• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020 MaxLinear, Inc.
4  *
5  * This driver is a hardware monitoring driver for PVT controller
6  * (MR75203) which is used to configure & control Moortec embedded
7  * analog IP to enable multiple embedded temperature sensor(TS),
8  * voltage monitor(VM) & process detector(PD) modules.
9  */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/hwmon.h>
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/mutex.h>
16 #include <linux/platform_device.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/reset.h>
20 #include <linux/units.h>
21 
22 /* PVT Common register */
23 #define PVT_IP_CONFIG	0x04
24 #define TS_NUM_MSK	GENMASK(4, 0)
25 #define TS_NUM_SFT	0
26 #define PD_NUM_MSK	GENMASK(12, 8)
27 #define PD_NUM_SFT	8
28 #define VM_NUM_MSK	GENMASK(20, 16)
29 #define VM_NUM_SFT	16
30 #define CH_NUM_MSK	GENMASK(31, 24)
31 #define CH_NUM_SFT	24
32 
33 /* Macro Common Register */
34 #define CLK_SYNTH		0x00
35 #define CLK_SYNTH_LO_SFT	0
36 #define CLK_SYNTH_HI_SFT	8
37 #define CLK_SYNTH_HOLD_SFT	16
38 #define CLK_SYNTH_EN		BIT(24)
39 #define CLK_SYS_CYCLES_MAX	514
40 #define CLK_SYS_CYCLES_MIN	2
41 
42 #define SDIF_DISABLE	0x04
43 
44 #define SDIF_STAT	0x08
45 #define SDIF_BUSY	BIT(0)
46 #define SDIF_LOCK	BIT(1)
47 
48 #define SDIF_W		0x0c
49 #define SDIF_PROG	BIT(31)
50 #define SDIF_WRN_W	BIT(27)
51 #define SDIF_WRN_R	0x00
52 #define SDIF_ADDR_SFT	24
53 
54 #define SDIF_HALT	0x10
55 #define SDIF_CTRL	0x14
56 #define SDIF_SMPL_CTRL	0x20
57 
58 /* TS & PD Individual Macro Register */
59 #define COM_REG_SIZE	0x40
60 
61 #define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
62 #define SDIF_SMPL_DONE	BIT(0)
63 
64 #define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
65 #define SAMPLE_DATA_MSK	GENMASK(15, 0)
66 
67 #define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
68 
69 /* VM Individual Macro Register */
70 #define VM_COM_REG_SIZE	0x200
71 #define VM_SDIF_DONE(vm)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
72 #define VM_SDIF_DATA(vm, ch)	\
73 	(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
74 
75 /* SDA Slave Register */
76 #define IP_CTRL			0x00
77 #define IP_RST_REL		BIT(1)
78 #define IP_RUN_CONT		BIT(3)
79 #define IP_AUTO			BIT(8)
80 #define IP_VM_MODE		BIT(10)
81 
82 #define IP_CFG			0x01
83 #define CFG0_MODE_2		BIT(0)
84 #define CFG0_PARALLEL_OUT	0
85 #define CFG0_12_BIT		0
86 #define CFG1_VOL_MEAS_MODE	0
87 #define CFG1_PARALLEL_OUT	0
88 #define CFG1_14_BIT		0
89 
90 #define IP_DATA		0x03
91 
92 #define IP_POLL		0x04
93 #define VM_CH_INIT	BIT(20)
94 #define VM_CH_REQ	BIT(21)
95 
96 #define IP_TMR			0x05
97 #define POWER_DELAY_CYCLE_256	0x100
98 #define POWER_DELAY_CYCLE_64	0x40
99 
100 #define PVT_POLL_DELAY_US	20
101 #define PVT_POLL_TIMEOUT_US	20000
102 #define PVT_H_CONST		100000
103 #define PVT_CAL5_CONST		2047
104 #define PVT_G_CONST		40000
105 #define PVT_CONV_BITS		10
106 #define PVT_N_CONST		90
107 #define PVT_R_CONST		245805
108 
109 struct pvt_device {
110 	struct regmap		*c_map;
111 	struct regmap		*t_map;
112 	struct regmap		*p_map;
113 	struct regmap		*v_map;
114 	struct clk		*clk;
115 	struct reset_control	*rst;
116 	u32			t_num;
117 	u32			p_num;
118 	u32			v_num;
119 	u32			c_num;
120 	u32			ip_freq;
121 	u8			*vm_idx;
122 };
123 
pvt_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)124 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
125 			      u32 attr, int channel)
126 {
127 	switch (type) {
128 	case hwmon_temp:
129 		if (attr == hwmon_temp_input)
130 			return 0444;
131 		break;
132 	case hwmon_in:
133 		if (attr == hwmon_in_input)
134 			return 0444;
135 		break;
136 	default:
137 		break;
138 	}
139 	return 0;
140 }
141 
pvt_read_temp(struct device * dev,u32 attr,int channel,long * val)142 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
143 {
144 	struct pvt_device *pvt = dev_get_drvdata(dev);
145 	struct regmap *t_map = pvt->t_map;
146 	u32 stat, nbs;
147 	int ret;
148 	u64 tmp;
149 
150 	switch (attr) {
151 	case hwmon_temp_input:
152 		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
153 					       stat, stat & SDIF_SMPL_DONE,
154 					       PVT_POLL_DELAY_US,
155 					       PVT_POLL_TIMEOUT_US);
156 		if (ret)
157 			return ret;
158 
159 		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
160 		if(ret < 0)
161 			return ret;
162 
163 		nbs &= SAMPLE_DATA_MSK;
164 
165 		/*
166 		 * Convert the register value to
167 		 * degrees centigrade temperature
168 		 */
169 		tmp = nbs * PVT_H_CONST;
170 		do_div(tmp, PVT_CAL5_CONST);
171 		*val = tmp - PVT_G_CONST - pvt->ip_freq;
172 
173 		return 0;
174 	default:
175 		return -EOPNOTSUPP;
176 	}
177 }
178 
pvt_read_in(struct device * dev,u32 attr,int channel,long * val)179 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
180 {
181 	struct pvt_device *pvt = dev_get_drvdata(dev);
182 	struct regmap *v_map = pvt->v_map;
183 	u8 vm_idx, ch_idx;
184 	u32 n, stat;
185 	int ret;
186 
187 	if (channel >= pvt->v_num * pvt->c_num)
188 		return -EINVAL;
189 
190 	vm_idx = pvt->vm_idx[channel / pvt->c_num];
191 	ch_idx = channel % pvt->c_num;
192 
193 	switch (attr) {
194 	case hwmon_in_input:
195 		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
196 					       stat, stat & SDIF_SMPL_DONE,
197 					       PVT_POLL_DELAY_US,
198 					       PVT_POLL_TIMEOUT_US);
199 		if (ret)
200 			return ret;
201 
202 		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
203 		if(ret < 0)
204 			return ret;
205 
206 		n &= SAMPLE_DATA_MSK;
207 		/*
208 		 * Convert the N bitstream count into voltage.
209 		 * To support negative voltage calculation for 64bit machines
210 		 * n must be cast to long, since n and *val differ both in
211 		 * signedness and in size.
212 		 * Division is used instead of right shift, because for signed
213 		 * numbers, the sign bit is used to fill the vacated bit
214 		 * positions, and if the number is negative, 1 is used.
215 		 * BIT(x) may not be used instead of (1 << x) because it's
216 		 * unsigned.
217 		 */
218 		*val = (PVT_N_CONST * (long)n - PVT_R_CONST) / (1 << PVT_CONV_BITS);
219 
220 		return 0;
221 	default:
222 		return -EOPNOTSUPP;
223 	}
224 }
225 
pvt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)226 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
227 		    u32 attr, int channel, long *val)
228 {
229 	switch (type) {
230 	case hwmon_temp:
231 		return pvt_read_temp(dev, attr, channel, val);
232 	case hwmon_in:
233 		return pvt_read_in(dev, attr, channel, val);
234 	default:
235 		return -EOPNOTSUPP;
236 	}
237 }
238 
239 static const u32 pvt_chip_config[] = {
240 	HWMON_C_REGISTER_TZ,
241 	0
242 };
243 
244 static const struct hwmon_channel_info pvt_chip = {
245 	.type = hwmon_chip,
246 	.config = pvt_chip_config,
247 };
248 
249 static struct hwmon_channel_info pvt_temp = {
250 	.type = hwmon_temp,
251 };
252 
253 static struct hwmon_channel_info pvt_in = {
254 	.type = hwmon_in,
255 };
256 
257 static const struct hwmon_ops pvt_hwmon_ops = {
258 	.is_visible = pvt_is_visible,
259 	.read = pvt_read,
260 };
261 
262 static struct hwmon_chip_info pvt_chip_info = {
263 	.ops = &pvt_hwmon_ops,
264 };
265 
pvt_init(struct pvt_device * pvt)266 static int pvt_init(struct pvt_device *pvt)
267 {
268 	u16 sys_freq, key, middle, low = 4, high = 8;
269 	struct regmap *t_map = pvt->t_map;
270 	struct regmap *p_map = pvt->p_map;
271 	struct regmap *v_map = pvt->v_map;
272 	u32 t_num = pvt->t_num;
273 	u32 p_num = pvt->p_num;
274 	u32 v_num = pvt->v_num;
275 	u32 clk_synth, val;
276 	int ret;
277 
278 	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
279 	while (high >= low) {
280 		middle = (low + high + 1) / 2;
281 		key = DIV_ROUND_CLOSEST(sys_freq, middle);
282 		if (key > CLK_SYS_CYCLES_MAX) {
283 			low = middle + 1;
284 			continue;
285 		} else if (key < CLK_SYS_CYCLES_MIN) {
286 			high = middle - 1;
287 			continue;
288 		} else {
289 			break;
290 		}
291 	}
292 
293 	/*
294 	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
295 	 * from 2:1 to 512:1
296 	 */
297 	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
298 
299 	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
300 		    (key >> 1) << CLK_SYNTH_HI_SFT |
301 		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
302 
303 	pvt->ip_freq = sys_freq * 100 / (key + 2);
304 
305 	if (t_num) {
306 		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
307 		if(ret < 0)
308 			return ret;
309 
310 		ret = regmap_write(t_map, SDIF_HALT, 0x0);
311 		if(ret < 0)
312 			return ret;
313 
314 		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
315 		if(ret < 0)
316 			return ret;
317 
318 		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
319 		if(ret < 0)
320 			return ret;
321 
322 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
323 					       val, !(val & SDIF_BUSY),
324 					       PVT_POLL_DELAY_US,
325 					       PVT_POLL_TIMEOUT_US);
326 		if (ret)
327 			return ret;
328 
329 		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
330 		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
331 		ret = regmap_write(t_map, SDIF_W, val);
332 		if(ret < 0)
333 			return ret;
334 
335 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
336 					       val, !(val & SDIF_BUSY),
337 					       PVT_POLL_DELAY_US,
338 					       PVT_POLL_TIMEOUT_US);
339 		if (ret)
340 			return ret;
341 
342 		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
343 			      SDIF_WRN_W | SDIF_PROG;
344 		ret = regmap_write(t_map, SDIF_W, val);
345 		if(ret < 0)
346 			return ret;
347 
348 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
349 					       val, !(val & SDIF_BUSY),
350 					       PVT_POLL_DELAY_US,
351 					       PVT_POLL_TIMEOUT_US);
352 		if (ret)
353 			return ret;
354 
355 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
356 		      IP_CTRL << SDIF_ADDR_SFT |
357 		      SDIF_WRN_W | SDIF_PROG;
358 		ret = regmap_write(t_map, SDIF_W, val);
359 		if(ret < 0)
360 			return ret;
361 	}
362 
363 	if (p_num) {
364 		ret = regmap_write(p_map, SDIF_HALT, 0x0);
365 		if(ret < 0)
366 			return ret;
367 
368 		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
369 		if(ret < 0)
370 			return ret;
371 
372 		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
373 		if(ret < 0)
374 			return ret;
375 	}
376 
377 	if (v_num) {
378 		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
379 		if(ret < 0)
380 			return ret;
381 
382 		ret = regmap_write(v_map, SDIF_HALT, 0x0);
383 		if(ret < 0)
384 			return ret;
385 
386 		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
387 		if(ret < 0)
388 			return ret;
389 
390 		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
391 		if(ret < 0)
392 			return ret;
393 
394 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
395 					       val, !(val & SDIF_BUSY),
396 					       PVT_POLL_DELAY_US,
397 					       PVT_POLL_TIMEOUT_US);
398 		if (ret)
399 			return ret;
400 
401 		val = (BIT(pvt->c_num) - 1) | VM_CH_INIT |
402 		      IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
403 		ret = regmap_write(v_map, SDIF_W, val);
404 		if (ret < 0)
405 			return ret;
406 
407 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
408 					       val, !(val & SDIF_BUSY),
409 					       PVT_POLL_DELAY_US,
410 					       PVT_POLL_TIMEOUT_US);
411 		if (ret)
412 			return ret;
413 
414 		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
415 		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
416 		      SDIF_WRN_W | SDIF_PROG;
417 		ret = regmap_write(v_map, SDIF_W, val);
418 		if(ret < 0)
419 			return ret;
420 
421 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
422 					       val, !(val & SDIF_BUSY),
423 					       PVT_POLL_DELAY_US,
424 					       PVT_POLL_TIMEOUT_US);
425 		if (ret)
426 			return ret;
427 
428 		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
429 		      SDIF_WRN_W | SDIF_PROG;
430 		ret = regmap_write(v_map, SDIF_W, val);
431 		if(ret < 0)
432 			return ret;
433 
434 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
435 					       val, !(val & SDIF_BUSY),
436 					       PVT_POLL_DELAY_US,
437 					       PVT_POLL_TIMEOUT_US);
438 		if (ret)
439 			return ret;
440 
441 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
442 		      IP_CTRL << SDIF_ADDR_SFT |
443 		      SDIF_WRN_W | SDIF_PROG;
444 		ret = regmap_write(v_map, SDIF_W, val);
445 		if(ret < 0)
446 			return ret;
447 	}
448 
449 	return 0;
450 }
451 
452 static struct regmap_config pvt_regmap_config = {
453 	.reg_bits = 32,
454 	.reg_stride = 4,
455 	.val_bits = 32,
456 };
457 
pvt_get_regmap(struct platform_device * pdev,char * reg_name,struct pvt_device * pvt)458 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
459 			  struct pvt_device *pvt)
460 {
461 	struct device *dev = &pdev->dev;
462 	struct regmap **reg_map;
463 	void __iomem *io_base;
464 
465 	if (!strcmp(reg_name, "common"))
466 		reg_map = &pvt->c_map;
467 	else if (!strcmp(reg_name, "ts"))
468 		reg_map = &pvt->t_map;
469 	else if (!strcmp(reg_name, "pd"))
470 		reg_map = &pvt->p_map;
471 	else if (!strcmp(reg_name, "vm"))
472 		reg_map = &pvt->v_map;
473 	else
474 		return -EINVAL;
475 
476 	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
477 	if (IS_ERR(io_base))
478 		return PTR_ERR(io_base);
479 
480 	pvt_regmap_config.name = reg_name;
481 	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
482 	if (IS_ERR(*reg_map)) {
483 		dev_err(dev, "failed to init register map\n");
484 		return PTR_ERR(*reg_map);
485 	}
486 
487 	return 0;
488 }
489 
pvt_clk_disable(void * data)490 static void pvt_clk_disable(void *data)
491 {
492 	struct pvt_device *pvt = data;
493 
494 	clk_disable_unprepare(pvt->clk);
495 }
496 
pvt_clk_enable(struct device * dev,struct pvt_device * pvt)497 static int pvt_clk_enable(struct device *dev, struct pvt_device *pvt)
498 {
499 	int ret;
500 
501 	ret = clk_prepare_enable(pvt->clk);
502 	if (ret)
503 		return ret;
504 
505 	return devm_add_action_or_reset(dev, pvt_clk_disable, pvt);
506 }
507 
pvt_reset_control_assert(void * data)508 static void pvt_reset_control_assert(void *data)
509 {
510 	struct pvt_device *pvt = data;
511 
512 	reset_control_assert(pvt->rst);
513 }
514 
pvt_reset_control_deassert(struct device * dev,struct pvt_device * pvt)515 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
516 {
517 	int ret;
518 
519 	ret = reset_control_deassert(pvt->rst);
520 	if (ret)
521 		return ret;
522 
523 	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
524 }
525 
mr75203_probe(struct platform_device * pdev)526 static int mr75203_probe(struct platform_device *pdev)
527 {
528 	u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
529 	const struct hwmon_channel_info **pvt_info;
530 	struct device *dev = &pdev->dev;
531 	u32 *temp_config, *in_config;
532 	struct device *hwmon_dev;
533 	struct pvt_device *pvt;
534 	int ret;
535 
536 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
537 	if (!pvt)
538 		return -ENOMEM;
539 
540 	ret = pvt_get_regmap(pdev, "common", pvt);
541 	if (ret)
542 		return ret;
543 
544 	pvt->clk = devm_clk_get(dev, NULL);
545 	if (IS_ERR(pvt->clk))
546 		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
547 
548 	ret = pvt_clk_enable(dev, pvt);
549 	if (ret) {
550 		dev_err(dev, "failed to enable clock\n");
551 		return ret;
552 	}
553 
554 	pvt->rst = devm_reset_control_get_exclusive(dev, NULL);
555 	if (IS_ERR(pvt->rst))
556 		return dev_err_probe(dev, PTR_ERR(pvt->rst),
557 				     "failed to get reset control\n");
558 
559 	ret = pvt_reset_control_deassert(dev, pvt);
560 	if (ret)
561 		return dev_err_probe(dev, ret, "cannot deassert reset control\n");
562 
563 	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
564 	if(ret < 0)
565 		return ret;
566 
567 	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
568 	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
569 	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
570 	ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
571 	pvt->t_num = ts_num;
572 	pvt->p_num = pd_num;
573 	pvt->v_num = vm_num;
574 	pvt->c_num = ch_num;
575 	val = 0;
576 	if (ts_num)
577 		val++;
578 	if (vm_num)
579 		val++;
580 	if (!val)
581 		return -ENODEV;
582 
583 	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
584 	if (!pvt_info)
585 		return -ENOMEM;
586 	pvt_info[0] = &pvt_chip;
587 	index = 1;
588 
589 	if (ts_num) {
590 		ret = pvt_get_regmap(pdev, "ts", pvt);
591 		if (ret)
592 			return ret;
593 
594 		temp_config = devm_kcalloc(dev, ts_num + 1,
595 					   sizeof(*temp_config), GFP_KERNEL);
596 		if (!temp_config)
597 			return -ENOMEM;
598 
599 		memset32(temp_config, HWMON_T_INPUT, ts_num);
600 		pvt_temp.config = temp_config;
601 		pvt_info[index++] = &pvt_temp;
602 	}
603 
604 	if (pd_num) {
605 		ret = pvt_get_regmap(pdev, "pd", pvt);
606 		if (ret)
607 			return ret;
608 	}
609 
610 	if (vm_num) {
611 		u32 total_ch;
612 
613 		ret = pvt_get_regmap(pdev, "vm", pvt);
614 		if (ret)
615 			return ret;
616 
617 		pvt->vm_idx = devm_kcalloc(dev, vm_num, sizeof(*pvt->vm_idx),
618 					   GFP_KERNEL);
619 		if (!pvt->vm_idx)
620 			return -ENOMEM;
621 
622 		ret = device_property_read_u8_array(dev, "intel,vm-map",
623 						    pvt->vm_idx, vm_num);
624 		if (ret) {
625 			/*
626 			 * Incase intel,vm-map property is not defined, we
627 			 * assume incremental channel numbers.
628 			 */
629 			for (i = 0; i < vm_num; i++)
630 				pvt->vm_idx[i] = i;
631 		} else {
632 			for (i = 0; i < vm_num; i++)
633 				if (pvt->vm_idx[i] >= vm_num ||
634 				    pvt->vm_idx[i] == 0xff) {
635 					pvt->v_num = i;
636 					vm_num = i;
637 					break;
638 				}
639 		}
640 
641 		total_ch = ch_num * vm_num;
642 		in_config = devm_kcalloc(dev, total_ch + 1,
643 					 sizeof(*in_config), GFP_KERNEL);
644 		if (!in_config)
645 			return -ENOMEM;
646 
647 		memset32(in_config, HWMON_I_INPUT, total_ch);
648 		in_config[total_ch] = 0;
649 		pvt_in.config = in_config;
650 
651 		pvt_info[index++] = &pvt_in;
652 	}
653 
654 	ret = pvt_init(pvt);
655 	if (ret) {
656 		dev_err(dev, "failed to init pvt: %d\n", ret);
657 		return ret;
658 	}
659 
660 	pvt_chip_info.info = pvt_info;
661 	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
662 							 pvt,
663 							 &pvt_chip_info,
664 							 NULL);
665 
666 	return PTR_ERR_OR_ZERO(hwmon_dev);
667 }
668 
669 static const struct of_device_id moortec_pvt_of_match[] = {
670 	{ .compatible = "moortec,mr75203" },
671 	{ }
672 };
673 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
674 
675 static struct platform_driver moortec_pvt_driver = {
676 	.driver = {
677 		.name = "moortec-pvt",
678 		.of_match_table = moortec_pvt_of_match,
679 	},
680 	.probe = mr75203_probe,
681 };
682 module_platform_driver(moortec_pvt_driver);
683 
684 MODULE_LICENSE("GPL v2");
685