• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gk104_clk(p) container_of((p), struct gk104_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27 
28 #include <subdev/timer.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 
32 struct gk104_clk_info {
33 	u32 freq;
34 	u32 ssel;
35 	u32 mdiv;
36 	u32 dsrc;
37 	u32 ddiv;
38 	u32 coef;
39 };
40 
41 struct gk104_clk {
42 	struct nvkm_clk base;
43 	struct gk104_clk_info eng[16];
44 };
45 
46 static u32 read_div(struct gk104_clk *, int, u32, u32);
47 static u32 read_pll(struct gk104_clk *, u32);
48 
49 static u32
read_vco(struct gk104_clk * clk,u32 dsrc)50 read_vco(struct gk104_clk *clk, u32 dsrc)
51 {
52 	struct nvkm_device *device = clk->base.subdev.device;
53 	u32 ssrc = nvkm_rd32(device, dsrc);
54 	if (!(ssrc & 0x00000100))
55 		return read_pll(clk, 0x00e800);
56 	return read_pll(clk, 0x00e820);
57 }
58 
59 static u32
read_pll(struct gk104_clk * clk,u32 pll)60 read_pll(struct gk104_clk *clk, u32 pll)
61 {
62 	struct nvkm_device *device = clk->base.subdev.device;
63 	u32 ctrl = nvkm_rd32(device, pll + 0x00);
64 	u32 coef = nvkm_rd32(device, pll + 0x04);
65 	u32 P = (coef & 0x003f0000) >> 16;
66 	u32 N = (coef & 0x0000ff00) >> 8;
67 	u32 M = (coef & 0x000000ff) >> 0;
68 	u32 sclk;
69 	u16 fN = 0xf000;
70 
71 	if (!(ctrl & 0x00000001))
72 		return 0;
73 
74 	switch (pll) {
75 	case 0x00e800:
76 	case 0x00e820:
77 		sclk = device->crystal;
78 		P = 1;
79 		break;
80 	case 0x132000:
81 		sclk = read_pll(clk, 0x132020);
82 		P = (coef & 0x10000000) ? 2 : 1;
83 		break;
84 	case 0x132020:
85 		sclk = read_div(clk, 0, 0x137320, 0x137330);
86 		fN   = nvkm_rd32(device, pll + 0x10) >> 16;
87 		break;
88 	case 0x137000:
89 	case 0x137020:
90 	case 0x137040:
91 	case 0x1370e0:
92 		sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
93 		break;
94 	default:
95 		return 0;
96 	}
97 
98 	if (P == 0)
99 		P = 1;
100 
101 	sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
102 	return sclk / (M * P);
103 }
104 
105 static u32
read_div(struct gk104_clk * clk,int doff,u32 dsrc,u32 dctl)106 read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
107 {
108 	struct nvkm_device *device = clk->base.subdev.device;
109 	u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
110 	u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
111 
112 	switch (ssrc & 0x00000003) {
113 	case 0:
114 		if ((ssrc & 0x00030000) != 0x00030000)
115 			return device->crystal;
116 		return 108000;
117 	case 2:
118 		return 100000;
119 	case 3:
120 		if (sctl & 0x80000000) {
121 			u32 sclk = read_vco(clk, dsrc + (doff * 4));
122 			u32 sdiv = (sctl & 0x0000003f) + 2;
123 			return (sclk * 2) / sdiv;
124 		}
125 
126 		return read_vco(clk, dsrc + (doff * 4));
127 	default:
128 		return 0;
129 	}
130 }
131 
132 static u32
read_mem(struct gk104_clk * clk)133 read_mem(struct gk104_clk *clk)
134 {
135 	struct nvkm_device *device = clk->base.subdev.device;
136 	switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) {
137 	case 1: return read_pll(clk, 0x132020);
138 	case 2: return read_pll(clk, 0x132000);
139 	default:
140 		return 0;
141 	}
142 }
143 
144 static u32
read_clk(struct gk104_clk * clk,int idx)145 read_clk(struct gk104_clk *clk, int idx)
146 {
147 	struct nvkm_device *device = clk->base.subdev.device;
148 	u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
149 	u32 sclk, sdiv;
150 
151 	if (idx < 7) {
152 		u32 ssel = nvkm_rd32(device, 0x137100);
153 		if (ssel & (1 << idx)) {
154 			sclk = read_pll(clk, 0x137000 + (idx * 0x20));
155 			sdiv = 1;
156 		} else {
157 			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
158 			sdiv = 0;
159 		}
160 	} else {
161 		u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04));
162 		if ((ssrc & 0x00000003) == 0x00000003) {
163 			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
164 			if (ssrc & 0x00000100) {
165 				if (ssrc & 0x40000000)
166 					sclk = read_pll(clk, 0x1370e0);
167 				sdiv = 1;
168 			} else {
169 				sdiv = 0;
170 			}
171 		} else {
172 			sclk = read_div(clk, idx, 0x137160, 0x1371d0);
173 			sdiv = 0;
174 		}
175 	}
176 
177 	if (sctl & 0x80000000) {
178 		if (sdiv)
179 			sdiv = ((sctl & 0x00003f00) >> 8) + 2;
180 		else
181 			sdiv = ((sctl & 0x0000003f) >> 0) + 2;
182 		return (sclk * 2) / sdiv;
183 	}
184 
185 	return sclk;
186 }
187 
188 static int
gk104_clk_read(struct nvkm_clk * base,enum nv_clk_src src)189 gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
190 {
191 	struct gk104_clk *clk = gk104_clk(base);
192 	struct nvkm_subdev *subdev = &clk->base.subdev;
193 	struct nvkm_device *device = subdev->device;
194 
195 	switch (src) {
196 	case nv_clk_src_crystal:
197 		return device->crystal;
198 	case nv_clk_src_href:
199 		return 100000;
200 	case nv_clk_src_mem:
201 		return read_mem(clk);
202 	case nv_clk_src_gpc:
203 		return read_clk(clk, 0x00);
204 	case nv_clk_src_rop:
205 		return read_clk(clk, 0x01);
206 	case nv_clk_src_hubk07:
207 		return read_clk(clk, 0x02);
208 	case nv_clk_src_hubk06:
209 		return read_clk(clk, 0x07);
210 	case nv_clk_src_hubk01:
211 		return read_clk(clk, 0x08);
212 	case nv_clk_src_pmu:
213 		return read_clk(clk, 0x0c);
214 	case nv_clk_src_vdec:
215 		return read_clk(clk, 0x0e);
216 	default:
217 		nvkm_error(subdev, "invalid clock source %d\n", src);
218 		return -EINVAL;
219 	}
220 }
221 
222 static u32
calc_div(struct gk104_clk * clk,int idx,u32 ref,u32 freq,u32 * ddiv)223 calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
224 {
225 	u32 div = min((ref * 2) / freq, (u32)65);
226 	if (div < 2)
227 		div = 2;
228 
229 	*ddiv = div - 2;
230 	return (ref * 2) / div;
231 }
232 
233 static u32
calc_src(struct gk104_clk * clk,int idx,u32 freq,u32 * dsrc,u32 * ddiv)234 calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
235 {
236 	u32 sclk;
237 
238 	/* use one of the fixed frequencies if possible */
239 	*ddiv = 0x00000000;
240 	switch (freq) {
241 	case  27000:
242 	case 108000:
243 		*dsrc = 0x00000000;
244 		if (freq == 108000)
245 			*dsrc |= 0x00030000;
246 		return freq;
247 	case 100000:
248 		*dsrc = 0x00000002;
249 		return freq;
250 	default:
251 		*dsrc = 0x00000003;
252 		break;
253 	}
254 
255 	/* otherwise, calculate the closest divider */
256 	sclk = read_vco(clk, 0x137160 + (idx * 4));
257 	if (idx < 7)
258 		sclk = calc_div(clk, idx, sclk, freq, ddiv);
259 	return sclk;
260 }
261 
262 static u32
calc_pll(struct gk104_clk * clk,int idx,u32 freq,u32 * coef)263 calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
264 {
265 	struct nvkm_subdev *subdev = &clk->base.subdev;
266 	struct nvkm_bios *bios = subdev->device->bios;
267 	struct nvbios_pll limits;
268 	int N, M, P, ret;
269 
270 	ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
271 	if (ret)
272 		return 0;
273 
274 	limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
275 	if (!limits.refclk)
276 		return 0;
277 
278 	ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
279 	if (ret <= 0)
280 		return 0;
281 
282 	*coef = (P << 16) | (N << 8) | M;
283 	return ret;
284 }
285 
286 static int
calc_clk(struct gk104_clk * clk,struct nvkm_cstate * cstate,int idx,int dom)287 calc_clk(struct gk104_clk *clk,
288 	 struct nvkm_cstate *cstate, int idx, int dom)
289 {
290 	struct gk104_clk_info *info = &clk->eng[idx];
291 	u32 freq = cstate->domain[dom];
292 	u32 src0, div0, div1D, div1P = 0;
293 	u32 clk0, clk1 = 0;
294 
295 	/* invalid clock domain */
296 	if (!freq)
297 		return 0;
298 
299 	/* first possible path, using only dividers */
300 	clk0 = calc_src(clk, idx, freq, &src0, &div0);
301 	clk0 = calc_div(clk, idx, clk0, freq, &div1D);
302 
303 	/* see if we can get any closer using PLLs */
304 	if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
305 		if (idx <= 7)
306 			clk1 = calc_pll(clk, idx, freq, &info->coef);
307 		else
308 			clk1 = cstate->domain[nv_clk_src_hubk06];
309 		clk1 = calc_div(clk, idx, clk1, freq, &div1P);
310 	}
311 
312 	/* select the method which gets closest to target freq */
313 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
314 		info->dsrc = src0;
315 		if (div0) {
316 			info->ddiv |= 0x80000000;
317 			info->ddiv |= div0;
318 		}
319 		if (div1D) {
320 			info->mdiv |= 0x80000000;
321 			info->mdiv |= div1D;
322 		}
323 		info->ssel = 0;
324 		info->freq = clk0;
325 	} else {
326 		if (div1P) {
327 			info->mdiv |= 0x80000000;
328 			info->mdiv |= div1P << 8;
329 		}
330 		info->ssel = (1 << idx);
331 		info->dsrc = 0x40000100;
332 		info->freq = clk1;
333 	}
334 
335 	return 0;
336 }
337 
338 static int
gk104_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)339 gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
340 {
341 	struct gk104_clk *clk = gk104_clk(base);
342 	int ret;
343 
344 	if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
345 	    (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
346 	    (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
347 	    (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
348 	    (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
349 	    (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
350 	    (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
351 		return ret;
352 
353 	return 0;
354 }
355 
356 static void
gk104_clk_prog_0(struct gk104_clk * clk,int idx)357 gk104_clk_prog_0(struct gk104_clk *clk, int idx)
358 {
359 	struct gk104_clk_info *info = &clk->eng[idx];
360 	struct nvkm_device *device = clk->base.subdev.device;
361 	if (!info->ssel) {
362 		nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
363 		nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
364 	}
365 }
366 
367 static void
gk104_clk_prog_1_0(struct gk104_clk * clk,int idx)368 gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
369 {
370 	struct nvkm_device *device = clk->base.subdev.device;
371 	nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
372 	nvkm_msec(device, 2000,
373 		if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
374 			break;
375 	);
376 }
377 
378 static void
gk104_clk_prog_1_1(struct gk104_clk * clk,int idx)379 gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
380 {
381 	struct nvkm_device *device = clk->base.subdev.device;
382 	nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
383 }
384 
385 static void
gk104_clk_prog_2(struct gk104_clk * clk,int idx)386 gk104_clk_prog_2(struct gk104_clk *clk, int idx)
387 {
388 	struct gk104_clk_info *info = &clk->eng[idx];
389 	struct nvkm_device *device = clk->base.subdev.device;
390 	const u32 addr = 0x137000 + (idx * 0x20);
391 	nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
392 	nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
393 	if (info->coef) {
394 		nvkm_wr32(device, addr + 0x04, info->coef);
395 		nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
396 
397 		/* Test PLL lock */
398 		nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
399 		nvkm_msec(device, 2000,
400 			if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
401 				break;
402 		);
403 		nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
404 
405 		/* Enable sync mode */
406 		nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
407 	}
408 }
409 
410 static void
gk104_clk_prog_3(struct gk104_clk * clk,int idx)411 gk104_clk_prog_3(struct gk104_clk *clk, int idx)
412 {
413 	struct gk104_clk_info *info = &clk->eng[idx];
414 	struct nvkm_device *device = clk->base.subdev.device;
415 	if (info->ssel)
416 		nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
417 	else
418 		nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
419 }
420 
421 static void
gk104_clk_prog_4_0(struct gk104_clk * clk,int idx)422 gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
423 {
424 	struct gk104_clk_info *info = &clk->eng[idx];
425 	struct nvkm_device *device = clk->base.subdev.device;
426 	if (info->ssel) {
427 		nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
428 		nvkm_msec(device, 2000,
429 			u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
430 			if (tmp == info->ssel)
431 				break;
432 		);
433 	}
434 }
435 
436 static void
gk104_clk_prog_4_1(struct gk104_clk * clk,int idx)437 gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
438 {
439 	struct gk104_clk_info *info = &clk->eng[idx];
440 	struct nvkm_device *device = clk->base.subdev.device;
441 	if (info->ssel) {
442 		nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
443 		nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
444 	}
445 }
446 
447 static int
gk104_clk_prog(struct nvkm_clk * base)448 gk104_clk_prog(struct nvkm_clk *base)
449 {
450 	struct gk104_clk *clk = gk104_clk(base);
451 	struct {
452 		u32 mask;
453 		void (*exec)(struct gk104_clk *, int);
454 	} stage[] = {
455 		{ 0x007f, gk104_clk_prog_0   }, /* div programming */
456 		{ 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
457 		{ 0xff80, gk104_clk_prog_1_1 },
458 		{ 0x00ff, gk104_clk_prog_2   }, /* (maybe) program pll */
459 		{ 0xff80, gk104_clk_prog_3   }, /* final divider */
460 		{ 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
461 		{ 0xff80, gk104_clk_prog_4_1 },
462 	};
463 	int i, j;
464 
465 	for (i = 0; i < ARRAY_SIZE(stage); i++) {
466 		for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
467 			if (!(stage[i].mask & (1 << j)))
468 				continue;
469 			if (!clk->eng[j].freq)
470 				continue;
471 			stage[i].exec(clk, j);
472 		}
473 	}
474 
475 	return 0;
476 }
477 
478 static void
gk104_clk_tidy(struct nvkm_clk * base)479 gk104_clk_tidy(struct nvkm_clk *base)
480 {
481 	struct gk104_clk *clk = gk104_clk(base);
482 	memset(clk->eng, 0x00, sizeof(clk->eng));
483 }
484 
485 static const struct nvkm_clk_func
486 gk104_clk = {
487 	.read = gk104_clk_read,
488 	.calc = gk104_clk_calc,
489 	.prog = gk104_clk_prog,
490 	.tidy = gk104_clk_tidy,
491 	.domains = {
492 		{ nv_clk_src_crystal, 0xff },
493 		{ nv_clk_src_href   , 0xff },
494 		{ nv_clk_src_gpc    , 0x00, NVKM_CLK_DOM_FLAG_CORE | NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
495 		{ nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
496 		{ nv_clk_src_rop    , 0x02, NVKM_CLK_DOM_FLAG_CORE },
497 		{ nv_clk_src_mem    , 0x03, 0, "memory", 500 },
498 		{ nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
499 		{ nv_clk_src_hubk01 , 0x05 },
500 		{ nv_clk_src_vdec   , 0x06 },
501 		{ nv_clk_src_pmu    , 0x07 },
502 		{ nv_clk_src_max }
503 	}
504 };
505 
506 int
gk104_clk_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_clk ** pclk)507 gk104_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
508 	      struct nvkm_clk **pclk)
509 {
510 	struct gk104_clk *clk;
511 
512 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
513 		return -ENOMEM;
514 	*pclk = &clk->base;
515 
516 	return nvkm_clk_ctor(&gk104_clk, device, type, inst, true, &clk->base);
517 }
518