1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @nr_pages - Number of pages in the ring buffer.
36 * @pages - Array of Pages in the ring buffer.
37 */
38 struct etr_perf_buffer {
39 struct tmc_drvdata *drvdata;
40 struct etr_buf *etr_buf;
41 pid_t pid;
42 bool snapshot;
43 int nr_pages;
44 void **pages;
45 };
46
47 /* Convert the perf index to an offset within the ETR buffer */
48 #define PERF_IDX2OFF(idx, buf) \
49 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
50
51 /* Lower limit for ETR hardware buffer */
52 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
53
54 /*
55 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
56 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
57 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
58 * contain more than one SG buffer and tables.
59 *
60 * A table entry has the following format:
61 *
62 * ---Bit31------------Bit4-------Bit1-----Bit0--
63 * | Address[39:12] | SBZ | Entry Type |
64 * ----------------------------------------------
65 *
66 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
67 * always zero.
68 *
69 * Entry type:
70 * b00 - Reserved.
71 * b01 - Last entry in the tables, points to 4K page buffer.
72 * b10 - Normal entry, points to 4K page buffer.
73 * b11 - Link. The address points to the base of next table.
74 */
75
76 typedef u32 sgte_t;
77
78 #define ETR_SG_PAGE_SHIFT 12
79 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
80 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
81 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
82 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
83
84 #define ETR_SG_ET_MASK 0x3
85 #define ETR_SG_ET_LAST 0x1
86 #define ETR_SG_ET_NORMAL 0x2
87 #define ETR_SG_ET_LINK 0x3
88
89 #define ETR_SG_ADDR_SHIFT 4
90
91 #define ETR_SG_ENTRY(addr, type) \
92 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
93 (type & ETR_SG_ET_MASK))
94
95 #define ETR_SG_ADDR(entry) \
96 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
97 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
98
99 /*
100 * struct etr_sg_table : ETR SG Table
101 * @sg_table: Generic SG Table holding the data/table pages.
102 * @hwaddr: hwaddress used by the TMC, which is the base
103 * address of the table.
104 */
105 struct etr_sg_table {
106 struct tmc_sg_table *sg_table;
107 dma_addr_t hwaddr;
108 };
109
110 /*
111 * tmc_etr_sg_table_entries: Total number of table entries required to map
112 * @nr_pages system pages.
113 *
114 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
115 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
116 * with the last entry pointing to another page of table entries.
117 * If we spill over to a new page for mapping 1 entry, we could as
118 * well replace the link entry of the previous page with the last entry.
119 */
120 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)121 tmc_etr_sg_table_entries(int nr_pages)
122 {
123 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
124 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
125 /*
126 * If we spill over to a new page for 1 entry, we could as well
127 * make it the LAST entry in the previous page, skipping the Link
128 * address.
129 */
130 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
131 nr_sglinks--;
132 return nr_sgpages + nr_sglinks;
133 }
134
135 /*
136 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
137 * and map the device address @addr to an offset within the virtual
138 * contiguous buffer.
139 */
140 static long
tmc_pages_get_offset(struct tmc_pages * tmc_pages,dma_addr_t addr)141 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
142 {
143 int i;
144 dma_addr_t page_start;
145
146 for (i = 0; i < tmc_pages->nr_pages; i++) {
147 page_start = tmc_pages->daddrs[i];
148 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
149 return i * PAGE_SIZE + (addr - page_start);
150 }
151
152 return -EINVAL;
153 }
154
155 /*
156 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
157 * If the pages were not allocated in tmc_pages_alloc(), we would
158 * simply drop the refcount.
159 */
tmc_pages_free(struct tmc_pages * tmc_pages,struct device * dev,enum dma_data_direction dir)160 static void tmc_pages_free(struct tmc_pages *tmc_pages,
161 struct device *dev, enum dma_data_direction dir)
162 {
163 int i;
164 struct device *real_dev = dev->parent;
165
166 for (i = 0; i < tmc_pages->nr_pages; i++) {
167 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
168 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
169 PAGE_SIZE, dir);
170 if (tmc_pages->pages && tmc_pages->pages[i])
171 __free_page(tmc_pages->pages[i]);
172 }
173
174 kfree(tmc_pages->pages);
175 kfree(tmc_pages->daddrs);
176 tmc_pages->pages = NULL;
177 tmc_pages->daddrs = NULL;
178 tmc_pages->nr_pages = 0;
179 }
180
181 /*
182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
183 * If @pages is not NULL, the list of page virtual addresses are
184 * used as the data pages. The pages are then dma_map'ed for @dev
185 * with dma_direction @dir.
186 *
187 * Returns 0 upon success, else the error number.
188 */
tmc_pages_alloc(struct tmc_pages * tmc_pages,struct device * dev,int node,enum dma_data_direction dir,void ** pages)189 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
190 struct device *dev, int node,
191 enum dma_data_direction dir, void **pages)
192 {
193 int i, nr_pages;
194 dma_addr_t paddr;
195 struct page *page;
196 struct device *real_dev = dev->parent;
197
198 nr_pages = tmc_pages->nr_pages;
199 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
200 GFP_KERNEL);
201 if (!tmc_pages->daddrs)
202 return -ENOMEM;
203 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
204 GFP_KERNEL);
205 if (!tmc_pages->pages) {
206 kfree(tmc_pages->daddrs);
207 tmc_pages->daddrs = NULL;
208 return -ENOMEM;
209 }
210
211 for (i = 0; i < nr_pages; i++) {
212 if (pages && pages[i]) {
213 page = virt_to_page(pages[i]);
214 /* Hold a refcount on the page */
215 get_page(page);
216 } else {
217 page = alloc_pages_node(node,
218 GFP_KERNEL | __GFP_ZERO, 0);
219 if (!page)
220 goto err;
221 }
222 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
223 if (dma_mapping_error(real_dev, paddr))
224 goto err;
225 tmc_pages->daddrs[i] = paddr;
226 tmc_pages->pages[i] = page;
227 }
228 return 0;
229 err:
230 tmc_pages_free(tmc_pages, dev, dir);
231 return -ENOMEM;
232 }
233
234 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table * sg_table,dma_addr_t addr)235 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
236 {
237 return tmc_pages_get_offset(&sg_table->data_pages, addr);
238 }
239
tmc_free_table_pages(struct tmc_sg_table * sg_table)240 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
241 {
242 if (sg_table->table_vaddr)
243 vunmap(sg_table->table_vaddr);
244 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
245 }
246
tmc_free_data_pages(struct tmc_sg_table * sg_table)247 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
248 {
249 if (sg_table->data_vaddr)
250 vunmap(sg_table->data_vaddr);
251 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
252 }
253
tmc_free_sg_table(struct tmc_sg_table * sg_table)254 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
255 {
256 tmc_free_table_pages(sg_table);
257 tmc_free_data_pages(sg_table);
258 }
259 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
260
261 /*
262 * Alloc pages for the table. Since this will be used by the device,
263 * allocate the pages closer to the device (i.e, dev_to_node(dev)
264 * rather than the CPU node).
265 */
tmc_alloc_table_pages(struct tmc_sg_table * sg_table)266 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
267 {
268 int rc;
269 struct tmc_pages *table_pages = &sg_table->table_pages;
270
271 rc = tmc_pages_alloc(table_pages, sg_table->dev,
272 dev_to_node(sg_table->dev),
273 DMA_TO_DEVICE, NULL);
274 if (rc)
275 return rc;
276 sg_table->table_vaddr = vmap(table_pages->pages,
277 table_pages->nr_pages,
278 VM_MAP,
279 PAGE_KERNEL);
280 if (!sg_table->table_vaddr)
281 rc = -ENOMEM;
282 else
283 sg_table->table_daddr = table_pages->daddrs[0];
284 return rc;
285 }
286
tmc_alloc_data_pages(struct tmc_sg_table * sg_table,void ** pages)287 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
288 {
289 int rc;
290
291 /* Allocate data pages on the node requested by the caller */
292 rc = tmc_pages_alloc(&sg_table->data_pages,
293 sg_table->dev, sg_table->node,
294 DMA_FROM_DEVICE, pages);
295 if (!rc) {
296 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
297 sg_table->data_pages.nr_pages,
298 VM_MAP,
299 PAGE_KERNEL);
300 if (!sg_table->data_vaddr)
301 rc = -ENOMEM;
302 }
303 return rc;
304 }
305
306 /*
307 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
308 * and data buffers. TMC writes to the data buffers and reads from the SG
309 * Table pages.
310 *
311 * @dev - Coresight device to which page should be DMA mapped.
312 * @node - Numa node for mem allocations
313 * @nr_tpages - Number of pages for the table entries.
314 * @nr_dpages - Number of pages for Data buffer.
315 * @pages - Optional list of virtual address of pages.
316 */
tmc_alloc_sg_table(struct device * dev,int node,int nr_tpages,int nr_dpages,void ** pages)317 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
318 int node,
319 int nr_tpages,
320 int nr_dpages,
321 void **pages)
322 {
323 long rc;
324 struct tmc_sg_table *sg_table;
325
326 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
327 if (!sg_table)
328 return ERR_PTR(-ENOMEM);
329 sg_table->data_pages.nr_pages = nr_dpages;
330 sg_table->table_pages.nr_pages = nr_tpages;
331 sg_table->node = node;
332 sg_table->dev = dev;
333
334 rc = tmc_alloc_data_pages(sg_table, pages);
335 if (!rc)
336 rc = tmc_alloc_table_pages(sg_table);
337 if (rc) {
338 tmc_free_sg_table(sg_table);
339 kfree(sg_table);
340 return ERR_PTR(rc);
341 }
342
343 return sg_table;
344 }
345 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
346
347 /*
348 * tmc_sg_table_sync_data_range: Sync the data buffer written
349 * by the device from @offset upto a @size bytes.
350 */
tmc_sg_table_sync_data_range(struct tmc_sg_table * table,u64 offset,u64 size)351 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
352 u64 offset, u64 size)
353 {
354 int i, index, start;
355 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
356 struct device *real_dev = table->dev->parent;
357 struct tmc_pages *data = &table->data_pages;
358
359 start = offset >> PAGE_SHIFT;
360 for (i = start; i < (start + npages); i++) {
361 index = i % data->nr_pages;
362 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
363 PAGE_SIZE, DMA_FROM_DEVICE);
364 }
365 }
366 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
367
368 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table * sg_table)369 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
370 {
371 int i;
372 struct device *real_dev = sg_table->dev->parent;
373 struct tmc_pages *table_pages = &sg_table->table_pages;
374
375 for (i = 0; i < table_pages->nr_pages; i++)
376 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
377 PAGE_SIZE, DMA_TO_DEVICE);
378 }
379 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
380
381 /*
382 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
383 * in the SG buffer. The @bufpp is updated to point to the buffer.
384 * Returns :
385 * the length of linear data available at @offset.
386 * or
387 * <= 0 if no data is available.
388 */
tmc_sg_table_get_data(struct tmc_sg_table * sg_table,u64 offset,size_t len,char ** bufpp)389 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
390 u64 offset, size_t len, char **bufpp)
391 {
392 size_t size;
393 int pg_idx = offset >> PAGE_SHIFT;
394 int pg_offset = offset & (PAGE_SIZE - 1);
395 struct tmc_pages *data_pages = &sg_table->data_pages;
396
397 size = tmc_sg_table_buf_size(sg_table);
398 if (offset >= size)
399 return -EINVAL;
400
401 /* Make sure we don't go beyond the end */
402 len = (len < (size - offset)) ? len : size - offset;
403 /* Respect the page boundaries */
404 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
405 if (len > 0)
406 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
407 return len;
408 }
409 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
410
411 #ifdef ETR_SG_DEBUG
412 /* Map a dma address to virtual address */
413 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table * sg_table,dma_addr_t addr,bool table)414 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
415 dma_addr_t addr, bool table)
416 {
417 long offset;
418 unsigned long base;
419 struct tmc_pages *tmc_pages;
420
421 if (table) {
422 tmc_pages = &sg_table->table_pages;
423 base = (unsigned long)sg_table->table_vaddr;
424 } else {
425 tmc_pages = &sg_table->data_pages;
426 base = (unsigned long)sg_table->data_vaddr;
427 }
428
429 offset = tmc_pages_get_offset(tmc_pages, addr);
430 if (offset < 0)
431 return 0;
432 return base + offset;
433 }
434
435 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)436 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
437 {
438 sgte_t *ptr;
439 int i = 0;
440 dma_addr_t addr;
441 struct tmc_sg_table *sg_table = etr_table->sg_table;
442
443 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
444 etr_table->hwaddr, true);
445 while (ptr) {
446 addr = ETR_SG_ADDR(*ptr);
447 switch (ETR_SG_ET(*ptr)) {
448 case ETR_SG_ET_NORMAL:
449 dev_dbg(sg_table->dev,
450 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
451 ptr++;
452 break;
453 case ETR_SG_ET_LINK:
454 dev_dbg(sg_table->dev,
455 "%05d: *** %p\t:{L} 0x%llx ***\n",
456 i, ptr, addr);
457 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
458 addr, true);
459 break;
460 case ETR_SG_ET_LAST:
461 dev_dbg(sg_table->dev,
462 "%05d: ### %p\t:[L] 0x%llx ###\n",
463 i, ptr, addr);
464 return;
465 default:
466 dev_dbg(sg_table->dev,
467 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
468 i, ptr, addr);
469 return;
470 }
471 i++;
472 }
473 dev_dbg(sg_table->dev, "******* End of Table *****\n");
474 }
475 #else
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)476 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
477 #endif
478
479 /*
480 * Populate the SG Table page table entries from table/data
481 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
482 * So does a Table page. So we keep track of indices of the tables
483 * in each system page and move the pointers accordingly.
484 */
485 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table * etr_table)486 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
487 {
488 dma_addr_t paddr;
489 int i, type, nr_entries;
490 int tpidx = 0; /* index to the current system table_page */
491 int sgtidx = 0; /* index to the sg_table within the current syspage */
492 int sgtentry = 0; /* the entry within the sg_table */
493 int dpidx = 0; /* index to the current system data_page */
494 int spidx = 0; /* index to the SG page within the current data page */
495 sgte_t *ptr; /* pointer to the table entry to fill */
496 struct tmc_sg_table *sg_table = etr_table->sg_table;
497 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
498 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
499
500 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
501 /*
502 * Use the contiguous virtual address of the table to update entries.
503 */
504 ptr = sg_table->table_vaddr;
505 /*
506 * Fill all the entries, except the last entry to avoid special
507 * checks within the loop.
508 */
509 for (i = 0; i < nr_entries - 1; i++) {
510 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
511 /*
512 * Last entry in a sg_table page is a link address to
513 * the next table page. If this sg_table is the last
514 * one in the system page, it links to the first
515 * sg_table in the next system page. Otherwise, it
516 * links to the next sg_table page within the system
517 * page.
518 */
519 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
520 paddr = table_daddrs[tpidx + 1];
521 } else {
522 paddr = table_daddrs[tpidx] +
523 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
524 }
525 type = ETR_SG_ET_LINK;
526 } else {
527 /*
528 * Update the indices to the data_pages to point to the
529 * next sg_page in the data buffer.
530 */
531 type = ETR_SG_ET_NORMAL;
532 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
533 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
534 dpidx++;
535 }
536 *ptr++ = ETR_SG_ENTRY(paddr, type);
537 /*
538 * Move to the next table pointer, moving the table page index
539 * if necessary
540 */
541 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
542 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
543 tpidx++;
544 }
545 }
546
547 /* Set up the last entry, which is always a data pointer */
548 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
549 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
550 }
551
552 /*
553 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
554 * populate the table.
555 *
556 * @dev - Device pointer for the TMC
557 * @node - NUMA node where the memory should be allocated
558 * @size - Total size of the data buffer
559 * @pages - Optional list of page virtual address
560 */
561 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device * dev,int node,unsigned long size,void ** pages)562 tmc_init_etr_sg_table(struct device *dev, int node,
563 unsigned long size, void **pages)
564 {
565 int nr_entries, nr_tpages;
566 int nr_dpages = size >> PAGE_SHIFT;
567 struct tmc_sg_table *sg_table;
568 struct etr_sg_table *etr_table;
569
570 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
571 if (!etr_table)
572 return ERR_PTR(-ENOMEM);
573 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
574 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
575
576 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
577 if (IS_ERR(sg_table)) {
578 kfree(etr_table);
579 return ERR_CAST(sg_table);
580 }
581
582 etr_table->sg_table = sg_table;
583 /* TMC should use table base address for DBA */
584 etr_table->hwaddr = sg_table->table_daddr;
585 tmc_etr_sg_table_populate(etr_table);
586 /* Sync the table pages for the HW */
587 tmc_sg_table_sync_table(sg_table);
588 tmc_etr_sg_table_dump(etr_table);
589
590 return etr_table;
591 }
592
593 /*
594 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
595 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)596 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
597 struct etr_buf *etr_buf, int node,
598 void **pages)
599 {
600 struct etr_flat_buf *flat_buf;
601 struct device *real_dev = drvdata->csdev->dev.parent;
602
603 /* We cannot reuse existing pages for flat buf */
604 if (pages)
605 return -EINVAL;
606
607 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
608 if (!flat_buf)
609 return -ENOMEM;
610
611 flat_buf->vaddr = dma_alloc_noncoherent(real_dev, etr_buf->size,
612 &flat_buf->daddr,
613 DMA_FROM_DEVICE, GFP_KERNEL);
614 if (!flat_buf->vaddr) {
615 kfree(flat_buf);
616 return -ENOMEM;
617 }
618
619 flat_buf->size = etr_buf->size;
620 flat_buf->dev = &drvdata->csdev->dev;
621 etr_buf->hwaddr = flat_buf->daddr;
622 etr_buf->mode = ETR_MODE_FLAT;
623 etr_buf->private = flat_buf;
624 return 0;
625 }
626
tmc_etr_free_flat_buf(struct etr_buf * etr_buf)627 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
628 {
629 struct etr_flat_buf *flat_buf = etr_buf->private;
630
631 if (flat_buf && flat_buf->daddr) {
632 struct device *real_dev = flat_buf->dev->parent;
633
634 dma_free_noncoherent(real_dev, etr_buf->size,
635 flat_buf->vaddr, flat_buf->daddr,
636 DMA_FROM_DEVICE);
637 }
638 kfree(flat_buf);
639 }
640
tmc_etr_sync_flat_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)641 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
642 {
643 struct etr_flat_buf *flat_buf = etr_buf->private;
644 struct device *real_dev = flat_buf->dev->parent;
645
646 /*
647 * Adjust the buffer to point to the beginning of the trace data
648 * and update the available trace data.
649 */
650 etr_buf->offset = rrp - etr_buf->hwaddr;
651 if (etr_buf->full)
652 etr_buf->len = etr_buf->size;
653 else
654 etr_buf->len = rwp - rrp;
655
656 /*
657 * The driver always starts tracing at the beginning of the buffer,
658 * the only reason why we would get a wrap around is when the buffer
659 * is full. Sync the entire buffer in one go for this case.
660 */
661 if (etr_buf->offset + etr_buf->len > etr_buf->size)
662 dma_sync_single_for_cpu(real_dev, flat_buf->daddr,
663 etr_buf->size, DMA_FROM_DEVICE);
664 else
665 dma_sync_single_for_cpu(real_dev,
666 flat_buf->daddr + etr_buf->offset,
667 etr_buf->len, DMA_FROM_DEVICE);
668 }
669
tmc_etr_get_data_flat_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)670 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
671 u64 offset, size_t len, char **bufpp)
672 {
673 struct etr_flat_buf *flat_buf = etr_buf->private;
674
675 *bufpp = (char *)flat_buf->vaddr + offset;
676 /*
677 * tmc_etr_buf_get_data already adjusts the length to handle
678 * buffer wrapping around.
679 */
680 return len;
681 }
682
683 static const struct etr_buf_operations etr_flat_buf_ops = {
684 .alloc = tmc_etr_alloc_flat_buf,
685 .free = tmc_etr_free_flat_buf,
686 .sync = tmc_etr_sync_flat_buf,
687 .get_data = tmc_etr_get_data_flat_buf,
688 };
689
690 /*
691 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
692 * appropriately.
693 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)694 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
695 struct etr_buf *etr_buf, int node,
696 void **pages)
697 {
698 struct etr_sg_table *etr_table;
699 struct device *dev = &drvdata->csdev->dev;
700
701 etr_table = tmc_init_etr_sg_table(dev, node,
702 etr_buf->size, pages);
703 if (IS_ERR(etr_table))
704 return -ENOMEM;
705 etr_buf->hwaddr = etr_table->hwaddr;
706 etr_buf->mode = ETR_MODE_ETR_SG;
707 etr_buf->private = etr_table;
708 return 0;
709 }
710
tmc_etr_free_sg_buf(struct etr_buf * etr_buf)711 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
712 {
713 struct etr_sg_table *etr_table = etr_buf->private;
714
715 if (etr_table) {
716 tmc_free_sg_table(etr_table->sg_table);
717 kfree(etr_table);
718 }
719 }
720
tmc_etr_get_data_sg_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)721 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
722 size_t len, char **bufpp)
723 {
724 struct etr_sg_table *etr_table = etr_buf->private;
725
726 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
727 }
728
tmc_etr_sync_sg_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)729 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
730 {
731 long r_offset, w_offset;
732 struct etr_sg_table *etr_table = etr_buf->private;
733 struct tmc_sg_table *table = etr_table->sg_table;
734
735 /* Convert hw address to offset in the buffer */
736 r_offset = tmc_sg_get_data_page_offset(table, rrp);
737 if (r_offset < 0) {
738 dev_warn(table->dev,
739 "Unable to map RRP %llx to offset\n", rrp);
740 etr_buf->len = 0;
741 return;
742 }
743
744 w_offset = tmc_sg_get_data_page_offset(table, rwp);
745 if (w_offset < 0) {
746 dev_warn(table->dev,
747 "Unable to map RWP %llx to offset\n", rwp);
748 etr_buf->len = 0;
749 return;
750 }
751
752 etr_buf->offset = r_offset;
753 if (etr_buf->full)
754 etr_buf->len = etr_buf->size;
755 else
756 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
757 w_offset - r_offset;
758 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
759 }
760
761 static const struct etr_buf_operations etr_sg_buf_ops = {
762 .alloc = tmc_etr_alloc_sg_buf,
763 .free = tmc_etr_free_sg_buf,
764 .sync = tmc_etr_sync_sg_buf,
765 .get_data = tmc_etr_get_data_sg_buf,
766 };
767
768 /*
769 * TMC ETR could be connected to a CATU device, which can provide address
770 * translation service. This is represented by the Output port of the TMC
771 * (ETR) connected to the input port of the CATU.
772 *
773 * Returns : coresight_device ptr for the CATU device if a CATU is found.
774 * : NULL otherwise.
775 */
776 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata * drvdata)777 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
778 {
779 int i;
780 struct coresight_device *tmp, *etr = drvdata->csdev;
781
782 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
783 return NULL;
784
785 for (i = 0; i < etr->pdata->nr_outport; i++) {
786 tmp = etr->pdata->conns[i].child_dev;
787 if (tmp && coresight_is_catu_device(tmp))
788 return tmp;
789 }
790
791 return NULL;
792 }
793 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
794
tmc_etr_enable_catu(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)795 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
796 struct etr_buf *etr_buf)
797 {
798 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
799
800 if (catu && helper_ops(catu)->enable)
801 return helper_ops(catu)->enable(catu, etr_buf);
802 return 0;
803 }
804
tmc_etr_disable_catu(struct tmc_drvdata * drvdata)805 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
806 {
807 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
808
809 if (catu && helper_ops(catu)->disable)
810 helper_ops(catu)->disable(catu, drvdata->etr_buf);
811 }
812
813 static const struct etr_buf_operations *etr_buf_ops[] = {
814 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
815 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
816 [ETR_MODE_CATU] = NULL,
817 };
818
tmc_etr_set_catu_ops(const struct etr_buf_operations * catu)819 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
820 {
821 etr_buf_ops[ETR_MODE_CATU] = catu;
822 }
823 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
824
tmc_etr_remove_catu_ops(void)825 void tmc_etr_remove_catu_ops(void)
826 {
827 etr_buf_ops[ETR_MODE_CATU] = NULL;
828 }
829 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
830
tmc_etr_mode_alloc_buf(int mode,struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)831 static inline int tmc_etr_mode_alloc_buf(int mode,
832 struct tmc_drvdata *drvdata,
833 struct etr_buf *etr_buf, int node,
834 void **pages)
835 {
836 int rc = -EINVAL;
837
838 switch (mode) {
839 case ETR_MODE_FLAT:
840 case ETR_MODE_ETR_SG:
841 case ETR_MODE_CATU:
842 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
843 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
844 node, pages);
845 if (!rc)
846 etr_buf->ops = etr_buf_ops[mode];
847 return rc;
848 default:
849 return -EINVAL;
850 }
851 }
852
853 /*
854 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
855 * @drvdata : ETR device details.
856 * @size : size of the requested buffer.
857 * @flags : Required properties for the buffer.
858 * @node : Node for memory allocations.
859 * @pages : An optional list of pages.
860 */
tmc_alloc_etr_buf(struct tmc_drvdata * drvdata,ssize_t size,int flags,int node,void ** pages)861 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
862 ssize_t size, int flags,
863 int node, void **pages)
864 {
865 int rc = -ENOMEM;
866 bool has_etr_sg, has_iommu;
867 bool has_sg, has_catu;
868 struct etr_buf *etr_buf;
869 struct device *dev = &drvdata->csdev->dev;
870
871 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
872 has_iommu = iommu_get_domain_for_dev(dev->parent);
873 has_catu = !!tmc_etr_get_catu_device(drvdata);
874
875 has_sg = has_catu || has_etr_sg;
876
877 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
878 if (!etr_buf)
879 return ERR_PTR(-ENOMEM);
880
881 etr_buf->size = size;
882
883 /*
884 * If we have to use an existing list of pages, we cannot reliably
885 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
886 * we use the contiguous DMA memory if at least one of the following
887 * conditions is true:
888 * a) The ETR cannot use Scatter-Gather.
889 * b) we have a backing IOMMU
890 * c) The requested memory size is smaller (< 1M).
891 *
892 * Fallback to available mechanisms.
893 *
894 */
895 if (!pages &&
896 (!has_sg || has_iommu || size < SZ_1M))
897 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
898 etr_buf, node, pages);
899 if (rc && has_etr_sg)
900 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
901 etr_buf, node, pages);
902 if (rc && has_catu)
903 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
904 etr_buf, node, pages);
905 if (rc) {
906 kfree(etr_buf);
907 return ERR_PTR(rc);
908 }
909
910 refcount_set(&etr_buf->refcount, 1);
911 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
912 (unsigned long)size >> 10, etr_buf->mode);
913 return etr_buf;
914 }
915
tmc_free_etr_buf(struct etr_buf * etr_buf)916 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
917 {
918 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
919 etr_buf->ops->free(etr_buf);
920 kfree(etr_buf);
921 }
922
923 /*
924 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
925 * with a maximum of @len bytes.
926 * Returns: The size of the linear data available @pos, with *bufpp
927 * updated to point to the buffer.
928 */
tmc_etr_buf_get_data(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)929 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
930 u64 offset, size_t len, char **bufpp)
931 {
932 /* Adjust the length to limit this transaction to end of buffer */
933 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
934
935 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
936 }
937
938 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf * etr_buf,u64 offset)939 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
940 {
941 ssize_t len;
942 char *bufp;
943
944 len = tmc_etr_buf_get_data(etr_buf, offset,
945 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
946 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
947 return -EINVAL;
948 coresight_insert_barrier_packet(bufp);
949 return offset + CORESIGHT_BARRIER_PKT_SIZE;
950 }
951
952 /*
953 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
954 * Makes sure the trace data is synced to the memory for consumption.
955 * @etr_buf->offset will hold the offset to the beginning of the trace data
956 * within the buffer, with @etr_buf->len bytes to consume.
957 */
tmc_sync_etr_buf(struct tmc_drvdata * drvdata)958 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
959 {
960 struct etr_buf *etr_buf = drvdata->etr_buf;
961 u64 rrp, rwp;
962 u32 status;
963
964 rrp = tmc_read_rrp(drvdata);
965 rwp = tmc_read_rwp(drvdata);
966 status = readl_relaxed(drvdata->base + TMC_STS);
967
968 /*
969 * If there were memory errors in the session, truncate the
970 * buffer.
971 */
972 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
973 dev_dbg(&drvdata->csdev->dev,
974 "tmc memory error detected, truncating buffer\n");
975 etr_buf->len = 0;
976 etr_buf->full = false;
977 return;
978 }
979
980 etr_buf->full = !!(status & TMC_STS_FULL);
981
982 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
983
984 etr_buf->ops->sync(etr_buf, rrp, rwp);
985 }
986
__tmc_etr_enable_hw(struct tmc_drvdata * drvdata)987 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
988 {
989 u32 axictl, sts;
990 struct etr_buf *etr_buf = drvdata->etr_buf;
991
992 CS_UNLOCK(drvdata->base);
993
994 /* Wait for TMCSReady bit to be set */
995 tmc_wait_for_tmcready(drvdata);
996
997 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
998 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
999
1000 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
1001 axictl &= ~TMC_AXICTL_CLEAR_MASK;
1002 axictl |= TMC_AXICTL_PROT_CTL_B1;
1003 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
1004 axictl |= TMC_AXICTL_AXCACHE_OS;
1005
1006 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
1007 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
1008 axictl |= TMC_AXICTL_ARCACHE_OS;
1009 }
1010
1011 if (etr_buf->mode == ETR_MODE_ETR_SG)
1012 axictl |= TMC_AXICTL_SCT_GAT_MODE;
1013
1014 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1015 tmc_write_dba(drvdata, etr_buf->hwaddr);
1016 /*
1017 * If the TMC pointers must be programmed before the session,
1018 * we have to set it properly (i.e, RRP/RWP to base address and
1019 * STS to "not full").
1020 */
1021 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1022 tmc_write_rrp(drvdata, etr_buf->hwaddr);
1023 tmc_write_rwp(drvdata, etr_buf->hwaddr);
1024 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1025 writel_relaxed(sts, drvdata->base + TMC_STS);
1026 }
1027
1028 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1029 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1030 TMC_FFCR_TRIGON_TRIGIN,
1031 drvdata->base + TMC_FFCR);
1032 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1033 tmc_enable_hw(drvdata);
1034
1035 CS_LOCK(drvdata->base);
1036 }
1037
tmc_etr_enable_hw(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)1038 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1039 struct etr_buf *etr_buf)
1040 {
1041 int rc;
1042
1043 /* Callers should provide an appropriate buffer for use */
1044 if (WARN_ON(!etr_buf))
1045 return -EINVAL;
1046
1047 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1048 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1049 return -EINVAL;
1050
1051 if (WARN_ON(drvdata->etr_buf))
1052 return -EBUSY;
1053
1054 /*
1055 * If this ETR is connected to a CATU, enable it before we turn
1056 * this on.
1057 */
1058 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1059 if (rc)
1060 return rc;
1061 rc = coresight_claim_device(drvdata->csdev);
1062 if (!rc) {
1063 drvdata->etr_buf = etr_buf;
1064 __tmc_etr_enable_hw(drvdata);
1065 }
1066
1067 return rc;
1068 }
1069
1070 /*
1071 * Return the available trace data in the buffer (starts at etr_buf->offset,
1072 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1073 * also updating the @bufpp on where to find it. Since the trace data
1074 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1075 * @len returned to handle buffer wrapping around.
1076 *
1077 * We are protected here by drvdata->reading != 0, which ensures the
1078 * sysfs_buf stays alive.
1079 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata * drvdata,loff_t pos,size_t len,char ** bufpp)1080 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1081 loff_t pos, size_t len, char **bufpp)
1082 {
1083 s64 offset;
1084 ssize_t actual = len;
1085 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1086
1087 if (pos + actual > etr_buf->len)
1088 actual = etr_buf->len - pos;
1089 if (actual <= 0)
1090 return actual;
1091
1092 /* Compute the offset from which we read the data */
1093 offset = etr_buf->offset + pos;
1094 if (offset >= etr_buf->size)
1095 offset -= etr_buf->size;
1096 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1097 }
1098
1099 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata * drvdata)1100 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1101 {
1102 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1103 0, cpu_to_node(0), NULL);
1104 }
1105
1106 static void
tmc_etr_free_sysfs_buf(struct etr_buf * buf)1107 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1108 {
1109 if (buf)
1110 tmc_free_etr_buf(buf);
1111 }
1112
tmc_etr_sync_sysfs_buf(struct tmc_drvdata * drvdata)1113 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1114 {
1115 struct etr_buf *etr_buf = drvdata->etr_buf;
1116
1117 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1118 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1119 drvdata->sysfs_buf = NULL;
1120 } else {
1121 tmc_sync_etr_buf(drvdata);
1122 /*
1123 * Insert barrier packets at the beginning, if there was
1124 * an overflow.
1125 */
1126 if (etr_buf->full)
1127 tmc_etr_buf_insert_barrier_packet(etr_buf,
1128 etr_buf->offset);
1129 }
1130 }
1131
__tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1132 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1133 {
1134 CS_UNLOCK(drvdata->base);
1135
1136 tmc_flush_and_stop(drvdata);
1137 /*
1138 * When operating in sysFS mode the content of the buffer needs to be
1139 * read before the TMC is disabled.
1140 */
1141 if (drvdata->mode == CS_MODE_SYSFS)
1142 tmc_etr_sync_sysfs_buf(drvdata);
1143
1144 tmc_disable_hw(drvdata);
1145
1146 CS_LOCK(drvdata->base);
1147
1148 }
1149
tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1150 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1151 {
1152 __tmc_etr_disable_hw(drvdata);
1153 /* Disable CATU device if this ETR is connected to one */
1154 tmc_etr_disable_catu(drvdata);
1155 coresight_disclaim_device(drvdata->csdev);
1156 /* Reset the ETR buf used by hardware */
1157 drvdata->etr_buf = NULL;
1158 }
1159
tmc_enable_etr_sink_sysfs(struct coresight_device * csdev)1160 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1161 {
1162 int ret = 0;
1163 unsigned long flags;
1164 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1165 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1166
1167 /*
1168 * If we are enabling the ETR from disabled state, we need to make
1169 * sure we have a buffer with the right size. The etr_buf is not reset
1170 * immediately after we stop the tracing in SYSFS mode as we wait for
1171 * the user to collect the data. We may be able to reuse the existing
1172 * buffer, provided the size matches. Any allocation has to be done
1173 * with the lock released.
1174 */
1175 spin_lock_irqsave(&drvdata->spinlock, flags);
1176 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1177 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1178 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1179
1180 /* Allocate memory with the locks released */
1181 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1182 if (IS_ERR(new_buf))
1183 return PTR_ERR(new_buf);
1184
1185 /* Let's try again */
1186 spin_lock_irqsave(&drvdata->spinlock, flags);
1187 }
1188
1189 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1190 ret = -EBUSY;
1191 goto out;
1192 }
1193
1194 /*
1195 * In sysFS mode we can have multiple writers per sink. Since this
1196 * sink is already enabled no memory is needed and the HW need not be
1197 * touched, even if the buffer size has changed.
1198 */
1199 if (drvdata->mode == CS_MODE_SYSFS) {
1200 atomic_inc(csdev->refcnt);
1201 goto out;
1202 }
1203
1204 /*
1205 * If we don't have a buffer or it doesn't match the requested size,
1206 * use the buffer allocated above. Otherwise reuse the existing buffer.
1207 */
1208 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1209 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1210 free_buf = sysfs_buf;
1211 drvdata->sysfs_buf = new_buf;
1212 }
1213
1214 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1215 if (!ret) {
1216 drvdata->mode = CS_MODE_SYSFS;
1217 atomic_inc(csdev->refcnt);
1218 }
1219 out:
1220 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1221
1222 /* Free memory outside the spinlock if need be */
1223 if (free_buf)
1224 tmc_etr_free_sysfs_buf(free_buf);
1225
1226 if (!ret)
1227 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1228
1229 return ret;
1230 }
1231
1232 /*
1233 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1234 * The size of the hardware buffer is dependent on the size configured
1235 * via sysfs and the perf ring buffer size. We prefer to allocate the
1236 * largest possible size, scaling down the size by half until it
1237 * reaches a minimum limit (1M), beyond which we give up.
1238 */
1239 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1240 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1241 int nr_pages, void **pages, bool snapshot)
1242 {
1243 int node;
1244 struct etr_buf *etr_buf;
1245 unsigned long size;
1246
1247 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1248 /*
1249 * Try to match the perf ring buffer size if it is larger
1250 * than the size requested via sysfs.
1251 */
1252 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1253 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1254 0, node, NULL);
1255 if (!IS_ERR(etr_buf))
1256 goto done;
1257 }
1258
1259 /*
1260 * Else switch to configured size for this ETR
1261 * and scale down until we hit the minimum limit.
1262 */
1263 size = drvdata->size;
1264 do {
1265 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1266 if (!IS_ERR(etr_buf))
1267 goto done;
1268 size /= 2;
1269 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1270
1271 return ERR_PTR(-ENOMEM);
1272
1273 done:
1274 return etr_buf;
1275 }
1276
1277 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1278 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1279 struct perf_event *event, int nr_pages,
1280 void **pages, bool snapshot)
1281 {
1282 int ret;
1283 pid_t pid = task_pid_nr(event->owner);
1284 struct etr_buf *etr_buf;
1285
1286 retry:
1287 /*
1288 * An etr_perf_buffer is associated with an event and holds a reference
1289 * to the AUX ring buffer that was created for that event. In CPU-wide
1290 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1291 * buffer, share a sink. As such an etr_perf_buffer is created for each
1292 * event but a single etr_buf associated with the ETR is shared between
1293 * them. The last event in a trace session will copy the content of the
1294 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1295 * events are simply not used an freed as events are destoyed. We still
1296 * need to allocate a ring buffer for each event since we don't know
1297 * which event will be last.
1298 */
1299
1300 /*
1301 * The first thing to do here is check if an etr_buf has already been
1302 * allocated for this session. If so it is shared with this event,
1303 * otherwise it is created.
1304 */
1305 mutex_lock(&drvdata->idr_mutex);
1306 etr_buf = idr_find(&drvdata->idr, pid);
1307 if (etr_buf) {
1308 refcount_inc(&etr_buf->refcount);
1309 mutex_unlock(&drvdata->idr_mutex);
1310 return etr_buf;
1311 }
1312
1313 /* If we made it here no buffer has been allocated, do so now. */
1314 mutex_unlock(&drvdata->idr_mutex);
1315
1316 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1317 if (IS_ERR(etr_buf))
1318 return etr_buf;
1319
1320 /* Now that we have a buffer, add it to the IDR. */
1321 mutex_lock(&drvdata->idr_mutex);
1322 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1323 mutex_unlock(&drvdata->idr_mutex);
1324
1325 /* Another event with this session ID has allocated this buffer. */
1326 if (ret == -ENOSPC) {
1327 tmc_free_etr_buf(etr_buf);
1328 goto retry;
1329 }
1330
1331 /* The IDR can't allocate room for a new session, abandon ship. */
1332 if (ret == -ENOMEM) {
1333 tmc_free_etr_buf(etr_buf);
1334 return ERR_PTR(ret);
1335 }
1336
1337
1338 return etr_buf;
1339 }
1340
1341 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1342 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1343 struct perf_event *event, int nr_pages,
1344 void **pages, bool snapshot)
1345 {
1346 /*
1347 * In per-thread mode the etr_buf isn't shared, so just go ahead
1348 * with memory allocation.
1349 */
1350 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1351 }
1352
1353 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1354 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1355 int nr_pages, void **pages, bool snapshot)
1356 {
1357 if (event->cpu == -1)
1358 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1359 pages, snapshot);
1360
1361 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1362 pages, snapshot);
1363 }
1364
1365 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1366 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1367 int nr_pages, void **pages, bool snapshot)
1368 {
1369 int node;
1370 struct etr_buf *etr_buf;
1371 struct etr_perf_buffer *etr_perf;
1372
1373 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1374
1375 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1376 if (!etr_perf)
1377 return ERR_PTR(-ENOMEM);
1378
1379 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1380 if (!IS_ERR(etr_buf))
1381 goto done;
1382
1383 kfree(etr_perf);
1384 return ERR_PTR(-ENOMEM);
1385
1386 done:
1387 /*
1388 * Keep a reference to the ETR this buffer has been allocated for
1389 * in order to have access to the IDR in tmc_free_etr_buffer().
1390 */
1391 etr_perf->drvdata = drvdata;
1392 etr_perf->etr_buf = etr_buf;
1393
1394 return etr_perf;
1395 }
1396
1397
tmc_alloc_etr_buffer(struct coresight_device * csdev,struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1398 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1399 struct perf_event *event, void **pages,
1400 int nr_pages, bool snapshot)
1401 {
1402 struct etr_perf_buffer *etr_perf;
1403 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1404
1405 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1406 nr_pages, pages, snapshot);
1407 if (IS_ERR(etr_perf)) {
1408 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1409 return NULL;
1410 }
1411
1412 etr_perf->pid = task_pid_nr(event->owner);
1413 etr_perf->snapshot = snapshot;
1414 etr_perf->nr_pages = nr_pages;
1415 etr_perf->pages = pages;
1416
1417 return etr_perf;
1418 }
1419
tmc_free_etr_buffer(void * config)1420 static void tmc_free_etr_buffer(void *config)
1421 {
1422 struct etr_perf_buffer *etr_perf = config;
1423 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1424 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1425
1426 if (!etr_buf)
1427 goto free_etr_perf_buffer;
1428
1429 mutex_lock(&drvdata->idr_mutex);
1430 /* If we are not the last one to use the buffer, don't touch it. */
1431 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1432 mutex_unlock(&drvdata->idr_mutex);
1433 goto free_etr_perf_buffer;
1434 }
1435
1436 /* We are the last one, remove from the IDR and free the buffer. */
1437 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1438 mutex_unlock(&drvdata->idr_mutex);
1439
1440 /*
1441 * Something went very wrong if the buffer associated with this ID
1442 * is not the same in the IDR. Leak to avoid use after free.
1443 */
1444 if (buf && WARN_ON(buf != etr_buf))
1445 goto free_etr_perf_buffer;
1446
1447 tmc_free_etr_buf(etr_perf->etr_buf);
1448
1449 free_etr_perf_buffer:
1450 kfree(etr_perf);
1451 }
1452
1453 /*
1454 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1455 * buffer to the perf ring buffer.
1456 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer * etr_perf,unsigned long head,unsigned long src_offset,unsigned long to_copy)1457 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1458 unsigned long head,
1459 unsigned long src_offset,
1460 unsigned long to_copy)
1461 {
1462 long bytes;
1463 long pg_idx, pg_offset;
1464 char **dst_pages, *src_buf;
1465 struct etr_buf *etr_buf = etr_perf->etr_buf;
1466
1467 head = PERF_IDX2OFF(head, etr_perf);
1468 pg_idx = head >> PAGE_SHIFT;
1469 pg_offset = head & (PAGE_SIZE - 1);
1470 dst_pages = (char **)etr_perf->pages;
1471
1472 while (to_copy > 0) {
1473 /*
1474 * In one iteration, we can copy minimum of :
1475 * 1) what is available in the source buffer,
1476 * 2) what is available in the source buffer, before it
1477 * wraps around.
1478 * 3) what is available in the destination page.
1479 * in one iteration.
1480 */
1481 if (src_offset >= etr_buf->size)
1482 src_offset -= etr_buf->size;
1483 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1484 &src_buf);
1485 if (WARN_ON_ONCE(bytes <= 0))
1486 break;
1487 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1488
1489 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1490
1491 to_copy -= bytes;
1492
1493 /* Move destination pointers */
1494 pg_offset += bytes;
1495 if (pg_offset == PAGE_SIZE) {
1496 pg_offset = 0;
1497 if (++pg_idx == etr_perf->nr_pages)
1498 pg_idx = 0;
1499 }
1500
1501 /* Move source pointers */
1502 src_offset += bytes;
1503 }
1504 }
1505
1506 /*
1507 * tmc_update_etr_buffer : Update the perf ring buffer with the
1508 * available trace data. We use software double buffering at the moment.
1509 *
1510 * TODO: Add support for reusing the perf ring buffer.
1511 */
1512 static unsigned long
tmc_update_etr_buffer(struct coresight_device * csdev,struct perf_output_handle * handle,void * config)1513 tmc_update_etr_buffer(struct coresight_device *csdev,
1514 struct perf_output_handle *handle,
1515 void *config)
1516 {
1517 bool lost = false;
1518 unsigned long flags, offset, size = 0;
1519 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1520 struct etr_perf_buffer *etr_perf = config;
1521 struct etr_buf *etr_buf = etr_perf->etr_buf;
1522
1523 spin_lock_irqsave(&drvdata->spinlock, flags);
1524
1525 /* Don't do anything if another tracer is using this sink */
1526 if (atomic_read(csdev->refcnt) != 1) {
1527 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1528 goto out;
1529 }
1530
1531 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1532 lost = true;
1533 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1534 goto out;
1535 }
1536
1537 CS_UNLOCK(drvdata->base);
1538
1539 tmc_flush_and_stop(drvdata);
1540 tmc_sync_etr_buf(drvdata);
1541
1542 CS_LOCK(drvdata->base);
1543 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1544
1545 lost = etr_buf->full;
1546 offset = etr_buf->offset;
1547 size = etr_buf->len;
1548
1549 /*
1550 * The ETR buffer may be bigger than the space available in the
1551 * perf ring buffer (handle->size). If so advance the offset so that we
1552 * get the latest trace data. In snapshot mode none of that matters
1553 * since we are expected to clobber stale data in favour of the latest
1554 * traces.
1555 */
1556 if (!etr_perf->snapshot && size > handle->size) {
1557 u32 mask = tmc_get_memwidth_mask(drvdata);
1558
1559 /*
1560 * Make sure the new size is aligned in accordance with the
1561 * requirement explained in function tmc_get_memwidth_mask().
1562 */
1563 size = handle->size & mask;
1564 offset = etr_buf->offset + etr_buf->len - size;
1565
1566 if (offset >= etr_buf->size)
1567 offset -= etr_buf->size;
1568 lost = true;
1569 }
1570
1571 /* Insert barrier packets at the beginning, if there was an overflow */
1572 if (lost)
1573 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1574 tmc_etr_sync_perf_buffer(etr_perf, handle->head, offset, size);
1575
1576 /*
1577 * In snapshot mode we simply increment the head by the number of byte
1578 * that were written. User space will figure out how many bytes to get
1579 * from the AUX buffer based on the position of the head.
1580 */
1581 if (etr_perf->snapshot)
1582 handle->head += size;
1583
1584 /*
1585 * Ensure that the AUX trace data is visible before the aux_head
1586 * is updated via perf_aux_output_end(), as expected by the
1587 * perf ring buffer.
1588 */
1589 smp_wmb();
1590
1591 out:
1592 /*
1593 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1594 * captured buffer is expected to be truncated and 2) a full buffer
1595 * prevents the event from being re-enabled by the perf core,
1596 * resulting in stale data being send to user space.
1597 */
1598 if (!etr_perf->snapshot && lost)
1599 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1600 return size;
1601 }
1602
tmc_enable_etr_sink_perf(struct coresight_device * csdev,void * data)1603 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1604 {
1605 int rc = 0;
1606 pid_t pid;
1607 unsigned long flags;
1608 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1609 struct perf_output_handle *handle = data;
1610 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1611
1612 spin_lock_irqsave(&drvdata->spinlock, flags);
1613 /* Don't use this sink if it is already claimed by sysFS */
1614 if (drvdata->mode == CS_MODE_SYSFS) {
1615 rc = -EBUSY;
1616 goto unlock_out;
1617 }
1618
1619 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1620 rc = -EINVAL;
1621 goto unlock_out;
1622 }
1623
1624 /* Get a handle on the pid of the process to monitor */
1625 pid = etr_perf->pid;
1626
1627 /* Do not proceed if this device is associated with another session */
1628 if (drvdata->pid != -1 && drvdata->pid != pid) {
1629 rc = -EBUSY;
1630 goto unlock_out;
1631 }
1632
1633 /*
1634 * No HW configuration is needed if the sink is already in
1635 * use for this session.
1636 */
1637 if (drvdata->pid == pid) {
1638 atomic_inc(csdev->refcnt);
1639 goto unlock_out;
1640 }
1641
1642 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1643 if (!rc) {
1644 /* Associate with monitored process. */
1645 drvdata->pid = pid;
1646 drvdata->mode = CS_MODE_PERF;
1647 drvdata->perf_buf = etr_perf->etr_buf;
1648 atomic_inc(csdev->refcnt);
1649 }
1650
1651 unlock_out:
1652 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1653 return rc;
1654 }
1655
tmc_enable_etr_sink(struct coresight_device * csdev,u32 mode,void * data)1656 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1657 u32 mode, void *data)
1658 {
1659 switch (mode) {
1660 case CS_MODE_SYSFS:
1661 return tmc_enable_etr_sink_sysfs(csdev);
1662 case CS_MODE_PERF:
1663 return tmc_enable_etr_sink_perf(csdev, data);
1664 }
1665
1666 /* We shouldn't be here */
1667 return -EINVAL;
1668 }
1669
tmc_disable_etr_sink(struct coresight_device * csdev)1670 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1671 {
1672 unsigned long flags;
1673 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1674
1675 spin_lock_irqsave(&drvdata->spinlock, flags);
1676
1677 if (drvdata->reading) {
1678 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1679 return -EBUSY;
1680 }
1681
1682 if (atomic_dec_return(csdev->refcnt)) {
1683 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1684 return -EBUSY;
1685 }
1686
1687 /* Complain if we (somehow) got out of sync */
1688 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1689 tmc_etr_disable_hw(drvdata);
1690 /* Dissociate from monitored process. */
1691 drvdata->pid = -1;
1692 drvdata->mode = CS_MODE_DISABLED;
1693 /* Reset perf specific data */
1694 drvdata->perf_buf = NULL;
1695
1696 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1697
1698 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1699 return 0;
1700 }
1701
1702 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1703 .enable = tmc_enable_etr_sink,
1704 .disable = tmc_disable_etr_sink,
1705 .alloc_buffer = tmc_alloc_etr_buffer,
1706 .update_buffer = tmc_update_etr_buffer,
1707 .free_buffer = tmc_free_etr_buffer,
1708 };
1709
1710 const struct coresight_ops tmc_etr_cs_ops = {
1711 .sink_ops = &tmc_etr_sink_ops,
1712 };
1713
tmc_read_prepare_etr(struct tmc_drvdata * drvdata)1714 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1715 {
1716 int ret = 0;
1717 unsigned long flags;
1718
1719 /* config types are set a boot time and never change */
1720 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1721 return -EINVAL;
1722
1723 spin_lock_irqsave(&drvdata->spinlock, flags);
1724 if (drvdata->reading) {
1725 ret = -EBUSY;
1726 goto out;
1727 }
1728
1729 /*
1730 * We can safely allow reads even if the ETR is operating in PERF mode,
1731 * since the sysfs session is captured in mode specific data.
1732 * If drvdata::sysfs_data is NULL the trace data has been read already.
1733 */
1734 if (!drvdata->sysfs_buf) {
1735 ret = -EINVAL;
1736 goto out;
1737 }
1738
1739 /* Disable the TMC if we are trying to read from a running session. */
1740 if (drvdata->mode == CS_MODE_SYSFS)
1741 __tmc_etr_disable_hw(drvdata);
1742
1743 drvdata->reading = true;
1744 out:
1745 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1746
1747 return ret;
1748 }
1749
tmc_read_unprepare_etr(struct tmc_drvdata * drvdata)1750 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1751 {
1752 unsigned long flags;
1753 struct etr_buf *sysfs_buf = NULL;
1754
1755 /* config types are set a boot time and never change */
1756 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1757 return -EINVAL;
1758
1759 spin_lock_irqsave(&drvdata->spinlock, flags);
1760
1761 /* RE-enable the TMC if need be */
1762 if (drvdata->mode == CS_MODE_SYSFS) {
1763 /*
1764 * The trace run will continue with the same allocated trace
1765 * buffer. Since the tracer is still enabled drvdata::buf can't
1766 * be NULL.
1767 */
1768 __tmc_etr_enable_hw(drvdata);
1769 } else {
1770 /*
1771 * The ETR is not tracing and the buffer was just read.
1772 * As such prepare to free the trace buffer.
1773 */
1774 sysfs_buf = drvdata->sysfs_buf;
1775 drvdata->sysfs_buf = NULL;
1776 }
1777
1778 drvdata->reading = false;
1779 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1780
1781 /* Free allocated memory out side of the spinlock */
1782 if (sysfs_buf)
1783 tmc_etr_free_sysfs_buf(sysfs_buf);
1784
1785 return 0;
1786 }
1787