• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A sensor driver for the magnetometer AK8975.
4  *
5  * Magnetic compass sensor driver for monitoring magnetic flux information.
6  *
7  * Copyright (c) 2010, NVIDIA Corporation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/trigger.h>
28 #include <linux/iio/trigger_consumer.h>
29 #include <linux/iio/triggered_buffer.h>
30 
31 /*
32  * Register definitions, as well as various shifts and masks to get at the
33  * individual fields of the registers.
34  */
35 #define AK8975_REG_WIA			0x00
36 #define AK8975_DEVICE_ID		0x48
37 
38 #define AK8975_REG_INFO			0x01
39 
40 #define AK8975_REG_ST1			0x02
41 #define AK8975_REG_ST1_DRDY_SHIFT	0
42 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
43 
44 #define AK8975_REG_HXL			0x03
45 #define AK8975_REG_HXH			0x04
46 #define AK8975_REG_HYL			0x05
47 #define AK8975_REG_HYH			0x06
48 #define AK8975_REG_HZL			0x07
49 #define AK8975_REG_HZH			0x08
50 #define AK8975_REG_ST2			0x09
51 #define AK8975_REG_ST2_DERR_SHIFT	2
52 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
53 
54 #define AK8975_REG_ST2_HOFL_SHIFT	3
55 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
56 
57 #define AK8975_REG_CNTL			0x0A
58 #define AK8975_REG_CNTL_MODE_SHIFT	0
59 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
60 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
61 #define AK8975_REG_CNTL_MODE_ONCE	0x01
62 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
63 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
64 
65 #define AK8975_REG_RSVC			0x0B
66 #define AK8975_REG_ASTC			0x0C
67 #define AK8975_REG_TS1			0x0D
68 #define AK8975_REG_TS2			0x0E
69 #define AK8975_REG_I2CDIS		0x0F
70 #define AK8975_REG_ASAX			0x10
71 #define AK8975_REG_ASAY			0x11
72 #define AK8975_REG_ASAZ			0x12
73 
74 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
75 
76 /*
77  * AK09912 Register definitions
78  */
79 #define AK09912_REG_WIA1		0x00
80 #define AK09912_REG_WIA2		0x01
81 #define AK09912_DEVICE_ID		0x04
82 #define AK09911_DEVICE_ID		0x05
83 
84 #define AK09911_REG_INFO1		0x02
85 #define AK09911_REG_INFO2		0x03
86 
87 #define AK09912_REG_ST1			0x10
88 
89 #define AK09912_REG_ST1_DRDY_SHIFT	0
90 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
91 
92 #define AK09912_REG_HXL			0x11
93 #define AK09912_REG_HXH			0x12
94 #define AK09912_REG_HYL			0x13
95 #define AK09912_REG_HYH			0x14
96 #define AK09912_REG_HZL			0x15
97 #define AK09912_REG_HZH			0x16
98 #define AK09912_REG_TMPS		0x17
99 
100 #define AK09912_REG_ST2			0x18
101 #define AK09912_REG_ST2_HOFL_SHIFT	3
102 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
103 
104 #define AK09912_REG_CNTL1		0x30
105 
106 #define AK09912_REG_CNTL2		0x31
107 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
108 #define AK09912_REG_CNTL_MODE_ONCE	0x01
109 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
110 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
111 #define AK09912_REG_CNTL2_MODE_SHIFT	0
112 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
113 
114 #define AK09912_REG_CNTL3		0x32
115 
116 #define AK09912_REG_TS1			0x33
117 #define AK09912_REG_TS2			0x34
118 #define AK09912_REG_TS3			0x35
119 #define AK09912_REG_I2CDIS		0x36
120 #define AK09912_REG_TS4			0x37
121 
122 #define AK09912_REG_ASAX		0x60
123 #define AK09912_REG_ASAY		0x61
124 #define AK09912_REG_ASAZ		0x62
125 
126 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
127 
128 /*
129  * Miscellaneous values.
130  */
131 #define AK8975_MAX_CONVERSION_TIMEOUT	500
132 #define AK8975_CONVERSION_DONE_POLL_TIME 10
133 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
134 
135 /*
136  * Precalculate scale factor (in Gauss units) for each axis and
137  * store in the device data.
138  *
139  * This scale factor is axis-dependent, and is derived from 3 calibration
140  * factors ASA(x), ASA(y), and ASA(z).
141  *
142  * These ASA values are read from the sensor device at start of day, and
143  * cached in the device context struct.
144  *
145  * Adjusting the flux value with the sensitivity adjustment value should be
146  * done via the following formula:
147  *
148  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
149  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
150  * is the resultant adjusted value.
151  *
152  * We reduce the formula to:
153  *
154  * Hadj = H * (ASA + 128) / 256
155  *
156  * H is in the range of -4096 to 4095.  The magnetometer has a range of
157  * +-1229uT.  To go from the raw value to uT is:
158  *
159  * HuT = H * 1229/4096, or roughly, 3/10.
160  *
161  * Since 1uT = 0.01 gauss, our final scale factor becomes:
162  *
163  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
164  * Hadj = H * ((ASA + 128) * 0.003) / 256
165  *
166  * Since ASA doesn't change, we cache the resultant scale factor into the
167  * device context in ak8975_setup().
168  *
169  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
170  * multiply the stored scale value by 1e6.
171  */
ak8975_raw_to_gauss(u16 data)172 static long ak8975_raw_to_gauss(u16 data)
173 {
174 	return (((long)data + 128) * 3000) / 256;
175 }
176 
177 /*
178  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
179  *
180  * H is in the range of +-8190.  The magnetometer has a range of
181  * +-4912uT.  To go from the raw value to uT is:
182  *
183  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
184  */
185 
ak8963_09911_raw_to_gauss(u16 data)186 static long ak8963_09911_raw_to_gauss(u16 data)
187 {
188 	return (((long)data + 128) * 6000) / 256;
189 }
190 
191 /*
192  * For AK09912, same calculation, except the device is more sensitive:
193  *
194  * H is in the range of -32752 to 32752.  The magnetometer has a range of
195  * +-4912uT.  To go from the raw value to uT is:
196  *
197  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
198  */
ak09912_raw_to_gauss(u16 data)199 static long ak09912_raw_to_gauss(u16 data)
200 {
201 	return (((long)data + 128) * 1500) / 256;
202 }
203 
204 /* Compatible Asahi Kasei Compass parts */
205 enum asahi_compass_chipset {
206 	AKXXXX		= 0,
207 	AK8975,
208 	AK8963,
209 	AK09911,
210 	AK09912,
211 };
212 
213 enum ak_ctrl_reg_addr {
214 	ST1,
215 	ST2,
216 	CNTL,
217 	ASA_BASE,
218 	MAX_REGS,
219 	REGS_END,
220 };
221 
222 enum ak_ctrl_reg_mask {
223 	ST1_DRDY,
224 	ST2_HOFL,
225 	ST2_DERR,
226 	CNTL_MODE,
227 	MASK_END,
228 };
229 
230 enum ak_ctrl_mode {
231 	POWER_DOWN,
232 	MODE_ONCE,
233 	SELF_TEST,
234 	FUSE_ROM,
235 	MODE_END,
236 };
237 
238 struct ak_def {
239 	enum asahi_compass_chipset type;
240 	long (*raw_to_gauss)(u16 data);
241 	u16 range;
242 	u8 ctrl_regs[REGS_END];
243 	u8 ctrl_masks[MASK_END];
244 	u8 ctrl_modes[MODE_END];
245 	u8 data_regs[3];
246 };
247 
248 static const struct ak_def ak_def_array[] = {
249 	{
250 		.type = AK8975,
251 		.raw_to_gauss = ak8975_raw_to_gauss,
252 		.range = 4096,
253 		.ctrl_regs = {
254 			AK8975_REG_ST1,
255 			AK8975_REG_ST2,
256 			AK8975_REG_CNTL,
257 			AK8975_REG_ASAX,
258 			AK8975_MAX_REGS},
259 		.ctrl_masks = {
260 			AK8975_REG_ST1_DRDY_MASK,
261 			AK8975_REG_ST2_HOFL_MASK,
262 			AK8975_REG_ST2_DERR_MASK,
263 			AK8975_REG_CNTL_MODE_MASK},
264 		.ctrl_modes = {
265 			AK8975_REG_CNTL_MODE_POWER_DOWN,
266 			AK8975_REG_CNTL_MODE_ONCE,
267 			AK8975_REG_CNTL_MODE_SELF_TEST,
268 			AK8975_REG_CNTL_MODE_FUSE_ROM},
269 		.data_regs = {
270 			AK8975_REG_HXL,
271 			AK8975_REG_HYL,
272 			AK8975_REG_HZL},
273 	},
274 	{
275 		.type = AK8963,
276 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
277 		.range = 8190,
278 		.ctrl_regs = {
279 			AK8975_REG_ST1,
280 			AK8975_REG_ST2,
281 			AK8975_REG_CNTL,
282 			AK8975_REG_ASAX,
283 			AK8975_MAX_REGS},
284 		.ctrl_masks = {
285 			AK8975_REG_ST1_DRDY_MASK,
286 			AK8975_REG_ST2_HOFL_MASK,
287 			0,
288 			AK8975_REG_CNTL_MODE_MASK},
289 		.ctrl_modes = {
290 			AK8975_REG_CNTL_MODE_POWER_DOWN,
291 			AK8975_REG_CNTL_MODE_ONCE,
292 			AK8975_REG_CNTL_MODE_SELF_TEST,
293 			AK8975_REG_CNTL_MODE_FUSE_ROM},
294 		.data_regs = {
295 			AK8975_REG_HXL,
296 			AK8975_REG_HYL,
297 			AK8975_REG_HZL},
298 	},
299 	{
300 		.type = AK09911,
301 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
302 		.range = 8192,
303 		.ctrl_regs = {
304 			AK09912_REG_ST1,
305 			AK09912_REG_ST2,
306 			AK09912_REG_CNTL2,
307 			AK09912_REG_ASAX,
308 			AK09912_MAX_REGS},
309 		.ctrl_masks = {
310 			AK09912_REG_ST1_DRDY_MASK,
311 			AK09912_REG_ST2_HOFL_MASK,
312 			0,
313 			AK09912_REG_CNTL2_MODE_MASK},
314 		.ctrl_modes = {
315 			AK09912_REG_CNTL_MODE_POWER_DOWN,
316 			AK09912_REG_CNTL_MODE_ONCE,
317 			AK09912_REG_CNTL_MODE_SELF_TEST,
318 			AK09912_REG_CNTL_MODE_FUSE_ROM},
319 		.data_regs = {
320 			AK09912_REG_HXL,
321 			AK09912_REG_HYL,
322 			AK09912_REG_HZL},
323 	},
324 	{
325 		.type = AK09912,
326 		.raw_to_gauss = ak09912_raw_to_gauss,
327 		.range = 32752,
328 		.ctrl_regs = {
329 			AK09912_REG_ST1,
330 			AK09912_REG_ST2,
331 			AK09912_REG_CNTL2,
332 			AK09912_REG_ASAX,
333 			AK09912_MAX_REGS},
334 		.ctrl_masks = {
335 			AK09912_REG_ST1_DRDY_MASK,
336 			AK09912_REG_ST2_HOFL_MASK,
337 			0,
338 			AK09912_REG_CNTL2_MODE_MASK},
339 		.ctrl_modes = {
340 			AK09912_REG_CNTL_MODE_POWER_DOWN,
341 			AK09912_REG_CNTL_MODE_ONCE,
342 			AK09912_REG_CNTL_MODE_SELF_TEST,
343 			AK09912_REG_CNTL_MODE_FUSE_ROM},
344 		.data_regs = {
345 			AK09912_REG_HXL,
346 			AK09912_REG_HYL,
347 			AK09912_REG_HZL},
348 	}
349 };
350 
351 /*
352  * Per-instance context data for the device.
353  */
354 struct ak8975_data {
355 	struct i2c_client	*client;
356 	const struct ak_def	*def;
357 	struct mutex		lock;
358 	u8			asa[3];
359 	long			raw_to_gauss[3];
360 	struct gpio_desc	*eoc_gpiod;
361 	struct gpio_desc	*reset_gpiod;
362 	int			eoc_irq;
363 	wait_queue_head_t	data_ready_queue;
364 	unsigned long		flags;
365 	u8			cntl_cache;
366 	struct iio_mount_matrix orientation;
367 	struct regulator	*vdd;
368 	struct regulator	*vid;
369 
370 	/* Ensure natural alignment of timestamp */
371 	struct {
372 		s16 channels[3];
373 		s64 ts __aligned(8);
374 	} scan;
375 };
376 
377 /* Enable attached power regulator if any. */
ak8975_power_on(const struct ak8975_data * data)378 static int ak8975_power_on(const struct ak8975_data *data)
379 {
380 	int ret;
381 
382 	ret = regulator_enable(data->vdd);
383 	if (ret) {
384 		dev_warn(&data->client->dev,
385 			 "Failed to enable specified Vdd supply\n");
386 		return ret;
387 	}
388 	ret = regulator_enable(data->vid);
389 	if (ret) {
390 		dev_warn(&data->client->dev,
391 			 "Failed to enable specified Vid supply\n");
392 		regulator_disable(data->vdd);
393 		return ret;
394 	}
395 
396 	gpiod_set_value_cansleep(data->reset_gpiod, 0);
397 
398 	/*
399 	 * According to the datasheet the power supply rise time is 200us
400 	 * and the minimum wait time before mode setting is 100us, in
401 	 * total 300us. Add some margin and say minimum 500us here.
402 	 */
403 	usleep_range(500, 1000);
404 	return 0;
405 }
406 
407 /* Disable attached power regulator if any. */
ak8975_power_off(const struct ak8975_data * data)408 static void ak8975_power_off(const struct ak8975_data *data)
409 {
410 	gpiod_set_value_cansleep(data->reset_gpiod, 1);
411 
412 	regulator_disable(data->vid);
413 	regulator_disable(data->vdd);
414 }
415 
416 /*
417  * Return 0 if the i2c device is the one we expect.
418  * return a negative error number otherwise
419  */
ak8975_who_i_am(struct i2c_client * client,enum asahi_compass_chipset type)420 static int ak8975_who_i_am(struct i2c_client *client,
421 			   enum asahi_compass_chipset type)
422 {
423 	u8 wia_val[2];
424 	int ret;
425 
426 	/*
427 	 * Signature for each device:
428 	 * Device   |  WIA1      |  WIA2
429 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
430 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
431 	 * AK8975   |  DEVICE_ID |  NA
432 	 * AK8963   |  DEVICE_ID |  NA
433 	 */
434 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
435 			client, AK09912_REG_WIA1, 2, wia_val);
436 	if (ret < 0) {
437 		dev_err(&client->dev, "Error reading WIA\n");
438 		return ret;
439 	}
440 
441 	if (wia_val[0] != AK8975_DEVICE_ID)
442 		return -ENODEV;
443 
444 	switch (type) {
445 	case AK8975:
446 	case AK8963:
447 		return 0;
448 	case AK09911:
449 		if (wia_val[1] == AK09911_DEVICE_ID)
450 			return 0;
451 		break;
452 	case AK09912:
453 		if (wia_val[1] == AK09912_DEVICE_ID)
454 			return 0;
455 		break;
456 	default:
457 		dev_err(&client->dev, "Type %d unknown\n", type);
458 	}
459 	return -ENODEV;
460 }
461 
462 /*
463  * Helper function to write to CNTL register.
464  */
ak8975_set_mode(struct ak8975_data * data,enum ak_ctrl_mode mode)465 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
466 {
467 	u8 regval;
468 	int ret;
469 
470 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
471 		 data->def->ctrl_modes[mode];
472 	ret = i2c_smbus_write_byte_data(data->client,
473 					data->def->ctrl_regs[CNTL], regval);
474 	if (ret < 0) {
475 		return ret;
476 	}
477 	data->cntl_cache = regval;
478 	/* After mode change wait atleast 100us */
479 	usleep_range(100, 500);
480 
481 	return 0;
482 }
483 
484 /*
485  * Handle data ready irq
486  */
ak8975_irq_handler(int irq,void * data)487 static irqreturn_t ak8975_irq_handler(int irq, void *data)
488 {
489 	struct ak8975_data *ak8975 = data;
490 
491 	set_bit(0, &ak8975->flags);
492 	wake_up(&ak8975->data_ready_queue);
493 
494 	return IRQ_HANDLED;
495 }
496 
497 /*
498  * Install data ready interrupt handler
499  */
ak8975_setup_irq(struct ak8975_data * data)500 static int ak8975_setup_irq(struct ak8975_data *data)
501 {
502 	struct i2c_client *client = data->client;
503 	int rc;
504 	int irq;
505 
506 	init_waitqueue_head(&data->data_ready_queue);
507 	clear_bit(0, &data->flags);
508 	if (client->irq)
509 		irq = client->irq;
510 	else
511 		irq = gpiod_to_irq(data->eoc_gpiod);
512 
513 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
514 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
515 			      dev_name(&client->dev), data);
516 	if (rc < 0) {
517 		dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc);
518 		return rc;
519 	}
520 
521 	data->eoc_irq = irq;
522 
523 	return rc;
524 }
525 
526 
527 /*
528  * Perform some start-of-day setup, including reading the asa calibration
529  * values and caching them.
530  */
ak8975_setup(struct i2c_client * client)531 static int ak8975_setup(struct i2c_client *client)
532 {
533 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
534 	struct ak8975_data *data = iio_priv(indio_dev);
535 	int ret;
536 
537 	/* Write the fused rom access mode. */
538 	ret = ak8975_set_mode(data, FUSE_ROM);
539 	if (ret < 0) {
540 		dev_err(&client->dev, "Error in setting fuse access mode\n");
541 		return ret;
542 	}
543 
544 	/* Get asa data and store in the device data. */
545 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
546 			client, data->def->ctrl_regs[ASA_BASE],
547 			3, data->asa);
548 	if (ret < 0) {
549 		dev_err(&client->dev, "Not able to read asa data\n");
550 		return ret;
551 	}
552 
553 	/* After reading fuse ROM data set power-down mode */
554 	ret = ak8975_set_mode(data, POWER_DOWN);
555 	if (ret < 0) {
556 		dev_err(&client->dev, "Error in setting power-down mode\n");
557 		return ret;
558 	}
559 
560 	if (data->eoc_gpiod || client->irq > 0) {
561 		ret = ak8975_setup_irq(data);
562 		if (ret < 0) {
563 			dev_err(&client->dev,
564 				"Error setting data ready interrupt\n");
565 			return ret;
566 		}
567 	}
568 
569 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
570 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
571 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
572 
573 	return 0;
574 }
575 
wait_conversion_complete_gpio(struct ak8975_data * data)576 static int wait_conversion_complete_gpio(struct ak8975_data *data)
577 {
578 	struct i2c_client *client = data->client;
579 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
580 	int ret;
581 
582 	/* Wait for the conversion to complete. */
583 	while (timeout_ms) {
584 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
585 		if (gpiod_get_value(data->eoc_gpiod))
586 			break;
587 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
588 	}
589 	if (!timeout_ms) {
590 		dev_err(&client->dev, "Conversion timeout happened\n");
591 		return -EINVAL;
592 	}
593 
594 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
595 	if (ret < 0)
596 		dev_err(&client->dev, "Error in reading ST1\n");
597 
598 	return ret;
599 }
600 
wait_conversion_complete_polled(struct ak8975_data * data)601 static int wait_conversion_complete_polled(struct ak8975_data *data)
602 {
603 	struct i2c_client *client = data->client;
604 	u8 read_status;
605 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
606 	int ret;
607 
608 	/* Wait for the conversion to complete. */
609 	while (timeout_ms) {
610 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
611 		ret = i2c_smbus_read_byte_data(client,
612 					       data->def->ctrl_regs[ST1]);
613 		if (ret < 0) {
614 			dev_err(&client->dev, "Error in reading ST1\n");
615 			return ret;
616 		}
617 		read_status = ret;
618 		if (read_status)
619 			break;
620 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
621 	}
622 	if (!timeout_ms) {
623 		dev_err(&client->dev, "Conversion timeout happened\n");
624 		return -EINVAL;
625 	}
626 
627 	return read_status;
628 }
629 
630 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
wait_conversion_complete_interrupt(struct ak8975_data * data)631 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
632 {
633 	int ret;
634 
635 	ret = wait_event_timeout(data->data_ready_queue,
636 				 test_bit(0, &data->flags),
637 				 AK8975_DATA_READY_TIMEOUT);
638 	clear_bit(0, &data->flags);
639 
640 	return ret > 0 ? 0 : -ETIME;
641 }
642 
ak8975_start_read_axis(struct ak8975_data * data,const struct i2c_client * client)643 static int ak8975_start_read_axis(struct ak8975_data *data,
644 				  const struct i2c_client *client)
645 {
646 	/* Set up the device for taking a sample. */
647 	int ret = ak8975_set_mode(data, MODE_ONCE);
648 
649 	if (ret < 0) {
650 		dev_err(&client->dev, "Error in setting operating mode\n");
651 		return ret;
652 	}
653 
654 	/* Wait for the conversion to complete. */
655 	if (data->eoc_irq)
656 		ret = wait_conversion_complete_interrupt(data);
657 	else if (data->eoc_gpiod)
658 		ret = wait_conversion_complete_gpio(data);
659 	else
660 		ret = wait_conversion_complete_polled(data);
661 	if (ret < 0)
662 		return ret;
663 
664 	/* This will be executed only for non-interrupt based waiting case */
665 	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
666 		ret = i2c_smbus_read_byte_data(client,
667 					       data->def->ctrl_regs[ST2]);
668 		if (ret < 0) {
669 			dev_err(&client->dev, "Error in reading ST2\n");
670 			return ret;
671 		}
672 		if (ret & (data->def->ctrl_masks[ST2_DERR] |
673 			   data->def->ctrl_masks[ST2_HOFL])) {
674 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
675 			return -EINVAL;
676 		}
677 	}
678 
679 	return 0;
680 }
681 
682 /* Retrieve raw flux value for one of the x, y, or z axis.  */
ak8975_read_axis(struct iio_dev * indio_dev,int index,int * val)683 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
684 {
685 	struct ak8975_data *data = iio_priv(indio_dev);
686 	const struct i2c_client *client = data->client;
687 	const struct ak_def *def = data->def;
688 	__le16 rval;
689 	u16 buff;
690 	int ret;
691 
692 	pm_runtime_get_sync(&data->client->dev);
693 
694 	mutex_lock(&data->lock);
695 
696 	ret = ak8975_start_read_axis(data, client);
697 	if (ret)
698 		goto exit;
699 
700 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
701 			client, def->data_regs[index],
702 			sizeof(rval), (u8*)&rval);
703 	if (ret < 0)
704 		goto exit;
705 
706 	mutex_unlock(&data->lock);
707 
708 	pm_runtime_mark_last_busy(&data->client->dev);
709 	pm_runtime_put_autosuspend(&data->client->dev);
710 
711 	/* Swap bytes and convert to valid range. */
712 	buff = le16_to_cpu(rval);
713 	*val = clamp_t(s16, buff, -def->range, def->range);
714 	return IIO_VAL_INT;
715 
716 exit:
717 	mutex_unlock(&data->lock);
718 	dev_err(&client->dev, "Error in reading axis\n");
719 	return ret;
720 }
721 
ak8975_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)722 static int ak8975_read_raw(struct iio_dev *indio_dev,
723 			   struct iio_chan_spec const *chan,
724 			   int *val, int *val2,
725 			   long mask)
726 {
727 	struct ak8975_data *data = iio_priv(indio_dev);
728 
729 	switch (mask) {
730 	case IIO_CHAN_INFO_RAW:
731 		return ak8975_read_axis(indio_dev, chan->address, val);
732 	case IIO_CHAN_INFO_SCALE:
733 		*val = 0;
734 		*val2 = data->raw_to_gauss[chan->address];
735 		return IIO_VAL_INT_PLUS_MICRO;
736 	}
737 	return -EINVAL;
738 }
739 
740 static const struct iio_mount_matrix *
ak8975_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)741 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
742 			const struct iio_chan_spec *chan)
743 {
744 	struct ak8975_data *data = iio_priv(indio_dev);
745 
746 	return &data->orientation;
747 }
748 
749 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
750 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
751 	{ }
752 };
753 
754 #define AK8975_CHANNEL(axis, index)					\
755 	{								\
756 		.type = IIO_MAGN,					\
757 		.modified = 1,						\
758 		.channel2 = IIO_MOD_##axis,				\
759 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
760 			     BIT(IIO_CHAN_INFO_SCALE),			\
761 		.address = index,					\
762 		.scan_index = index,					\
763 		.scan_type = {						\
764 			.sign = 's',					\
765 			.realbits = 16,					\
766 			.storagebits = 16,				\
767 			.endianness = IIO_CPU				\
768 		},							\
769 		.ext_info = ak8975_ext_info,				\
770 	}
771 
772 static const struct iio_chan_spec ak8975_channels[] = {
773 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
774 	IIO_CHAN_SOFT_TIMESTAMP(3),
775 };
776 
777 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
778 
779 static const struct iio_info ak8975_info = {
780 	.read_raw = &ak8975_read_raw,
781 };
782 
783 static const struct acpi_device_id ak_acpi_match[] = {
784 	{"AK8975", AK8975},
785 	{"AK8963", AK8963},
786 	{"INVN6500", AK8963},
787 	{"AK009911", AK09911},
788 	{"AK09911", AK09911},
789 	{"AKM9911", AK09911},
790 	{"AK09912", AK09912},
791 	{ }
792 };
793 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
794 
ak8975_fill_buffer(struct iio_dev * indio_dev)795 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
796 {
797 	struct ak8975_data *data = iio_priv(indio_dev);
798 	const struct i2c_client *client = data->client;
799 	const struct ak_def *def = data->def;
800 	int ret;
801 	__le16 fval[3];
802 
803 	mutex_lock(&data->lock);
804 
805 	ret = ak8975_start_read_axis(data, client);
806 	if (ret)
807 		goto unlock;
808 
809 	/*
810 	 * For each axis, read the flux value from the appropriate register
811 	 * (the register is specified in the iio device attributes).
812 	 */
813 	ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
814 							def->data_regs[0],
815 							3 * sizeof(fval[0]),
816 							(u8 *)fval);
817 	if (ret < 0)
818 		goto unlock;
819 
820 	mutex_unlock(&data->lock);
821 
822 	/* Clamp to valid range. */
823 	data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
824 	data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
825 	data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
826 
827 	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
828 					   iio_get_time_ns(indio_dev));
829 
830 	return;
831 
832 unlock:
833 	mutex_unlock(&data->lock);
834 	dev_err(&client->dev, "Error in reading axes block\n");
835 }
836 
ak8975_handle_trigger(int irq,void * p)837 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
838 {
839 	const struct iio_poll_func *pf = p;
840 	struct iio_dev *indio_dev = pf->indio_dev;
841 
842 	ak8975_fill_buffer(indio_dev);
843 	iio_trigger_notify_done(indio_dev->trig);
844 	return IRQ_HANDLED;
845 }
846 
ak8975_probe(struct i2c_client * client,const struct i2c_device_id * id)847 static int ak8975_probe(struct i2c_client *client,
848 			const struct i2c_device_id *id)
849 {
850 	struct ak8975_data *data;
851 	struct iio_dev *indio_dev;
852 	struct gpio_desc *eoc_gpiod;
853 	struct gpio_desc *reset_gpiod;
854 	const void *match;
855 	unsigned int i;
856 	int err;
857 	enum asahi_compass_chipset chipset;
858 	const char *name = NULL;
859 
860 	/*
861 	 * Grab and set up the supplied GPIO.
862 	 * We may not have a GPIO based IRQ to scan, that is fine, we will
863 	 * poll if so.
864 	 */
865 	eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN);
866 	if (IS_ERR(eoc_gpiod))
867 		return PTR_ERR(eoc_gpiod);
868 	if (eoc_gpiod)
869 		gpiod_set_consumer_name(eoc_gpiod, "ak_8975");
870 
871 	/*
872 	 * According to AK09911 datasheet, if reset GPIO is provided then
873 	 * deassert reset on ak8975_power_on() and assert reset on
874 	 * ak8975_power_off().
875 	 */
876 	reset_gpiod = devm_gpiod_get_optional(&client->dev,
877 					      "reset", GPIOD_OUT_HIGH);
878 	if (IS_ERR(reset_gpiod))
879 		return PTR_ERR(reset_gpiod);
880 
881 	/* Register with IIO */
882 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
883 	if (indio_dev == NULL)
884 		return -ENOMEM;
885 
886 	data = iio_priv(indio_dev);
887 	i2c_set_clientdata(client, indio_dev);
888 
889 	data->client = client;
890 	data->eoc_gpiod = eoc_gpiod;
891 	data->reset_gpiod = reset_gpiod;
892 	data->eoc_irq = 0;
893 
894 	err = iio_read_mount_matrix(&client->dev, &data->orientation);
895 	if (err)
896 		return err;
897 
898 	/* id will be NULL when enumerated via ACPI */
899 	match = device_get_match_data(&client->dev);
900 	if (match) {
901 		chipset = (enum asahi_compass_chipset)(match);
902 		name = dev_name(&client->dev);
903 	} else if (id) {
904 		chipset = (enum asahi_compass_chipset)(id->driver_data);
905 		name = id->name;
906 	} else
907 		return -ENOSYS;
908 
909 	for (i = 0; i < ARRAY_SIZE(ak_def_array); i++)
910 		if (ak_def_array[i].type == chipset)
911 			break;
912 
913 	if (i == ARRAY_SIZE(ak_def_array)) {
914 		dev_err(&client->dev, "AKM device type unsupported: %d\n",
915 			chipset);
916 		return -ENODEV;
917 	}
918 
919 	data->def = &ak_def_array[i];
920 
921 	/* Fetch the regulators */
922 	data->vdd = devm_regulator_get(&client->dev, "vdd");
923 	if (IS_ERR(data->vdd))
924 		return PTR_ERR(data->vdd);
925 	data->vid = devm_regulator_get(&client->dev, "vid");
926 	if (IS_ERR(data->vid))
927 		return PTR_ERR(data->vid);
928 
929 	err = ak8975_power_on(data);
930 	if (err)
931 		return err;
932 
933 	err = ak8975_who_i_am(client, data->def->type);
934 	if (err < 0) {
935 		dev_err(&client->dev, "Unexpected device\n");
936 		goto power_off;
937 	}
938 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
939 
940 	/* Perform some basic start-of-day setup of the device. */
941 	err = ak8975_setup(client);
942 	if (err < 0) {
943 		dev_err(&client->dev, "%s initialization fails\n", name);
944 		goto power_off;
945 	}
946 
947 	mutex_init(&data->lock);
948 	indio_dev->channels = ak8975_channels;
949 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
950 	indio_dev->info = &ak8975_info;
951 	indio_dev->available_scan_masks = ak8975_scan_masks;
952 	indio_dev->modes = INDIO_DIRECT_MODE;
953 	indio_dev->name = name;
954 
955 	err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
956 					 NULL);
957 	if (err) {
958 		dev_err(&client->dev, "triggered buffer setup failed\n");
959 		goto power_off;
960 	}
961 
962 	err = iio_device_register(indio_dev);
963 	if (err) {
964 		dev_err(&client->dev, "device register failed\n");
965 		goto cleanup_buffer;
966 	}
967 
968 	/* Enable runtime PM */
969 	pm_runtime_get_noresume(&client->dev);
970 	pm_runtime_set_active(&client->dev);
971 	pm_runtime_enable(&client->dev);
972 	/*
973 	 * The device comes online in 500us, so add two orders of magnitude
974 	 * of delay before autosuspending: 50 ms.
975 	 */
976 	pm_runtime_set_autosuspend_delay(&client->dev, 50);
977 	pm_runtime_use_autosuspend(&client->dev);
978 	pm_runtime_put(&client->dev);
979 
980 	return 0;
981 
982 cleanup_buffer:
983 	iio_triggered_buffer_cleanup(indio_dev);
984 power_off:
985 	ak8975_power_off(data);
986 	return err;
987 }
988 
ak8975_remove(struct i2c_client * client)989 static int ak8975_remove(struct i2c_client *client)
990 {
991 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
992 	struct ak8975_data *data = iio_priv(indio_dev);
993 
994 	pm_runtime_get_sync(&client->dev);
995 	pm_runtime_put_noidle(&client->dev);
996 	pm_runtime_disable(&client->dev);
997 	iio_device_unregister(indio_dev);
998 	iio_triggered_buffer_cleanup(indio_dev);
999 	ak8975_set_mode(data, POWER_DOWN);
1000 	ak8975_power_off(data);
1001 
1002 	return 0;
1003 }
1004 
1005 #ifdef CONFIG_PM
ak8975_runtime_suspend(struct device * dev)1006 static int ak8975_runtime_suspend(struct device *dev)
1007 {
1008 	struct i2c_client *client = to_i2c_client(dev);
1009 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1010 	struct ak8975_data *data = iio_priv(indio_dev);
1011 	int ret;
1012 
1013 	/* Set the device in power down if it wasn't already */
1014 	ret = ak8975_set_mode(data, POWER_DOWN);
1015 	if (ret < 0) {
1016 		dev_err(&client->dev, "Error in setting power-down mode\n");
1017 		return ret;
1018 	}
1019 	/* Next cut the regulators */
1020 	ak8975_power_off(data);
1021 
1022 	return 0;
1023 }
1024 
ak8975_runtime_resume(struct device * dev)1025 static int ak8975_runtime_resume(struct device *dev)
1026 {
1027 	struct i2c_client *client = to_i2c_client(dev);
1028 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1029 	struct ak8975_data *data = iio_priv(indio_dev);
1030 	int ret;
1031 
1032 	/* Take up the regulators */
1033 	ak8975_power_on(data);
1034 	/*
1035 	 * We come up in powered down mode, the reading routines will
1036 	 * put us in the mode to read values later.
1037 	 */
1038 	ret = ak8975_set_mode(data, POWER_DOWN);
1039 	if (ret < 0) {
1040 		dev_err(&client->dev, "Error in setting power-down mode\n");
1041 		return ret;
1042 	}
1043 
1044 	return 0;
1045 }
1046 #endif /* CONFIG_PM */
1047 
1048 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1049 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1050 				pm_runtime_force_resume)
1051 	SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1052 			   ak8975_runtime_resume, NULL)
1053 };
1054 
1055 static const struct i2c_device_id ak8975_id[] = {
1056 	{"ak8975", AK8975},
1057 	{"ak8963", AK8963},
1058 	{"AK8963", AK8963},
1059 	{"ak09911", AK09911},
1060 	{"ak09912", AK09912},
1061 	{}
1062 };
1063 
1064 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1065 
1066 static const struct of_device_id ak8975_of_match[] = {
1067 	{ .compatible = "asahi-kasei,ak8975", },
1068 	{ .compatible = "ak8975", },
1069 	{ .compatible = "asahi-kasei,ak8963", },
1070 	{ .compatible = "ak8963", },
1071 	{ .compatible = "asahi-kasei,ak09911", },
1072 	{ .compatible = "ak09911", },
1073 	{ .compatible = "asahi-kasei,ak09912", },
1074 	{ .compatible = "ak09912", },
1075 	{}
1076 };
1077 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1078 
1079 static struct i2c_driver ak8975_driver = {
1080 	.driver = {
1081 		.name	= "ak8975",
1082 		.pm = &ak8975_dev_pm_ops,
1083 		.of_match_table = ak8975_of_match,
1084 		.acpi_match_table = ak_acpi_match,
1085 	},
1086 	.probe		= ak8975_probe,
1087 	.remove		= ak8975_remove,
1088 	.id_table	= ak8975_id,
1089 };
1090 module_i2c_driver(ak8975_driver);
1091 
1092 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1093 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1094 MODULE_LICENSE("GPL");
1095