• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright (c) 2020, MIPI Alliance, Inc.
4  *
5  * Author: Nicolas Pitre <npitre@baylibre.com>
6  *
7  * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8  * v1.x of the spec and v2.0 will likely be split out.
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/i3c/master.h>
16 #include <linux/io.h>
17 
18 #include "hci.h"
19 #include "cmd.h"
20 #include "ibi.h"
21 
22 
23 /*
24  * Software Parameter Values (somewhat arb itrary for now).
25  * Some of them could be determined at run time eventually.
26  */
27 
28 #define XFER_RINGS			1	/* max: 8 */
29 #define XFER_RING_ENTRIES		16	/* max: 255 */
30 
31 #define IBI_RINGS			1	/* max: 8 */
32 #define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
33 #define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
34 #define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
35 
36 /*
37  * Ring Header Preamble
38  */
39 
40 #define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
41 #define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
42 
43 #define RHS_CONTROL			0x00
44 #define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
45 #define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
46 #define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
47 #define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
48 
49 #define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
50 
51 /*
52  * Ring Header (Per-Ring Bundle)
53  */
54 
55 #define rh_reg_read(r)		readl(rh->regs + (RH_##r))
56 #define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
57 
58 #define RH_CR_SETUP			0x00	/* Command/Response Ring */
59 #define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
60 #define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
61 #define CR_RING_SIZE			GENMASK(8, 0)
62 
63 #define RH_IBI_SETUP			0x04
64 #define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
65 #define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
66 #define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
67 #define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
68 
69 #define RH_CHUNK_CONTROL			0x08
70 
71 #define RH_INTR_STATUS			0x10
72 #define RH_INTR_STATUS_ENABLE		0x14
73 #define RH_INTR_SIGNAL_ENABLE		0x18
74 #define RH_INTR_FORCE			0x1c
75 #define INTR_IBI_READY			BIT(12)
76 #define INTR_TRANSFER_COMPLETION	BIT(11)
77 #define INTR_RING_OP			BIT(10)
78 #define INTR_TRANSFER_ERR		BIT(9)
79 #define INTR_WARN_INS_STOP_MODE		BIT(7)
80 #define INTR_IBI_RING_FULL		BIT(6)
81 #define INTR_TRANSFER_ABORT		BIT(5)
82 
83 #define RH_RING_STATUS			0x20
84 #define RING_STATUS_LOCKED		BIT(3)
85 #define RING_STATUS_ABORTED		BIT(2)
86 #define RING_STATUS_RUNNING		BIT(1)
87 #define RING_STATUS_ENABLED		BIT(0)
88 
89 #define RH_RING_CONTROL			0x24
90 #define RING_CTRL_ABORT			BIT(2)
91 #define RING_CTRL_RUN_STOP		BIT(1)
92 #define RING_CTRL_ENABLE		BIT(0)
93 
94 #define RH_RING_OPERATION1		0x28
95 #define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
96 #define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
97 #define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
98 
99 #define RH_RING_OPERATION2		0x2c
100 #define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
101 #define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
102 
103 #define RH_CMD_RING_BASE_LO		0x30
104 #define RH_CMD_RING_BASE_HI		0x34
105 #define RH_RESP_RING_BASE_LO		0x38
106 #define RH_RESP_RING_BASE_HI		0x3c
107 #define RH_IBI_STATUS_RING_BASE_LO	0x40
108 #define RH_IBI_STATUS_RING_BASE_HI	0x44
109 #define RH_IBI_DATA_RING_BASE_LO	0x48
110 #define RH_IBI_DATA_RING_BASE_HI	0x4c
111 
112 #define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
113 #define RH_RESP_RING_SG			0x54
114 #define RH_IBI_STATUS_RING_SG		0x58
115 #define RH_IBI_DATA_RING_SG		0x5c
116 #define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
117 #define RING_SG_LIST_SIZE		GENMASK(15, 0)
118 
119 /*
120  * Data Buffer Descriptor (in memory)
121  */
122 
123 #define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
124 #define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
125 #define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
126 
127 
128 struct hci_rh_data {
129 	void __iomem *regs;
130 	void *xfer, *resp, *ibi_status, *ibi_data;
131 	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132 	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133 	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134 	unsigned int done_ptr, ibi_chunk_ptr;
135 	struct hci_xfer **src_xfers;
136 	spinlock_t lock;
137 	struct completion op_done;
138 };
139 
140 struct hci_rings_data {
141 	unsigned int total;
142 	struct hci_rh_data headers[];
143 };
144 
145 struct hci_dma_dev_ibi_data {
146 	struct i3c_generic_ibi_pool *pool;
147 	unsigned int max_len;
148 };
149 
lo32(dma_addr_t physaddr)150 static inline u32 lo32(dma_addr_t physaddr)
151 {
152 	return physaddr;
153 }
154 
hi32(dma_addr_t physaddr)155 static inline u32 hi32(dma_addr_t physaddr)
156 {
157 	/* trickery to avoid compiler warnings on 32-bit build targets */
158 	if (sizeof(dma_addr_t) > 4) {
159 		u64 hi = physaddr;
160 		return hi >> 32;
161 	}
162 	return 0;
163 }
164 
hci_dma_cleanup(struct i3c_hci * hci)165 static void hci_dma_cleanup(struct i3c_hci *hci)
166 {
167 	struct hci_rings_data *rings = hci->io_data;
168 	struct hci_rh_data *rh;
169 	unsigned int i;
170 
171 	if (!rings)
172 		return;
173 
174 	for (i = 0; i < rings->total; i++) {
175 		rh = &rings->headers[i];
176 
177 		rh_reg_write(RING_CONTROL, 0);
178 		rh_reg_write(CR_SETUP, 0);
179 		rh_reg_write(IBI_SETUP, 0);
180 		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
181 
182 		if (rh->xfer)
183 			dma_free_coherent(&hci->master.dev,
184 					  rh->xfer_struct_sz * rh->xfer_entries,
185 					  rh->xfer, rh->xfer_dma);
186 		if (rh->resp)
187 			dma_free_coherent(&hci->master.dev,
188 					  rh->resp_struct_sz * rh->xfer_entries,
189 					  rh->resp, rh->resp_dma);
190 		kfree(rh->src_xfers);
191 		if (rh->ibi_status)
192 			dma_free_coherent(&hci->master.dev,
193 					  rh->ibi_status_sz * rh->ibi_status_entries,
194 					  rh->ibi_status, rh->ibi_status_dma);
195 		if (rh->ibi_data_dma)
196 			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
197 					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
198 					 DMA_FROM_DEVICE);
199 		kfree(rh->ibi_data);
200 	}
201 
202 	rhs_reg_write(CONTROL, 0);
203 
204 	kfree(rings);
205 	hci->io_data = NULL;
206 }
207 
hci_dma_init(struct i3c_hci * hci)208 static int hci_dma_init(struct i3c_hci *hci)
209 {
210 	struct hci_rings_data *rings;
211 	struct hci_rh_data *rh;
212 	u32 regval;
213 	unsigned int i, nr_rings, xfers_sz, resps_sz;
214 	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
215 	int ret;
216 
217 	regval = rhs_reg_read(CONTROL);
218 	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
219 	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
220 	if (unlikely(nr_rings > 8)) {
221 		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
222 		nr_rings = 8;
223 	}
224 	if (nr_rings > XFER_RINGS)
225 		nr_rings = XFER_RINGS;
226 	rings = kzalloc(sizeof(*rings) + nr_rings * sizeof(*rh), GFP_KERNEL);
227 	if (!rings)
228 		return -ENOMEM;
229 	hci->io_data = rings;
230 	rings->total = nr_rings;
231 
232 	for (i = 0; i < rings->total; i++) {
233 		u32 offset = rhs_reg_read(RHn_OFFSET(i));
234 
235 		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
236 		ret = -EINVAL;
237 		if (!offset)
238 			goto err_out;
239 		rh = &rings->headers[i];
240 		rh->regs = hci->base_regs + offset;
241 		spin_lock_init(&rh->lock);
242 		init_completion(&rh->op_done);
243 
244 		rh->xfer_entries = XFER_RING_ENTRIES;
245 
246 		regval = rh_reg_read(CR_SETUP);
247 		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
248 		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
249 		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
250 		    rh->xfer_struct_sz, rh->resp_struct_sz);
251 		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
252 		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
253 
254 		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
255 					      &rh->xfer_dma, GFP_KERNEL);
256 		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
257 					      &rh->resp_dma, GFP_KERNEL);
258 		rh->src_xfers =
259 			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
260 				      GFP_KERNEL);
261 		ret = -ENOMEM;
262 		if (!rh->xfer || !rh->resp || !rh->src_xfers)
263 			goto err_out;
264 
265 		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
266 		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
267 		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
268 		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
269 
270 		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
271 		rh_reg_write(CR_SETUP, regval);
272 
273 		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
274 		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
275 						 INTR_TRANSFER_COMPLETION |
276 						 INTR_RING_OP |
277 						 INTR_TRANSFER_ERR |
278 						 INTR_WARN_INS_STOP_MODE |
279 						 INTR_IBI_RING_FULL |
280 						 INTR_TRANSFER_ABORT);
281 
282 		/* IBIs */
283 
284 		if (i >= IBI_RINGS)
285 			goto ring_ready;
286 
287 		regval = rh_reg_read(IBI_SETUP);
288 		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
289 		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
290 		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
291 
292 		rh->ibi_chunk_sz = dma_get_cache_alignment();
293 		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
294 		BUG_ON(rh->ibi_chunk_sz > 256);
295 
296 		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
297 		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
298 
299 		rh->ibi_status =
300 			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
301 					   &rh->ibi_status_dma, GFP_KERNEL);
302 		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
303 		ret = -ENOMEM;
304 		if (!rh->ibi_status || !rh->ibi_data)
305 			goto err_out;
306 		rh->ibi_data_dma =
307 			dma_map_single(&hci->master.dev, rh->ibi_data,
308 				       ibi_data_ring_sz, DMA_FROM_DEVICE);
309 		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
310 			rh->ibi_data_dma = 0;
311 			ret = -ENOMEM;
312 			goto err_out;
313 		}
314 
315 		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
316 				    rh->ibi_status_entries) |
317 			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
318 				    ilog2(rh->ibi_chunk_sz) - 2) |
319 			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
320 				    rh->ibi_chunks_total);
321 		rh_reg_write(IBI_SETUP, regval);
322 
323 		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
324 		regval |= INTR_IBI_READY;
325 		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
326 
327 ring_ready:
328 		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
329 	}
330 
331 	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
332 	rhs_reg_write(CONTROL, regval);
333 	return 0;
334 
335 err_out:
336 	hci_dma_cleanup(hci);
337 	return ret;
338 }
339 
hci_dma_unmap_xfer(struct i3c_hci * hci,struct hci_xfer * xfer_list,unsigned int n)340 static void hci_dma_unmap_xfer(struct i3c_hci *hci,
341 			       struct hci_xfer *xfer_list, unsigned int n)
342 {
343 	struct hci_xfer *xfer;
344 	unsigned int i;
345 
346 	for (i = 0; i < n; i++) {
347 		xfer = xfer_list + i;
348 		dma_unmap_single(&hci->master.dev,
349 				 xfer->data_dma, xfer->data_len,
350 				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
351 	}
352 }
353 
hci_dma_queue_xfer(struct i3c_hci * hci,struct hci_xfer * xfer_list,int n)354 static int hci_dma_queue_xfer(struct i3c_hci *hci,
355 			      struct hci_xfer *xfer_list, int n)
356 {
357 	struct hci_rings_data *rings = hci->io_data;
358 	struct hci_rh_data *rh;
359 	unsigned int i, ring, enqueue_ptr;
360 	u32 op1_val, op2_val;
361 
362 	/* For now we only use ring 0 */
363 	ring = 0;
364 	rh = &rings->headers[ring];
365 
366 	op1_val = rh_reg_read(RING_OPERATION1);
367 	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
368 	for (i = 0; i < n; i++) {
369 		struct hci_xfer *xfer = xfer_list + i;
370 		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
371 
372 		/* store cmd descriptor */
373 		*ring_data++ = xfer->cmd_desc[0];
374 		*ring_data++ = xfer->cmd_desc[1];
375 		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
376 			*ring_data++ = xfer->cmd_desc[2];
377 			*ring_data++ = xfer->cmd_desc[3];
378 		}
379 
380 		/* first word of Data Buffer Descriptor Structure */
381 		if (!xfer->data)
382 			xfer->data_len = 0;
383 		*ring_data++ =
384 			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
385 			((i == n - 1) ? DATA_BUF_IOC : 0);
386 
387 		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
388 		if (xfer->data) {
389 			xfer->data_dma =
390 				dma_map_single(&hci->master.dev,
391 					       xfer->data,
392 					       xfer->data_len,
393 					       xfer->rnw ?
394 						  DMA_FROM_DEVICE :
395 						  DMA_TO_DEVICE);
396 			if (dma_mapping_error(&hci->master.dev,
397 					      xfer->data_dma)) {
398 				hci_dma_unmap_xfer(hci, xfer_list, i);
399 				return -ENOMEM;
400 			}
401 			*ring_data++ = lo32(xfer->data_dma);
402 			*ring_data++ = hi32(xfer->data_dma);
403 		} else {
404 			*ring_data++ = 0;
405 			*ring_data++ = 0;
406 		}
407 
408 		/* remember corresponding xfer struct */
409 		rh->src_xfers[enqueue_ptr] = xfer;
410 		/* remember corresponding ring/entry for this xfer structure */
411 		xfer->ring_number = ring;
412 		xfer->ring_entry = enqueue_ptr;
413 
414 		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
415 
416 		/*
417 		 * We may update the hardware view of the enqueue pointer
418 		 * only if we didn't reach its dequeue pointer.
419 		 */
420 		op2_val = rh_reg_read(RING_OPERATION2);
421 		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
422 			/* the ring is full */
423 			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
424 			return -EBUSY;
425 		}
426 	}
427 
428 	/* take care to update the hardware enqueue pointer atomically */
429 	spin_lock_irq(&rh->lock);
430 	op1_val = rh_reg_read(RING_OPERATION1);
431 	op1_val &= ~RING_OP1_CR_ENQ_PTR;
432 	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
433 	rh_reg_write(RING_OPERATION1, op1_val);
434 	spin_unlock_irq(&rh->lock);
435 
436 	return 0;
437 }
438 
hci_dma_dequeue_xfer(struct i3c_hci * hci,struct hci_xfer * xfer_list,int n)439 static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
440 				 struct hci_xfer *xfer_list, int n)
441 {
442 	struct hci_rings_data *rings = hci->io_data;
443 	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
444 	unsigned int i;
445 	bool did_unqueue = false;
446 
447 	/* stop the ring */
448 	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
449 	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
450 		/*
451 		 * We're deep in it if ever this condition is ever met.
452 		 * Hardware might still be writing to memory, etc.
453 		 * Better suspend the world than risking silent corruption.
454 		 */
455 		dev_crit(&hci->master.dev, "unable to abort the ring\n");
456 		BUG();
457 	}
458 
459 	for (i = 0; i < n; i++) {
460 		struct hci_xfer *xfer = xfer_list + i;
461 		int idx = xfer->ring_entry;
462 
463 		/*
464 		 * At the time the abort happened, the xfer might have
465 		 * completed already. If not then replace corresponding
466 		 * descriptor entries with a no-op.
467 		 */
468 		if (idx >= 0) {
469 			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
470 
471 			/* store no-op cmd descriptor */
472 			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
473 			*ring_data++ = 0;
474 			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
475 				*ring_data++ = 0;
476 				*ring_data++ = 0;
477 			}
478 
479 			/* disassociate this xfer struct */
480 			rh->src_xfers[idx] = NULL;
481 
482 			/* and unmap it */
483 			hci_dma_unmap_xfer(hci, xfer, 1);
484 
485 			did_unqueue = true;
486 		}
487 	}
488 
489 	/* restart the ring */
490 	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
491 
492 	return did_unqueue;
493 }
494 
hci_dma_xfer_done(struct i3c_hci * hci,struct hci_rh_data * rh)495 static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
496 {
497 	u32 op1_val, op2_val, resp, *ring_resp;
498 	unsigned int tid, done_ptr = rh->done_ptr;
499 	struct hci_xfer *xfer;
500 
501 	for (;;) {
502 		op2_val = rh_reg_read(RING_OPERATION2);
503 		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
504 			break;
505 
506 		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
507 		resp = *ring_resp;
508 		tid = RESP_TID(resp);
509 		DBG("resp = 0x%08x", resp);
510 
511 		xfer = rh->src_xfers[done_ptr];
512 		if (!xfer) {
513 			DBG("orphaned ring entry");
514 		} else {
515 			hci_dma_unmap_xfer(hci, xfer, 1);
516 			xfer->ring_entry = -1;
517 			xfer->response = resp;
518 			if (tid != xfer->cmd_tid) {
519 				dev_err(&hci->master.dev,
520 					"response tid=%d when expecting %d\n",
521 					tid, xfer->cmd_tid);
522 				/* TODO: do something about it? */
523 			}
524 			if (xfer->completion)
525 				complete(xfer->completion);
526 		}
527 
528 		done_ptr = (done_ptr + 1) % rh->xfer_entries;
529 		rh->done_ptr = done_ptr;
530 	}
531 
532 	/* take care to update the software dequeue pointer atomically */
533 	spin_lock(&rh->lock);
534 	op1_val = rh_reg_read(RING_OPERATION1);
535 	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
536 	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
537 	rh_reg_write(RING_OPERATION1, op1_val);
538 	spin_unlock(&rh->lock);
539 }
540 
hci_dma_request_ibi(struct i3c_hci * hci,struct i3c_dev_desc * dev,const struct i3c_ibi_setup * req)541 static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
542 			       const struct i3c_ibi_setup *req)
543 {
544 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
545 	struct i3c_generic_ibi_pool *pool;
546 	struct hci_dma_dev_ibi_data *dev_ibi;
547 
548 	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
549 	if (!dev_ibi)
550 		return -ENOMEM;
551 	pool = i3c_generic_ibi_alloc_pool(dev, req);
552 	if (IS_ERR(pool)) {
553 		kfree(dev_ibi);
554 		return PTR_ERR(pool);
555 	}
556 	dev_ibi->pool = pool;
557 	dev_ibi->max_len = req->max_payload_len;
558 	dev_data->ibi_data = dev_ibi;
559 	return 0;
560 }
561 
hci_dma_free_ibi(struct i3c_hci * hci,struct i3c_dev_desc * dev)562 static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
563 {
564 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
565 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
566 
567 	dev_data->ibi_data = NULL;
568 	i3c_generic_ibi_free_pool(dev_ibi->pool);
569 	kfree(dev_ibi);
570 }
571 
hci_dma_recycle_ibi_slot(struct i3c_hci * hci,struct i3c_dev_desc * dev,struct i3c_ibi_slot * slot)572 static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
573 				     struct i3c_dev_desc *dev,
574 				     struct i3c_ibi_slot *slot)
575 {
576 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
577 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
578 
579 	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
580 }
581 
hci_dma_process_ibi(struct i3c_hci * hci,struct hci_rh_data * rh)582 static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
583 {
584 	struct i3c_dev_desc *dev;
585 	struct i3c_hci_dev_data *dev_data;
586 	struct hci_dma_dev_ibi_data *dev_ibi;
587 	struct i3c_ibi_slot *slot;
588 	u32 op1_val, op2_val, ibi_status_error;
589 	unsigned int ptr, enq_ptr, deq_ptr;
590 	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
591 	int ibi_addr, last_ptr;
592 	void *ring_ibi_data;
593 	dma_addr_t ring_ibi_data_dma;
594 
595 	op1_val = rh_reg_read(RING_OPERATION1);
596 	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
597 
598 	op2_val = rh_reg_read(RING_OPERATION2);
599 	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
600 
601 	ibi_status_error = 0;
602 	ibi_addr = -1;
603 	ibi_chunks = 0;
604 	ibi_size = 0;
605 	last_ptr = -1;
606 
607 	/* let's find all we can about this IBI */
608 	for (ptr = deq_ptr; ptr != enq_ptr;
609 	     ptr = (ptr + 1) % rh->ibi_status_entries) {
610 		u32 ibi_status, *ring_ibi_status;
611 		unsigned int chunks;
612 
613 		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
614 		ibi_status = *ring_ibi_status;
615 		DBG("status = %#x", ibi_status);
616 
617 		if (ibi_status_error) {
618 			/* we no longer care */
619 		} else if (ibi_status & IBI_ERROR) {
620 			ibi_status_error = ibi_status;
621 		} else if (ibi_addr ==  -1) {
622 			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
623 		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
624 			/* the address changed unexpectedly */
625 			ibi_status_error = ibi_status;
626 		}
627 
628 		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
629 		ibi_chunks += chunks;
630 		if (!(ibi_status & IBI_LAST_STATUS)) {
631 			ibi_size += chunks * rh->ibi_chunk_sz;
632 		} else {
633 			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
634 			last_ptr = ptr;
635 			break;
636 		}
637 	}
638 
639 	/* validate what we've got */
640 
641 	if (last_ptr == -1) {
642 		/* this IBI sequence is not yet complete */
643 		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
644 		return;
645 	}
646 	deq_ptr = last_ptr + 1;
647 	deq_ptr %= rh->ibi_status_entries;
648 
649 	if (ibi_status_error) {
650 		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
651 		goto done;
652 	}
653 
654 	/* determine who this is for */
655 	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
656 	if (!dev) {
657 		dev_err(&hci->master.dev,
658 			"IBI for unknown device %#x\n", ibi_addr);
659 		goto done;
660 	}
661 
662 	dev_data = i3c_dev_get_master_data(dev);
663 	dev_ibi = dev_data->ibi_data;
664 	if (ibi_size > dev_ibi->max_len) {
665 		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
666 			ibi_size, dev_ibi->max_len);
667 		goto done;
668 	}
669 
670 	/*
671 	 * This ring model is not suitable for zero-copy processing of IBIs.
672 	 * We have the data chunk ring wrap-around to deal with, meaning
673 	 * that the payload might span multiple chunks beginning at the
674 	 * end of the ring and wrap to the start of the ring. Furthermore
675 	 * there is no guarantee that those chunks will be released in order
676 	 * and in a timely manner by the upper driver. So let's just copy
677 	 * them to a discrete buffer. In practice they're supposed to be
678 	 * small anyway.
679 	 */
680 	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
681 	if (!slot) {
682 		dev_err(&hci->master.dev, "no free slot for IBI\n");
683 		goto done;
684 	}
685 
686 	/* copy first part of the payload */
687 	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
688 	ring_ibi_data = rh->ibi_data + ibi_data_offset;
689 	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
690 	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
691 			* rh->ibi_chunk_sz;
692 	if (first_part > ibi_size)
693 		first_part = ibi_size;
694 	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
695 				first_part, DMA_FROM_DEVICE);
696 	memcpy(slot->data, ring_ibi_data, first_part);
697 
698 	/* copy second part if any */
699 	if (ibi_size > first_part) {
700 		/* we wrap back to the start and copy remaining data */
701 		ring_ibi_data = rh->ibi_data;
702 		ring_ibi_data_dma = rh->ibi_data_dma;
703 		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
704 					ibi_size - first_part, DMA_FROM_DEVICE);
705 		memcpy(slot->data + first_part, ring_ibi_data,
706 		       ibi_size - first_part);
707 	}
708 
709 	/* submit it */
710 	slot->dev = dev;
711 	slot->len = ibi_size;
712 	i3c_master_queue_ibi(dev, slot);
713 
714 done:
715 	/* take care to update the ibi dequeue pointer atomically */
716 	spin_lock(&rh->lock);
717 	op1_val = rh_reg_read(RING_OPERATION1);
718 	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
719 	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
720 	rh_reg_write(RING_OPERATION1, op1_val);
721 	spin_unlock(&rh->lock);
722 
723 	/* update the chunk pointer */
724 	rh->ibi_chunk_ptr += ibi_chunks;
725 	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
726 
727 	/* and tell the hardware about freed chunks */
728 	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
729 }
730 
hci_dma_irq_handler(struct i3c_hci * hci,unsigned int mask)731 static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
732 {
733 	struct hci_rings_data *rings = hci->io_data;
734 	unsigned int i;
735 	bool handled = false;
736 
737 	for (i = 0; mask && i < rings->total; i++) {
738 		struct hci_rh_data *rh;
739 		u32 status;
740 
741 		if (!(mask & BIT(i)))
742 			continue;
743 		mask &= ~BIT(i);
744 
745 		rh = &rings->headers[i];
746 		status = rh_reg_read(INTR_STATUS);
747 		DBG("rh%d status: %#x", i, status);
748 		if (!status)
749 			continue;
750 		rh_reg_write(INTR_STATUS, status);
751 
752 		if (status & INTR_IBI_READY)
753 			hci_dma_process_ibi(hci, rh);
754 		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
755 			hci_dma_xfer_done(hci, rh);
756 		if (status & INTR_RING_OP)
757 			complete(&rh->op_done);
758 
759 		if (status & INTR_TRANSFER_ABORT)
760 			dev_notice_ratelimited(&hci->master.dev,
761 				"ring %d: Transfer Aborted\n", i);
762 		if (status & INTR_WARN_INS_STOP_MODE)
763 			dev_warn_ratelimited(&hci->master.dev,
764 				"ring %d: Inserted Stop on Mode Change\n", i);
765 		if (status & INTR_IBI_RING_FULL)
766 			dev_err_ratelimited(&hci->master.dev,
767 				"ring %d: IBI Ring Full Condition\n", i);
768 
769 		handled = true;
770 	}
771 
772 	return handled;
773 }
774 
775 const struct hci_io_ops mipi_i3c_hci_dma = {
776 	.init			= hci_dma_init,
777 	.cleanup		= hci_dma_cleanup,
778 	.queue_xfer		= hci_dma_queue_xfer,
779 	.dequeue_xfer		= hci_dma_dequeue_xfer,
780 	.irq_handler		= hci_dma_irq_handler,
781 	.request_ibi		= hci_dma_request_ibi,
782 	.free_ibi		= hci_dma_free_ibi,
783 	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
784 };
785