• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33 
34 #define FIRST_CONN 0x01
35 /* limit to 128 * 4k = 512k max IO */
36 #define RTRS_MAX_SEGMENTS          128
37 
38 MODULE_DESCRIPTION("RDMA Transport Client");
39 MODULE_LICENSE("GPL");
40 
41 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
42 static struct rtrs_rdma_dev_pd dev_pd = {
43 	.ops = &dev_pd_ops
44 };
45 
46 static struct workqueue_struct *rtrs_wq;
47 static struct class *rtrs_clt_dev_class;
48 
rtrs_clt_is_connected(const struct rtrs_clt * clt)49 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
50 {
51 	struct rtrs_clt_path *clt_path;
52 	bool connected = false;
53 
54 	rcu_read_lock();
55 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
56 		connected |= READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED;
57 	rcu_read_unlock();
58 
59 	return connected;
60 }
61 
62 static struct rtrs_permit *
__rtrs_get_permit(struct rtrs_clt * clt,enum rtrs_clt_con_type con_type)63 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
64 {
65 	size_t max_depth = clt->queue_depth;
66 	struct rtrs_permit *permit;
67 	int bit;
68 
69 	/*
70 	 * Adapted from null_blk get_tag(). Callers from different cpus may
71 	 * grab the same bit, since find_first_zero_bit is not atomic.
72 	 * But then the test_and_set_bit_lock will fail for all the
73 	 * callers but one, so that they will loop again.
74 	 * This way an explicit spinlock is not required.
75 	 */
76 	do {
77 		bit = find_first_zero_bit(clt->permits_map, max_depth);
78 		if (bit >= max_depth)
79 			return NULL;
80 	} while (test_and_set_bit_lock(bit, clt->permits_map));
81 
82 	permit = get_permit(clt, bit);
83 	WARN_ON(permit->mem_id != bit);
84 	permit->cpu_id = raw_smp_processor_id();
85 	permit->con_type = con_type;
86 
87 	return permit;
88 }
89 
__rtrs_put_permit(struct rtrs_clt * clt,struct rtrs_permit * permit)90 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
91 				      struct rtrs_permit *permit)
92 {
93 	clear_bit_unlock(permit->mem_id, clt->permits_map);
94 }
95 
96 /**
97  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
98  * @clt:	Current session
99  * @con_type:	Type of connection to use with the permit
100  * @can_wait:	Wait type
101  *
102  * Description:
103  *    Allocates permit for the following RDMA operation.  Permit is used
104  *    to preallocate all resources and to propagate memory pressure
105  *    up earlier.
106  *
107  * Context:
108  *    Can sleep if @wait == RTRS_PERMIT_WAIT
109  */
rtrs_clt_get_permit(struct rtrs_clt * clt,enum rtrs_clt_con_type con_type,enum wait_type can_wait)110 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
111 					  enum rtrs_clt_con_type con_type,
112 					  enum wait_type can_wait)
113 {
114 	struct rtrs_permit *permit;
115 	DEFINE_WAIT(wait);
116 
117 	permit = __rtrs_get_permit(clt, con_type);
118 	if (permit || !can_wait)
119 		return permit;
120 
121 	do {
122 		prepare_to_wait(&clt->permits_wait, &wait,
123 				TASK_UNINTERRUPTIBLE);
124 		permit = __rtrs_get_permit(clt, con_type);
125 		if (permit)
126 			break;
127 
128 		io_schedule();
129 	} while (1);
130 
131 	finish_wait(&clt->permits_wait, &wait);
132 
133 	return permit;
134 }
135 EXPORT_SYMBOL(rtrs_clt_get_permit);
136 
137 /**
138  * rtrs_clt_put_permit() - puts allocated permit
139  * @clt:	Current session
140  * @permit:	Permit to be freed
141  *
142  * Context:
143  *    Does not matter
144  */
rtrs_clt_put_permit(struct rtrs_clt * clt,struct rtrs_permit * permit)145 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
146 {
147 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
148 		return;
149 
150 	__rtrs_put_permit(clt, permit);
151 
152 	/*
153 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
154 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
155 	 * it must have added itself to &clt->permits_wait before
156 	 * __rtrs_put_permit() finished.
157 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
158 	 */
159 	if (waitqueue_active(&clt->permits_wait))
160 		wake_up(&clt->permits_wait);
161 }
162 EXPORT_SYMBOL(rtrs_clt_put_permit);
163 
164 /**
165  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
166  * @clt_path: client path pointer
167  * @permit: permit for the allocation of the RDMA buffer
168  * Note:
169  *     IO connection starts from 1.
170  *     0 connection is for user messages.
171  */
172 static
rtrs_permit_to_clt_con(struct rtrs_clt_path * clt_path,struct rtrs_permit * permit)173 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
174 					    struct rtrs_permit *permit)
175 {
176 	int id = 0;
177 
178 	if (permit->con_type == RTRS_IO_CON)
179 		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
180 
181 	return to_clt_con(clt_path->s.con[id]);
182 }
183 
184 /**
185  * rtrs_clt_change_state() - change the session state through session state
186  * machine.
187  *
188  * @clt_path: client path to change the state of.
189  * @new_state: state to change to.
190  *
191  * returns true if sess's state is changed to new state, otherwise return false.
192  *
193  * Locks:
194  * state_wq lock must be hold.
195  */
rtrs_clt_change_state(struct rtrs_clt_path * clt_path,enum rtrs_clt_state new_state)196 static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
197 				     enum rtrs_clt_state new_state)
198 {
199 	enum rtrs_clt_state old_state;
200 	bool changed = false;
201 
202 	lockdep_assert_held(&clt_path->state_wq.lock);
203 
204 	old_state = clt_path->state;
205 	switch (new_state) {
206 	case RTRS_CLT_CONNECTING:
207 		switch (old_state) {
208 		case RTRS_CLT_RECONNECTING:
209 			changed = true;
210 			fallthrough;
211 		default:
212 			break;
213 		}
214 		break;
215 	case RTRS_CLT_RECONNECTING:
216 		switch (old_state) {
217 		case RTRS_CLT_CONNECTED:
218 		case RTRS_CLT_CONNECTING_ERR:
219 		case RTRS_CLT_CLOSED:
220 			changed = true;
221 			fallthrough;
222 		default:
223 			break;
224 		}
225 		break;
226 	case RTRS_CLT_CONNECTED:
227 		switch (old_state) {
228 		case RTRS_CLT_CONNECTING:
229 			changed = true;
230 			fallthrough;
231 		default:
232 			break;
233 		}
234 		break;
235 	case RTRS_CLT_CONNECTING_ERR:
236 		switch (old_state) {
237 		case RTRS_CLT_CONNECTING:
238 			changed = true;
239 			fallthrough;
240 		default:
241 			break;
242 		}
243 		break;
244 	case RTRS_CLT_CLOSING:
245 		switch (old_state) {
246 		case RTRS_CLT_CONNECTING:
247 		case RTRS_CLT_CONNECTING_ERR:
248 		case RTRS_CLT_RECONNECTING:
249 		case RTRS_CLT_CONNECTED:
250 			changed = true;
251 			fallthrough;
252 		default:
253 			break;
254 		}
255 		break;
256 	case RTRS_CLT_CLOSED:
257 		switch (old_state) {
258 		case RTRS_CLT_CLOSING:
259 			changed = true;
260 			fallthrough;
261 		default:
262 			break;
263 		}
264 		break;
265 	case RTRS_CLT_DEAD:
266 		switch (old_state) {
267 		case RTRS_CLT_CLOSED:
268 			changed = true;
269 			fallthrough;
270 		default:
271 			break;
272 		}
273 		break;
274 	default:
275 		break;
276 	}
277 	if (changed) {
278 		clt_path->state = new_state;
279 		wake_up_locked(&clt_path->state_wq);
280 	}
281 
282 	return changed;
283 }
284 
rtrs_clt_change_state_from_to(struct rtrs_clt_path * clt_path,enum rtrs_clt_state old_state,enum rtrs_clt_state new_state)285 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
286 					   enum rtrs_clt_state old_state,
287 					   enum rtrs_clt_state new_state)
288 {
289 	bool changed = false;
290 
291 	spin_lock_irq(&clt_path->state_wq.lock);
292 	if (clt_path->state == old_state)
293 		changed = rtrs_clt_change_state(clt_path, new_state);
294 	spin_unlock_irq(&clt_path->state_wq.lock);
295 
296 	return changed;
297 }
298 
rtrs_rdma_error_recovery(struct rtrs_clt_con * con)299 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
300 {
301 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
302 
303 	if (rtrs_clt_change_state_from_to(clt_path,
304 					   RTRS_CLT_CONNECTED,
305 					   RTRS_CLT_RECONNECTING)) {
306 		struct rtrs_clt *clt = clt_path->clt;
307 		unsigned int delay_ms;
308 
309 		/*
310 		 * Normal scenario, reconnect if we were successfully connected
311 		 */
312 		delay_ms = clt->reconnect_delay_sec * 1000;
313 		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
314 				   msecs_to_jiffies(delay_ms +
315 						    prandom_u32() % RTRS_RECONNECT_SEED));
316 	} else {
317 		/*
318 		 * Error can happen just on establishing new connection,
319 		 * so notify waiter with error state, waiter is responsible
320 		 * for cleaning the rest and reconnect if needed.
321 		 */
322 		rtrs_clt_change_state_from_to(clt_path,
323 					       RTRS_CLT_CONNECTING,
324 					       RTRS_CLT_CONNECTING_ERR);
325 	}
326 }
327 
rtrs_clt_fast_reg_done(struct ib_cq * cq,struct ib_wc * wc)328 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
329 {
330 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
331 
332 	if (wc->status != IB_WC_SUCCESS) {
333 		rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
334 			  ib_wc_status_msg(wc->status));
335 		rtrs_rdma_error_recovery(con);
336 	}
337 }
338 
339 static struct ib_cqe fast_reg_cqe = {
340 	.done = rtrs_clt_fast_reg_done
341 };
342 
343 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
344 			      bool notify, bool can_wait);
345 
rtrs_clt_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)346 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
347 {
348 	struct rtrs_clt_io_req *req =
349 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
350 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
351 
352 	if (wc->status != IB_WC_SUCCESS) {
353 		rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
354 			  ib_wc_status_msg(wc->status));
355 		rtrs_rdma_error_recovery(con);
356 	}
357 	req->need_inv = false;
358 	if (req->need_inv_comp)
359 		complete(&req->inv_comp);
360 	else
361 		/* Complete request from INV callback */
362 		complete_rdma_req(req, req->inv_errno, true, false);
363 }
364 
rtrs_inv_rkey(struct rtrs_clt_io_req * req)365 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
366 {
367 	struct rtrs_clt_con *con = req->con;
368 	struct ib_send_wr wr = {
369 		.opcode		    = IB_WR_LOCAL_INV,
370 		.wr_cqe		    = &req->inv_cqe,
371 		.send_flags	    = IB_SEND_SIGNALED,
372 		.ex.invalidate_rkey = req->mr->rkey,
373 	};
374 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
375 
376 	return ib_post_send(con->c.qp, &wr, NULL);
377 }
378 
complete_rdma_req(struct rtrs_clt_io_req * req,int errno,bool notify,bool can_wait)379 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
380 			      bool notify, bool can_wait)
381 {
382 	struct rtrs_clt_con *con = req->con;
383 	struct rtrs_clt_path *clt_path;
384 	int err;
385 
386 	if (!req->in_use)
387 		return;
388 	if (WARN_ON(!req->con))
389 		return;
390 	clt_path = to_clt_path(con->c.path);
391 
392 	if (req->sg_cnt) {
393 		if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
394 			/*
395 			 * We are here to invalidate read requests
396 			 * ourselves.  In normal scenario server should
397 			 * send INV for all read requests, but
398 			 * we are here, thus two things could happen:
399 			 *
400 			 *    1.  this is failover, when errno != 0
401 			 *        and can_wait == 1,
402 			 *
403 			 *    2.  something totally bad happened and
404 			 *        server forgot to send INV, so we
405 			 *        should do that ourselves.
406 			 */
407 
408 			if (can_wait) {
409 				req->need_inv_comp = true;
410 			} else {
411 				/* This should be IO path, so always notify */
412 				WARN_ON(!notify);
413 				/* Save errno for INV callback */
414 				req->inv_errno = errno;
415 			}
416 
417 			refcount_inc(&req->ref);
418 			err = rtrs_inv_rkey(req);
419 			if (err) {
420 				rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
421 					  req->mr->rkey, err);
422 			} else if (can_wait) {
423 				wait_for_completion(&req->inv_comp);
424 			} else {
425 				/*
426 				 * Something went wrong, so request will be
427 				 * completed from INV callback.
428 				 */
429 				WARN_ON_ONCE(1);
430 
431 				return;
432 			}
433 			if (!refcount_dec_and_test(&req->ref))
434 				return;
435 		}
436 		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
437 				req->sg_cnt, req->dir);
438 	}
439 	if (!refcount_dec_and_test(&req->ref))
440 		return;
441 	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
442 		atomic_dec(&clt_path->stats->inflight);
443 
444 	req->in_use = false;
445 	req->con = NULL;
446 
447 	if (errno) {
448 		rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
449 			    errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
450 			    clt_path->hca_port, notify);
451 	}
452 
453 	if (notify)
454 		req->conf(req->priv, errno);
455 }
456 
rtrs_post_send_rdma(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,u32 off,u32 imm,struct ib_send_wr * wr)457 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
458 				struct rtrs_clt_io_req *req,
459 				struct rtrs_rbuf *rbuf, u32 off,
460 				u32 imm, struct ib_send_wr *wr)
461 {
462 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
463 	enum ib_send_flags flags;
464 	struct ib_sge sge;
465 
466 	if (!req->sg_size) {
467 		rtrs_wrn(con->c.path,
468 			 "Doing RDMA Write failed, no data supplied\n");
469 		return -EINVAL;
470 	}
471 
472 	/* user data and user message in the first list element */
473 	sge.addr   = req->iu->dma_addr;
474 	sge.length = req->sg_size;
475 	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
476 
477 	/*
478 	 * From time to time we have to post signalled sends,
479 	 * or send queue will fill up and only QP reset can help.
480 	 */
481 	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
482 			0 : IB_SEND_SIGNALED;
483 
484 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
485 				      req->iu->dma_addr,
486 				      req->sg_size, DMA_TO_DEVICE);
487 
488 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
489 					    rbuf->rkey, rbuf->addr + off,
490 					    imm, flags, wr, NULL);
491 }
492 
process_io_rsp(struct rtrs_clt_path * clt_path,u32 msg_id,s16 errno,bool w_inval)493 static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
494 			   s16 errno, bool w_inval)
495 {
496 	struct rtrs_clt_io_req *req;
497 
498 	if (WARN_ON(msg_id >= clt_path->queue_depth))
499 		return;
500 
501 	req = &clt_path->reqs[msg_id];
502 	/* Drop need_inv if server responded with send with invalidation */
503 	req->need_inv &= !w_inval;
504 	complete_rdma_req(req, errno, true, false);
505 }
506 
rtrs_clt_recv_done(struct rtrs_clt_con * con,struct ib_wc * wc)507 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
508 {
509 	struct rtrs_iu *iu;
510 	int err;
511 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
512 
513 	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
514 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
515 			  cqe);
516 	err = rtrs_iu_post_recv(&con->c, iu);
517 	if (err) {
518 		rtrs_err(con->c.path, "post iu failed %d\n", err);
519 		rtrs_rdma_error_recovery(con);
520 	}
521 }
522 
rtrs_clt_rkey_rsp_done(struct rtrs_clt_con * con,struct ib_wc * wc)523 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
524 {
525 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
526 	struct rtrs_msg_rkey_rsp *msg;
527 	u32 imm_type, imm_payload;
528 	bool w_inval = false;
529 	struct rtrs_iu *iu;
530 	u32 buf_id;
531 	int err;
532 
533 	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
534 
535 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
536 
537 	if (wc->byte_len < sizeof(*msg)) {
538 		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
539 			  wc->byte_len);
540 		goto out;
541 	}
542 	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
543 				   iu->size, DMA_FROM_DEVICE);
544 	msg = iu->buf;
545 	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
546 		rtrs_err(clt_path->clt,
547 			  "rkey response is malformed: type %d\n",
548 			  le16_to_cpu(msg->type));
549 		goto out;
550 	}
551 	buf_id = le16_to_cpu(msg->buf_id);
552 	if (WARN_ON(buf_id >= clt_path->queue_depth))
553 		goto out;
554 
555 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
556 	if (imm_type == RTRS_IO_RSP_IMM ||
557 	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
558 		u32 msg_id;
559 
560 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
561 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
562 
563 		if (WARN_ON(buf_id != msg_id))
564 			goto out;
565 		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
566 		process_io_rsp(clt_path, msg_id, err, w_inval);
567 	}
568 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
569 				      iu->size, DMA_FROM_DEVICE);
570 	return rtrs_clt_recv_done(con, wc);
571 out:
572 	rtrs_rdma_error_recovery(con);
573 }
574 
575 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
576 
577 static struct ib_cqe io_comp_cqe = {
578 	.done = rtrs_clt_rdma_done
579 };
580 
581 /*
582  * Post x2 empty WRs: first is for this RDMA with IMM,
583  * second is for RECV with INV, which happened earlier.
584  */
rtrs_post_recv_empty_x2(struct rtrs_con * con,struct ib_cqe * cqe)585 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
586 {
587 	struct ib_recv_wr wr_arr[2], *wr;
588 	int i;
589 
590 	memset(wr_arr, 0, sizeof(wr_arr));
591 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
592 		wr = &wr_arr[i];
593 		wr->wr_cqe  = cqe;
594 		if (i)
595 			/* Chain backwards */
596 			wr->next = &wr_arr[i - 1];
597 	}
598 
599 	return ib_post_recv(con->qp, wr, NULL);
600 }
601 
rtrs_clt_rdma_done(struct ib_cq * cq,struct ib_wc * wc)602 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
603 {
604 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
605 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
606 	u32 imm_type, imm_payload;
607 	bool w_inval = false;
608 	int err;
609 
610 	if (wc->status != IB_WC_SUCCESS) {
611 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
612 			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
613 				  ib_wc_status_msg(wc->status));
614 			rtrs_rdma_error_recovery(con);
615 		}
616 		return;
617 	}
618 	rtrs_clt_update_wc_stats(con);
619 
620 	switch (wc->opcode) {
621 	case IB_WC_RECV_RDMA_WITH_IMM:
622 		/*
623 		 * post_recv() RDMA write completions of IO reqs (read/write)
624 		 * and hb
625 		 */
626 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
627 			return;
628 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
629 			       &imm_type, &imm_payload);
630 		if (imm_type == RTRS_IO_RSP_IMM ||
631 		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
632 			u32 msg_id;
633 
634 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
635 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
636 
637 			process_io_rsp(clt_path, msg_id, err, w_inval);
638 		} else if (imm_type == RTRS_HB_MSG_IMM) {
639 			WARN_ON(con->c.cid);
640 			rtrs_send_hb_ack(&clt_path->s);
641 			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
642 				return  rtrs_clt_recv_done(con, wc);
643 		} else if (imm_type == RTRS_HB_ACK_IMM) {
644 			WARN_ON(con->c.cid);
645 			clt_path->s.hb_missed_cnt = 0;
646 			clt_path->s.hb_cur_latency =
647 				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
648 			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
649 				return  rtrs_clt_recv_done(con, wc);
650 		} else {
651 			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
652 				  imm_type);
653 		}
654 		if (w_inval)
655 			/*
656 			 * Post x2 empty WRs: first is for this RDMA with IMM,
657 			 * second is for RECV with INV, which happened earlier.
658 			 */
659 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
660 		else
661 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
662 		if (err) {
663 			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
664 				  err);
665 			rtrs_rdma_error_recovery(con);
666 		}
667 		break;
668 	case IB_WC_RECV:
669 		/*
670 		 * Key invalidations from server side
671 		 */
672 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
673 			  wc->wc_flags & IB_WC_WITH_IMM));
674 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
675 		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
676 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
677 				return  rtrs_clt_recv_done(con, wc);
678 
679 			return  rtrs_clt_rkey_rsp_done(con, wc);
680 		}
681 		break;
682 	case IB_WC_RDMA_WRITE:
683 		/*
684 		 * post_send() RDMA write completions of IO reqs (read/write)
685 		 * and hb.
686 		 */
687 		break;
688 
689 	default:
690 		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
691 		return;
692 	}
693 }
694 
post_recv_io(struct rtrs_clt_con * con,size_t q_size)695 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
696 {
697 	int err, i;
698 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
699 
700 	for (i = 0; i < q_size; i++) {
701 		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
702 			struct rtrs_iu *iu = &con->rsp_ius[i];
703 
704 			err = rtrs_iu_post_recv(&con->c, iu);
705 		} else {
706 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
707 		}
708 		if (err)
709 			return err;
710 	}
711 
712 	return 0;
713 }
714 
post_recv_path(struct rtrs_clt_path * clt_path)715 static int post_recv_path(struct rtrs_clt_path *clt_path)
716 {
717 	size_t q_size = 0;
718 	int err, cid;
719 
720 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
721 		if (cid == 0)
722 			q_size = SERVICE_CON_QUEUE_DEPTH;
723 		else
724 			q_size = clt_path->queue_depth;
725 
726 		/*
727 		 * x2 for RDMA read responses + FR key invalidations,
728 		 * RDMA writes do not require any FR registrations.
729 		 */
730 		q_size *= 2;
731 
732 		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
733 		if (err) {
734 			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
735 				 err);
736 			return err;
737 		}
738 	}
739 
740 	return 0;
741 }
742 
743 struct path_it {
744 	int i;
745 	struct list_head skip_list;
746 	struct rtrs_clt *clt;
747 	struct rtrs_clt_path *(*next_path)(struct path_it *it);
748 };
749 
750 /*
751  * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
752  * @head:	the head for the list.
753  * @clt_path:	The element to take the next clt_path from.
754  *
755  * Next clt path returned in round-robin fashion, i.e. head will be skipped,
756  * but if list is observed as empty, NULL will be returned.
757  *
758  * This function may safely run concurrently with the _rcu list-mutation
759  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
760  */
761 static inline struct rtrs_clt_path *
rtrs_clt_get_next_path_or_null(struct list_head * head,struct rtrs_clt_path * clt_path)762 rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
763 {
764 	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
765 				     list_next_or_null_rcu(head,
766 							   READ_ONCE((&clt_path->s.entry)->next),
767 							   typeof(*clt_path), s.entry);
768 }
769 
770 /**
771  * get_next_path_rr() - Returns path in round-robin fashion.
772  * @it:	the path pointer
773  *
774  * Related to @MP_POLICY_RR
775  *
776  * Locks:
777  *    rcu_read_lock() must be hold.
778  */
get_next_path_rr(struct path_it * it)779 static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
780 {
781 	struct rtrs_clt_path __rcu **ppcpu_path;
782 	struct rtrs_clt_path *path;
783 	struct rtrs_clt *clt;
784 
785 	clt = it->clt;
786 
787 	/*
788 	 * Here we use two RCU objects: @paths_list and @pcpu_path
789 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
790 	 * how that is handled.
791 	 */
792 
793 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
794 	path = rcu_dereference(*ppcpu_path);
795 	if (!path)
796 		path = list_first_or_null_rcu(&clt->paths_list,
797 					      typeof(*path), s.entry);
798 	else
799 		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
800 
801 	rcu_assign_pointer(*ppcpu_path, path);
802 
803 	return path;
804 }
805 
806 /**
807  * get_next_path_min_inflight() - Returns path with minimal inflight count.
808  * @it:	the path pointer
809  *
810  * Related to @MP_POLICY_MIN_INFLIGHT
811  *
812  * Locks:
813  *    rcu_read_lock() must be hold.
814  */
get_next_path_min_inflight(struct path_it * it)815 static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
816 {
817 	struct rtrs_clt_path *min_path = NULL;
818 	struct rtrs_clt *clt = it->clt;
819 	struct rtrs_clt_path *clt_path;
820 	int min_inflight = INT_MAX;
821 	int inflight;
822 
823 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
824 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
825 			continue;
826 
827 		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
828 			continue;
829 
830 		inflight = atomic_read(&clt_path->stats->inflight);
831 
832 		if (inflight < min_inflight) {
833 			min_inflight = inflight;
834 			min_path = clt_path;
835 		}
836 	}
837 
838 	/*
839 	 * add the path to the skip list, so that next time we can get
840 	 * a different one
841 	 */
842 	if (min_path)
843 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
844 
845 	return min_path;
846 }
847 
848 /**
849  * get_next_path_min_latency() - Returns path with minimal latency.
850  * @it:	the path pointer
851  *
852  * Return: a path with the lowest latency or NULL if all paths are tried
853  *
854  * Locks:
855  *    rcu_read_lock() must be hold.
856  *
857  * Related to @MP_POLICY_MIN_LATENCY
858  *
859  * This DOES skip an already-tried path.
860  * There is a skip-list to skip a path if the path has tried but failed.
861  * It will try the minimum latency path and then the second minimum latency
862  * path and so on. Finally it will return NULL if all paths are tried.
863  * Therefore the caller MUST check the returned
864  * path is NULL and trigger the IO error.
865  */
get_next_path_min_latency(struct path_it * it)866 static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
867 {
868 	struct rtrs_clt_path *min_path = NULL;
869 	struct rtrs_clt *clt = it->clt;
870 	struct rtrs_clt_path *clt_path;
871 	ktime_t min_latency = KTIME_MAX;
872 	ktime_t latency;
873 
874 	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
875 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
876 			continue;
877 
878 		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
879 			continue;
880 
881 		latency = clt_path->s.hb_cur_latency;
882 
883 		if (latency < min_latency) {
884 			min_latency = latency;
885 			min_path = clt_path;
886 		}
887 	}
888 
889 	/*
890 	 * add the path to the skip list, so that next time we can get
891 	 * a different one
892 	 */
893 	if (min_path)
894 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
895 
896 	return min_path;
897 }
898 
path_it_init(struct path_it * it,struct rtrs_clt * clt)899 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
900 {
901 	INIT_LIST_HEAD(&it->skip_list);
902 	it->clt = clt;
903 	it->i = 0;
904 
905 	if (clt->mp_policy == MP_POLICY_RR)
906 		it->next_path = get_next_path_rr;
907 	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
908 		it->next_path = get_next_path_min_inflight;
909 	else
910 		it->next_path = get_next_path_min_latency;
911 }
912 
path_it_deinit(struct path_it * it)913 static inline void path_it_deinit(struct path_it *it)
914 {
915 	struct list_head *skip, *tmp;
916 	/*
917 	 * The skip_list is used only for the MIN_INFLIGHT policy.
918 	 * We need to remove paths from it, so that next IO can insert
919 	 * paths (->mp_skip_entry) into a skip_list again.
920 	 */
921 	list_for_each_safe(skip, tmp, &it->skip_list)
922 		list_del_init(skip);
923 }
924 
925 /**
926  * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
927  * about an inflight IO.
928  * The user buffer holding user control message (not data) is copied into
929  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
930  * also hold the control message of rtrs.
931  * @req: an io request holding information about IO.
932  * @clt_path: client path
933  * @conf: conformation callback function to notify upper layer.
934  * @permit: permit for allocation of RDMA remote buffer
935  * @priv: private pointer
936  * @vec: kernel vector containing control message
937  * @usr_len: length of the user message
938  * @sg: scater list for IO data
939  * @sg_cnt: number of scater list entries
940  * @data_len: length of the IO data
941  * @dir: direction of the IO.
942  */
rtrs_clt_init_req(struct rtrs_clt_io_req * req,struct rtrs_clt_path * clt_path,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)943 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
944 			      struct rtrs_clt_path *clt_path,
945 			      void (*conf)(void *priv, int errno),
946 			      struct rtrs_permit *permit, void *priv,
947 			      const struct kvec *vec, size_t usr_len,
948 			      struct scatterlist *sg, size_t sg_cnt,
949 			      size_t data_len, int dir)
950 {
951 	struct iov_iter iter;
952 	size_t len;
953 
954 	req->permit = permit;
955 	req->in_use = true;
956 	req->usr_len = usr_len;
957 	req->data_len = data_len;
958 	req->sglist = sg;
959 	req->sg_cnt = sg_cnt;
960 	req->priv = priv;
961 	req->dir = dir;
962 	req->con = rtrs_permit_to_clt_con(clt_path, permit);
963 	req->conf = conf;
964 	req->need_inv = false;
965 	req->need_inv_comp = false;
966 	req->inv_errno = 0;
967 	refcount_set(&req->ref, 1);
968 	req->mp_policy = clt_path->clt->mp_policy;
969 
970 	iov_iter_kvec(&iter, WRITE, vec, 1, usr_len);
971 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
972 	WARN_ON(len != usr_len);
973 
974 	reinit_completion(&req->inv_comp);
975 }
976 
977 static struct rtrs_clt_io_req *
rtrs_clt_get_req(struct rtrs_clt_path * clt_path,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)978 rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
979 		 void (*conf)(void *priv, int errno),
980 		 struct rtrs_permit *permit, void *priv,
981 		 const struct kvec *vec, size_t usr_len,
982 		 struct scatterlist *sg, size_t sg_cnt,
983 		 size_t data_len, int dir)
984 {
985 	struct rtrs_clt_io_req *req;
986 
987 	req = &clt_path->reqs[permit->mem_id];
988 	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
989 			   sg, sg_cnt, data_len, dir);
990 	return req;
991 }
992 
993 static struct rtrs_clt_io_req *
rtrs_clt_get_copy_req(struct rtrs_clt_path * alive_path,struct rtrs_clt_io_req * fail_req)994 rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
995 		       struct rtrs_clt_io_req *fail_req)
996 {
997 	struct rtrs_clt_io_req *req;
998 	struct kvec vec = {
999 		.iov_base = fail_req->iu->buf,
1000 		.iov_len  = fail_req->usr_len
1001 	};
1002 
1003 	req = &alive_path->reqs[fail_req->permit->mem_id];
1004 	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1005 			   fail_req->priv, &vec, fail_req->usr_len,
1006 			   fail_req->sglist, fail_req->sg_cnt,
1007 			   fail_req->data_len, fail_req->dir);
1008 	return req;
1009 }
1010 
rtrs_post_rdma_write_sg(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,bool fr_en,u32 count,u32 size,u32 imm,struct ib_send_wr * wr,struct ib_send_wr * tail)1011 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1012 				   struct rtrs_clt_io_req *req,
1013 				   struct rtrs_rbuf *rbuf, bool fr_en,
1014 				   u32 count, u32 size, u32 imm,
1015 				   struct ib_send_wr *wr,
1016 				   struct ib_send_wr *tail)
1017 {
1018 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1019 	struct ib_sge *sge = req->sge;
1020 	enum ib_send_flags flags;
1021 	struct scatterlist *sg;
1022 	size_t num_sge;
1023 	int i;
1024 	struct ib_send_wr *ptail = NULL;
1025 
1026 	if (fr_en) {
1027 		i = 0;
1028 		sge[i].addr   = req->mr->iova;
1029 		sge[i].length = req->mr->length;
1030 		sge[i].lkey   = req->mr->lkey;
1031 		i++;
1032 		num_sge = 2;
1033 		ptail = tail;
1034 	} else {
1035 		for_each_sg(req->sglist, sg, count, i) {
1036 			sge[i].addr   = sg_dma_address(sg);
1037 			sge[i].length = sg_dma_len(sg);
1038 			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1039 		}
1040 		num_sge = 1 + count;
1041 	}
1042 	sge[i].addr   = req->iu->dma_addr;
1043 	sge[i].length = size;
1044 	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1045 
1046 	/*
1047 	 * From time to time we have to post signalled sends,
1048 	 * or send queue will fill up and only QP reset can help.
1049 	 */
1050 	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1051 			0 : IB_SEND_SIGNALED;
1052 
1053 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1054 				      req->iu->dma_addr,
1055 				      size, DMA_TO_DEVICE);
1056 
1057 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1058 					    rbuf->rkey, rbuf->addr, imm,
1059 					    flags, wr, ptail);
1060 }
1061 
rtrs_map_sg_fr(struct rtrs_clt_io_req * req,size_t count)1062 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1063 {
1064 	int nr;
1065 
1066 	/* Align the MR to a 4K page size to match the block virt boundary */
1067 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1068 	if (nr < 0)
1069 		return nr;
1070 	if (nr < req->sg_cnt)
1071 		return -EINVAL;
1072 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1073 
1074 	return nr;
1075 }
1076 
rtrs_clt_write_req(struct rtrs_clt_io_req * req)1077 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1078 {
1079 	struct rtrs_clt_con *con = req->con;
1080 	struct rtrs_path *s = con->c.path;
1081 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1082 	struct rtrs_msg_rdma_write *msg;
1083 
1084 	struct rtrs_rbuf *rbuf;
1085 	int ret, count = 0;
1086 	u32 imm, buf_id;
1087 	struct ib_reg_wr rwr;
1088 	struct ib_send_wr inv_wr;
1089 	struct ib_send_wr *wr = NULL;
1090 	bool fr_en = false;
1091 
1092 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1093 
1094 	if (tsize > clt_path->chunk_size) {
1095 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1096 			  tsize, clt_path->chunk_size);
1097 		return -EMSGSIZE;
1098 	}
1099 	if (req->sg_cnt) {
1100 		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1101 				      req->sg_cnt, req->dir);
1102 		if (!count) {
1103 			rtrs_wrn(s, "Write request failed, map failed\n");
1104 			return -EINVAL;
1105 		}
1106 	}
1107 	/* put rtrs msg after sg and user message */
1108 	msg = req->iu->buf + req->usr_len;
1109 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1110 	msg->usr_len = cpu_to_le16(req->usr_len);
1111 
1112 	/* rtrs message on server side will be after user data and message */
1113 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1114 	imm = rtrs_to_io_req_imm(imm);
1115 	buf_id = req->permit->mem_id;
1116 	req->sg_size = tsize;
1117 	rbuf = &clt_path->rbufs[buf_id];
1118 
1119 	if (count) {
1120 		ret = rtrs_map_sg_fr(req, count);
1121 		if (ret < 0) {
1122 			rtrs_err_rl(s,
1123 				    "Write request failed, failed to map fast reg. data, err: %d\n",
1124 				    ret);
1125 			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1126 					req->sg_cnt, req->dir);
1127 			return ret;
1128 		}
1129 		inv_wr = (struct ib_send_wr) {
1130 			.opcode		    = IB_WR_LOCAL_INV,
1131 			.wr_cqe		    = &req->inv_cqe,
1132 			.send_flags	    = IB_SEND_SIGNALED,
1133 			.ex.invalidate_rkey = req->mr->rkey,
1134 		};
1135 		req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1136 		rwr = (struct ib_reg_wr) {
1137 			.wr.opcode = IB_WR_REG_MR,
1138 			.wr.wr_cqe = &fast_reg_cqe,
1139 			.mr = req->mr,
1140 			.key = req->mr->rkey,
1141 			.access = (IB_ACCESS_LOCAL_WRITE),
1142 		};
1143 		wr = &rwr.wr;
1144 		fr_en = true;
1145 		refcount_inc(&req->ref);
1146 	}
1147 	/*
1148 	 * Update stats now, after request is successfully sent it is not
1149 	 * safe anymore to touch it.
1150 	 */
1151 	rtrs_clt_update_all_stats(req, WRITE);
1152 
1153 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1154 				      req->usr_len + sizeof(*msg),
1155 				      imm, wr, &inv_wr);
1156 	if (ret) {
1157 		rtrs_err_rl(s,
1158 			    "Write request failed: error=%d path=%s [%s:%u]\n",
1159 			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1160 			    clt_path->hca_port);
1161 		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1162 			atomic_dec(&clt_path->stats->inflight);
1163 		if (req->sg_cnt)
1164 			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1165 					req->sg_cnt, req->dir);
1166 	}
1167 
1168 	return ret;
1169 }
1170 
rtrs_clt_read_req(struct rtrs_clt_io_req * req)1171 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1172 {
1173 	struct rtrs_clt_con *con = req->con;
1174 	struct rtrs_path *s = con->c.path;
1175 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1176 	struct rtrs_msg_rdma_read *msg;
1177 	struct rtrs_ib_dev *dev = clt_path->s.dev;
1178 
1179 	struct ib_reg_wr rwr;
1180 	struct ib_send_wr *wr = NULL;
1181 
1182 	int ret, count = 0;
1183 	u32 imm, buf_id;
1184 
1185 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1186 
1187 	if (tsize > clt_path->chunk_size) {
1188 		rtrs_wrn(s,
1189 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1190 			  tsize, clt_path->chunk_size);
1191 		return -EMSGSIZE;
1192 	}
1193 
1194 	if (req->sg_cnt) {
1195 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1196 				      req->dir);
1197 		if (!count) {
1198 			rtrs_wrn(s,
1199 				  "Read request failed, dma map failed\n");
1200 			return -EINVAL;
1201 		}
1202 	}
1203 	/* put our message into req->buf after user message*/
1204 	msg = req->iu->buf + req->usr_len;
1205 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1206 	msg->usr_len = cpu_to_le16(req->usr_len);
1207 
1208 	if (count) {
1209 		ret = rtrs_map_sg_fr(req, count);
1210 		if (ret < 0) {
1211 			rtrs_err_rl(s,
1212 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1213 				     ret);
1214 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1215 					req->dir);
1216 			return ret;
1217 		}
1218 		rwr = (struct ib_reg_wr) {
1219 			.wr.opcode = IB_WR_REG_MR,
1220 			.wr.wr_cqe = &fast_reg_cqe,
1221 			.mr = req->mr,
1222 			.key = req->mr->rkey,
1223 			.access = (IB_ACCESS_LOCAL_WRITE |
1224 				   IB_ACCESS_REMOTE_WRITE),
1225 		};
1226 		wr = &rwr.wr;
1227 
1228 		msg->sg_cnt = cpu_to_le16(1);
1229 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1230 
1231 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1232 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1233 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1234 
1235 		/* Further invalidation is required */
1236 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1237 
1238 	} else {
1239 		msg->sg_cnt = 0;
1240 		msg->flags = 0;
1241 	}
1242 	/*
1243 	 * rtrs message will be after the space reserved for disk data and
1244 	 * user message
1245 	 */
1246 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1247 	imm = rtrs_to_io_req_imm(imm);
1248 	buf_id = req->permit->mem_id;
1249 
1250 	req->sg_size  = sizeof(*msg);
1251 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1252 	req->sg_size += req->usr_len;
1253 
1254 	/*
1255 	 * Update stats now, after request is successfully sent it is not
1256 	 * safe anymore to touch it.
1257 	 */
1258 	rtrs_clt_update_all_stats(req, READ);
1259 
1260 	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1261 				   req->data_len, imm, wr);
1262 	if (ret) {
1263 		rtrs_err_rl(s,
1264 			    "Read request failed: error=%d path=%s [%s:%u]\n",
1265 			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1266 			    clt_path->hca_port);
1267 		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1268 			atomic_dec(&clt_path->stats->inflight);
1269 		req->need_inv = false;
1270 		if (req->sg_cnt)
1271 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1272 					req->sg_cnt, req->dir);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  * rtrs_clt_failover_req() - Try to find an active path for a failed request
1280  * @clt: clt context
1281  * @fail_req: a failed io request.
1282  */
rtrs_clt_failover_req(struct rtrs_clt * clt,struct rtrs_clt_io_req * fail_req)1283 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1284 				 struct rtrs_clt_io_req *fail_req)
1285 {
1286 	struct rtrs_clt_path *alive_path;
1287 	struct rtrs_clt_io_req *req;
1288 	int err = -ECONNABORTED;
1289 	struct path_it it;
1290 
1291 	rcu_read_lock();
1292 	for (path_it_init(&it, clt);
1293 	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1294 	     it.i++) {
1295 		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1296 			continue;
1297 		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1298 		if (req->dir == DMA_TO_DEVICE)
1299 			err = rtrs_clt_write_req(req);
1300 		else
1301 			err = rtrs_clt_read_req(req);
1302 		if (err) {
1303 			req->in_use = false;
1304 			continue;
1305 		}
1306 		/* Success path */
1307 		rtrs_clt_inc_failover_cnt(alive_path->stats);
1308 		break;
1309 	}
1310 	path_it_deinit(&it);
1311 	rcu_read_unlock();
1312 
1313 	return err;
1314 }
1315 
fail_all_outstanding_reqs(struct rtrs_clt_path * clt_path)1316 static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1317 {
1318 	struct rtrs_clt *clt = clt_path->clt;
1319 	struct rtrs_clt_io_req *req;
1320 	int i, err;
1321 
1322 	if (!clt_path->reqs)
1323 		return;
1324 	for (i = 0; i < clt_path->queue_depth; ++i) {
1325 		req = &clt_path->reqs[i];
1326 		if (!req->in_use)
1327 			continue;
1328 
1329 		/*
1330 		 * Safely (without notification) complete failed request.
1331 		 * After completion this request is still useble and can
1332 		 * be failovered to another path.
1333 		 */
1334 		complete_rdma_req(req, -ECONNABORTED, false, true);
1335 
1336 		err = rtrs_clt_failover_req(clt, req);
1337 		if (err)
1338 			/* Failover failed, notify anyway */
1339 			req->conf(req->priv, err);
1340 	}
1341 }
1342 
free_path_reqs(struct rtrs_clt_path * clt_path)1343 static void free_path_reqs(struct rtrs_clt_path *clt_path)
1344 {
1345 	struct rtrs_clt_io_req *req;
1346 	int i;
1347 
1348 	if (!clt_path->reqs)
1349 		return;
1350 	for (i = 0; i < clt_path->queue_depth; ++i) {
1351 		req = &clt_path->reqs[i];
1352 		if (req->mr)
1353 			ib_dereg_mr(req->mr);
1354 		kfree(req->sge);
1355 		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1356 	}
1357 	kfree(clt_path->reqs);
1358 	clt_path->reqs = NULL;
1359 }
1360 
alloc_path_reqs(struct rtrs_clt_path * clt_path)1361 static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1362 {
1363 	struct rtrs_clt_io_req *req;
1364 	int i, err = -ENOMEM;
1365 
1366 	clt_path->reqs = kcalloc(clt_path->queue_depth,
1367 				 sizeof(*clt_path->reqs),
1368 				 GFP_KERNEL);
1369 	if (!clt_path->reqs)
1370 		return -ENOMEM;
1371 
1372 	for (i = 0; i < clt_path->queue_depth; ++i) {
1373 		req = &clt_path->reqs[i];
1374 		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1375 					 clt_path->s.dev->ib_dev,
1376 					 DMA_TO_DEVICE,
1377 					 rtrs_clt_rdma_done);
1378 		if (!req->iu)
1379 			goto out;
1380 
1381 		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1382 		if (!req->sge)
1383 			goto out;
1384 
1385 		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1386 				      IB_MR_TYPE_MEM_REG,
1387 				      clt_path->max_pages_per_mr);
1388 		if (IS_ERR(req->mr)) {
1389 			err = PTR_ERR(req->mr);
1390 			req->mr = NULL;
1391 			pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n",
1392 			       clt_path->max_pages_per_mr);
1393 			goto out;
1394 		}
1395 
1396 		init_completion(&req->inv_comp);
1397 	}
1398 
1399 	return 0;
1400 
1401 out:
1402 	free_path_reqs(clt_path);
1403 
1404 	return err;
1405 }
1406 
alloc_permits(struct rtrs_clt * clt)1407 static int alloc_permits(struct rtrs_clt *clt)
1408 {
1409 	unsigned int chunk_bits;
1410 	int err, i;
1411 
1412 	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1413 				   sizeof(long), GFP_KERNEL);
1414 	if (!clt->permits_map) {
1415 		err = -ENOMEM;
1416 		goto out_err;
1417 	}
1418 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1419 	if (!clt->permits) {
1420 		err = -ENOMEM;
1421 		goto err_map;
1422 	}
1423 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1424 	for (i = 0; i < clt->queue_depth; i++) {
1425 		struct rtrs_permit *permit;
1426 
1427 		permit = get_permit(clt, i);
1428 		permit->mem_id = i;
1429 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1430 	}
1431 
1432 	return 0;
1433 
1434 err_map:
1435 	kfree(clt->permits_map);
1436 	clt->permits_map = NULL;
1437 out_err:
1438 	return err;
1439 }
1440 
free_permits(struct rtrs_clt * clt)1441 static void free_permits(struct rtrs_clt *clt)
1442 {
1443 	if (clt->permits_map) {
1444 		size_t sz = clt->queue_depth;
1445 
1446 		wait_event(clt->permits_wait,
1447 			   find_first_bit(clt->permits_map, sz) >= sz);
1448 	}
1449 	kfree(clt->permits_map);
1450 	clt->permits_map = NULL;
1451 	kfree(clt->permits);
1452 	clt->permits = NULL;
1453 }
1454 
query_fast_reg_mode(struct rtrs_clt_path * clt_path)1455 static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1456 {
1457 	struct ib_device *ib_dev;
1458 	u64 max_pages_per_mr;
1459 	int mr_page_shift;
1460 
1461 	ib_dev = clt_path->s.dev->ib_dev;
1462 
1463 	/*
1464 	 * Use the smallest page size supported by the HCA, down to a
1465 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1466 	 * out of smaller entries.
1467 	 */
1468 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1469 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1470 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1471 	clt_path->max_pages_per_mr =
1472 		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1473 		     ib_dev->attrs.max_fast_reg_page_list_len);
1474 	clt_path->clt->max_segments =
1475 		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1476 }
1477 
rtrs_clt_change_state_get_old(struct rtrs_clt_path * clt_path,enum rtrs_clt_state new_state,enum rtrs_clt_state * old_state)1478 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1479 					   enum rtrs_clt_state new_state,
1480 					   enum rtrs_clt_state *old_state)
1481 {
1482 	bool changed;
1483 
1484 	spin_lock_irq(&clt_path->state_wq.lock);
1485 	if (old_state)
1486 		*old_state = clt_path->state;
1487 	changed = rtrs_clt_change_state(clt_path, new_state);
1488 	spin_unlock_irq(&clt_path->state_wq.lock);
1489 
1490 	return changed;
1491 }
1492 
rtrs_clt_hb_err_handler(struct rtrs_con * c)1493 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1494 {
1495 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1496 
1497 	rtrs_rdma_error_recovery(con);
1498 }
1499 
rtrs_clt_init_hb(struct rtrs_clt_path * clt_path)1500 static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1501 {
1502 	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1503 		      RTRS_HB_INTERVAL_MS,
1504 		      RTRS_HB_MISSED_MAX,
1505 		      rtrs_clt_hb_err_handler,
1506 		      rtrs_wq);
1507 }
1508 
1509 static void rtrs_clt_reconnect_work(struct work_struct *work);
1510 static void rtrs_clt_close_work(struct work_struct *work);
1511 
alloc_path(struct rtrs_clt * clt,const struct rtrs_addr * path,size_t con_num,u32 nr_poll_queues)1512 static struct rtrs_clt_path *alloc_path(struct rtrs_clt *clt,
1513 					const struct rtrs_addr *path,
1514 					size_t con_num, u32 nr_poll_queues)
1515 {
1516 	struct rtrs_clt_path *clt_path;
1517 	int err = -ENOMEM;
1518 	int cpu;
1519 	size_t total_con;
1520 
1521 	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1522 	if (!clt_path)
1523 		goto err;
1524 
1525 	/*
1526 	 * irqmode and poll
1527 	 * +1: Extra connection for user messages
1528 	 */
1529 	total_con = con_num + nr_poll_queues + 1;
1530 	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1531 				  GFP_KERNEL);
1532 	if (!clt_path->s.con)
1533 		goto err_free_path;
1534 
1535 	clt_path->s.con_num = total_con;
1536 	clt_path->s.irq_con_num = con_num + 1;
1537 
1538 	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1539 	if (!clt_path->stats)
1540 		goto err_free_con;
1541 
1542 	mutex_init(&clt_path->init_mutex);
1543 	uuid_gen(&clt_path->s.uuid);
1544 	memcpy(&clt_path->s.dst_addr, path->dst,
1545 	       rdma_addr_size((struct sockaddr *)path->dst));
1546 
1547 	/*
1548 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1549 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1550 	 * the sess->src_addr will contain only zeros, which is then fine.
1551 	 */
1552 	if (path->src)
1553 		memcpy(&clt_path->s.src_addr, path->src,
1554 		       rdma_addr_size((struct sockaddr *)path->src));
1555 	strscpy(clt_path->s.sessname, clt->sessname,
1556 		sizeof(clt_path->s.sessname));
1557 	clt_path->clt = clt;
1558 	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1559 	init_waitqueue_head(&clt_path->state_wq);
1560 	clt_path->state = RTRS_CLT_CONNECTING;
1561 	atomic_set(&clt_path->connected_cnt, 0);
1562 	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1563 	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1564 	rtrs_clt_init_hb(clt_path);
1565 
1566 	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1567 	if (!clt_path->mp_skip_entry)
1568 		goto err_free_stats;
1569 
1570 	for_each_possible_cpu(cpu)
1571 		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1572 
1573 	err = rtrs_clt_init_stats(clt_path->stats);
1574 	if (err)
1575 		goto err_free_percpu;
1576 
1577 	return clt_path;
1578 
1579 err_free_percpu:
1580 	free_percpu(clt_path->mp_skip_entry);
1581 err_free_stats:
1582 	kfree(clt_path->stats);
1583 err_free_con:
1584 	kfree(clt_path->s.con);
1585 err_free_path:
1586 	kfree(clt_path);
1587 err:
1588 	return ERR_PTR(err);
1589 }
1590 
free_path(struct rtrs_clt_path * clt_path)1591 void free_path(struct rtrs_clt_path *clt_path)
1592 {
1593 	free_percpu(clt_path->mp_skip_entry);
1594 	mutex_destroy(&clt_path->init_mutex);
1595 	kfree(clt_path->s.con);
1596 	kfree(clt_path->rbufs);
1597 	kfree(clt_path);
1598 }
1599 
create_con(struct rtrs_clt_path * clt_path,unsigned int cid)1600 static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1601 {
1602 	struct rtrs_clt_con *con;
1603 
1604 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1605 	if (!con)
1606 		return -ENOMEM;
1607 
1608 	/* Map first two connections to the first CPU */
1609 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1610 	con->c.cid = cid;
1611 	con->c.path = &clt_path->s;
1612 	/* Align with srv, init as 1 */
1613 	atomic_set(&con->c.wr_cnt, 1);
1614 	mutex_init(&con->con_mutex);
1615 
1616 	clt_path->s.con[cid] = &con->c;
1617 
1618 	return 0;
1619 }
1620 
destroy_con(struct rtrs_clt_con * con)1621 static void destroy_con(struct rtrs_clt_con *con)
1622 {
1623 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1624 
1625 	clt_path->s.con[con->c.cid] = NULL;
1626 	mutex_destroy(&con->con_mutex);
1627 	kfree(con);
1628 }
1629 
create_con_cq_qp(struct rtrs_clt_con * con)1630 static int create_con_cq_qp(struct rtrs_clt_con *con)
1631 {
1632 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1633 	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1634 	int err, cq_vector;
1635 	struct rtrs_msg_rkey_rsp *rsp;
1636 
1637 	lockdep_assert_held(&con->con_mutex);
1638 	if (con->c.cid == 0) {
1639 		max_send_sge = 1;
1640 		/* We must be the first here */
1641 		if (WARN_ON(clt_path->s.dev))
1642 			return -EINVAL;
1643 
1644 		/*
1645 		 * The whole session uses device from user connection.
1646 		 * Be careful not to close user connection before ib dev
1647 		 * is gracefully put.
1648 		 */
1649 		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1650 						       &dev_pd);
1651 		if (!clt_path->s.dev) {
1652 			rtrs_wrn(clt_path->clt,
1653 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1654 			return -ENOMEM;
1655 		}
1656 		clt_path->s.dev_ref = 1;
1657 		query_fast_reg_mode(clt_path);
1658 		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1659 		/*
1660 		 * Two (request + registration) completion for send
1661 		 * Two for recv if always_invalidate is set on server
1662 		 * or one for recv.
1663 		 * + 2 for drain and heartbeat
1664 		 * in case qp gets into error state.
1665 		 */
1666 		max_send_wr =
1667 			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1668 		max_recv_wr = max_send_wr;
1669 	} else {
1670 		/*
1671 		 * Here we assume that session members are correctly set.
1672 		 * This is always true if user connection (cid == 0) is
1673 		 * established first.
1674 		 */
1675 		if (WARN_ON(!clt_path->s.dev))
1676 			return -EINVAL;
1677 		if (WARN_ON(!clt_path->queue_depth))
1678 			return -EINVAL;
1679 
1680 		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1681 		/* Shared between connections */
1682 		clt_path->s.dev_ref++;
1683 		max_send_wr = min_t(int, wr_limit,
1684 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1685 			      clt_path->queue_depth * 4 + 1);
1686 		max_recv_wr = min_t(int, wr_limit,
1687 			      clt_path->queue_depth * 3 + 1);
1688 		max_send_sge = 2;
1689 	}
1690 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1691 	cq_num = max_send_wr + max_recv_wr;
1692 	/* alloc iu to recv new rkey reply when server reports flags set */
1693 	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1694 		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1695 					      GFP_KERNEL,
1696 					      clt_path->s.dev->ib_dev,
1697 					      DMA_FROM_DEVICE,
1698 					      rtrs_clt_rdma_done);
1699 		if (!con->rsp_ius)
1700 			return -ENOMEM;
1701 		con->queue_num = cq_num;
1702 	}
1703 	cq_num = max_send_wr + max_recv_wr;
1704 	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1705 	if (con->c.cid >= clt_path->s.irq_con_num)
1706 		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1707 					cq_vector, cq_num, max_send_wr,
1708 					max_recv_wr, IB_POLL_DIRECT);
1709 	else
1710 		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1711 					cq_vector, cq_num, max_send_wr,
1712 					max_recv_wr, IB_POLL_SOFTIRQ);
1713 	/*
1714 	 * In case of error we do not bother to clean previous allocations,
1715 	 * since destroy_con_cq_qp() must be called.
1716 	 */
1717 	return err;
1718 }
1719 
destroy_con_cq_qp(struct rtrs_clt_con * con)1720 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1721 {
1722 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1723 
1724 	/*
1725 	 * Be careful here: destroy_con_cq_qp() can be called even
1726 	 * create_con_cq_qp() failed, see comments there.
1727 	 */
1728 	lockdep_assert_held(&con->con_mutex);
1729 	rtrs_cq_qp_destroy(&con->c);
1730 	if (con->rsp_ius) {
1731 		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1732 			     con->queue_num);
1733 		con->rsp_ius = NULL;
1734 		con->queue_num = 0;
1735 	}
1736 	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1737 		rtrs_ib_dev_put(clt_path->s.dev);
1738 		clt_path->s.dev = NULL;
1739 	}
1740 }
1741 
stop_cm(struct rtrs_clt_con * con)1742 static void stop_cm(struct rtrs_clt_con *con)
1743 {
1744 	rdma_disconnect(con->c.cm_id);
1745 	if (con->c.qp)
1746 		ib_drain_qp(con->c.qp);
1747 }
1748 
destroy_cm(struct rtrs_clt_con * con)1749 static void destroy_cm(struct rtrs_clt_con *con)
1750 {
1751 	rdma_destroy_id(con->c.cm_id);
1752 	con->c.cm_id = NULL;
1753 }
1754 
rtrs_rdma_addr_resolved(struct rtrs_clt_con * con)1755 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1756 {
1757 	struct rtrs_path *s = con->c.path;
1758 	int err;
1759 
1760 	mutex_lock(&con->con_mutex);
1761 	err = create_con_cq_qp(con);
1762 	mutex_unlock(&con->con_mutex);
1763 	if (err) {
1764 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1765 		return err;
1766 	}
1767 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1768 	if (err)
1769 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1770 
1771 	return err;
1772 }
1773 
rtrs_rdma_route_resolved(struct rtrs_clt_con * con)1774 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1775 {
1776 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1777 	struct rtrs_clt *clt = clt_path->clt;
1778 	struct rtrs_msg_conn_req msg;
1779 	struct rdma_conn_param param;
1780 
1781 	int err;
1782 
1783 	param = (struct rdma_conn_param) {
1784 		.retry_count = 7,
1785 		.rnr_retry_count = 7,
1786 		.private_data = &msg,
1787 		.private_data_len = sizeof(msg),
1788 	};
1789 
1790 	msg = (struct rtrs_msg_conn_req) {
1791 		.magic = cpu_to_le16(RTRS_MAGIC),
1792 		.version = cpu_to_le16(RTRS_PROTO_VER),
1793 		.cid = cpu_to_le16(con->c.cid),
1794 		.cid_num = cpu_to_le16(clt_path->s.con_num),
1795 		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1796 	};
1797 	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1798 	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1799 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1800 
1801 	err = rdma_connect_locked(con->c.cm_id, &param);
1802 	if (err)
1803 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1804 
1805 	return err;
1806 }
1807 
rtrs_rdma_conn_established(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1808 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1809 				       struct rdma_cm_event *ev)
1810 {
1811 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1812 	struct rtrs_clt *clt = clt_path->clt;
1813 	const struct rtrs_msg_conn_rsp *msg;
1814 	u16 version, queue_depth;
1815 	int errno;
1816 	u8 len;
1817 
1818 	msg = ev->param.conn.private_data;
1819 	len = ev->param.conn.private_data_len;
1820 	if (len < sizeof(*msg)) {
1821 		rtrs_err(clt, "Invalid RTRS connection response\n");
1822 		return -ECONNRESET;
1823 	}
1824 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1825 		rtrs_err(clt, "Invalid RTRS magic\n");
1826 		return -ECONNRESET;
1827 	}
1828 	version = le16_to_cpu(msg->version);
1829 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1830 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1831 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1832 		return -ECONNRESET;
1833 	}
1834 	errno = le16_to_cpu(msg->errno);
1835 	if (errno) {
1836 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1837 			  errno);
1838 		return -ECONNRESET;
1839 	}
1840 	if (con->c.cid == 0) {
1841 		queue_depth = le16_to_cpu(msg->queue_depth);
1842 
1843 		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1844 			rtrs_err(clt, "Error: queue depth changed\n");
1845 
1846 			/*
1847 			 * Stop any more reconnection attempts
1848 			 */
1849 			clt_path->reconnect_attempts = -1;
1850 			rtrs_err(clt,
1851 				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1852 			return -ECONNRESET;
1853 		}
1854 
1855 		if (!clt_path->rbufs) {
1856 			clt_path->rbufs = kcalloc(queue_depth,
1857 						  sizeof(*clt_path->rbufs),
1858 						  GFP_KERNEL);
1859 			if (!clt_path->rbufs)
1860 				return -ENOMEM;
1861 		}
1862 		clt_path->queue_depth = queue_depth;
1863 		clt_path->s.signal_interval = min_not_zero(queue_depth,
1864 						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1865 		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1866 		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1867 		clt_path->flags = le32_to_cpu(msg->flags);
1868 		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1869 
1870 		/*
1871 		 * Global IO size is always a minimum.
1872 		 * If while a reconnection server sends us a value a bit
1873 		 * higher - client does not care and uses cached minimum.
1874 		 *
1875 		 * Since we can have several sessions (paths) restablishing
1876 		 * connections in parallel, use lock.
1877 		 */
1878 		mutex_lock(&clt->paths_mutex);
1879 		clt->queue_depth = clt_path->queue_depth;
1880 		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1881 						clt->max_io_size);
1882 		mutex_unlock(&clt->paths_mutex);
1883 
1884 		/*
1885 		 * Cache the hca_port and hca_name for sysfs
1886 		 */
1887 		clt_path->hca_port = con->c.cm_id->port_num;
1888 		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1889 			  clt_path->s.dev->ib_dev->name);
1890 		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1891 		/* set for_new_clt, to allow future reconnect on any path */
1892 		clt_path->for_new_clt = 1;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
flag_success_on_conn(struct rtrs_clt_con * con)1898 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1899 {
1900 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1901 
1902 	atomic_inc(&clt_path->connected_cnt);
1903 	con->cm_err = 1;
1904 }
1905 
rtrs_rdma_conn_rejected(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1906 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1907 				    struct rdma_cm_event *ev)
1908 {
1909 	struct rtrs_path *s = con->c.path;
1910 	const struct rtrs_msg_conn_rsp *msg;
1911 	const char *rej_msg;
1912 	int status, errno;
1913 	u8 data_len;
1914 
1915 	status = ev->status;
1916 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1917 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1918 
1919 	if (msg && data_len >= sizeof(*msg)) {
1920 		errno = (int16_t)le16_to_cpu(msg->errno);
1921 		if (errno == -EBUSY)
1922 			rtrs_err(s,
1923 				  "Previous session is still exists on the server, please reconnect later\n");
1924 		else
1925 			rtrs_err(s,
1926 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1927 				  status, rej_msg, errno);
1928 	} else {
1929 		rtrs_err(s,
1930 			  "Connect rejected but with malformed message: status %d (%s)\n",
1931 			  status, rej_msg);
1932 	}
1933 
1934 	return -ECONNRESET;
1935 }
1936 
rtrs_clt_close_conns(struct rtrs_clt_path * clt_path,bool wait)1937 void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1938 {
1939 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1940 		queue_work(rtrs_wq, &clt_path->close_work);
1941 	if (wait)
1942 		flush_work(&clt_path->close_work);
1943 }
1944 
flag_error_on_conn(struct rtrs_clt_con * con,int cm_err)1945 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1946 {
1947 	if (con->cm_err == 1) {
1948 		struct rtrs_clt_path *clt_path;
1949 
1950 		clt_path = to_clt_path(con->c.path);
1951 		if (atomic_dec_and_test(&clt_path->connected_cnt))
1952 
1953 			wake_up(&clt_path->state_wq);
1954 	}
1955 	con->cm_err = cm_err;
1956 }
1957 
rtrs_clt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1958 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1959 				     struct rdma_cm_event *ev)
1960 {
1961 	struct rtrs_clt_con *con = cm_id->context;
1962 	struct rtrs_path *s = con->c.path;
1963 	struct rtrs_clt_path *clt_path = to_clt_path(s);
1964 	int cm_err = 0;
1965 
1966 	switch (ev->event) {
1967 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1968 		cm_err = rtrs_rdma_addr_resolved(con);
1969 		break;
1970 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1971 		cm_err = rtrs_rdma_route_resolved(con);
1972 		break;
1973 	case RDMA_CM_EVENT_ESTABLISHED:
1974 		cm_err = rtrs_rdma_conn_established(con, ev);
1975 		if (!cm_err) {
1976 			/*
1977 			 * Report success and wake up. Here we abuse state_wq,
1978 			 * i.e. wake up without state change, but we set cm_err.
1979 			 */
1980 			flag_success_on_conn(con);
1981 			wake_up(&clt_path->state_wq);
1982 			return 0;
1983 		}
1984 		break;
1985 	case RDMA_CM_EVENT_REJECTED:
1986 		cm_err = rtrs_rdma_conn_rejected(con, ev);
1987 		break;
1988 	case RDMA_CM_EVENT_DISCONNECTED:
1989 		/* No message for disconnecting */
1990 		cm_err = -ECONNRESET;
1991 		break;
1992 	case RDMA_CM_EVENT_CONNECT_ERROR:
1993 	case RDMA_CM_EVENT_UNREACHABLE:
1994 	case RDMA_CM_EVENT_ADDR_CHANGE:
1995 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1996 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
1997 			 rdma_event_msg(ev->event), ev->status);
1998 		cm_err = -ECONNRESET;
1999 		break;
2000 	case RDMA_CM_EVENT_ADDR_ERROR:
2001 	case RDMA_CM_EVENT_ROUTE_ERROR:
2002 		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2003 			 rdma_event_msg(ev->event), ev->status);
2004 		cm_err = -EHOSTUNREACH;
2005 		break;
2006 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2007 		/*
2008 		 * Device removal is a special case.  Queue close and return 0.
2009 		 */
2010 		rtrs_clt_close_conns(clt_path, false);
2011 		return 0;
2012 	default:
2013 		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2014 			 rdma_event_msg(ev->event), ev->status);
2015 		cm_err = -ECONNRESET;
2016 		break;
2017 	}
2018 
2019 	if (cm_err) {
2020 		/*
2021 		 * cm error makes sense only on connection establishing,
2022 		 * in other cases we rely on normal procedure of reconnecting.
2023 		 */
2024 		flag_error_on_conn(con, cm_err);
2025 		rtrs_rdma_error_recovery(con);
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 /* The caller should do the cleanup in case of error */
create_cm(struct rtrs_clt_con * con)2032 static int create_cm(struct rtrs_clt_con *con)
2033 {
2034 	struct rtrs_path *s = con->c.path;
2035 	struct rtrs_clt_path *clt_path = to_clt_path(s);
2036 	struct rdma_cm_id *cm_id;
2037 	int err;
2038 
2039 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2040 			       clt_path->s.dst_addr.ss_family == AF_IB ?
2041 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2042 	if (IS_ERR(cm_id)) {
2043 		err = PTR_ERR(cm_id);
2044 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
2045 
2046 		return err;
2047 	}
2048 	con->c.cm_id = cm_id;
2049 	con->cm_err = 0;
2050 	/* allow the port to be reused */
2051 	err = rdma_set_reuseaddr(cm_id, 1);
2052 	if (err != 0) {
2053 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2054 		return err;
2055 	}
2056 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2057 				(struct sockaddr *)&clt_path->s.dst_addr,
2058 				RTRS_CONNECT_TIMEOUT_MS);
2059 	if (err) {
2060 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2061 		return err;
2062 	}
2063 	/*
2064 	 * Combine connection status and session events. This is needed
2065 	 * for waiting two possible cases: cm_err has something meaningful
2066 	 * or session state was really changed to error by device removal.
2067 	 */
2068 	err = wait_event_interruptible_timeout(
2069 			clt_path->state_wq,
2070 			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2071 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2072 	if (err == 0 || err == -ERESTARTSYS) {
2073 		if (err == 0)
2074 			err = -ETIMEDOUT;
2075 		/* Timedout or interrupted */
2076 		return err;
2077 	}
2078 	if (con->cm_err < 0)
2079 		return con->cm_err;
2080 	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING)
2081 		/* Device removal */
2082 		return -ECONNABORTED;
2083 
2084 	return 0;
2085 }
2086 
rtrs_clt_path_up(struct rtrs_clt_path * clt_path)2087 static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2088 {
2089 	struct rtrs_clt *clt = clt_path->clt;
2090 	int up;
2091 
2092 	/*
2093 	 * We can fire RECONNECTED event only when all paths were
2094 	 * connected on rtrs_clt_open(), then each was disconnected
2095 	 * and the first one connected again.  That's why this nasty
2096 	 * game with counter value.
2097 	 */
2098 
2099 	mutex_lock(&clt->paths_ev_mutex);
2100 	up = ++clt->paths_up;
2101 	/*
2102 	 * Here it is safe to access paths num directly since up counter
2103 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2104 	 * in progress, thus paths removals are impossible.
2105 	 */
2106 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2107 		clt->paths_up = clt->paths_num;
2108 	else if (up == 1)
2109 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2110 	mutex_unlock(&clt->paths_ev_mutex);
2111 
2112 	/* Mark session as established */
2113 	clt_path->established = true;
2114 	clt_path->reconnect_attempts = 0;
2115 	clt_path->stats->reconnects.successful_cnt++;
2116 }
2117 
rtrs_clt_path_down(struct rtrs_clt_path * clt_path)2118 static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2119 {
2120 	struct rtrs_clt *clt = clt_path->clt;
2121 
2122 	if (!clt_path->established)
2123 		return;
2124 
2125 	clt_path->established = false;
2126 	mutex_lock(&clt->paths_ev_mutex);
2127 	WARN_ON(!clt->paths_up);
2128 	if (--clt->paths_up == 0)
2129 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2130 	mutex_unlock(&clt->paths_ev_mutex);
2131 }
2132 
rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path * clt_path)2133 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2134 {
2135 	struct rtrs_clt_con *con;
2136 	unsigned int cid;
2137 
2138 	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2139 
2140 	/*
2141 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2142 	 * exactly in between.  Start destroying after it finishes.
2143 	 */
2144 	mutex_lock(&clt_path->init_mutex);
2145 	mutex_unlock(&clt_path->init_mutex);
2146 
2147 	/*
2148 	 * All IO paths must observe !CONNECTED state before we
2149 	 * free everything.
2150 	 */
2151 	synchronize_rcu();
2152 
2153 	rtrs_stop_hb(&clt_path->s);
2154 
2155 	/*
2156 	 * The order it utterly crucial: firstly disconnect and complete all
2157 	 * rdma requests with error (thus set in_use=false for requests),
2158 	 * then fail outstanding requests checking in_use for each, and
2159 	 * eventually notify upper layer about session disconnection.
2160 	 */
2161 
2162 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2163 		if (!clt_path->s.con[cid])
2164 			break;
2165 		con = to_clt_con(clt_path->s.con[cid]);
2166 		stop_cm(con);
2167 	}
2168 	fail_all_outstanding_reqs(clt_path);
2169 	free_path_reqs(clt_path);
2170 	rtrs_clt_path_down(clt_path);
2171 
2172 	/*
2173 	 * Wait for graceful shutdown, namely when peer side invokes
2174 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2175 	 * CM events, thus if other side had crashed and hb has detected
2176 	 * something is wrong, here we will stuck for exactly timeout ms,
2177 	 * since CM does not fire anything.  That is fine, we are not in
2178 	 * hurry.
2179 	 */
2180 	wait_event_timeout(clt_path->state_wq,
2181 			   !atomic_read(&clt_path->connected_cnt),
2182 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2183 
2184 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2185 		if (!clt_path->s.con[cid])
2186 			break;
2187 		con = to_clt_con(clt_path->s.con[cid]);
2188 		mutex_lock(&con->con_mutex);
2189 		destroy_con_cq_qp(con);
2190 		mutex_unlock(&con->con_mutex);
2191 		destroy_cm(con);
2192 		destroy_con(con);
2193 	}
2194 }
2195 
xchg_paths(struct rtrs_clt_path __rcu ** rcu_ppcpu_path,struct rtrs_clt_path * clt_path,struct rtrs_clt_path * next)2196 static inline bool xchg_paths(struct rtrs_clt_path __rcu **rcu_ppcpu_path,
2197 			      struct rtrs_clt_path *clt_path,
2198 			      struct rtrs_clt_path *next)
2199 {
2200 	struct rtrs_clt_path **ppcpu_path;
2201 
2202 	/* Call cmpxchg() without sparse warnings */
2203 	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2204 	return clt_path == cmpxchg(ppcpu_path, clt_path, next);
2205 }
2206 
rtrs_clt_remove_path_from_arr(struct rtrs_clt_path * clt_path)2207 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2208 {
2209 	struct rtrs_clt *clt = clt_path->clt;
2210 	struct rtrs_clt_path *next;
2211 	bool wait_for_grace = false;
2212 	int cpu;
2213 
2214 	mutex_lock(&clt->paths_mutex);
2215 	list_del_rcu(&clt_path->s.entry);
2216 
2217 	/* Make sure everybody observes path removal. */
2218 	synchronize_rcu();
2219 
2220 	/*
2221 	 * At this point nobody sees @sess in the list, but still we have
2222 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2223 	 * nobody can observe @sess in the list, we guarantee that IO path
2224 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2225 	 * to @sess, but can never again become @sess.
2226 	 */
2227 
2228 	/*
2229 	 * Decrement paths number only after grace period, because
2230 	 * caller of do_each_path() must firstly observe list without
2231 	 * path and only then decremented paths number.
2232 	 *
2233 	 * Otherwise there can be the following situation:
2234 	 *    o Two paths exist and IO is coming.
2235 	 *    o One path is removed:
2236 	 *      CPU#0                          CPU#1
2237 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2238 	 *          path = get_next_path()
2239 	 *          ^^^                            list_del_rcu(path)
2240 	 *          [!CONNECTED path]              clt->paths_num--
2241 	 *                                              ^^^^^^^^^
2242 	 *          load clt->paths_num                 from 2 to 1
2243 	 *                    ^^^^^^^^^
2244 	 *                    sees 1
2245 	 *
2246 	 *      path is observed as !CONNECTED, but do_each_path() loop
2247 	 *      ends, because expression i < clt->paths_num is false.
2248 	 */
2249 	clt->paths_num--;
2250 
2251 	/*
2252 	 * Get @next connection from current @sess which is going to be
2253 	 * removed.  If @sess is the last element, then @next is NULL.
2254 	 */
2255 	rcu_read_lock();
2256 	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2257 	rcu_read_unlock();
2258 
2259 	/*
2260 	 * @pcpu paths can still point to the path which is going to be
2261 	 * removed, so change the pointer manually.
2262 	 */
2263 	for_each_possible_cpu(cpu) {
2264 		struct rtrs_clt_path __rcu **ppcpu_path;
2265 
2266 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2267 		if (rcu_dereference_protected(*ppcpu_path,
2268 			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2269 			/*
2270 			 * synchronize_rcu() was called just after deleting
2271 			 * entry from the list, thus IO code path cannot
2272 			 * change pointer back to the pointer which is going
2273 			 * to be removed, we are safe here.
2274 			 */
2275 			continue;
2276 
2277 		/*
2278 		 * We race with IO code path, which also changes pointer,
2279 		 * thus we have to be careful not to overwrite it.
2280 		 */
2281 		if (xchg_paths(ppcpu_path, clt_path, next))
2282 			/*
2283 			 * @ppcpu_path was successfully replaced with @next,
2284 			 * that means that someone could also pick up the
2285 			 * @sess and dereferencing it right now, so wait for
2286 			 * a grace period is required.
2287 			 */
2288 			wait_for_grace = true;
2289 	}
2290 	if (wait_for_grace)
2291 		synchronize_rcu();
2292 
2293 	mutex_unlock(&clt->paths_mutex);
2294 }
2295 
rtrs_clt_add_path_to_arr(struct rtrs_clt_path * clt_path)2296 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2297 {
2298 	struct rtrs_clt *clt = clt_path->clt;
2299 
2300 	mutex_lock(&clt->paths_mutex);
2301 	clt->paths_num++;
2302 
2303 	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2304 	mutex_unlock(&clt->paths_mutex);
2305 }
2306 
rtrs_clt_close_work(struct work_struct * work)2307 static void rtrs_clt_close_work(struct work_struct *work)
2308 {
2309 	struct rtrs_clt_path *clt_path;
2310 
2311 	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2312 
2313 	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2314 	rtrs_clt_stop_and_destroy_conns(clt_path);
2315 	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2316 }
2317 
init_conns(struct rtrs_clt_path * clt_path)2318 static int init_conns(struct rtrs_clt_path *clt_path)
2319 {
2320 	unsigned int cid;
2321 	int err, i;
2322 
2323 	/*
2324 	 * On every new session connections increase reconnect counter
2325 	 * to avoid clashes with previous sessions not yet closed
2326 	 * sessions on a server side.
2327 	 */
2328 	clt_path->s.recon_cnt++;
2329 
2330 	/* Establish all RDMA connections  */
2331 	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2332 		err = create_con(clt_path, cid);
2333 		if (err)
2334 			goto destroy;
2335 
2336 		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2337 		if (err)
2338 			goto destroy;
2339 	}
2340 	err = alloc_path_reqs(clt_path);
2341 	if (err)
2342 		goto destroy;
2343 
2344 	return 0;
2345 
2346 destroy:
2347 	/* Make sure we do the cleanup in the order they are created */
2348 	for (i = 0; i <= cid; i++) {
2349 		struct rtrs_clt_con *con;
2350 
2351 		if (!clt_path->s.con[i])
2352 			break;
2353 
2354 		con = to_clt_con(clt_path->s.con[i]);
2355 		if (con->c.cm_id) {
2356 			stop_cm(con);
2357 			mutex_lock(&con->con_mutex);
2358 			destroy_con_cq_qp(con);
2359 			mutex_unlock(&con->con_mutex);
2360 			destroy_cm(con);
2361 		}
2362 		destroy_con(con);
2363 	}
2364 	/*
2365 	 * If we've never taken async path and got an error, say,
2366 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2367 	 * manually to keep reconnecting.
2368 	 */
2369 	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2370 
2371 	return err;
2372 }
2373 
rtrs_clt_info_req_done(struct ib_cq * cq,struct ib_wc * wc)2374 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2375 {
2376 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2377 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2378 	struct rtrs_iu *iu;
2379 
2380 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2381 	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2382 
2383 	if (wc->status != IB_WC_SUCCESS) {
2384 		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2385 			  ib_wc_status_msg(wc->status));
2386 		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2387 		return;
2388 	}
2389 
2390 	rtrs_clt_update_wc_stats(con);
2391 }
2392 
process_info_rsp(struct rtrs_clt_path * clt_path,const struct rtrs_msg_info_rsp * msg)2393 static int process_info_rsp(struct rtrs_clt_path *clt_path,
2394 			    const struct rtrs_msg_info_rsp *msg)
2395 {
2396 	unsigned int sg_cnt, total_len;
2397 	int i, sgi;
2398 
2399 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2400 	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2401 		rtrs_err(clt_path->clt,
2402 			  "Incorrect sg_cnt %d, is not multiple\n",
2403 			  sg_cnt);
2404 		return -EINVAL;
2405 	}
2406 
2407 	/*
2408 	 * Check if IB immediate data size is enough to hold the mem_id and
2409 	 * the offset inside the memory chunk.
2410 	 */
2411 	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2412 	    MAX_IMM_PAYL_BITS) {
2413 		rtrs_err(clt_path->clt,
2414 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2415 			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2416 		return -EINVAL;
2417 	}
2418 	total_len = 0;
2419 	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2420 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2421 		u32 len, rkey;
2422 		u64 addr;
2423 
2424 		addr = le64_to_cpu(desc->addr);
2425 		rkey = le32_to_cpu(desc->key);
2426 		len  = le32_to_cpu(desc->len);
2427 
2428 		total_len += len;
2429 
2430 		if (!len || (len % clt_path->chunk_size)) {
2431 			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2432 				  sgi,
2433 				  len);
2434 			return -EINVAL;
2435 		}
2436 		for ( ; len && i < clt_path->queue_depth; i++) {
2437 			clt_path->rbufs[i].addr = addr;
2438 			clt_path->rbufs[i].rkey = rkey;
2439 
2440 			len  -= clt_path->chunk_size;
2441 			addr += clt_path->chunk_size;
2442 		}
2443 	}
2444 	/* Sanity check */
2445 	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2446 		rtrs_err(clt_path->clt,
2447 			 "Incorrect sg vector, not fully mapped\n");
2448 		return -EINVAL;
2449 	}
2450 	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2451 		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2452 		return -EINVAL;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
rtrs_clt_info_rsp_done(struct ib_cq * cq,struct ib_wc * wc)2458 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2459 {
2460 	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2461 	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2462 	struct rtrs_msg_info_rsp *msg;
2463 	enum rtrs_clt_state state;
2464 	struct rtrs_iu *iu;
2465 	size_t rx_sz;
2466 	int err;
2467 
2468 	state = RTRS_CLT_CONNECTING_ERR;
2469 
2470 	WARN_ON(con->c.cid);
2471 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2472 	if (wc->status != IB_WC_SUCCESS) {
2473 		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2474 			  ib_wc_status_msg(wc->status));
2475 		goto out;
2476 	}
2477 	WARN_ON(wc->opcode != IB_WC_RECV);
2478 
2479 	if (wc->byte_len < sizeof(*msg)) {
2480 		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2481 			  wc->byte_len);
2482 		goto out;
2483 	}
2484 	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2485 				   iu->size, DMA_FROM_DEVICE);
2486 	msg = iu->buf;
2487 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2488 		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2489 			  le16_to_cpu(msg->type));
2490 		goto out;
2491 	}
2492 	rx_sz  = sizeof(*msg);
2493 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2494 	if (wc->byte_len < rx_sz) {
2495 		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2496 			  wc->byte_len);
2497 		goto out;
2498 	}
2499 	err = process_info_rsp(clt_path, msg);
2500 	if (err)
2501 		goto out;
2502 
2503 	err = post_recv_path(clt_path);
2504 	if (err)
2505 		goto out;
2506 
2507 	state = RTRS_CLT_CONNECTED;
2508 
2509 out:
2510 	rtrs_clt_update_wc_stats(con);
2511 	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2512 	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2513 }
2514 
rtrs_send_path_info(struct rtrs_clt_path * clt_path)2515 static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2516 {
2517 	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2518 	struct rtrs_msg_info_req *msg;
2519 	struct rtrs_iu *tx_iu, *rx_iu;
2520 	size_t rx_sz;
2521 	int err;
2522 
2523 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2524 	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2525 
2526 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2527 			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2528 			       rtrs_clt_info_req_done);
2529 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2530 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2531 	if (!tx_iu || !rx_iu) {
2532 		err = -ENOMEM;
2533 		goto out;
2534 	}
2535 	/* Prepare for getting info response */
2536 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2537 	if (err) {
2538 		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2539 		goto out;
2540 	}
2541 	rx_iu = NULL;
2542 
2543 	msg = tx_iu->buf;
2544 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2545 	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2546 
2547 	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2548 				      tx_iu->dma_addr,
2549 				      tx_iu->size, DMA_TO_DEVICE);
2550 
2551 	/* Send info request */
2552 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2553 	if (err) {
2554 		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2555 		goto out;
2556 	}
2557 	tx_iu = NULL;
2558 
2559 	/* Wait for state change */
2560 	wait_event_interruptible_timeout(clt_path->state_wq,
2561 					 clt_path->state != RTRS_CLT_CONNECTING,
2562 					 msecs_to_jiffies(
2563 						 RTRS_CONNECT_TIMEOUT_MS));
2564 	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2565 		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2566 			err = -ECONNRESET;
2567 		else
2568 			err = -ETIMEDOUT;
2569 	}
2570 
2571 out:
2572 	if (tx_iu)
2573 		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2574 	if (rx_iu)
2575 		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2576 	if (err)
2577 		/* If we've never taken async path because of malloc problems */
2578 		rtrs_clt_change_state_get_old(clt_path,
2579 					      RTRS_CLT_CONNECTING_ERR, NULL);
2580 
2581 	return err;
2582 }
2583 
2584 /**
2585  * init_path() - establishes all path connections and does handshake
2586  * @clt_path: client path.
2587  * In case of error full close or reconnect procedure should be taken,
2588  * because reconnect or close async works can be started.
2589  */
init_path(struct rtrs_clt_path * clt_path)2590 static int init_path(struct rtrs_clt_path *clt_path)
2591 {
2592 	int err;
2593 	char str[NAME_MAX];
2594 	struct rtrs_addr path = {
2595 		.src = &clt_path->s.src_addr,
2596 		.dst = &clt_path->s.dst_addr,
2597 	};
2598 
2599 	rtrs_addr_to_str(&path, str, sizeof(str));
2600 
2601 	mutex_lock(&clt_path->init_mutex);
2602 	err = init_conns(clt_path);
2603 	if (err) {
2604 		rtrs_err(clt_path->clt,
2605 			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2606 			 str, clt_path->hca_name, clt_path->hca_port);
2607 		goto out;
2608 	}
2609 	err = rtrs_send_path_info(clt_path);
2610 	if (err) {
2611 		rtrs_err(clt_path->clt,
2612 			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2613 			 err, str, clt_path->hca_name, clt_path->hca_port);
2614 		goto out;
2615 	}
2616 	rtrs_clt_path_up(clt_path);
2617 	rtrs_start_hb(&clt_path->s);
2618 out:
2619 	mutex_unlock(&clt_path->init_mutex);
2620 
2621 	return err;
2622 }
2623 
rtrs_clt_reconnect_work(struct work_struct * work)2624 static void rtrs_clt_reconnect_work(struct work_struct *work)
2625 {
2626 	struct rtrs_clt_path *clt_path;
2627 	struct rtrs_clt *clt;
2628 	unsigned int delay_ms;
2629 	int err;
2630 
2631 	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2632 				reconnect_dwork);
2633 	clt = clt_path->clt;
2634 
2635 	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2636 		return;
2637 
2638 	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2639 		/* Close a path completely if max attempts is reached */
2640 		rtrs_clt_close_conns(clt_path, false);
2641 		return;
2642 	}
2643 	clt_path->reconnect_attempts++;
2644 
2645 	/* Stop everything */
2646 	rtrs_clt_stop_and_destroy_conns(clt_path);
2647 	msleep(RTRS_RECONNECT_BACKOFF);
2648 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2649 		err = init_path(clt_path);
2650 		if (err)
2651 			goto reconnect_again;
2652 	}
2653 
2654 	return;
2655 
2656 reconnect_again:
2657 	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2658 		clt_path->stats->reconnects.fail_cnt++;
2659 		delay_ms = clt->reconnect_delay_sec * 1000;
2660 		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
2661 				   msecs_to_jiffies(delay_ms +
2662 						    prandom_u32() %
2663 						    RTRS_RECONNECT_SEED));
2664 	}
2665 }
2666 
rtrs_clt_dev_release(struct device * dev)2667 static void rtrs_clt_dev_release(struct device *dev)
2668 {
2669 	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2670 
2671 	mutex_destroy(&clt->paths_ev_mutex);
2672 	mutex_destroy(&clt->paths_mutex);
2673 	kfree(clt);
2674 }
2675 
alloc_clt(const char * sessname,size_t paths_num,u16 port,size_t pdu_sz,void * priv,void (* link_ev)(void * priv,enum rtrs_clt_link_ev ev),unsigned int reconnect_delay_sec,unsigned int max_reconnect_attempts)2676 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2677 				  u16 port, size_t pdu_sz, void *priv,
2678 				  void	(*link_ev)(void *priv,
2679 						   enum rtrs_clt_link_ev ev),
2680 				  unsigned int reconnect_delay_sec,
2681 				  unsigned int max_reconnect_attempts)
2682 {
2683 	struct rtrs_clt *clt;
2684 	int err;
2685 
2686 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2687 		return ERR_PTR(-EINVAL);
2688 
2689 	if (strlen(sessname) >= sizeof(clt->sessname))
2690 		return ERR_PTR(-EINVAL);
2691 
2692 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2693 	if (!clt)
2694 		return ERR_PTR(-ENOMEM);
2695 
2696 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2697 	if (!clt->pcpu_path) {
2698 		kfree(clt);
2699 		return ERR_PTR(-ENOMEM);
2700 	}
2701 
2702 	clt->dev.class = rtrs_clt_dev_class;
2703 	clt->dev.release = rtrs_clt_dev_release;
2704 	uuid_gen(&clt->paths_uuid);
2705 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2706 	clt->paths_num = paths_num;
2707 	clt->paths_up = MAX_PATHS_NUM;
2708 	clt->port = port;
2709 	clt->pdu_sz = pdu_sz;
2710 	clt->max_segments = RTRS_MAX_SEGMENTS;
2711 	clt->reconnect_delay_sec = reconnect_delay_sec;
2712 	clt->max_reconnect_attempts = max_reconnect_attempts;
2713 	clt->priv = priv;
2714 	clt->link_ev = link_ev;
2715 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2716 	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2717 	init_waitqueue_head(&clt->permits_wait);
2718 	mutex_init(&clt->paths_ev_mutex);
2719 	mutex_init(&clt->paths_mutex);
2720 	device_initialize(&clt->dev);
2721 
2722 	err = dev_set_name(&clt->dev, "%s", sessname);
2723 	if (err)
2724 		goto err_put;
2725 
2726 	/*
2727 	 * Suppress user space notification until
2728 	 * sysfs files are created
2729 	 */
2730 	dev_set_uevent_suppress(&clt->dev, true);
2731 	err = device_add(&clt->dev);
2732 	if (err)
2733 		goto err_put;
2734 
2735 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2736 	if (!clt->kobj_paths) {
2737 		err = -ENOMEM;
2738 		goto err_del;
2739 	}
2740 	err = rtrs_clt_create_sysfs_root_files(clt);
2741 	if (err) {
2742 		kobject_del(clt->kobj_paths);
2743 		kobject_put(clt->kobj_paths);
2744 		goto err_del;
2745 	}
2746 	dev_set_uevent_suppress(&clt->dev, false);
2747 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2748 
2749 	return clt;
2750 err_del:
2751 	device_del(&clt->dev);
2752 err_put:
2753 	free_percpu(clt->pcpu_path);
2754 	put_device(&clt->dev);
2755 	return ERR_PTR(err);
2756 }
2757 
free_clt(struct rtrs_clt * clt)2758 static void free_clt(struct rtrs_clt *clt)
2759 {
2760 	free_percpu(clt->pcpu_path);
2761 
2762 	/*
2763 	 * release callback will free clt and destroy mutexes in last put
2764 	 */
2765 	device_unregister(&clt->dev);
2766 }
2767 
2768 /**
2769  * rtrs_clt_open() - Open a path to an RTRS server
2770  * @ops: holds the link event callback and the private pointer.
2771  * @sessname: name of the session
2772  * @paths: Paths to be established defined by their src and dst addresses
2773  * @paths_num: Number of elements in the @paths array
2774  * @port: port to be used by the RTRS session
2775  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2776  * @reconnect_delay_sec: time between reconnect tries
2777  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2778  *			    up, 0 for * disabled, -1 for forever
2779  * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2780  *
2781  * Starts session establishment with the rtrs_server. The function can block
2782  * up to ~2000ms before it returns.
2783  *
2784  * Return a valid pointer on success otherwise PTR_ERR.
2785  */
rtrs_clt_open(struct rtrs_clt_ops * ops,const char * pathname,const struct rtrs_addr * paths,size_t paths_num,u16 port,size_t pdu_sz,u8 reconnect_delay_sec,s16 max_reconnect_attempts,u32 nr_poll_queues)2786 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2787 				 const char *pathname,
2788 				 const struct rtrs_addr *paths,
2789 				 size_t paths_num, u16 port,
2790 				 size_t pdu_sz, u8 reconnect_delay_sec,
2791 				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2792 {
2793 	struct rtrs_clt_path *clt_path, *tmp;
2794 	struct rtrs_clt *clt;
2795 	int err, i;
2796 
2797 	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2798 		pr_err("pathname cannot contain / and .\n");
2799 		err = -EINVAL;
2800 		goto out;
2801 	}
2802 
2803 	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2804 			ops->link_ev,
2805 			reconnect_delay_sec,
2806 			max_reconnect_attempts);
2807 	if (IS_ERR(clt)) {
2808 		err = PTR_ERR(clt);
2809 		goto out;
2810 	}
2811 	for (i = 0; i < paths_num; i++) {
2812 		struct rtrs_clt_path *clt_path;
2813 
2814 		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2815 				  nr_poll_queues);
2816 		if (IS_ERR(clt_path)) {
2817 			err = PTR_ERR(clt_path);
2818 			goto close_all_path;
2819 		}
2820 		if (!i)
2821 			clt_path->for_new_clt = 1;
2822 		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2823 
2824 		err = init_path(clt_path);
2825 		if (err) {
2826 			list_del_rcu(&clt_path->s.entry);
2827 			rtrs_clt_close_conns(clt_path, true);
2828 			free_percpu(clt_path->stats->pcpu_stats);
2829 			kfree(clt_path->stats);
2830 			free_path(clt_path);
2831 			goto close_all_path;
2832 		}
2833 
2834 		err = rtrs_clt_create_path_files(clt_path);
2835 		if (err) {
2836 			list_del_rcu(&clt_path->s.entry);
2837 			rtrs_clt_close_conns(clt_path, true);
2838 			free_percpu(clt_path->stats->pcpu_stats);
2839 			kfree(clt_path->stats);
2840 			free_path(clt_path);
2841 			goto close_all_path;
2842 		}
2843 	}
2844 	err = alloc_permits(clt);
2845 	if (err)
2846 		goto close_all_path;
2847 
2848 	return clt;
2849 
2850 close_all_path:
2851 	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2852 		rtrs_clt_destroy_path_files(clt_path, NULL);
2853 		rtrs_clt_close_conns(clt_path, true);
2854 		kobject_put(&clt_path->kobj);
2855 	}
2856 	rtrs_clt_destroy_sysfs_root(clt);
2857 	free_clt(clt);
2858 
2859 out:
2860 	return ERR_PTR(err);
2861 }
2862 EXPORT_SYMBOL(rtrs_clt_open);
2863 
2864 /**
2865  * rtrs_clt_close() - Close a path
2866  * @clt: Session handle. Session is freed upon return.
2867  */
rtrs_clt_close(struct rtrs_clt * clt)2868 void rtrs_clt_close(struct rtrs_clt *clt)
2869 {
2870 	struct rtrs_clt_path *clt_path, *tmp;
2871 
2872 	/* Firstly forbid sysfs access */
2873 	rtrs_clt_destroy_sysfs_root(clt);
2874 
2875 	/* Now it is safe to iterate over all paths without locks */
2876 	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2877 		rtrs_clt_close_conns(clt_path, true);
2878 		rtrs_clt_destroy_path_files(clt_path, NULL);
2879 		kobject_put(&clt_path->kobj);
2880 	}
2881 	free_permits(clt);
2882 	free_clt(clt);
2883 }
2884 EXPORT_SYMBOL(rtrs_clt_close);
2885 
rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path * clt_path)2886 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2887 {
2888 	enum rtrs_clt_state old_state;
2889 	int err = -EBUSY;
2890 	bool changed;
2891 
2892 	changed = rtrs_clt_change_state_get_old(clt_path,
2893 						 RTRS_CLT_RECONNECTING,
2894 						 &old_state);
2895 	if (changed) {
2896 		clt_path->reconnect_attempts = 0;
2897 		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2898 	}
2899 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2900 		/*
2901 		 * flush_delayed_work() queues pending work for immediate
2902 		 * execution, so do the flush if we have queued something
2903 		 * right now or work is pending.
2904 		 */
2905 		flush_delayed_work(&clt_path->reconnect_dwork);
2906 		err = (READ_ONCE(clt_path->state) ==
2907 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2908 	}
2909 
2910 	return err;
2911 }
2912 
rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path * clt_path,const struct attribute * sysfs_self)2913 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2914 				     const struct attribute *sysfs_self)
2915 {
2916 	enum rtrs_clt_state old_state;
2917 	bool changed;
2918 
2919 	/*
2920 	 * Continue stopping path till state was changed to DEAD or
2921 	 * state was observed as DEAD:
2922 	 * 1. State was changed to DEAD - we were fast and nobody
2923 	 *    invoked rtrs_clt_reconnect(), which can again start
2924 	 *    reconnecting.
2925 	 * 2. State was observed as DEAD - we have someone in parallel
2926 	 *    removing the path.
2927 	 */
2928 	do {
2929 		rtrs_clt_close_conns(clt_path, true);
2930 		changed = rtrs_clt_change_state_get_old(clt_path,
2931 							RTRS_CLT_DEAD,
2932 							&old_state);
2933 	} while (!changed && old_state != RTRS_CLT_DEAD);
2934 
2935 	if (changed) {
2936 		rtrs_clt_remove_path_from_arr(clt_path);
2937 		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2938 		kobject_put(&clt_path->kobj);
2939 	}
2940 
2941 	return 0;
2942 }
2943 
rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt * clt,int value)2944 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2945 {
2946 	clt->max_reconnect_attempts = (unsigned int)value;
2947 }
2948 
rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt * clt)2949 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2950 {
2951 	return (int)clt->max_reconnect_attempts;
2952 }
2953 
2954 /**
2955  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2956  *
2957  * @dir:	READ/WRITE
2958  * @ops:	callback function to be called as confirmation, and the pointer.
2959  * @clt:	Session
2960  * @permit:	Preallocated permit
2961  * @vec:	Message that is sent to server together with the request.
2962  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2963  *		Since the msg is copied internally it can be allocated on stack.
2964  * @nr:		Number of elements in @vec.
2965  * @data_len:	length of data sent to/from server
2966  * @sg:		Pages to be sent/received to/from server.
2967  * @sg_cnt:	Number of elements in the @sg
2968  *
2969  * Return:
2970  * 0:		Success
2971  * <0:		Error
2972  *
2973  * On dir=READ rtrs client will request a data transfer from Server to client.
2974  * The data that the server will respond with will be stored in @sg when
2975  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2976  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2977  */
rtrs_clt_request(int dir,struct rtrs_clt_req_ops * ops,struct rtrs_clt * clt,struct rtrs_permit * permit,const struct kvec * vec,size_t nr,size_t data_len,struct scatterlist * sg,unsigned int sg_cnt)2978 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2979 		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2980 		      const struct kvec *vec, size_t nr, size_t data_len,
2981 		      struct scatterlist *sg, unsigned int sg_cnt)
2982 {
2983 	struct rtrs_clt_io_req *req;
2984 	struct rtrs_clt_path *clt_path;
2985 
2986 	enum dma_data_direction dma_dir;
2987 	int err = -ECONNABORTED, i;
2988 	size_t usr_len, hdr_len;
2989 	struct path_it it;
2990 
2991 	/* Get kvec length */
2992 	for (i = 0, usr_len = 0; i < nr; i++)
2993 		usr_len += vec[i].iov_len;
2994 
2995 	if (dir == READ) {
2996 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2997 			  sg_cnt * sizeof(struct rtrs_sg_desc);
2998 		dma_dir = DMA_FROM_DEVICE;
2999 	} else {
3000 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3001 		dma_dir = DMA_TO_DEVICE;
3002 	}
3003 
3004 	rcu_read_lock();
3005 	for (path_it_init(&it, clt);
3006 	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3007 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3008 			continue;
3009 
3010 		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3011 			rtrs_wrn_rl(clt_path->clt,
3012 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3013 				     dir == READ ? "Read" : "Write",
3014 				     usr_len, hdr_len, clt_path->max_hdr_size);
3015 			err = -EMSGSIZE;
3016 			break;
3017 		}
3018 		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3019 				       vec, usr_len, sg, sg_cnt, data_len,
3020 				       dma_dir);
3021 		if (dir == READ)
3022 			err = rtrs_clt_read_req(req);
3023 		else
3024 			err = rtrs_clt_write_req(req);
3025 		if (err) {
3026 			req->in_use = false;
3027 			continue;
3028 		}
3029 		/* Success path */
3030 		break;
3031 	}
3032 	path_it_deinit(&it);
3033 	rcu_read_unlock();
3034 
3035 	return err;
3036 }
3037 EXPORT_SYMBOL(rtrs_clt_request);
3038 
rtrs_clt_rdma_cq_direct(struct rtrs_clt * clt,unsigned int index)3039 int rtrs_clt_rdma_cq_direct(struct rtrs_clt *clt, unsigned int index)
3040 {
3041 	/* If no path, return -1 for block layer not to try again */
3042 	int cnt = -1;
3043 	struct rtrs_con *con;
3044 	struct rtrs_clt_path *clt_path;
3045 	struct path_it it;
3046 
3047 	rcu_read_lock();
3048 	for (path_it_init(&it, clt);
3049 	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3050 		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3051 			continue;
3052 
3053 		con = clt_path->s.con[index + 1];
3054 		cnt = ib_process_cq_direct(con->cq, -1);
3055 		if (cnt)
3056 			break;
3057 	}
3058 	path_it_deinit(&it);
3059 	rcu_read_unlock();
3060 
3061 	return cnt;
3062 }
3063 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3064 
3065 /**
3066  * rtrs_clt_query() - queries RTRS session attributes
3067  *@clt: session pointer
3068  *@attr: query results for session attributes.
3069  * Returns:
3070  *    0 on success
3071  *    -ECOMM		no connection to the server
3072  */
rtrs_clt_query(struct rtrs_clt * clt,struct rtrs_attrs * attr)3073 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
3074 {
3075 	if (!rtrs_clt_is_connected(clt))
3076 		return -ECOMM;
3077 
3078 	attr->queue_depth      = clt->queue_depth;
3079 	attr->max_segments     = clt->max_segments;
3080 	/* Cap max_io_size to min of remote buffer size and the fr pages */
3081 	attr->max_io_size = min_t(int, clt->max_io_size,
3082 				  clt->max_segments * SZ_4K);
3083 
3084 	return 0;
3085 }
3086 EXPORT_SYMBOL(rtrs_clt_query);
3087 
rtrs_clt_create_path_from_sysfs(struct rtrs_clt * clt,struct rtrs_addr * addr)3088 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
3089 				     struct rtrs_addr *addr)
3090 {
3091 	struct rtrs_clt_path *clt_path;
3092 	int err;
3093 
3094 	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3095 	if (IS_ERR(clt_path))
3096 		return PTR_ERR(clt_path);
3097 
3098 	mutex_lock(&clt->paths_mutex);
3099 	if (clt->paths_num == 0) {
3100 		/*
3101 		 * When all the paths are removed for a session,
3102 		 * the addition of the first path is like a new session for
3103 		 * the storage server
3104 		 */
3105 		clt_path->for_new_clt = 1;
3106 	}
3107 
3108 	mutex_unlock(&clt->paths_mutex);
3109 
3110 	/*
3111 	 * It is totally safe to add path in CONNECTING state: coming
3112 	 * IO will never grab it.  Also it is very important to add
3113 	 * path before init, since init fires LINK_CONNECTED event.
3114 	 */
3115 	rtrs_clt_add_path_to_arr(clt_path);
3116 
3117 	err = init_path(clt_path);
3118 	if (err)
3119 		goto close_path;
3120 
3121 	err = rtrs_clt_create_path_files(clt_path);
3122 	if (err)
3123 		goto close_path;
3124 
3125 	return 0;
3126 
3127 close_path:
3128 	rtrs_clt_remove_path_from_arr(clt_path);
3129 	rtrs_clt_close_conns(clt_path, true);
3130 	free_percpu(clt_path->stats->pcpu_stats);
3131 	kfree(clt_path->stats);
3132 	free_path(clt_path);
3133 
3134 	return err;
3135 }
3136 
rtrs_clt_ib_dev_init(struct rtrs_ib_dev * dev)3137 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3138 {
3139 	if (!(dev->ib_dev->attrs.device_cap_flags &
3140 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3141 		pr_err("Memory registrations not supported.\n");
3142 		return -ENOTSUPP;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3149 	.init = rtrs_clt_ib_dev_init
3150 };
3151 
rtrs_client_init(void)3152 static int __init rtrs_client_init(void)
3153 {
3154 	rtrs_rdma_dev_pd_init(0, &dev_pd);
3155 
3156 	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3157 	if (IS_ERR(rtrs_clt_dev_class)) {
3158 		pr_err("Failed to create rtrs-client dev class\n");
3159 		return PTR_ERR(rtrs_clt_dev_class);
3160 	}
3161 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3162 	if (!rtrs_wq) {
3163 		class_destroy(rtrs_clt_dev_class);
3164 		return -ENOMEM;
3165 	}
3166 
3167 	return 0;
3168 }
3169 
rtrs_client_exit(void)3170 static void __exit rtrs_client_exit(void)
3171 {
3172 	destroy_workqueue(rtrs_wq);
3173 	class_destroy(rtrs_clt_dev_class);
3174 	rtrs_rdma_dev_pd_deinit(&dev_pd);
3175 }
3176 
3177 module_init(rtrs_client_init);
3178 module_exit(rtrs_client_exit);
3179