired);
1695 if (ret < 0)
1696 return ret;
1697
1698 /*
1699 * Available msg size should be equal to or lesser than the
1700 * available buffer.
1701 */
1702 if (ret > size) {
1703 drm_dbg_kms(&i915->drm,
1704 "msg_sz(%zd) is more than exp size(%zu)\n",
1705 ret, size);
1706 return -1;
1707 }
1708
1709 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1710 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1711 if (ret)
1712 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1713 msg_id, ret);
1714
1715 return ret;
1716 }
1717
1718 static
intel_hdmi_hdcp2_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1719 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1720 struct intel_connector *connector)
1721 {
1722 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1723 int ret;
1724
1725 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1726 if (ret)
1727 return ret;
1728
1729 /*
1730 * Re-auth request and Link Integrity Failures are represented by
1731 * same bit. i.e reauth_req.
1732 */
1733 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1734 ret = HDCP_REAUTH_REQUEST;
1735 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1736 ret = HDCP_TOPOLOGY_CHANGE;
1737
1738 return ret;
1739 }
1740
1741 static
intel_hdmi_hdcp2_capable(struct intel_digital_port * dig_port,bool * capable)1742 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1743 bool *capable)
1744 {
1745 u8 hdcp2_version;
1746 int ret;
1747
1748 *capable = false;
1749 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1750 &hdcp2_version, sizeof(hdcp2_version));
1751 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1752 *capable = true;
1753
1754 return ret;
1755 }
1756
1757 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1758 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1759 .read_bksv = intel_hdmi_hdcp_read_bksv,
1760 .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1761 .repeater_present = intel_hdmi_hdcp_repeater_present,
1762 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1763 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1764 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1765 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1766 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1767 .check_link = intel_hdmi_hdcp_check_link,
1768 .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1769 .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1770 .check_2_2_link = intel_hdmi_hdcp2_check_link,
1771 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1772 .protocol = HDCP_PROTOCOL_HDMI,
1773 };
1774
intel_hdmi_source_max_tmds_clock(struct intel_encoder * encoder)1775 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1776 {
1777 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1778 int max_tmds_clock, vbt_max_tmds_clock;
1779
1780 if (DISPLAY_VER(dev_priv) >= 10)
1781 max_tmds_clock = 594000;
1782 else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1783 max_tmds_clock = 300000;
1784 else if (DISPLAY_VER(dev_priv) >= 5)
1785 max_tmds_clock = 225000;
1786 else
1787 max_tmds_clock = 165000;
1788
1789 vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1790 if (vbt_max_tmds_clock)
1791 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1792
1793 return max_tmds_clock;
1794 }
1795
intel_has_hdmi_sink(struct intel_hdmi * hdmi,const struct drm_connector_state * conn_state)1796 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1797 const struct drm_connector_state *conn_state)
1798 {
1799 return hdmi->has_hdmi_sink &&
1800 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1801 }
1802
hdmi_port_clock_limit(struct intel_hdmi * hdmi,bool respect_downstream_limits,bool has_hdmi_sink)1803 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1804 bool respect_downstream_limits,
1805 bool has_hdmi_sink)
1806 {
1807 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1808 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1809
1810 if (respect_downstream_limits) {
1811 struct intel_connector *connector = hdmi->attached_connector;
1812 const struct drm_display_info *info = &connector->base.display_info;
1813
1814 if (hdmi->dp_dual_mode.max_tmds_clock)
1815 max_tmds_clock = min(max_tmds_clock,
1816 hdmi->dp_dual_mode.max_tmds_clock);
1817
1818 if (info->max_tmds_clock)
1819 max_tmds_clock = min(max_tmds_clock,
1820 info->max_tmds_clock);
1821 else if (!has_hdmi_sink)
1822 max_tmds_clock = min(max_tmds_clock, 165000);
1823 }
1824
1825 return max_tmds_clock;
1826 }
1827
1828 static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi * hdmi,int clock,bool respect_downstream_limits,bool has_hdmi_sink)1829 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1830 int clock, bool respect_downstream_limits,
1831 bool has_hdmi_sink)
1832 {
1833 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1834 enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1835
1836 if (clock < 25000)
1837 return MODE_CLOCK_LOW;
1838 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839 has_hdmi_sink))
1840 return MODE_CLOCK_HIGH;
1841
1842 /* GLK DPLL can't generate 446-480 MHz */
1843 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844 return MODE_CLOCK_RANGE;
1845
1846 /* BXT/GLK DPLL can't generate 223-240 MHz */
1847 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848 clock > 223333 && clock < 240000)
1849 return MODE_CLOCK_RANGE;
1850
1851 /* CHV DPLL can't generate 216-240 MHz */
1852 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853 return MODE_CLOCK_RANGE;
1854
1855 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1856 if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1857 return MODE_CLOCK_RANGE;
1858
1859 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1860 if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1861 return MODE_CLOCK_RANGE;
1862
1863 /*
1864 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1865 * set of link rates.
1866 *
1867 * FIXME: We will hopefully get an algorithmic way of programming
1868 * the MPLLB for HDMI in the future.
1869 */
1870 if (IS_DG2(dev_priv))
1871 return intel_snps_phy_check_hdmi_link_rate(clock);
1872
1873 return MODE_OK;
1874 }
1875
intel_hdmi_port_clock(int clock,int bpc)1876 static int intel_hdmi_port_clock(int clock, int bpc)
1877 {
1878 /*
1879 * Need to adjust the port link by:
1880 * 1.5x for 12bpc
1881 * 1.25x for 10bpc
1882 */
1883 return clock * bpc / 8;
1884 }
1885
intel_hdmi_bpc_possible(struct drm_connector * connector,int bpc,bool has_hdmi_sink,bool ycbcr420_output)1886 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1887 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1888 {
1889 struct drm_i915_private *i915 = to_i915(connector->dev);
1890 const struct drm_display_info *info = &connector->display_info;
1891 const struct drm_hdmi_info *hdmi = &info->hdmi;
1892
1893 switch (bpc) {
1894 case 12:
1895 if (HAS_GMCH(i915))
1896 return false;
1897
1898 if (!has_hdmi_sink)
1899 return false;
1900
1901 if (ycbcr420_output)
1902 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1903 else
1904 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1905 case 10:
1906 if (DISPLAY_VER(i915) < 11)
1907 return false;
1908
1909 if (!has_hdmi_sink)
1910 return false;
1911
1912 if (ycbcr420_output)
1913 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1914 else
1915 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1916 case 8:
1917 return true;
1918 default:
1919 MISSING_CASE(bpc);
1920 return false;
1921 }
1922 }
1923
1924 static enum drm_mode_status
intel_hdmi_mode_clock_valid(struct drm_connector * connector,int clock,bool has_hdmi_sink,bool ycbcr420_output)1925 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1926 bool has_hdmi_sink, bool ycbcr420_output)
1927 {
1928 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1929 enum drm_mode_status status;
1930
1931 if (ycbcr420_output)
1932 clock /= 2;
1933
1934 /* check if we can do 8bpc */
1935 status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1936 true, has_hdmi_sink);
1937
1938 /* if we can't do 8bpc we may still be able to do 12bpc */
1939 if (status != MODE_OK &&
1940 intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1941 status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1942 true, has_hdmi_sink);
1943
1944 /* if we can't do 8,12bpc we may still be able to do 10bpc */
1945 if (status != MODE_OK &&
1946 intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1947 status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1948 true, has_hdmi_sink);
1949
1950 return status;
1951 }
1952
1953 static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1954 intel_hdmi_mode_valid(struct drm_connector *connector,
1955 struct drm_display_mode *mode)
1956 {
1957 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1958 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1959 enum drm_mode_status status;
1960 int clock = mode->clock;
1961 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1962 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1963 bool ycbcr_420_only;
1964
1965 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1966 return MODE_NO_DBLESCAN;
1967
1968 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1969 clock *= 2;
1970
1971 if (clock > max_dotclk)
1972 return MODE_CLOCK_HIGH;
1973
1974 if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1975 if (!has_hdmi_sink)
1976 return MODE_CLOCK_LOW;
1977 clock *= 2;
1978 }
1979
1980 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1981
1982 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1983 if (status != MODE_OK) {
1984 if (ycbcr_420_only ||
1985 !connector->ycbcr_420_allowed ||
1986 !drm_mode_is_420_also(&connector->display_info, mode))
1987 return status;
1988
1989 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1990 if (status != MODE_OK)
1991 return status;
1992 }
1993
1994 return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1995 }
1996
intel_hdmi_deep_color_possible(const struct intel_crtc_state * crtc_state,int bpc,bool has_hdmi_sink,bool ycbcr420_output)1997 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1998 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1999 {
2000 struct drm_atomic_state *state = crtc_state->uapi.state;
2001 struct drm_connector_state *connector_state;
2002 struct drm_connector *connector;
2003 int i;
2004
2005 if (crtc_state->pipe_bpp < bpc * 3)
2006 return false;
2007
2008 for_each_new_connector_in_state(state, connector, connector_state, i) {
2009 if (connector_state->crtc != crtc_state->uapi.crtc)
2010 continue;
2011
2012 if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2013 return false;
2014 }
2015
2016 return true;
2017 }
2018
hdmi_deep_color_possible(const struct intel_crtc_state * crtc_state,int bpc)2019 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2020 int bpc)
2021 {
2022 struct drm_i915_private *dev_priv =
2023 to_i915(crtc_state->uapi.crtc->dev);
2024 const struct drm_display_mode *adjusted_mode =
2025 &crtc_state->hw.adjusted_mode;
2026
2027 /*
2028 * HDMI deep color affects the clocks, so it's only possible
2029 * when not cloning with other encoder types.
2030 */
2031 if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2032 return false;
2033
2034 /* Display Wa_1405510057:icl,ehl */
2035 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2036 bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2037 (adjusted_mode->crtc_hblank_end -
2038 adjusted_mode->crtc_hblank_start) % 8 == 2)
2039 return false;
2040
2041 return intel_hdmi_deep_color_possible(crtc_state, bpc,
2042 crtc_state->has_hdmi_sink,
2043 crtc_state->output_format ==
2044 INTEL_OUTPUT_FORMAT_YCBCR420);
2045 }
2046
intel_hdmi_compute_bpc(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int clock)2047 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2048 struct intel_crtc_state *crtc_state,
2049 int clock)
2050 {
2051 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2052 int bpc;
2053
2054 for (bpc = 12; bpc >= 10; bpc -= 2) {
2055 if (hdmi_deep_color_possible(crtc_state, bpc) &&
2056 hdmi_port_clock_valid(intel_hdmi,
2057 intel_hdmi_port_clock(clock, bpc),
2058 true, crtc_state->has_hdmi_sink) == MODE_OK)
2059 return bpc;
2060 }
2061
2062 return 8;
2063 }
2064
intel_hdmi_compute_clock(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)2065 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2066 struct intel_crtc_state *crtc_state)
2067 {
2068 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2069 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2070 const struct drm_display_mode *adjusted_mode =
2071 &crtc_state->hw.adjusted_mode;
2072 int bpc, clock = adjusted_mode->crtc_clock;
2073
2074 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2075 clock *= 2;
2076
2077 /* YCBCR420 TMDS rate requirement is half the pixel clock */
2078 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2079 clock /= 2;
2080
2081 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2082
2083 crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2084
2085 /*
2086 * pipe_bpp could already be below 8bpc due to
2087 * FDI bandwidth constraints. We shouldn't bump it
2088 * back up to 8bpc in that case.
2089 */
2090 if (crtc_state->pipe_bpp > bpc * 3)
2091 crtc_state->pipe_bpp = bpc * 3;
2092
2093 drm_dbg_kms(&i915->drm,
2094 "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2095 bpc, crtc_state->pipe_bpp);
2096
2097 if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2098 false, crtc_state->has_hdmi_sink) != MODE_OK) {
2099 drm_dbg_kms(&i915->drm,
2100 "unsupported HDMI clock (%d kHz), rejecting mode\n",
2101 crtc_state->port_clock);
2102 return -EINVAL;
2103 }
2104
2105 return 0;
2106 }
2107
intel_hdmi_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2108 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2109 const struct drm_connector_state *conn_state)
2110 {
2111 const struct intel_digital_connector_state *intel_conn_state =
2112 to_intel_digital_connector_state(conn_state);
2113 const struct drm_display_mode *adjusted_mode =
2114 &crtc_state->hw.adjusted_mode;
2115
2116 /*
2117 * Our YCbCr output is always limited range.
2118 * crtc_state->limited_color_range only applies to RGB,
2119 * and it must never be set for YCbCr or we risk setting
2120 * some conflicting bits in PIPECONF which will mess up
2121 * the colors on the monitor.
2122 */
2123 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2124 return false;
2125
2126 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2127 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2128 return crtc_state->has_hdmi_sink &&
2129 drm_default_rgb_quant_range(adjusted_mode) ==
2130 HDMI_QUANTIZATION_RANGE_LIMITED;
2131 } else {
2132 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2133 }
2134 }
2135
intel_hdmi_has_audio(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2136 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2137 const struct intel_crtc_state *crtc_state,
2138 const struct drm_connector_state *conn_state)
2139 {
2140 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2141 const struct intel_digital_connector_state *intel_conn_state =
2142 to_intel_digital_connector_state(conn_state);
2143
2144 if (!crtc_state->has_hdmi_sink)
2145 return false;
2146
2147 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2148 return intel_hdmi->has_audio;
2149 else
2150 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2151 }
2152
intel_hdmi_compute_output_format(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2153 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2154 struct intel_crtc_state *crtc_state,
2155 const struct drm_connector_state *conn_state)
2156 {
2157 struct drm_connector *connector = conn_state->connector;
2158 struct drm_i915_private *i915 = to_i915(connector->dev);
2159 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2160 int ret;
2161 bool ycbcr_420_only;
2162
2163 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2164 if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2165 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2166 } else {
2167 if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2168 drm_dbg_kms(&i915->drm,
2169 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2170 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2171 }
2172
2173 ret = intel_hdmi_compute_clock(encoder, crtc_state);
2174 if (ret) {
2175 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2176 connector->ycbcr_420_allowed &&
2177 drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2178 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2179 ret = intel_hdmi_compute_clock(encoder, crtc_state);
2180 }
2181 }
2182
2183 return ret;
2184 }
2185
intel_hdmi_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2186 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2187 struct intel_crtc_state *pipe_config,
2188 struct drm_connector_state *conn_state)
2189 {
2190 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2191 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2192 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2193 struct drm_connector *connector = conn_state->connector;
2194 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2195 int ret;
2196
2197 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2198 return -EINVAL;
2199
2200 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2201 pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2202 conn_state);
2203
2204 if (pipe_config->has_hdmi_sink)
2205 pipe_config->has_infoframe = true;
2206
2207 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2208 pipe_config->pixel_multiplier = 2;
2209
2210 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2211 pipe_config->has_pch_encoder = true;
2212
2213 pipe_config->has_audio =
2214 intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2215
2216 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2217 if (ret)
2218 return ret;
2219
2220 if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2221 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2222 if (ret)
2223 return ret;
2224 }
2225
2226 pipe_config->limited_color_range =
2227 intel_hdmi_limited_color_range(pipe_config, conn_state);
2228
2229 if (conn_state->picture_aspect_ratio)
2230 adjusted_mode->picture_aspect_ratio =
2231 conn_state->picture_aspect_ratio;
2232
2233 pipe_config->lane_count = 4;
2234
2235 if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2236 if (scdc->scrambling.low_rates)
2237 pipe_config->hdmi_scrambling = true;
2238
2239 if (pipe_config->port_clock > 340000) {
2240 pipe_config->hdmi_scrambling = true;
2241 pipe_config->hdmi_high_tmds_clock_ratio = true;
2242 }
2243 }
2244
2245 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2246 conn_state);
2247
2248 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2249 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2250 return -EINVAL;
2251 }
2252
2253 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2254 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2255 return -EINVAL;
2256 }
2257
2258 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2259 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2260 return -EINVAL;
2261 }
2262
2263 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2264 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2265 return -EINVAL;
2266 }
2267
2268 return 0;
2269 }
2270
intel_hdmi_encoder_shutdown(struct intel_encoder * encoder)2271 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2272 {
2273 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2274
2275 /*
2276 * Give a hand to buggy BIOSen which forget to turn
2277 * the TMDS output buffers back on after a reboot.
2278 */
2279 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2280 }
2281
2282 static void
intel_hdmi_unset_edid(struct drm_connector * connector)2283 intel_hdmi_unset_edid(struct drm_connector *connector)
2284 {
2285 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2286
2287 intel_hdmi->has_hdmi_sink = false;
2288 intel_hdmi->has_audio = false;
2289
2290 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2291 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2292
2293 kfree(to_intel_connector(connector)->detect_edid);
2294 to_intel_connector(connector)->detect_edid = NULL;
2295 }
2296
2297 static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector * connector,bool has_edid)2298 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2299 {
2300 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2301 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2302 enum port port = hdmi_to_dig_port(hdmi)->base.port;
2303 struct i2c_adapter *adapter =
2304 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2305 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2306
2307 /*
2308 * Type 1 DVI adaptors are not required to implement any
2309 * registers, so we can't always detect their presence.
2310 * Ideally we should be able to check the state of the
2311 * CONFIG1 pin, but no such luck on our hardware.
2312 *
2313 * The only method left to us is to check the VBT to see
2314 * if the port is a dual mode capable DP port. But let's
2315 * only do that when we sucesfully read the EDID, to avoid
2316 * confusing log messages about DP dual mode adaptors when
2317 * there's nothing connected to the port.
2318 */
2319 if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2320 /* An overridden EDID imply that we want this port for testing.
2321 * Make sure not to set limits for that port.
2322 */
2323 if (has_edid && !connector->override_edid &&
2324 intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2325 drm_dbg_kms(&dev_priv->drm,
2326 "Assuming DP dual mode adaptor presence based on VBT\n");
2327 type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2328 } else {
2329 type = DRM_DP_DUAL_MODE_NONE;
2330 }
2331 }
2332
2333 if (type == DRM_DP_DUAL_MODE_NONE)
2334 return;
2335
2336 hdmi->dp_dual_mode.type = type;
2337 hdmi->dp_dual_mode.max_tmds_clock =
2338 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2339
2340 drm_dbg_kms(&dev_priv->drm,
2341 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2342 drm_dp_get_dual_mode_type_name(type),
2343 hdmi->dp_dual_mode.max_tmds_clock);
2344 }
2345
2346 static bool
intel_hdmi_set_edid(struct drm_connector * connector)2347 intel_hdmi_set_edid(struct drm_connector *connector)
2348 {
2349 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2350 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2351 intel_wakeref_t wakeref;
2352 struct edid *edid;
2353 bool connected = false;
2354 struct i2c_adapter *i2c;
2355
2356 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2357
2358 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2359
2360 edid = drm_get_edid(connector, i2c);
2361
2362 if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2363 drm_dbg_kms(&dev_priv->drm,
2364 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2365 intel_gmbus_force_bit(i2c, true);
2366 edid = drm_get_edid(connector, i2c);
2367 intel_gmbus_force_bit(i2c, false);
2368 }
2369
2370 intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2371
2372 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2373
2374 to_intel_connector(connector)->detect_edid = edid;
2375 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2376 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2377 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2378
2379 connected = true;
2380 }
2381
2382 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2383
2384 return connected;
2385 }
2386
2387 static enum drm_connector_status
intel_hdmi_detect(struct drm_connector * connector,bool force)2388 intel_hdmi_detect(struct drm_connector *connector, bool force)
2389 {
2390 enum drm_connector_status status = connector_status_disconnected;
2391 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2392 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2393 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2394 intel_wakeref_t wakeref;
2395
2396 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2397 connector->base.id, connector->name);
2398
2399 if (!INTEL_DISPLAY_ENABLED(dev_priv))
2400 return connector_status_disconnected;
2401
2402 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2403
2404 if (DISPLAY_VER(dev_priv) >= 11 &&
2405 !intel_digital_port_connected(encoder))
2406 goto out;
2407
2408 intel_hdmi_unset_edid(connector);
2409
2410 if (intel_hdmi_set_edid(connector))
2411 status = connector_status_connected;
2412
2413 out:
2414 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2415
2416 if (status != connector_status_connected)
2417 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2418
2419 /*
2420 * Make sure the refs for power wells enabled during detect are
2421 * dropped to avoid a new detect cycle triggered by HPD polling.
2422 */
2423 intel_display_power_flush_work(dev_priv);
2424
2425 return status;
2426 }
2427
2428 static void
intel_hdmi_force(struct drm_connector * connector)2429 intel_hdmi_force(struct drm_connector *connector)
2430 {
2431 struct drm_i915_private *i915 = to_i915(connector->dev);
2432
2433 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2434 connector->base.id, connector->name);
2435
2436 intel_hdmi_unset_edid(connector);
2437
2438 if (connector->status != connector_status_connected)
2439 return;
2440
2441 intel_hdmi_set_edid(connector);
2442 }
2443
intel_hdmi_get_modes(struct drm_connector * connector)2444 static int intel_hdmi_get_modes(struct drm_connector *connector)
2445 {
2446 struct edid *edid;
2447
2448 edid = to_intel_connector(connector)->detect_edid;
2449 if (edid == NULL)
2450 return 0;
2451
2452 return intel_connector_update_modes(connector, edid);
2453 }
2454
2455 static struct i2c_adapter *
intel_hdmi_get_i2c_adapter(struct drm_connector * connector)2456 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2457 {
2458 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2459 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2460
2461 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2462 }
2463
intel_hdmi_create_i2c_symlink(struct drm_connector * connector)2464 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2465 {
2466 struct drm_i915_private *i915 = to_i915(connector->dev);
2467 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2468 struct kobject *i2c_kobj = &adapter->dev.kobj;
2469 struct kobject *connector_kobj = &connector->kdev->kobj;
2470 int ret;
2471
2472 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2473 if (ret)
2474 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2475 }
2476
intel_hdmi_remove_i2c_symlink(struct drm_connector * connector)2477 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2478 {
2479 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2480 struct kobject *i2c_kobj = &adapter->dev.kobj;
2481 struct kobject *connector_kobj = &connector->kdev->kobj;
2482
2483 sysfs_remove_link(connector_kobj, i2c_kobj->name);
2484 }
2485
2486 static int
intel_hdmi_connector_register(struct drm_connector * connector)2487 intel_hdmi_connector_register(struct drm_connector *connector)
2488 {
2489 int ret;
2490
2491 ret = intel_connector_register(connector);
2492 if (ret)
2493 return ret;
2494
2495 intel_hdmi_create_i2c_symlink(connector);
2496
2497 return ret;
2498 }
2499
intel_hdmi_connector_unregister(struct drm_connector * connector)2500 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2501 {
2502 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2503
2504 cec_notifier_conn_unregister(n);
2505
2506 intel_hdmi_remove_i2c_symlink(connector);
2507 intel_connector_unregister(connector);
2508 }
2509
2510 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2511 .detect = intel_hdmi_detect,
2512 .force = intel_hdmi_force,
2513 .fill_modes = drm_helper_probe_single_connector_modes,
2514 .atomic_get_property = intel_digital_connector_atomic_get_property,
2515 .atomic_set_property = intel_digital_connector_atomic_set_property,
2516 .late_register = intel_hdmi_connector_register,
2517 .early_unregister = intel_hdmi_connector_unregister,
2518 .destroy = intel_connector_destroy,
2519 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2520 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2521 };
2522
2523 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2524 .get_modes = intel_hdmi_get_modes,
2525 .mode_valid = intel_hdmi_mode_valid,
2526 .atomic_check = intel_digital_connector_atomic_check,
2527 };
2528
2529 static void
intel_hdmi_add_properties(struct intel_hdmi * intel_hdmi,struct drm_connector * connector)2530 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2531 {
2532 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2533
2534 intel_attach_force_audio_property(connector);
2535 intel_attach_broadcast_rgb_property(connector);
2536 intel_attach_aspect_ratio_property(connector);
2537
2538 intel_attach_hdmi_colorspace_property(connector);
2539 drm_connector_attach_content_type_property(connector);
2540
2541 if (DISPLAY_VER(dev_priv) >= 10)
2542 drm_connector_attach_hdr_output_metadata_property(connector);
2543
2544 if (!HAS_GMCH(dev_priv))
2545 drm_connector_attach_max_bpc_property(connector, 8, 12);
2546 }
2547
2548 /*
2549 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2550 * @encoder: intel_encoder
2551 * @connector: drm_connector
2552 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2553 * or reset the high tmds clock ratio for scrambling
2554 * @scrambling: bool to Indicate if the function needs to set or reset
2555 * sink scrambling
2556 *
2557 * This function handles scrambling on HDMI 2.0 capable sinks.
2558 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2559 * it enables scrambling. This should be called before enabling the HDMI
2560 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2561 * detect a scrambled clock within 100 ms.
2562 *
2563 * Returns:
2564 * True on success, false on failure.
2565 */
intel_hdmi_handle_sink_scrambling(struct intel_encoder * encoder,struct drm_connector * connector,bool high_tmds_clock_ratio,bool scrambling)2566 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2567 struct drm_connector *connector,
2568 bool high_tmds_clock_ratio,
2569 bool scrambling)
2570 {
2571 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2572 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2573 struct drm_scrambling *sink_scrambling =
2574 &connector->display_info.hdmi.scdc.scrambling;
2575 struct i2c_adapter *adapter =
2576 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2577
2578 if (!sink_scrambling->supported)
2579 return true;
2580
2581 drm_dbg_kms(&dev_priv->drm,
2582 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2583 connector->base.id, connector->name,
2584 yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2585
2586 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2587 return drm_scdc_set_high_tmds_clock_ratio(adapter,
2588 high_tmds_clock_ratio) &&
2589 drm_scdc_set_scrambling(adapter, scrambling);
2590 }
2591
chv_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2592 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2593 {
2594 u8 ddc_pin;
2595
2596 switch (port) {
2597 case PORT_B:
2598 ddc_pin = GMBUS_PIN_DPB;
2599 break;
2600 case PORT_C:
2601 ddc_pin = GMBUS_PIN_DPC;
2602 break;
2603 case PORT_D:
2604 ddc_pin = GMBUS_PIN_DPD_CHV;
2605 break;
2606 default:
2607 MISSING_CASE(port);
2608 ddc_pin = GMBUS_PIN_DPB;
2609 break;
2610 }
2611 return ddc_pin;
2612 }
2613
bxt_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2614 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2615 {
2616 u8 ddc_pin;
2617
2618 switch (port) {
2619 case PORT_B:
2620 ddc_pin = GMBUS_PIN_1_BXT;
2621 break;
2622 case PORT_C:
2623 ddc_pin = GMBUS_PIN_2_BXT;
2624 break;
2625 default:
2626 MISSING_CASE(port);
2627 ddc_pin = GMBUS_PIN_1_BXT;
2628 break;
2629 }
2630 return ddc_pin;
2631 }
2632
cnp_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2633 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2634 enum port port)
2635 {
2636 u8 ddc_pin;
2637
2638 switch (port) {
2639 case PORT_B:
2640 ddc_pin = GMBUS_PIN_1_BXT;
2641 break;
2642 case PORT_C:
2643 ddc_pin = GMBUS_PIN_2_BXT;
2644 break;
2645 case PORT_D:
2646 ddc_pin = GMBUS_PIN_4_CNP;
2647 break;
2648 case PORT_F:
2649 ddc_pin = GMBUS_PIN_3_BXT;
2650 break;
2651 default:
2652 MISSING_CASE(port);
2653 ddc_pin = GMBUS_PIN_1_BXT;
2654 break;
2655 }
2656 return ddc_pin;
2657 }
2658
icl_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2659 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2660 {
2661 enum phy phy = intel_port_to_phy(dev_priv, port);
2662
2663 if (intel_phy_is_combo(dev_priv, phy))
2664 return GMBUS_PIN_1_BXT + port;
2665 else if (intel_phy_is_tc(dev_priv, phy))
2666 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2667
2668 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2669 return GMBUS_PIN_2_BXT;
2670 }
2671
mcc_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2672 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2673 {
2674 enum phy phy = intel_port_to_phy(dev_priv, port);
2675 u8 ddc_pin;
2676
2677 switch (phy) {
2678 case PHY_A:
2679 ddc_pin = GMBUS_PIN_1_BXT;
2680 break;
2681 case PHY_B:
2682 ddc_pin = GMBUS_PIN_2_BXT;
2683 break;
2684 case PHY_C:
2685 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2686 break;
2687 default:
2688 MISSING_CASE(phy);
2689 ddc_pin = GMBUS_PIN_1_BXT;
2690 break;
2691 }
2692 return ddc_pin;
2693 }
2694
rkl_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2695 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2696 {
2697 enum phy phy = intel_port_to_phy(dev_priv, port);
2698
2699 WARN_ON(port == PORT_C);
2700
2701 /*
2702 * Pin mapping for RKL depends on which PCH is present. With TGP, the
2703 * final two outputs use type-c pins, even though they're actually
2704 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2705 * all outputs.
2706 */
2707 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2708 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2709
2710 return GMBUS_PIN_1_BXT + phy;
2711 }
2712
gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private * i915,enum port port)2713 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2714 {
2715 enum phy phy = intel_port_to_phy(i915, port);
2716
2717 drm_WARN_ON(&i915->drm, port == PORT_A);
2718
2719 /*
2720 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP,
2721 * final two outputs use type-c pins, even though they're actually
2722 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2723 * all outputs.
2724 */
2725 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2726 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2727
2728 return GMBUS_PIN_1_BXT + phy;
2729 }
2730
dg1_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2731 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2732 {
2733 return intel_port_to_phy(dev_priv, port) + 1;
2734 }
2735
adls_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2736 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2737 {
2738 enum phy phy = intel_port_to_phy(dev_priv, port);
2739
2740 WARN_ON(port == PORT_B || port == PORT_C);
2741
2742 /*
2743 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2744 * except first combo output.
2745 */
2746 if (phy == PHY_A)
2747 return GMBUS_PIN_1_BXT;
2748
2749 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2750 }
2751
g4x_port_to_ddc_pin(struct drm_i915_private * dev_priv,enum port port)2752 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2753 enum port port)
2754 {
2755 u8 ddc_pin;
2756
2757 switch (port) {
2758 case PORT_B:
2759 ddc_pin = GMBUS_PIN_DPB;
2760 break;
2761 case PORT_C:
2762 ddc_pin = GMBUS_PIN_DPC;
2763 break;
2764 case PORT_D:
2765 ddc_pin = GMBUS_PIN_DPD;
2766 break;
2767 default:
2768 MISSING_CASE(port);
2769 ddc_pin = GMBUS_PIN_DPB;
2770 break;
2771 }
2772 return ddc_pin;
2773 }
2774
intel_hdmi_ddc_pin(struct intel_encoder * encoder)2775 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2776 {
2777 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2778 enum port port = encoder->port;
2779 u8 ddc_pin;
2780
2781 ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2782 if (ddc_pin) {
2783 drm_dbg_kms(&dev_priv->drm,
2784 "Using DDC pin 0x%x for port %c (VBT)\n",
2785 ddc_pin, port_name(port));
2786 return ddc_pin;
2787 }
2788
2789 if (IS_ALDERLAKE_S(dev_priv))
2790 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2791 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2792 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2793 else if (IS_ROCKETLAKE(dev_priv))
2794 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2795 else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2796 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2797 else if (HAS_PCH_MCC(dev_priv))
2798 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2799 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2800 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2801 else if (HAS_PCH_CNP(dev_priv))
2802 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2803 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2804 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2805 else if (IS_CHERRYVIEW(dev_priv))
2806 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2807 else
2808 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2809
2810 drm_dbg_kms(&dev_priv->drm,
2811 "Using DDC pin 0x%x for port %c (platform default)\n",
2812 ddc_pin, port_name(port));
2813
2814 return ddc_pin;
2815 }
2816
intel_infoframe_init(struct intel_digital_port * dig_port)2817 void intel_infoframe_init(struct intel_digital_port *dig_port)
2818 {
2819 struct drm_i915_private *dev_priv =
2820 to_i915(dig_port->base.base.dev);
2821
2822 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2823 dig_port->write_infoframe = vlv_write_infoframe;
2824 dig_port->read_infoframe = vlv_read_infoframe;
2825 dig_port->set_infoframes = vlv_set_infoframes;
2826 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2827 } else if (IS_G4X(dev_priv)) {
2828 dig_port->write_infoframe = g4x_write_infoframe;
2829 dig_port->read_infoframe = g4x_read_infoframe;
2830 dig_port->set_infoframes = g4x_set_infoframes;
2831 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2832 } else if (HAS_DDI(dev_priv)) {
2833 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2834 dig_port->write_infoframe = lspcon_write_infoframe;
2835 dig_port->read_infoframe = lspcon_read_infoframe;
2836 dig_port->set_infoframes = lspcon_set_infoframes;
2837 dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2838 } else {
2839 dig_port->write_infoframe = hsw_write_infoframe;
2840 dig_port->read_infoframe = hsw_read_infoframe;
2841 dig_port->set_infoframes = hsw_set_infoframes;
2842 dig_port->infoframes_enabled = hsw_infoframes_enabled;
2843 }
2844 } else if (HAS_PCH_IBX(dev_priv)) {
2845 dig_port->write_infoframe = ibx_write_infoframe;
2846 dig_port->read_infoframe = ibx_read_infoframe;
2847 dig_port->set_infoframes = ibx_set_infoframes;
2848 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2849 } else {
2850 dig_port->write_infoframe = cpt_write_infoframe;
2851 dig_port->read_infoframe = cpt_read_infoframe;
2852 dig_port->set_infoframes = cpt_set_infoframes;
2853 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2854 }
2855 }
2856
intel_hdmi_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)2857 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2858 struct intel_connector *intel_connector)
2859 {
2860 struct drm_connector *connector = &intel_connector->base;
2861 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2862 struct intel_encoder *intel_encoder = &dig_port->base;
2863 struct drm_device *dev = intel_encoder->base.dev;
2864 struct drm_i915_private *dev_priv = to_i915(dev);
2865 struct i2c_adapter *ddc;
2866 enum port port = intel_encoder->port;
2867 struct cec_connector_info conn_info;
2868
2869 drm_dbg_kms(&dev_priv->drm,
2870 "Adding HDMI connector on [ENCODER:%d:%s]\n",
2871 intel_encoder->base.base.id, intel_encoder->base.name);
2872
2873 if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2874 return;
2875
2876 if (drm_WARN(dev, dig_port->max_lanes < 4,
2877 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2878 dig_port->max_lanes, intel_encoder->base.base.id,
2879 intel_encoder->base.name))
2880 return;
2881
2882 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2883 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2884
2885 drm_connector_init_with_ddc(dev, connector,
2886 &intel_hdmi_connector_funcs,
2887 DRM_MODE_CONNECTOR_HDMIA,
2888 ddc);
2889 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2890
2891 connector->interlace_allowed = 1;
2892 connector->doublescan_allowed = 0;
2893 connector->stereo_allowed = 1;
2894
2895 if (DISPLAY_VER(dev_priv) >= 10)
2896 connector->ycbcr_420_allowed = true;
2897
2898 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2899
2900 if (HAS_DDI(dev_priv))
2901 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2902 else
2903 intel_connector->get_hw_state = intel_connector_get_hw_state;
2904
2905 intel_hdmi_add_properties(intel_hdmi, connector);
2906
2907 intel_connector_attach_encoder(intel_connector, intel_encoder);
2908 intel_hdmi->attached_connector = intel_connector;
2909
2910 if (is_hdcp_supported(dev_priv, port)) {
2911 int ret = intel_hdcp_init(intel_connector, dig_port,
2912 &intel_hdmi_hdcp_shim);
2913 if (ret)
2914 drm_dbg_kms(&dev_priv->drm,
2915 "HDCP init failed, skipping.\n");
2916 }
2917
2918 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2919 * 0xd. Failure to do so will result in spurious interrupts being
2920 * generated on the port when a cable is not attached.
2921 */
2922 if (IS_G45(dev_priv)) {
2923 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2924 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2925 (temp & ~0xf) | 0xd);
2926 }
2927
2928 cec_fill_conn_info_from_drm(&conn_info, connector);
2929
2930 intel_hdmi->cec_notifier =
2931 cec_notifier_conn_register(dev->dev, port_identifier(port),
2932 &conn_info);
2933 if (!intel_hdmi->cec_notifier)
2934 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2935 }
2936
2937 /*
2938 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2939 * @vactive: Vactive of a display mode
2940 *
2941 * @return: appropriate dsc slice height for a given mode.
2942 */
intel_hdmi_dsc_get_slice_height(int vactive)2943 int intel_hdmi_dsc_get_slice_height(int vactive)
2944 {
2945 int slice_height;
2946
2947 /*
2948 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2949 * Select smallest slice height >=96, that results in a valid PPS and
2950 * requires minimum padding lines required for final slice.
2951 *
2952 * Assumption : Vactive is even.
2953 */
2954 for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2955 if (vactive % slice_height == 0)
2956 return slice_height;
2957
2958 return 0;
2959 }
2960
2961 /*
2962 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2963 * and dsc decoder capabilities
2964 *
2965 * @crtc_state: intel crtc_state
2966 * @src_max_slices: maximum slices supported by the DSC encoder
2967 * @src_max_slice_width: maximum slice width supported by DSC encoder
2968 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2969 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2970 *
2971 * @return: num of dsc slices that can be supported by the dsc encoder
2972 * and decoder.
2973 */
2974 int
intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state * crtc_state,int src_max_slices,int src_max_slice_width,int hdmi_max_slices,int hdmi_throughput)2975 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2976 int src_max_slices, int src_max_slice_width,
2977 int hdmi_max_slices, int hdmi_throughput)
2978 {
2979 /* Pixel rates in KPixels/sec */
2980 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000
2981 /*
2982 * Rates at which the source and sink are required to process pixels in each
2983 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2984 */
2985 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000
2986 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000
2987
2988 /* Spec limits the slice width to 2720 pixels */
2989 #define MAX_HDMI_SLICE_WIDTH 2720
2990 int kslice_adjust;
2991 int adjusted_clk_khz;
2992 int min_slices;
2993 int target_slices;
2994 int max_throughput; /* max clock freq. in khz per slice */
2995 int max_slice_width;
2996 int slice_width;
2997 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2998
2999 if (!hdmi_throughput)
3000 return 0;
3001
3002 /*
3003 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3004 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3005 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3006 * dividing adjusted clock value by 10.
3007 */
3008 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3009 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3010 kslice_adjust = 10;
3011 else
3012 kslice_adjust = 5;
3013
3014 /*
3015 * As per spec, the rate at which the source and the sink process
3016 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3017 * This depends upon the pixel clock rate and output formats
3018 * (kslice adjust).
3019 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3020 * at max 340MHz, otherwise they can be processed at max 400MHz.
3021 */
3022
3023 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3024
3025 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3026 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3027 else
3028 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3029
3030 /*
3031 * Taking into account the sink's capability for maximum
3032 * clock per slice (in MHz) as read from HF-VSDB.
3033 */
3034 max_throughput = min(max_throughput, hdmi_throughput * 1000);
3035
3036 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3037 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3038
3039 /*
3040 * Keep on increasing the num of slices/line, starting from min_slices
3041 * per line till we get such a number, for which the slice_width is
3042 * just less than max_slice_width. The slices/line selected should be
3043 * less than or equal to the max horizontal slices that the combination
3044 * of PCON encoder and HDMI decoder can support.
3045 */
3046 slice_width = max_slice_width;
3047
3048 do {
3049 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3050 target_slices = 1;
3051 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3052 target_slices = 2;
3053 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3054 target_slices = 4;
3055 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3056 target_slices = 8;
3057 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3058 target_slices = 12;
3059 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3060 target_slices = 16;
3061 else
3062 return 0;
3063
3064 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3065 if (slice_width >= max_slice_width)
3066 min_slices = target_slices + 1;
3067 } while (slice_width >= max_slice_width);
3068
3069 return target_slices;
3070 }
3071
3072 /*
3073 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3074 * source and sink capabilities.
3075 *
3076 * @src_fraction_bpp: fractional bpp supported by the source
3077 * @slice_width: dsc slice width supported by the source and sink
3078 * @num_slices: num of slices supported by the source and sink
3079 * @output_format: video output format
3080 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3081 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3082 *
3083 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3084 */
3085 int
intel_hdmi_dsc_get_bpp(int src_fractional_bpp,int slice_width,int num_slices,int output_format,bool hdmi_all_bpp,int hdmi_max_chunk_bytes)3086 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3087 int output_format, bool hdmi_all_bpp,
3088 int hdmi_max_chunk_bytes)
3089 {
3090 int max_dsc_bpp, min_dsc_bpp;
3091 int target_bytes;
3092 bool bpp_found = false;
3093 int bpp_decrement_x16;
3094 int bpp_target;
3095 int bpp_target_x16;
3096
3097 /*
3098 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3099 * Start with the max bpp and keep on decrementing with
3100 * fractional bpp, if supported by PCON DSC encoder
3101 *
3102 * for each bpp we check if no of bytes can be supported by HDMI sink
3103 */
3104
3105 /* Assuming: bpc as 8*/
3106 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3107 min_dsc_bpp = 6;
3108 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3109 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3110 output_format == INTEL_OUTPUT_FORMAT_RGB) {
3111 min_dsc_bpp = 8;
3112 max_dsc_bpp = 3 * 8; /* 3*bpc */
3113 } else {
3114 /* Assuming 4:2:2 encoding */
3115 min_dsc_bpp = 7;
3116 max_dsc_bpp = 2 * 8; /* 2*bpc */
3117 }
3118
3119 /*
3120 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3121 * Section 7.7.34 : Source shall not enable compressed Video
3122 * Transport with bpp_target settings above 12 bpp unless
3123 * DSC_all_bpp is set to 1.
3124 */
3125 if (!hdmi_all_bpp)
3126 max_dsc_bpp = min(max_dsc_bpp, 12);
3127
3128 /*
3129 * The Sink has a limit of compressed data in bytes for a scanline,
3130 * as described in max_chunk_bytes field in HFVSDB block of edid.
3131 * The no. of bytes depend on the target bits per pixel that the
3132 * source configures. So we start with the max_bpp and calculate
3133 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3134 * till we get the target_chunk_bytes just less than what the sink's
3135 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3136 *
3137 * The decrement is according to the fractional support from PCON DSC
3138 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3139 *
3140 * bpp_target_x16 = bpp_target * 16
3141 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3142 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3143 */
3144
3145 bpp_target = max_dsc_bpp;
3146
3147 /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3148 if (!src_fractional_bpp)
3149 src_fractional_bpp = 1;
3150 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3151 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3152
3153 while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3154 int bpp;
3155
3156 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3157 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3158 if (target_bytes <= hdmi_max_chunk_bytes) {
3159 bpp_found = true;
3160 break;
3161 }
3162 bpp_target_x16 -= bpp_decrement_x16;
3163 }
3164 if (bpp_found)
3165 return bpp_target_x16;
3166
3167 return 0;
3168 }
3169