1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Analog devices AD5360, AD5361, AD5362, AD5363, AD5370, AD5371, AD5373
4 * multi-channel Digital to Analog Converters driver
5 *
6 * Copyright 2011 Analog Devices Inc.
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spi/spi.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <linux/regulator/consumer.h>
17
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20
21 #define AD5360_CMD(x) ((x) << 22)
22 #define AD5360_ADDR(x) ((x) << 16)
23
24 #define AD5360_READBACK_TYPE(x) ((x) << 13)
25 #define AD5360_READBACK_ADDR(x) ((x) << 7)
26
27 #define AD5360_CHAN_ADDR(chan) ((chan) + 0x8)
28
29 #define AD5360_CMD_WRITE_DATA 0x3
30 #define AD5360_CMD_WRITE_OFFSET 0x2
31 #define AD5360_CMD_WRITE_GAIN 0x1
32 #define AD5360_CMD_SPECIAL_FUNCTION 0x0
33
34 /* Special function register addresses */
35 #define AD5360_REG_SF_NOP 0x0
36 #define AD5360_REG_SF_CTRL 0x1
37 #define AD5360_REG_SF_OFS(x) (0x2 + (x))
38 #define AD5360_REG_SF_READBACK 0x5
39
40 #define AD5360_SF_CTRL_PWR_DOWN BIT(0)
41
42 #define AD5360_READBACK_X1A 0x0
43 #define AD5360_READBACK_X1B 0x1
44 #define AD5360_READBACK_OFFSET 0x2
45 #define AD5360_READBACK_GAIN 0x3
46 #define AD5360_READBACK_SF 0x4
47
48
49 /**
50 * struct ad5360_chip_info - chip specific information
51 * @channel_template: channel specification template
52 * @num_channels: number of channels
53 * @channels_per_group: number of channels per group
54 * @num_vrefs: number of vref supplies for the chip
55 */
56
57 struct ad5360_chip_info {
58 struct iio_chan_spec channel_template;
59 unsigned int num_channels;
60 unsigned int channels_per_group;
61 unsigned int num_vrefs;
62 };
63
64 /**
65 * struct ad5360_state - driver instance specific data
66 * @spi: spi_device
67 * @chip_info: chip model specific constants, available modes etc
68 * @vref_reg: vref supply regulators
69 * @ctrl: control register cache
70 * @lock: lock to protect the data buffer during SPI ops
71 * @data: spi transfer buffers
72 */
73
74 struct ad5360_state {
75 struct spi_device *spi;
76 const struct ad5360_chip_info *chip_info;
77 struct regulator_bulk_data vref_reg[3];
78 unsigned int ctrl;
79 struct mutex lock;
80
81 /*
82 * DMA (thus cache coherency maintenance) requires the
83 * transfer buffers to live in their own cache lines.
84 */
85 union {
86 __be32 d32;
87 u8 d8[4];
88 } data[2] ____cacheline_aligned;
89 };
90
91 enum ad5360_type {
92 ID_AD5360,
93 ID_AD5361,
94 ID_AD5362,
95 ID_AD5363,
96 ID_AD5370,
97 ID_AD5371,
98 ID_AD5372,
99 ID_AD5373,
100 };
101
102 #define AD5360_CHANNEL(bits) { \
103 .type = IIO_VOLTAGE, \
104 .indexed = 1, \
105 .output = 1, \
106 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
107 BIT(IIO_CHAN_INFO_SCALE) | \
108 BIT(IIO_CHAN_INFO_OFFSET) | \
109 BIT(IIO_CHAN_INFO_CALIBSCALE) | \
110 BIT(IIO_CHAN_INFO_CALIBBIAS), \
111 .scan_type = { \
112 .sign = 'u', \
113 .realbits = (bits), \
114 .storagebits = 16, \
115 .shift = 16 - (bits), \
116 }, \
117 }
118
119 static const struct ad5360_chip_info ad5360_chip_info_tbl[] = {
120 [ID_AD5360] = {
121 .channel_template = AD5360_CHANNEL(16),
122 .num_channels = 16,
123 .channels_per_group = 8,
124 .num_vrefs = 2,
125 },
126 [ID_AD5361] = {
127 .channel_template = AD5360_CHANNEL(14),
128 .num_channels = 16,
129 .channels_per_group = 8,
130 .num_vrefs = 2,
131 },
132 [ID_AD5362] = {
133 .channel_template = AD5360_CHANNEL(16),
134 .num_channels = 8,
135 .channels_per_group = 4,
136 .num_vrefs = 2,
137 },
138 [ID_AD5363] = {
139 .channel_template = AD5360_CHANNEL(14),
140 .num_channels = 8,
141 .channels_per_group = 4,
142 .num_vrefs = 2,
143 },
144 [ID_AD5370] = {
145 .channel_template = AD5360_CHANNEL(16),
146 .num_channels = 40,
147 .channels_per_group = 8,
148 .num_vrefs = 2,
149 },
150 [ID_AD5371] = {
151 .channel_template = AD5360_CHANNEL(14),
152 .num_channels = 40,
153 .channels_per_group = 8,
154 .num_vrefs = 3,
155 },
156 [ID_AD5372] = {
157 .channel_template = AD5360_CHANNEL(16),
158 .num_channels = 32,
159 .channels_per_group = 8,
160 .num_vrefs = 2,
161 },
162 [ID_AD5373] = {
163 .channel_template = AD5360_CHANNEL(14),
164 .num_channels = 32,
165 .channels_per_group = 8,
166 .num_vrefs = 2,
167 },
168 };
169
ad5360_get_channel_vref_index(struct ad5360_state * st,unsigned int channel)170 static unsigned int ad5360_get_channel_vref_index(struct ad5360_state *st,
171 unsigned int channel)
172 {
173 unsigned int i;
174
175 /* The first groups have their own vref, while the remaining groups
176 * share the last vref */
177 i = channel / st->chip_info->channels_per_group;
178 if (i >= st->chip_info->num_vrefs)
179 i = st->chip_info->num_vrefs - 1;
180
181 return i;
182 }
183
ad5360_get_channel_vref(struct ad5360_state * st,unsigned int channel)184 static int ad5360_get_channel_vref(struct ad5360_state *st,
185 unsigned int channel)
186 {
187 unsigned int i = ad5360_get_channel_vref_index(st, channel);
188
189 return regulator_get_voltage(st->vref_reg[i].consumer);
190 }
191
192
ad5360_write_unlocked(struct iio_dev * indio_dev,unsigned int cmd,unsigned int addr,unsigned int val,unsigned int shift)193 static int ad5360_write_unlocked(struct iio_dev *indio_dev,
194 unsigned int cmd, unsigned int addr, unsigned int val,
195 unsigned int shift)
196 {
197 struct ad5360_state *st = iio_priv(indio_dev);
198
199 val <<= shift;
200 val |= AD5360_CMD(cmd) | AD5360_ADDR(addr);
201 st->data[0].d32 = cpu_to_be32(val);
202
203 return spi_write(st->spi, &st->data[0].d8[1], 3);
204 }
205
ad5360_write(struct iio_dev * indio_dev,unsigned int cmd,unsigned int addr,unsigned int val,unsigned int shift)206 static int ad5360_write(struct iio_dev *indio_dev, unsigned int cmd,
207 unsigned int addr, unsigned int val, unsigned int shift)
208 {
209 int ret;
210 struct ad5360_state *st = iio_priv(indio_dev);
211
212 mutex_lock(&st->lock);
213 ret = ad5360_write_unlocked(indio_dev, cmd, addr, val, shift);
214 mutex_unlock(&st->lock);
215
216 return ret;
217 }
218
ad5360_read(struct iio_dev * indio_dev,unsigned int type,unsigned int addr)219 static int ad5360_read(struct iio_dev *indio_dev, unsigned int type,
220 unsigned int addr)
221 {
222 struct ad5360_state *st = iio_priv(indio_dev);
223 int ret;
224 struct spi_transfer t[] = {
225 {
226 .tx_buf = &st->data[0].d8[1],
227 .len = 3,
228 .cs_change = 1,
229 }, {
230 .rx_buf = &st->data[1].d8[1],
231 .len = 3,
232 },
233 };
234
235 mutex_lock(&st->lock);
236
237 st->data[0].d32 = cpu_to_be32(AD5360_CMD(AD5360_CMD_SPECIAL_FUNCTION) |
238 AD5360_ADDR(AD5360_REG_SF_READBACK) |
239 AD5360_READBACK_TYPE(type) |
240 AD5360_READBACK_ADDR(addr));
241
242 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
243 if (ret >= 0)
244 ret = be32_to_cpu(st->data[1].d32) & 0xffff;
245
246 mutex_unlock(&st->lock);
247
248 return ret;
249 }
250
ad5360_read_dac_powerdown(struct device * dev,struct device_attribute * attr,char * buf)251 static ssize_t ad5360_read_dac_powerdown(struct device *dev,
252 struct device_attribute *attr,
253 char *buf)
254 {
255 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
256 struct ad5360_state *st = iio_priv(indio_dev);
257
258 return sysfs_emit(buf, "%d\n", (bool)(st->ctrl & AD5360_SF_CTRL_PWR_DOWN));
259 }
260
ad5360_update_ctrl(struct iio_dev * indio_dev,unsigned int set,unsigned int clr)261 static int ad5360_update_ctrl(struct iio_dev *indio_dev, unsigned int set,
262 unsigned int clr)
263 {
264 struct ad5360_state *st = iio_priv(indio_dev);
265 unsigned int ret;
266
267 mutex_lock(&st->lock);
268
269 st->ctrl |= set;
270 st->ctrl &= ~clr;
271
272 ret = ad5360_write_unlocked(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
273 AD5360_REG_SF_CTRL, st->ctrl, 0);
274
275 mutex_unlock(&st->lock);
276
277 return ret;
278 }
279
ad5360_write_dac_powerdown(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)280 static ssize_t ad5360_write_dac_powerdown(struct device *dev,
281 struct device_attribute *attr, const char *buf, size_t len)
282 {
283 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
284 bool pwr_down;
285 int ret;
286
287 ret = strtobool(buf, &pwr_down);
288 if (ret)
289 return ret;
290
291 if (pwr_down)
292 ret = ad5360_update_ctrl(indio_dev, AD5360_SF_CTRL_PWR_DOWN, 0);
293 else
294 ret = ad5360_update_ctrl(indio_dev, 0, AD5360_SF_CTRL_PWR_DOWN);
295
296 return ret ? ret : len;
297 }
298
299 static IIO_DEVICE_ATTR(out_voltage_powerdown,
300 S_IRUGO | S_IWUSR,
301 ad5360_read_dac_powerdown,
302 ad5360_write_dac_powerdown, 0);
303
304 static struct attribute *ad5360_attributes[] = {
305 &iio_dev_attr_out_voltage_powerdown.dev_attr.attr,
306 NULL,
307 };
308
309 static const struct attribute_group ad5360_attribute_group = {
310 .attrs = ad5360_attributes,
311 };
312
ad5360_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)313 static int ad5360_write_raw(struct iio_dev *indio_dev,
314 struct iio_chan_spec const *chan,
315 int val,
316 int val2,
317 long mask)
318 {
319 struct ad5360_state *st = iio_priv(indio_dev);
320 int max_val = (1 << chan->scan_type.realbits);
321 unsigned int ofs_index;
322
323 switch (mask) {
324 case IIO_CHAN_INFO_RAW:
325 if (val >= max_val || val < 0)
326 return -EINVAL;
327
328 return ad5360_write(indio_dev, AD5360_CMD_WRITE_DATA,
329 chan->address, val, chan->scan_type.shift);
330
331 case IIO_CHAN_INFO_CALIBBIAS:
332 if (val >= max_val || val < 0)
333 return -EINVAL;
334
335 return ad5360_write(indio_dev, AD5360_CMD_WRITE_OFFSET,
336 chan->address, val, chan->scan_type.shift);
337
338 case IIO_CHAN_INFO_CALIBSCALE:
339 if (val >= max_val || val < 0)
340 return -EINVAL;
341
342 return ad5360_write(indio_dev, AD5360_CMD_WRITE_GAIN,
343 chan->address, val, chan->scan_type.shift);
344
345 case IIO_CHAN_INFO_OFFSET:
346 if (val <= -max_val || val > 0)
347 return -EINVAL;
348
349 val = -val;
350
351 /* offset is supposed to have the same scale as raw, but it
352 * is always 14bits wide, so on a chip where the raw value has
353 * more bits, we need to shift offset. */
354 val >>= (chan->scan_type.realbits - 14);
355
356 /* There is one DAC offset register per vref. Changing one
357 * channels offset will also change the offset for all other
358 * channels which share the same vref supply. */
359 ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
360 return ad5360_write(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
361 AD5360_REG_SF_OFS(ofs_index), val, 0);
362 default:
363 break;
364 }
365
366 return -EINVAL;
367 }
368
ad5360_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long m)369 static int ad5360_read_raw(struct iio_dev *indio_dev,
370 struct iio_chan_spec const *chan,
371 int *val,
372 int *val2,
373 long m)
374 {
375 struct ad5360_state *st = iio_priv(indio_dev);
376 unsigned int ofs_index;
377 int scale_uv;
378 int ret;
379
380 switch (m) {
381 case IIO_CHAN_INFO_RAW:
382 ret = ad5360_read(indio_dev, AD5360_READBACK_X1A,
383 chan->address);
384 if (ret < 0)
385 return ret;
386 *val = ret >> chan->scan_type.shift;
387 return IIO_VAL_INT;
388 case IIO_CHAN_INFO_SCALE:
389 scale_uv = ad5360_get_channel_vref(st, chan->channel);
390 if (scale_uv < 0)
391 return scale_uv;
392
393 /* vout = 4 * vref * dac_code */
394 *val = scale_uv * 4 / 1000;
395 *val2 = chan->scan_type.realbits;
396 return IIO_VAL_FRACTIONAL_LOG2;
397 case IIO_CHAN_INFO_CALIBBIAS:
398 ret = ad5360_read(indio_dev, AD5360_READBACK_OFFSET,
399 chan->address);
400 if (ret < 0)
401 return ret;
402 *val = ret;
403 return IIO_VAL_INT;
404 case IIO_CHAN_INFO_CALIBSCALE:
405 ret = ad5360_read(indio_dev, AD5360_READBACK_GAIN,
406 chan->address);
407 if (ret < 0)
408 return ret;
409 *val = ret;
410 return IIO_VAL_INT;
411 case IIO_CHAN_INFO_OFFSET:
412 ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
413 ret = ad5360_read(indio_dev, AD5360_READBACK_SF,
414 AD5360_REG_SF_OFS(ofs_index));
415 if (ret < 0)
416 return ret;
417
418 ret <<= (chan->scan_type.realbits - 14);
419 *val = -ret;
420 return IIO_VAL_INT;
421 }
422
423 return -EINVAL;
424 }
425
426 static const struct iio_info ad5360_info = {
427 .read_raw = ad5360_read_raw,
428 .write_raw = ad5360_write_raw,
429 .attrs = &ad5360_attribute_group,
430 };
431
432 static const char * const ad5360_vref_name[] = {
433 "vref0", "vref1", "vref2"
434 };
435
ad5360_alloc_channels(struct iio_dev * indio_dev)436 static int ad5360_alloc_channels(struct iio_dev *indio_dev)
437 {
438 struct ad5360_state *st = iio_priv(indio_dev);
439 struct iio_chan_spec *channels;
440 unsigned int i;
441
442 channels = kcalloc(st->chip_info->num_channels,
443 sizeof(struct iio_chan_spec), GFP_KERNEL);
444
445 if (!channels)
446 return -ENOMEM;
447
448 for (i = 0; i < st->chip_info->num_channels; ++i) {
449 channels[i] = st->chip_info->channel_template;
450 channels[i].channel = i;
451 channels[i].address = AD5360_CHAN_ADDR(i);
452 }
453
454 indio_dev->channels = channels;
455
456 return 0;
457 }
458
ad5360_probe(struct spi_device * spi)459 static int ad5360_probe(struct spi_device *spi)
460 {
461 enum ad5360_type type = spi_get_device_id(spi)->driver_data;
462 struct iio_dev *indio_dev;
463 struct ad5360_state *st;
464 unsigned int i;
465 int ret;
466
467 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
468 if (indio_dev == NULL) {
469 dev_err(&spi->dev, "Failed to allocate iio device\n");
470 return -ENOMEM;
471 }
472
473 st = iio_priv(indio_dev);
474 spi_set_drvdata(spi, indio_dev);
475
476 st->chip_info = &ad5360_chip_info_tbl[type];
477 st->spi = spi;
478
479 indio_dev->name = spi_get_device_id(spi)->name;
480 indio_dev->info = &ad5360_info;
481 indio_dev->modes = INDIO_DIRECT_MODE;
482 indio_dev->num_channels = st->chip_info->num_channels;
483
484 mutex_init(&st->lock);
485
486 ret = ad5360_alloc_channels(indio_dev);
487 if (ret) {
488 dev_err(&spi->dev, "Failed to allocate channel spec: %d\n", ret);
489 return ret;
490 }
491
492 for (i = 0; i < st->chip_info->num_vrefs; ++i)
493 st->vref_reg[i].supply = ad5360_vref_name[i];
494
495 ret = devm_regulator_bulk_get(&st->spi->dev, st->chip_info->num_vrefs,
496 st->vref_reg);
497 if (ret) {
498 dev_err(&spi->dev, "Failed to request vref regulators: %d\n", ret);
499 goto error_free_channels;
500 }
501
502 ret = regulator_bulk_enable(st->chip_info->num_vrefs, st->vref_reg);
503 if (ret) {
504 dev_err(&spi->dev, "Failed to enable vref regulators: %d\n", ret);
505 goto error_free_channels;
506 }
507
508 ret = iio_device_register(indio_dev);
509 if (ret) {
510 dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
511 goto error_disable_reg;
512 }
513
514 return 0;
515
516 error_disable_reg:
517 regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
518 error_free_channels:
519 kfree(indio_dev->channels);
520
521 return ret;
522 }
523
ad5360_remove(struct spi_device * spi)524 static int ad5360_remove(struct spi_device *spi)
525 {
526 struct iio_dev *indio_dev = spi_get_drvdata(spi);
527 struct ad5360_state *st = iio_priv(indio_dev);
528
529 iio_device_unregister(indio_dev);
530
531 kfree(indio_dev->channels);
532
533 regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
534
535 return 0;
536 }
537
538 static const struct spi_device_id ad5360_ids[] = {
539 { "ad5360", ID_AD5360 },
540 { "ad5361", ID_AD5361 },
541 { "ad5362", ID_AD5362 },
542 { "ad5363", ID_AD5363 },
543 { "ad5370", ID_AD5370 },
544 { "ad5371", ID_AD5371 },
545 { "ad5372", ID_AD5372 },
546 { "ad5373", ID_AD5373 },
547 {}
548 };
549 MODULE_DEVICE_TABLE(spi, ad5360_ids);
550
551 static struct spi_driver ad5360_driver = {
552 .driver = {
553 .name = "ad5360",
554 },
555 .probe = ad5360_probe,
556 .remove = ad5360_remove,
557 .id_table = ad5360_ids,
558 };
559 module_spi_driver(ad5360_driver);
560
561 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
562 MODULE_DESCRIPTION("Analog Devices AD5360/61/62/63/70/71/72/73 DAC");
563 MODULE_LICENSE("GPL v2");
564