1 /*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-background-tracker.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm-cache-policy.h"
10 #include "dm.h"
11
12 #include <linux/hash.h>
13 #include <linux/jiffies.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/vmalloc.h>
17 #include <linux/math64.h>
18
19 #define DM_MSG_PREFIX "cache-policy-smq"
20
21 /*----------------------------------------------------------------*/
22
23 /*
24 * Safe division functions that return zero on divide by zero.
25 */
safe_div(unsigned n,unsigned d)26 static unsigned safe_div(unsigned n, unsigned d)
27 {
28 return d ? n / d : 0u;
29 }
30
safe_mod(unsigned n,unsigned d)31 static unsigned safe_mod(unsigned n, unsigned d)
32 {
33 return d ? n % d : 0u;
34 }
35
36 /*----------------------------------------------------------------*/
37
38 struct entry {
39 unsigned hash_next:28;
40 unsigned prev:28;
41 unsigned next:28;
42 unsigned level:6;
43 bool dirty:1;
44 bool allocated:1;
45 bool sentinel:1;
46 bool pending_work:1;
47
48 dm_oblock_t oblock;
49 };
50
51 /*----------------------------------------------------------------*/
52
53 #define INDEXER_NULL ((1u << 28u) - 1u)
54
55 /*
56 * An entry_space manages a set of entries that we use for the queues.
57 * The clean and dirty queues share entries, so this object is separate
58 * from the queue itself.
59 */
60 struct entry_space {
61 struct entry *begin;
62 struct entry *end;
63 };
64
space_init(struct entry_space * es,unsigned nr_entries)65 static int space_init(struct entry_space *es, unsigned nr_entries)
66 {
67 if (!nr_entries) {
68 es->begin = es->end = NULL;
69 return 0;
70 }
71
72 es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
73 if (!es->begin)
74 return -ENOMEM;
75
76 es->end = es->begin + nr_entries;
77 return 0;
78 }
79
space_exit(struct entry_space * es)80 static void space_exit(struct entry_space *es)
81 {
82 vfree(es->begin);
83 }
84
__get_entry(struct entry_space * es,unsigned block)85 static struct entry *__get_entry(struct entry_space *es, unsigned block)
86 {
87 struct entry *e;
88
89 e = es->begin + block;
90 BUG_ON(e >= es->end);
91
92 return e;
93 }
94
to_index(struct entry_space * es,struct entry * e)95 static unsigned to_index(struct entry_space *es, struct entry *e)
96 {
97 BUG_ON(e < es->begin || e >= es->end);
98 return e - es->begin;
99 }
100
to_entry(struct entry_space * es,unsigned block)101 static struct entry *to_entry(struct entry_space *es, unsigned block)
102 {
103 if (block == INDEXER_NULL)
104 return NULL;
105
106 return __get_entry(es, block);
107 }
108
109 /*----------------------------------------------------------------*/
110
111 struct ilist {
112 unsigned nr_elts; /* excluding sentinel entries */
113 unsigned head, tail;
114 };
115
l_init(struct ilist * l)116 static void l_init(struct ilist *l)
117 {
118 l->nr_elts = 0;
119 l->head = l->tail = INDEXER_NULL;
120 }
121
l_head(struct entry_space * es,struct ilist * l)122 static struct entry *l_head(struct entry_space *es, struct ilist *l)
123 {
124 return to_entry(es, l->head);
125 }
126
l_tail(struct entry_space * es,struct ilist * l)127 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
128 {
129 return to_entry(es, l->tail);
130 }
131
l_next(struct entry_space * es,struct entry * e)132 static struct entry *l_next(struct entry_space *es, struct entry *e)
133 {
134 return to_entry(es, e->next);
135 }
136
l_prev(struct entry_space * es,struct entry * e)137 static struct entry *l_prev(struct entry_space *es, struct entry *e)
138 {
139 return to_entry(es, e->prev);
140 }
141
l_empty(struct ilist * l)142 static bool l_empty(struct ilist *l)
143 {
144 return l->head == INDEXER_NULL;
145 }
146
l_add_head(struct entry_space * es,struct ilist * l,struct entry * e)147 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
148 {
149 struct entry *head = l_head(es, l);
150
151 e->next = l->head;
152 e->prev = INDEXER_NULL;
153
154 if (head)
155 head->prev = l->head = to_index(es, e);
156 else
157 l->head = l->tail = to_index(es, e);
158
159 if (!e->sentinel)
160 l->nr_elts++;
161 }
162
l_add_tail(struct entry_space * es,struct ilist * l,struct entry * e)163 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
164 {
165 struct entry *tail = l_tail(es, l);
166
167 e->next = INDEXER_NULL;
168 e->prev = l->tail;
169
170 if (tail)
171 tail->next = l->tail = to_index(es, e);
172 else
173 l->head = l->tail = to_index(es, e);
174
175 if (!e->sentinel)
176 l->nr_elts++;
177 }
178
l_add_before(struct entry_space * es,struct ilist * l,struct entry * old,struct entry * e)179 static void l_add_before(struct entry_space *es, struct ilist *l,
180 struct entry *old, struct entry *e)
181 {
182 struct entry *prev = l_prev(es, old);
183
184 if (!prev)
185 l_add_head(es, l, e);
186
187 else {
188 e->prev = old->prev;
189 e->next = to_index(es, old);
190 prev->next = old->prev = to_index(es, e);
191
192 if (!e->sentinel)
193 l->nr_elts++;
194 }
195 }
196
l_del(struct entry_space * es,struct ilist * l,struct entry * e)197 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
198 {
199 struct entry *prev = l_prev(es, e);
200 struct entry *next = l_next(es, e);
201
202 if (prev)
203 prev->next = e->next;
204 else
205 l->head = e->next;
206
207 if (next)
208 next->prev = e->prev;
209 else
210 l->tail = e->prev;
211
212 if (!e->sentinel)
213 l->nr_elts--;
214 }
215
l_pop_head(struct entry_space * es,struct ilist * l)216 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
217 {
218 struct entry *e;
219
220 for (e = l_head(es, l); e; e = l_next(es, e))
221 if (!e->sentinel) {
222 l_del(es, l, e);
223 return e;
224 }
225
226 return NULL;
227 }
228
l_pop_tail(struct entry_space * es,struct ilist * l)229 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
230 {
231 struct entry *e;
232
233 for (e = l_tail(es, l); e; e = l_prev(es, e))
234 if (!e->sentinel) {
235 l_del(es, l, e);
236 return e;
237 }
238
239 return NULL;
240 }
241
242 /*----------------------------------------------------------------*/
243
244 /*
245 * The stochastic-multi-queue is a set of lru lists stacked into levels.
246 * Entries are moved up levels when they are used, which loosely orders the
247 * most accessed entries in the top levels and least in the bottom. This
248 * structure is *much* better than a single lru list.
249 */
250 #define MAX_LEVELS 64u
251
252 struct queue {
253 struct entry_space *es;
254
255 unsigned nr_elts;
256 unsigned nr_levels;
257 struct ilist qs[MAX_LEVELS];
258
259 /*
260 * We maintain a count of the number of entries we would like in each
261 * level.
262 */
263 unsigned last_target_nr_elts;
264 unsigned nr_top_levels;
265 unsigned nr_in_top_levels;
266 unsigned target_count[MAX_LEVELS];
267 };
268
q_init(struct queue * q,struct entry_space * es,unsigned nr_levels)269 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
270 {
271 unsigned i;
272
273 q->es = es;
274 q->nr_elts = 0;
275 q->nr_levels = nr_levels;
276
277 for (i = 0; i < q->nr_levels; i++) {
278 l_init(q->qs + i);
279 q->target_count[i] = 0u;
280 }
281
282 q->last_target_nr_elts = 0u;
283 q->nr_top_levels = 0u;
284 q->nr_in_top_levels = 0u;
285 }
286
q_size(struct queue * q)287 static unsigned q_size(struct queue *q)
288 {
289 return q->nr_elts;
290 }
291
292 /*
293 * Insert an entry to the back of the given level.
294 */
q_push(struct queue * q,struct entry * e)295 static void q_push(struct queue *q, struct entry *e)
296 {
297 BUG_ON(e->pending_work);
298
299 if (!e->sentinel)
300 q->nr_elts++;
301
302 l_add_tail(q->es, q->qs + e->level, e);
303 }
304
q_push_front(struct queue * q,struct entry * e)305 static void q_push_front(struct queue *q, struct entry *e)
306 {
307 BUG_ON(e->pending_work);
308
309 if (!e->sentinel)
310 q->nr_elts++;
311
312 l_add_head(q->es, q->qs + e->level, e);
313 }
314
q_push_before(struct queue * q,struct entry * old,struct entry * e)315 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
316 {
317 BUG_ON(e->pending_work);
318
319 if (!e->sentinel)
320 q->nr_elts++;
321
322 l_add_before(q->es, q->qs + e->level, old, e);
323 }
324
q_del(struct queue * q,struct entry * e)325 static void q_del(struct queue *q, struct entry *e)
326 {
327 l_del(q->es, q->qs + e->level, e);
328 if (!e->sentinel)
329 q->nr_elts--;
330 }
331
332 /*
333 * Return the oldest entry of the lowest populated level.
334 */
q_peek(struct queue * q,unsigned max_level,bool can_cross_sentinel)335 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
336 {
337 unsigned level;
338 struct entry *e;
339
340 max_level = min(max_level, q->nr_levels);
341
342 for (level = 0; level < max_level; level++)
343 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
344 if (e->sentinel) {
345 if (can_cross_sentinel)
346 continue;
347 else
348 break;
349 }
350
351 return e;
352 }
353
354 return NULL;
355 }
356
q_pop(struct queue * q)357 static struct entry *q_pop(struct queue *q)
358 {
359 struct entry *e = q_peek(q, q->nr_levels, true);
360
361 if (e)
362 q_del(q, e);
363
364 return e;
365 }
366
367 /*
368 * This function assumes there is a non-sentinel entry to pop. It's only
369 * used by redistribute, so we know this is true. It also doesn't adjust
370 * the q->nr_elts count.
371 */
__redist_pop_from(struct queue * q,unsigned level)372 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
373 {
374 struct entry *e;
375
376 for (; level < q->nr_levels; level++)
377 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
378 if (!e->sentinel) {
379 l_del(q->es, q->qs + e->level, e);
380 return e;
381 }
382
383 return NULL;
384 }
385
q_set_targets_subrange_(struct queue * q,unsigned nr_elts,unsigned lbegin,unsigned lend)386 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
387 {
388 unsigned level, nr_levels, entries_per_level, remainder;
389
390 BUG_ON(lbegin > lend);
391 BUG_ON(lend > q->nr_levels);
392 nr_levels = lend - lbegin;
393 entries_per_level = safe_div(nr_elts, nr_levels);
394 remainder = safe_mod(nr_elts, nr_levels);
395
396 for (level = lbegin; level < lend; level++)
397 q->target_count[level] =
398 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
399 }
400
401 /*
402 * Typically we have fewer elements in the top few levels which allows us
403 * to adjust the promote threshold nicely.
404 */
q_set_targets(struct queue * q)405 static void q_set_targets(struct queue *q)
406 {
407 if (q->last_target_nr_elts == q->nr_elts)
408 return;
409
410 q->last_target_nr_elts = q->nr_elts;
411
412 if (q->nr_top_levels > q->nr_levels)
413 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
414
415 else {
416 q_set_targets_subrange_(q, q->nr_in_top_levels,
417 q->nr_levels - q->nr_top_levels, q->nr_levels);
418
419 if (q->nr_in_top_levels < q->nr_elts)
420 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
421 0, q->nr_levels - q->nr_top_levels);
422 else
423 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
424 }
425 }
426
q_redistribute(struct queue * q)427 static void q_redistribute(struct queue *q)
428 {
429 unsigned target, level;
430 struct ilist *l, *l_above;
431 struct entry *e;
432
433 q_set_targets(q);
434
435 for (level = 0u; level < q->nr_levels - 1u; level++) {
436 l = q->qs + level;
437 target = q->target_count[level];
438
439 /*
440 * Pull down some entries from the level above.
441 */
442 while (l->nr_elts < target) {
443 e = __redist_pop_from(q, level + 1u);
444 if (!e) {
445 /* bug in nr_elts */
446 break;
447 }
448
449 e->level = level;
450 l_add_tail(q->es, l, e);
451 }
452
453 /*
454 * Push some entries up.
455 */
456 l_above = q->qs + level + 1u;
457 while (l->nr_elts > target) {
458 e = l_pop_tail(q->es, l);
459
460 if (!e)
461 /* bug in nr_elts */
462 break;
463
464 e->level = level + 1u;
465 l_add_tail(q->es, l_above, e);
466 }
467 }
468 }
469
q_requeue(struct queue * q,struct entry * e,unsigned extra_levels,struct entry * s1,struct entry * s2)470 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels,
471 struct entry *s1, struct entry *s2)
472 {
473 struct entry *de;
474 unsigned sentinels_passed = 0;
475 unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels);
476
477 /* try and find an entry to swap with */
478 if (extra_levels && (e->level < q->nr_levels - 1u)) {
479 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
480 sentinels_passed++;
481
482 if (de) {
483 q_del(q, de);
484 de->level = e->level;
485 if (s1) {
486 switch (sentinels_passed) {
487 case 0:
488 q_push_before(q, s1, de);
489 break;
490
491 case 1:
492 q_push_before(q, s2, de);
493 break;
494
495 default:
496 q_push(q, de);
497 }
498 } else
499 q_push(q, de);
500 }
501 }
502
503 q_del(q, e);
504 e->level = new_level;
505 q_push(q, e);
506 }
507
508 /*----------------------------------------------------------------*/
509
510 #define FP_SHIFT 8
511 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
512 #define EIGHTH (1u << (FP_SHIFT - 3u))
513
514 struct stats {
515 unsigned hit_threshold;
516 unsigned hits;
517 unsigned misses;
518 };
519
520 enum performance {
521 Q_POOR,
522 Q_FAIR,
523 Q_WELL
524 };
525
stats_init(struct stats * s,unsigned nr_levels)526 static void stats_init(struct stats *s, unsigned nr_levels)
527 {
528 s->hit_threshold = (nr_levels * 3u) / 4u;
529 s->hits = 0u;
530 s->misses = 0u;
531 }
532
stats_reset(struct stats * s)533 static void stats_reset(struct stats *s)
534 {
535 s->hits = s->misses = 0u;
536 }
537
stats_level_accessed(struct stats * s,unsigned level)538 static void stats_level_accessed(struct stats *s, unsigned level)
539 {
540 if (level >= s->hit_threshold)
541 s->hits++;
542 else
543 s->misses++;
544 }
545
stats_miss(struct stats * s)546 static void stats_miss(struct stats *s)
547 {
548 s->misses++;
549 }
550
551 /*
552 * There are times when we don't have any confidence in the hotspot queue.
553 * Such as when a fresh cache is created and the blocks have been spread
554 * out across the levels, or if an io load changes. We detect this by
555 * seeing how often a lookup is in the top levels of the hotspot queue.
556 */
stats_assess(struct stats * s)557 static enum performance stats_assess(struct stats *s)
558 {
559 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
560
561 if (confidence < SIXTEENTH)
562 return Q_POOR;
563
564 else if (confidence < EIGHTH)
565 return Q_FAIR;
566
567 else
568 return Q_WELL;
569 }
570
571 /*----------------------------------------------------------------*/
572
573 struct smq_hash_table {
574 struct entry_space *es;
575 unsigned long long hash_bits;
576 unsigned *buckets;
577 };
578
579 /*
580 * All cache entries are stored in a chained hash table. To save space we
581 * use indexing again, and only store indexes to the next entry.
582 */
h_init(struct smq_hash_table * ht,struct entry_space * es,unsigned nr_entries)583 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries)
584 {
585 unsigned i, nr_buckets;
586
587 ht->es = es;
588 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
589 ht->hash_bits = __ffs(nr_buckets);
590
591 ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
592 if (!ht->buckets)
593 return -ENOMEM;
594
595 for (i = 0; i < nr_buckets; i++)
596 ht->buckets[i] = INDEXER_NULL;
597
598 return 0;
599 }
600
h_exit(struct smq_hash_table * ht)601 static void h_exit(struct smq_hash_table *ht)
602 {
603 vfree(ht->buckets);
604 }
605
h_head(struct smq_hash_table * ht,unsigned bucket)606 static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket)
607 {
608 return to_entry(ht->es, ht->buckets[bucket]);
609 }
610
h_next(struct smq_hash_table * ht,struct entry * e)611 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
612 {
613 return to_entry(ht->es, e->hash_next);
614 }
615
__h_insert(struct smq_hash_table * ht,unsigned bucket,struct entry * e)616 static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e)
617 {
618 e->hash_next = ht->buckets[bucket];
619 ht->buckets[bucket] = to_index(ht->es, e);
620 }
621
h_insert(struct smq_hash_table * ht,struct entry * e)622 static void h_insert(struct smq_hash_table *ht, struct entry *e)
623 {
624 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
625 __h_insert(ht, h, e);
626 }
627
__h_lookup(struct smq_hash_table * ht,unsigned h,dm_oblock_t oblock,struct entry ** prev)628 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock,
629 struct entry **prev)
630 {
631 struct entry *e;
632
633 *prev = NULL;
634 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
635 if (e->oblock == oblock)
636 return e;
637
638 *prev = e;
639 }
640
641 return NULL;
642 }
643
__h_unlink(struct smq_hash_table * ht,unsigned h,struct entry * e,struct entry * prev)644 static void __h_unlink(struct smq_hash_table *ht, unsigned h,
645 struct entry *e, struct entry *prev)
646 {
647 if (prev)
648 prev->hash_next = e->hash_next;
649 else
650 ht->buckets[h] = e->hash_next;
651 }
652
653 /*
654 * Also moves each entry to the front of the bucket.
655 */
h_lookup(struct smq_hash_table * ht,dm_oblock_t oblock)656 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
657 {
658 struct entry *e, *prev;
659 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
660
661 e = __h_lookup(ht, h, oblock, &prev);
662 if (e && prev) {
663 /*
664 * Move to the front because this entry is likely
665 * to be hit again.
666 */
667 __h_unlink(ht, h, e, prev);
668 __h_insert(ht, h, e);
669 }
670
671 return e;
672 }
673
h_remove(struct smq_hash_table * ht,struct entry * e)674 static void h_remove(struct smq_hash_table *ht, struct entry *e)
675 {
676 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
677 struct entry *prev;
678
679 /*
680 * The down side of using a singly linked list is we have to
681 * iterate the bucket to remove an item.
682 */
683 e = __h_lookup(ht, h, e->oblock, &prev);
684 if (e)
685 __h_unlink(ht, h, e, prev);
686 }
687
688 /*----------------------------------------------------------------*/
689
690 struct entry_alloc {
691 struct entry_space *es;
692 unsigned begin;
693
694 unsigned nr_allocated;
695 struct ilist free;
696 };
697
init_allocator(struct entry_alloc * ea,struct entry_space * es,unsigned begin,unsigned end)698 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
699 unsigned begin, unsigned end)
700 {
701 unsigned i;
702
703 ea->es = es;
704 ea->nr_allocated = 0u;
705 ea->begin = begin;
706
707 l_init(&ea->free);
708 for (i = begin; i != end; i++)
709 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
710 }
711
init_entry(struct entry * e)712 static void init_entry(struct entry *e)
713 {
714 /*
715 * We can't memset because that would clear the hotspot and
716 * sentinel bits which remain constant.
717 */
718 e->hash_next = INDEXER_NULL;
719 e->next = INDEXER_NULL;
720 e->prev = INDEXER_NULL;
721 e->level = 0u;
722 e->dirty = true; /* FIXME: audit */
723 e->allocated = true;
724 e->sentinel = false;
725 e->pending_work = false;
726 }
727
alloc_entry(struct entry_alloc * ea)728 static struct entry *alloc_entry(struct entry_alloc *ea)
729 {
730 struct entry *e;
731
732 if (l_empty(&ea->free))
733 return NULL;
734
735 e = l_pop_head(ea->es, &ea->free);
736 init_entry(e);
737 ea->nr_allocated++;
738
739 return e;
740 }
741
742 /*
743 * This assumes the cblock hasn't already been allocated.
744 */
alloc_particular_entry(struct entry_alloc * ea,unsigned i)745 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
746 {
747 struct entry *e = __get_entry(ea->es, ea->begin + i);
748
749 BUG_ON(e->allocated);
750
751 l_del(ea->es, &ea->free, e);
752 init_entry(e);
753 ea->nr_allocated++;
754
755 return e;
756 }
757
free_entry(struct entry_alloc * ea,struct entry * e)758 static void free_entry(struct entry_alloc *ea, struct entry *e)
759 {
760 BUG_ON(!ea->nr_allocated);
761 BUG_ON(!e->allocated);
762
763 ea->nr_allocated--;
764 e->allocated = false;
765 l_add_tail(ea->es, &ea->free, e);
766 }
767
allocator_empty(struct entry_alloc * ea)768 static bool allocator_empty(struct entry_alloc *ea)
769 {
770 return l_empty(&ea->free);
771 }
772
get_index(struct entry_alloc * ea,struct entry * e)773 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
774 {
775 return to_index(ea->es, e) - ea->begin;
776 }
777
get_entry(struct entry_alloc * ea,unsigned index)778 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
779 {
780 return __get_entry(ea->es, ea->begin + index);
781 }
782
783 /*----------------------------------------------------------------*/
784
785 #define NR_HOTSPOT_LEVELS 64u
786 #define NR_CACHE_LEVELS 64u
787
788 #define WRITEBACK_PERIOD (10ul * HZ)
789 #define DEMOTE_PERIOD (60ul * HZ)
790
791 #define HOTSPOT_UPDATE_PERIOD (HZ)
792 #define CACHE_UPDATE_PERIOD (60ul * HZ)
793
794 struct smq_policy {
795 struct dm_cache_policy policy;
796
797 /* protects everything */
798 spinlock_t lock;
799 dm_cblock_t cache_size;
800 sector_t cache_block_size;
801
802 sector_t hotspot_block_size;
803 unsigned nr_hotspot_blocks;
804 unsigned cache_blocks_per_hotspot_block;
805 unsigned hotspot_level_jump;
806
807 struct entry_space es;
808 struct entry_alloc writeback_sentinel_alloc;
809 struct entry_alloc demote_sentinel_alloc;
810 struct entry_alloc hotspot_alloc;
811 struct entry_alloc cache_alloc;
812
813 unsigned long *hotspot_hit_bits;
814 unsigned long *cache_hit_bits;
815
816 /*
817 * We maintain three queues of entries. The cache proper,
818 * consisting of a clean and dirty queue, containing the currently
819 * active mappings. The hotspot queue uses a larger block size to
820 * track blocks that are being hit frequently and potential
821 * candidates for promotion to the cache.
822 */
823 struct queue hotspot;
824 struct queue clean;
825 struct queue dirty;
826
827 struct stats hotspot_stats;
828 struct stats cache_stats;
829
830 /*
831 * Keeps track of time, incremented by the core. We use this to
832 * avoid attributing multiple hits within the same tick.
833 */
834 unsigned tick;
835
836 /*
837 * The hash tables allows us to quickly find an entry by origin
838 * block.
839 */
840 struct smq_hash_table table;
841 struct smq_hash_table hotspot_table;
842
843 bool current_writeback_sentinels;
844 unsigned long next_writeback_period;
845
846 bool current_demote_sentinels;
847 unsigned long next_demote_period;
848
849 unsigned write_promote_level;
850 unsigned read_promote_level;
851
852 unsigned long next_hotspot_period;
853 unsigned long next_cache_period;
854
855 struct background_tracker *bg_work;
856
857 bool migrations_allowed:1;
858
859 /*
860 * If this is set the policy will try and clean the whole cache
861 * even if the device is not idle.
862 */
863 bool cleaner:1;
864 };
865
866 /*----------------------------------------------------------------*/
867
get_sentinel(struct entry_alloc * ea,unsigned level,bool which)868 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
869 {
870 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
871 }
872
writeback_sentinel(struct smq_policy * mq,unsigned level)873 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
874 {
875 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
876 }
877
demote_sentinel(struct smq_policy * mq,unsigned level)878 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
879 {
880 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
881 }
882
__update_writeback_sentinels(struct smq_policy * mq)883 static void __update_writeback_sentinels(struct smq_policy *mq)
884 {
885 unsigned level;
886 struct queue *q = &mq->dirty;
887 struct entry *sentinel;
888
889 for (level = 0; level < q->nr_levels; level++) {
890 sentinel = writeback_sentinel(mq, level);
891 q_del(q, sentinel);
892 q_push(q, sentinel);
893 }
894 }
895
__update_demote_sentinels(struct smq_policy * mq)896 static void __update_demote_sentinels(struct smq_policy *mq)
897 {
898 unsigned level;
899 struct queue *q = &mq->clean;
900 struct entry *sentinel;
901
902 for (level = 0; level < q->nr_levels; level++) {
903 sentinel = demote_sentinel(mq, level);
904 q_del(q, sentinel);
905 q_push(q, sentinel);
906 }
907 }
908
update_sentinels(struct smq_policy * mq)909 static void update_sentinels(struct smq_policy *mq)
910 {
911 if (time_after(jiffies, mq->next_writeback_period)) {
912 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
913 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
914 __update_writeback_sentinels(mq);
915 }
916
917 if (time_after(jiffies, mq->next_demote_period)) {
918 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
919 mq->current_demote_sentinels = !mq->current_demote_sentinels;
920 __update_demote_sentinels(mq);
921 }
922 }
923
__sentinels_init(struct smq_policy * mq)924 static void __sentinels_init(struct smq_policy *mq)
925 {
926 unsigned level;
927 struct entry *sentinel;
928
929 for (level = 0; level < NR_CACHE_LEVELS; level++) {
930 sentinel = writeback_sentinel(mq, level);
931 sentinel->level = level;
932 q_push(&mq->dirty, sentinel);
933
934 sentinel = demote_sentinel(mq, level);
935 sentinel->level = level;
936 q_push(&mq->clean, sentinel);
937 }
938 }
939
sentinels_init(struct smq_policy * mq)940 static void sentinels_init(struct smq_policy *mq)
941 {
942 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
943 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
944
945 mq->current_writeback_sentinels = false;
946 mq->current_demote_sentinels = false;
947 __sentinels_init(mq);
948
949 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
950 mq->current_demote_sentinels = !mq->current_demote_sentinels;
951 __sentinels_init(mq);
952 }
953
954 /*----------------------------------------------------------------*/
955
del_queue(struct smq_policy * mq,struct entry * e)956 static void del_queue(struct smq_policy *mq, struct entry *e)
957 {
958 q_del(e->dirty ? &mq->dirty : &mq->clean, e);
959 }
960
push_queue(struct smq_policy * mq,struct entry * e)961 static void push_queue(struct smq_policy *mq, struct entry *e)
962 {
963 if (e->dirty)
964 q_push(&mq->dirty, e);
965 else
966 q_push(&mq->clean, e);
967 }
968
969 // !h, !q, a -> h, q, a
push(struct smq_policy * mq,struct entry * e)970 static void push(struct smq_policy *mq, struct entry *e)
971 {
972 h_insert(&mq->table, e);
973 if (!e->pending_work)
974 push_queue(mq, e);
975 }
976
push_queue_front(struct smq_policy * mq,struct entry * e)977 static void push_queue_front(struct smq_policy *mq, struct entry *e)
978 {
979 if (e->dirty)
980 q_push_front(&mq->dirty, e);
981 else
982 q_push_front(&mq->clean, e);
983 }
984
push_front(struct smq_policy * mq,struct entry * e)985 static void push_front(struct smq_policy *mq, struct entry *e)
986 {
987 h_insert(&mq->table, e);
988 if (!e->pending_work)
989 push_queue_front(mq, e);
990 }
991
infer_cblock(struct smq_policy * mq,struct entry * e)992 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
993 {
994 return to_cblock(get_index(&mq->cache_alloc, e));
995 }
996
requeue(struct smq_policy * mq,struct entry * e)997 static void requeue(struct smq_policy *mq, struct entry *e)
998 {
999 /*
1000 * Pending work has temporarily been taken out of the queues.
1001 */
1002 if (e->pending_work)
1003 return;
1004
1005 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
1006 if (!e->dirty) {
1007 q_requeue(&mq->clean, e, 1u, NULL, NULL);
1008 return;
1009 }
1010
1011 q_requeue(&mq->dirty, e, 1u,
1012 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
1013 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
1014 }
1015 }
1016
default_promote_level(struct smq_policy * mq)1017 static unsigned default_promote_level(struct smq_policy *mq)
1018 {
1019 /*
1020 * The promote level depends on the current performance of the
1021 * cache.
1022 *
1023 * If the cache is performing badly, then we can't afford
1024 * to promote much without causing performance to drop below that
1025 * of the origin device.
1026 *
1027 * If the cache is performing well, then we don't need to promote
1028 * much. If it isn't broken, don't fix it.
1029 *
1030 * If the cache is middling then we promote more.
1031 *
1032 * This scheme reminds me of a graph of entropy vs probability of a
1033 * binary variable.
1034 */
1035 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1036
1037 unsigned hits = mq->cache_stats.hits;
1038 unsigned misses = mq->cache_stats.misses;
1039 unsigned index = safe_div(hits << 4u, hits + misses);
1040 return table[index];
1041 }
1042
update_promote_levels(struct smq_policy * mq)1043 static void update_promote_levels(struct smq_policy *mq)
1044 {
1045 /*
1046 * If there are unused cache entries then we want to be really
1047 * eager to promote.
1048 */
1049 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1050 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1051
1052 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1053
1054 /*
1055 * If the hotspot queue is performing badly then we have little
1056 * confidence that we know which blocks to promote. So we cut down
1057 * the amount of promotions.
1058 */
1059 switch (stats_assess(&mq->hotspot_stats)) {
1060 case Q_POOR:
1061 threshold_level /= 4u;
1062 break;
1063
1064 case Q_FAIR:
1065 threshold_level /= 2u;
1066 break;
1067
1068 case Q_WELL:
1069 break;
1070 }
1071
1072 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1073 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1074 }
1075
1076 /*
1077 * If the hotspot queue is performing badly, then we try and move entries
1078 * around more quickly.
1079 */
update_level_jump(struct smq_policy * mq)1080 static void update_level_jump(struct smq_policy *mq)
1081 {
1082 switch (stats_assess(&mq->hotspot_stats)) {
1083 case Q_POOR:
1084 mq->hotspot_level_jump = 4u;
1085 break;
1086
1087 case Q_FAIR:
1088 mq->hotspot_level_jump = 2u;
1089 break;
1090
1091 case Q_WELL:
1092 mq->hotspot_level_jump = 1u;
1093 break;
1094 }
1095 }
1096
end_hotspot_period(struct smq_policy * mq)1097 static void end_hotspot_period(struct smq_policy *mq)
1098 {
1099 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1100 update_promote_levels(mq);
1101
1102 if (time_after(jiffies, mq->next_hotspot_period)) {
1103 update_level_jump(mq);
1104 q_redistribute(&mq->hotspot);
1105 stats_reset(&mq->hotspot_stats);
1106 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1107 }
1108 }
1109
end_cache_period(struct smq_policy * mq)1110 static void end_cache_period(struct smq_policy *mq)
1111 {
1112 if (time_after(jiffies, mq->next_cache_period)) {
1113 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1114
1115 q_redistribute(&mq->dirty);
1116 q_redistribute(&mq->clean);
1117 stats_reset(&mq->cache_stats);
1118
1119 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1120 }
1121 }
1122
1123 /*----------------------------------------------------------------*/
1124
1125 /*
1126 * Targets are given as a percentage.
1127 */
1128 #define CLEAN_TARGET 25u
1129 #define FREE_TARGET 25u
1130
percent_to_target(struct smq_policy * mq,unsigned p)1131 static unsigned percent_to_target(struct smq_policy *mq, unsigned p)
1132 {
1133 return from_cblock(mq->cache_size) * p / 100u;
1134 }
1135
clean_target_met(struct smq_policy * mq,bool idle)1136 static bool clean_target_met(struct smq_policy *mq, bool idle)
1137 {
1138 /*
1139 * Cache entries may not be populated. So we cannot rely on the
1140 * size of the clean queue.
1141 */
1142 if (idle || mq->cleaner) {
1143 /*
1144 * We'd like to clean everything.
1145 */
1146 return q_size(&mq->dirty) == 0u;
1147 }
1148
1149 /*
1150 * If we're busy we don't worry about cleaning at all.
1151 */
1152 return true;
1153 }
1154
free_target_met(struct smq_policy * mq)1155 static bool free_target_met(struct smq_policy *mq)
1156 {
1157 unsigned nr_free;
1158
1159 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1160 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1161 percent_to_target(mq, FREE_TARGET);
1162 }
1163
1164 /*----------------------------------------------------------------*/
1165
mark_pending(struct smq_policy * mq,struct entry * e)1166 static void mark_pending(struct smq_policy *mq, struct entry *e)
1167 {
1168 BUG_ON(e->sentinel);
1169 BUG_ON(!e->allocated);
1170 BUG_ON(e->pending_work);
1171 e->pending_work = true;
1172 }
1173
clear_pending(struct smq_policy * mq,struct entry * e)1174 static void clear_pending(struct smq_policy *mq, struct entry *e)
1175 {
1176 BUG_ON(!e->pending_work);
1177 e->pending_work = false;
1178 }
1179
queue_writeback(struct smq_policy * mq,bool idle)1180 static void queue_writeback(struct smq_policy *mq, bool idle)
1181 {
1182 int r;
1183 struct policy_work work;
1184 struct entry *e;
1185
1186 e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
1187 if (e) {
1188 mark_pending(mq, e);
1189 q_del(&mq->dirty, e);
1190
1191 work.op = POLICY_WRITEBACK;
1192 work.oblock = e->oblock;
1193 work.cblock = infer_cblock(mq, e);
1194
1195 r = btracker_queue(mq->bg_work, &work, NULL);
1196 if (r) {
1197 clear_pending(mq, e);
1198 q_push_front(&mq->dirty, e);
1199 }
1200 }
1201 }
1202
queue_demotion(struct smq_policy * mq)1203 static void queue_demotion(struct smq_policy *mq)
1204 {
1205 int r;
1206 struct policy_work work;
1207 struct entry *e;
1208
1209 if (WARN_ON_ONCE(!mq->migrations_allowed))
1210 return;
1211
1212 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1213 if (!e) {
1214 if (!clean_target_met(mq, true))
1215 queue_writeback(mq, false);
1216 return;
1217 }
1218
1219 mark_pending(mq, e);
1220 q_del(&mq->clean, e);
1221
1222 work.op = POLICY_DEMOTE;
1223 work.oblock = e->oblock;
1224 work.cblock = infer_cblock(mq, e);
1225 r = btracker_queue(mq->bg_work, &work, NULL);
1226 if (r) {
1227 clear_pending(mq, e);
1228 q_push_front(&mq->clean, e);
1229 }
1230 }
1231
queue_promotion(struct smq_policy * mq,dm_oblock_t oblock,struct policy_work ** workp)1232 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1233 struct policy_work **workp)
1234 {
1235 int r;
1236 struct entry *e;
1237 struct policy_work work;
1238
1239 if (!mq->migrations_allowed)
1240 return;
1241
1242 if (allocator_empty(&mq->cache_alloc)) {
1243 /*
1244 * We always claim to be 'idle' to ensure some demotions happen
1245 * with continuous loads.
1246 */
1247 if (!free_target_met(mq))
1248 queue_demotion(mq);
1249 return;
1250 }
1251
1252 if (btracker_promotion_already_present(mq->bg_work, oblock))
1253 return;
1254
1255 /*
1256 * We allocate the entry now to reserve the cblock. If the
1257 * background work is aborted we must remember to free it.
1258 */
1259 e = alloc_entry(&mq->cache_alloc);
1260 BUG_ON(!e);
1261 e->pending_work = true;
1262 work.op = POLICY_PROMOTE;
1263 work.oblock = oblock;
1264 work.cblock = infer_cblock(mq, e);
1265 r = btracker_queue(mq->bg_work, &work, workp);
1266 if (r)
1267 free_entry(&mq->cache_alloc, e);
1268 }
1269
1270 /*----------------------------------------------------------------*/
1271
1272 enum promote_result {
1273 PROMOTE_NOT,
1274 PROMOTE_TEMPORARY,
1275 PROMOTE_PERMANENT
1276 };
1277
1278 /*
1279 * Converts a boolean into a promote result.
1280 */
maybe_promote(bool promote)1281 static enum promote_result maybe_promote(bool promote)
1282 {
1283 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1284 }
1285
should_promote(struct smq_policy * mq,struct entry * hs_e,int data_dir,bool fast_promote)1286 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1287 int data_dir, bool fast_promote)
1288 {
1289 if (data_dir == WRITE) {
1290 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1291 return PROMOTE_TEMPORARY;
1292
1293 return maybe_promote(hs_e->level >= mq->write_promote_level);
1294 } else
1295 return maybe_promote(hs_e->level >= mq->read_promote_level);
1296 }
1297
to_hblock(struct smq_policy * mq,dm_oblock_t b)1298 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1299 {
1300 sector_t r = from_oblock(b);
1301 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1302 return to_oblock(r);
1303 }
1304
update_hotspot_queue(struct smq_policy * mq,dm_oblock_t b)1305 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1306 {
1307 unsigned hi;
1308 dm_oblock_t hb = to_hblock(mq, b);
1309 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1310
1311 if (e) {
1312 stats_level_accessed(&mq->hotspot_stats, e->level);
1313
1314 hi = get_index(&mq->hotspot_alloc, e);
1315 q_requeue(&mq->hotspot, e,
1316 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1317 0u : mq->hotspot_level_jump,
1318 NULL, NULL);
1319
1320 } else {
1321 stats_miss(&mq->hotspot_stats);
1322
1323 e = alloc_entry(&mq->hotspot_alloc);
1324 if (!e) {
1325 e = q_pop(&mq->hotspot);
1326 if (e) {
1327 h_remove(&mq->hotspot_table, e);
1328 hi = get_index(&mq->hotspot_alloc, e);
1329 clear_bit(hi, mq->hotspot_hit_bits);
1330 }
1331
1332 }
1333
1334 if (e) {
1335 e->oblock = hb;
1336 q_push(&mq->hotspot, e);
1337 h_insert(&mq->hotspot_table, e);
1338 }
1339 }
1340
1341 return e;
1342 }
1343
1344 /*----------------------------------------------------------------*/
1345
1346 /*
1347 * Public interface, via the policy struct. See dm-cache-policy.h for a
1348 * description of these.
1349 */
1350
to_smq_policy(struct dm_cache_policy * p)1351 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1352 {
1353 return container_of(p, struct smq_policy, policy);
1354 }
1355
smq_destroy(struct dm_cache_policy * p)1356 static void smq_destroy(struct dm_cache_policy *p)
1357 {
1358 struct smq_policy *mq = to_smq_policy(p);
1359
1360 btracker_destroy(mq->bg_work);
1361 h_exit(&mq->hotspot_table);
1362 h_exit(&mq->table);
1363 free_bitset(mq->hotspot_hit_bits);
1364 free_bitset(mq->cache_hit_bits);
1365 space_exit(&mq->es);
1366 kfree(mq);
1367 }
1368
1369 /*----------------------------------------------------------------*/
1370
__lookup(struct smq_policy * mq,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,struct policy_work ** work,bool * background_work)1371 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1372 int data_dir, bool fast_copy,
1373 struct policy_work **work, bool *background_work)
1374 {
1375 struct entry *e, *hs_e;
1376 enum promote_result pr;
1377
1378 *background_work = false;
1379
1380 e = h_lookup(&mq->table, oblock);
1381 if (e) {
1382 stats_level_accessed(&mq->cache_stats, e->level);
1383
1384 requeue(mq, e);
1385 *cblock = infer_cblock(mq, e);
1386 return 0;
1387
1388 } else {
1389 stats_miss(&mq->cache_stats);
1390
1391 /*
1392 * The hotspot queue only gets updated with misses.
1393 */
1394 hs_e = update_hotspot_queue(mq, oblock);
1395
1396 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1397 if (pr != PROMOTE_NOT) {
1398 queue_promotion(mq, oblock, work);
1399 *background_work = true;
1400 }
1401
1402 return -ENOENT;
1403 }
1404 }
1405
smq_lookup(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,bool * background_work)1406 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1407 int data_dir, bool fast_copy,
1408 bool *background_work)
1409 {
1410 int r;
1411 unsigned long flags;
1412 struct smq_policy *mq = to_smq_policy(p);
1413
1414 spin_lock_irqsave(&mq->lock, flags);
1415 r = __lookup(mq, oblock, cblock,
1416 data_dir, fast_copy,
1417 NULL, background_work);
1418 spin_unlock_irqrestore(&mq->lock, flags);
1419
1420 return r;
1421 }
1422
smq_lookup_with_work(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,struct policy_work ** work)1423 static int smq_lookup_with_work(struct dm_cache_policy *p,
1424 dm_oblock_t oblock, dm_cblock_t *cblock,
1425 int data_dir, bool fast_copy,
1426 struct policy_work **work)
1427 {
1428 int r;
1429 bool background_queued;
1430 unsigned long flags;
1431 struct smq_policy *mq = to_smq_policy(p);
1432
1433 spin_lock_irqsave(&mq->lock, flags);
1434 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1435 spin_unlock_irqrestore(&mq->lock, flags);
1436
1437 return r;
1438 }
1439
smq_get_background_work(struct dm_cache_policy * p,bool idle,struct policy_work ** result)1440 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1441 struct policy_work **result)
1442 {
1443 int r;
1444 unsigned long flags;
1445 struct smq_policy *mq = to_smq_policy(p);
1446
1447 spin_lock_irqsave(&mq->lock, flags);
1448 r = btracker_issue(mq->bg_work, result);
1449 if (r == -ENODATA) {
1450 if (!clean_target_met(mq, idle)) {
1451 queue_writeback(mq, idle);
1452 r = btracker_issue(mq->bg_work, result);
1453 }
1454 }
1455 spin_unlock_irqrestore(&mq->lock, flags);
1456
1457 return r;
1458 }
1459
1460 /*
1461 * We need to clear any pending work flags that have been set, and in the
1462 * case of promotion free the entry for the destination cblock.
1463 */
__complete_background_work(struct smq_policy * mq,struct policy_work * work,bool success)1464 static void __complete_background_work(struct smq_policy *mq,
1465 struct policy_work *work,
1466 bool success)
1467 {
1468 struct entry *e = get_entry(&mq->cache_alloc,
1469 from_cblock(work->cblock));
1470
1471 switch (work->op) {
1472 case POLICY_PROMOTE:
1473 // !h, !q, a
1474 clear_pending(mq, e);
1475 if (success) {
1476 e->oblock = work->oblock;
1477 e->level = NR_CACHE_LEVELS - 1;
1478 push(mq, e);
1479 // h, q, a
1480 } else {
1481 free_entry(&mq->cache_alloc, e);
1482 // !h, !q, !a
1483 }
1484 break;
1485
1486 case POLICY_DEMOTE:
1487 // h, !q, a
1488 if (success) {
1489 h_remove(&mq->table, e);
1490 free_entry(&mq->cache_alloc, e);
1491 // !h, !q, !a
1492 } else {
1493 clear_pending(mq, e);
1494 push_queue(mq, e);
1495 // h, q, a
1496 }
1497 break;
1498
1499 case POLICY_WRITEBACK:
1500 // h, !q, a
1501 clear_pending(mq, e);
1502 push_queue(mq, e);
1503 // h, q, a
1504 break;
1505 }
1506
1507 btracker_complete(mq->bg_work, work);
1508 }
1509
smq_complete_background_work(struct dm_cache_policy * p,struct policy_work * work,bool success)1510 static void smq_complete_background_work(struct dm_cache_policy *p,
1511 struct policy_work *work,
1512 bool success)
1513 {
1514 unsigned long flags;
1515 struct smq_policy *mq = to_smq_policy(p);
1516
1517 spin_lock_irqsave(&mq->lock, flags);
1518 __complete_background_work(mq, work, success);
1519 spin_unlock_irqrestore(&mq->lock, flags);
1520 }
1521
1522 // in_hash(oblock) -> in_hash(oblock)
__smq_set_clear_dirty(struct smq_policy * mq,dm_cblock_t cblock,bool set)1523 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1524 {
1525 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1526
1527 if (e->pending_work)
1528 e->dirty = set;
1529 else {
1530 del_queue(mq, e);
1531 e->dirty = set;
1532 push_queue(mq, e);
1533 }
1534 }
1535
smq_set_dirty(struct dm_cache_policy * p,dm_cblock_t cblock)1536 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1537 {
1538 unsigned long flags;
1539 struct smq_policy *mq = to_smq_policy(p);
1540
1541 spin_lock_irqsave(&mq->lock, flags);
1542 __smq_set_clear_dirty(mq, cblock, true);
1543 spin_unlock_irqrestore(&mq->lock, flags);
1544 }
1545
smq_clear_dirty(struct dm_cache_policy * p,dm_cblock_t cblock)1546 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1547 {
1548 struct smq_policy *mq = to_smq_policy(p);
1549 unsigned long flags;
1550
1551 spin_lock_irqsave(&mq->lock, flags);
1552 __smq_set_clear_dirty(mq, cblock, false);
1553 spin_unlock_irqrestore(&mq->lock, flags);
1554 }
1555
random_level(dm_cblock_t cblock)1556 static unsigned random_level(dm_cblock_t cblock)
1557 {
1558 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1559 }
1560
smq_load_mapping(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)1561 static int smq_load_mapping(struct dm_cache_policy *p,
1562 dm_oblock_t oblock, dm_cblock_t cblock,
1563 bool dirty, uint32_t hint, bool hint_valid)
1564 {
1565 struct smq_policy *mq = to_smq_policy(p);
1566 struct entry *e;
1567
1568 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1569 e->oblock = oblock;
1570 e->dirty = dirty;
1571 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1572 e->pending_work = false;
1573
1574 /*
1575 * When we load mappings we push ahead of both sentinels in order to
1576 * allow demotions and cleaning to occur immediately.
1577 */
1578 push_front(mq, e);
1579
1580 return 0;
1581 }
1582
smq_invalidate_mapping(struct dm_cache_policy * p,dm_cblock_t cblock)1583 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1584 {
1585 struct smq_policy *mq = to_smq_policy(p);
1586 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1587
1588 if (!e->allocated)
1589 return -ENODATA;
1590
1591 // FIXME: what if this block has pending background work?
1592 del_queue(mq, e);
1593 h_remove(&mq->table, e);
1594 free_entry(&mq->cache_alloc, e);
1595 return 0;
1596 }
1597
smq_get_hint(struct dm_cache_policy * p,dm_cblock_t cblock)1598 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1599 {
1600 struct smq_policy *mq = to_smq_policy(p);
1601 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1602
1603 if (!e->allocated)
1604 return 0;
1605
1606 return e->level;
1607 }
1608
smq_residency(struct dm_cache_policy * p)1609 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1610 {
1611 dm_cblock_t r;
1612 unsigned long flags;
1613 struct smq_policy *mq = to_smq_policy(p);
1614
1615 spin_lock_irqsave(&mq->lock, flags);
1616 r = to_cblock(mq->cache_alloc.nr_allocated);
1617 spin_unlock_irqrestore(&mq->lock, flags);
1618
1619 return r;
1620 }
1621
smq_tick(struct dm_cache_policy * p,bool can_block)1622 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1623 {
1624 struct smq_policy *mq = to_smq_policy(p);
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&mq->lock, flags);
1628 mq->tick++;
1629 update_sentinels(mq);
1630 end_hotspot_period(mq);
1631 end_cache_period(mq);
1632 spin_unlock_irqrestore(&mq->lock, flags);
1633 }
1634
smq_allow_migrations(struct dm_cache_policy * p,bool allow)1635 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1636 {
1637 struct smq_policy *mq = to_smq_policy(p);
1638 mq->migrations_allowed = allow;
1639 }
1640
1641 /*
1642 * smq has no config values, but the old mq policy did. To avoid breaking
1643 * software we continue to accept these configurables for the mq policy,
1644 * but they have no effect.
1645 */
mq_set_config_value(struct dm_cache_policy * p,const char * key,const char * value)1646 static int mq_set_config_value(struct dm_cache_policy *p,
1647 const char *key, const char *value)
1648 {
1649 unsigned long tmp;
1650
1651 if (kstrtoul(value, 10, &tmp))
1652 return -EINVAL;
1653
1654 if (!strcasecmp(key, "random_threshold") ||
1655 !strcasecmp(key, "sequential_threshold") ||
1656 !strcasecmp(key, "discard_promote_adjustment") ||
1657 !strcasecmp(key, "read_promote_adjustment") ||
1658 !strcasecmp(key, "write_promote_adjustment")) {
1659 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1660 return 0;
1661 }
1662
1663 return -EINVAL;
1664 }
1665
mq_emit_config_values(struct dm_cache_policy * p,char * result,unsigned maxlen,ssize_t * sz_ptr)1666 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1667 unsigned maxlen, ssize_t *sz_ptr)
1668 {
1669 ssize_t sz = *sz_ptr;
1670
1671 DMEMIT("10 random_threshold 0 "
1672 "sequential_threshold 0 "
1673 "discard_promote_adjustment 0 "
1674 "read_promote_adjustment 0 "
1675 "write_promote_adjustment 0 ");
1676
1677 *sz_ptr = sz;
1678 return 0;
1679 }
1680
1681 /* Init the policy plugin interface function pointers. */
init_policy_functions(struct smq_policy * mq,bool mimic_mq)1682 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1683 {
1684 mq->policy.destroy = smq_destroy;
1685 mq->policy.lookup = smq_lookup;
1686 mq->policy.lookup_with_work = smq_lookup_with_work;
1687 mq->policy.get_background_work = smq_get_background_work;
1688 mq->policy.complete_background_work = smq_complete_background_work;
1689 mq->policy.set_dirty = smq_set_dirty;
1690 mq->policy.clear_dirty = smq_clear_dirty;
1691 mq->policy.load_mapping = smq_load_mapping;
1692 mq->policy.invalidate_mapping = smq_invalidate_mapping;
1693 mq->policy.get_hint = smq_get_hint;
1694 mq->policy.residency = smq_residency;
1695 mq->policy.tick = smq_tick;
1696 mq->policy.allow_migrations = smq_allow_migrations;
1697
1698 if (mimic_mq) {
1699 mq->policy.set_config_value = mq_set_config_value;
1700 mq->policy.emit_config_values = mq_emit_config_values;
1701 }
1702 }
1703
too_many_hotspot_blocks(sector_t origin_size,sector_t hotspot_block_size,unsigned nr_hotspot_blocks)1704 static bool too_many_hotspot_blocks(sector_t origin_size,
1705 sector_t hotspot_block_size,
1706 unsigned nr_hotspot_blocks)
1707 {
1708 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1709 }
1710
calc_hotspot_params(sector_t origin_size,sector_t cache_block_size,unsigned nr_cache_blocks,sector_t * hotspot_block_size,unsigned * nr_hotspot_blocks)1711 static void calc_hotspot_params(sector_t origin_size,
1712 sector_t cache_block_size,
1713 unsigned nr_cache_blocks,
1714 sector_t *hotspot_block_size,
1715 unsigned *nr_hotspot_blocks)
1716 {
1717 *hotspot_block_size = cache_block_size * 16u;
1718 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1719
1720 while ((*hotspot_block_size > cache_block_size) &&
1721 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1722 *hotspot_block_size /= 2u;
1723 }
1724
1725 static struct dm_cache_policy *
__smq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size,bool mimic_mq,bool migrations_allowed,bool cleaner)1726 __smq_create(dm_cblock_t cache_size, sector_t origin_size, sector_t cache_block_size,
1727 bool mimic_mq, bool migrations_allowed, bool cleaner)
1728 {
1729 unsigned i;
1730 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1731 unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1732 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1733
1734 if (!mq)
1735 return NULL;
1736
1737 init_policy_functions(mq, mimic_mq);
1738 mq->cache_size = cache_size;
1739 mq->cache_block_size = cache_block_size;
1740
1741 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1742 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1743
1744 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1745 mq->hotspot_level_jump = 1u;
1746 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1747 DMERR("couldn't initialize entry space");
1748 goto bad_pool_init;
1749 }
1750
1751 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1752 for (i = 0; i < nr_sentinels_per_queue; i++)
1753 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1754
1755 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1756 for (i = 0; i < nr_sentinels_per_queue; i++)
1757 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1758
1759 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1760 total_sentinels + mq->nr_hotspot_blocks);
1761
1762 init_allocator(&mq->cache_alloc, &mq->es,
1763 total_sentinels + mq->nr_hotspot_blocks,
1764 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1765
1766 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1767 if (!mq->hotspot_hit_bits) {
1768 DMERR("couldn't allocate hotspot hit bitset");
1769 goto bad_hotspot_hit_bits;
1770 }
1771 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1772
1773 if (from_cblock(cache_size)) {
1774 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1775 if (!mq->cache_hit_bits) {
1776 DMERR("couldn't allocate cache hit bitset");
1777 goto bad_cache_hit_bits;
1778 }
1779 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1780 } else
1781 mq->cache_hit_bits = NULL;
1782
1783 mq->tick = 0;
1784 spin_lock_init(&mq->lock);
1785
1786 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1787 mq->hotspot.nr_top_levels = 8;
1788 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1789 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1790
1791 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1792 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1793
1794 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1795 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1796
1797 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1798 goto bad_alloc_table;
1799
1800 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1801 goto bad_alloc_hotspot_table;
1802
1803 sentinels_init(mq);
1804 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1805
1806 mq->next_hotspot_period = jiffies;
1807 mq->next_cache_period = jiffies;
1808
1809 mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
1810 if (!mq->bg_work)
1811 goto bad_btracker;
1812
1813 mq->migrations_allowed = migrations_allowed;
1814 mq->cleaner = cleaner;
1815
1816 return &mq->policy;
1817
1818 bad_btracker:
1819 h_exit(&mq->hotspot_table);
1820 bad_alloc_hotspot_table:
1821 h_exit(&mq->table);
1822 bad_alloc_table:
1823 free_bitset(mq->cache_hit_bits);
1824 bad_cache_hit_bits:
1825 free_bitset(mq->hotspot_hit_bits);
1826 bad_hotspot_hit_bits:
1827 space_exit(&mq->es);
1828 bad_pool_init:
1829 kfree(mq);
1830
1831 return NULL;
1832 }
1833
smq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1834 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1835 sector_t origin_size,
1836 sector_t cache_block_size)
1837 {
1838 return __smq_create(cache_size, origin_size, cache_block_size,
1839 false, true, false);
1840 }
1841
mq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1842 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1843 sector_t origin_size,
1844 sector_t cache_block_size)
1845 {
1846 return __smq_create(cache_size, origin_size, cache_block_size,
1847 true, true, false);
1848 }
1849
cleaner_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1850 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1851 sector_t origin_size,
1852 sector_t cache_block_size)
1853 {
1854 return __smq_create(cache_size, origin_size, cache_block_size,
1855 false, false, true);
1856 }
1857
1858 /*----------------------------------------------------------------*/
1859
1860 static struct dm_cache_policy_type smq_policy_type = {
1861 .name = "smq",
1862 .version = {2, 0, 0},
1863 .hint_size = 4,
1864 .owner = THIS_MODULE,
1865 .create = smq_create
1866 };
1867
1868 static struct dm_cache_policy_type mq_policy_type = {
1869 .name = "mq",
1870 .version = {2, 0, 0},
1871 .hint_size = 4,
1872 .owner = THIS_MODULE,
1873 .create = mq_create,
1874 };
1875
1876 static struct dm_cache_policy_type cleaner_policy_type = {
1877 .name = "cleaner",
1878 .version = {2, 0, 0},
1879 .hint_size = 4,
1880 .owner = THIS_MODULE,
1881 .create = cleaner_create,
1882 };
1883
1884 static struct dm_cache_policy_type default_policy_type = {
1885 .name = "default",
1886 .version = {2, 0, 0},
1887 .hint_size = 4,
1888 .owner = THIS_MODULE,
1889 .create = smq_create,
1890 .real = &smq_policy_type
1891 };
1892
smq_init(void)1893 static int __init smq_init(void)
1894 {
1895 int r;
1896
1897 r = dm_cache_policy_register(&smq_policy_type);
1898 if (r) {
1899 DMERR("register failed %d", r);
1900 return -ENOMEM;
1901 }
1902
1903 r = dm_cache_policy_register(&mq_policy_type);
1904 if (r) {
1905 DMERR("register failed (as mq) %d", r);
1906 goto out_mq;
1907 }
1908
1909 r = dm_cache_policy_register(&cleaner_policy_type);
1910 if (r) {
1911 DMERR("register failed (as cleaner) %d", r);
1912 goto out_cleaner;
1913 }
1914
1915 r = dm_cache_policy_register(&default_policy_type);
1916 if (r) {
1917 DMERR("register failed (as default) %d", r);
1918 goto out_default;
1919 }
1920
1921 return 0;
1922
1923 out_default:
1924 dm_cache_policy_unregister(&cleaner_policy_type);
1925 out_cleaner:
1926 dm_cache_policy_unregister(&mq_policy_type);
1927 out_mq:
1928 dm_cache_policy_unregister(&smq_policy_type);
1929
1930 return -ENOMEM;
1931 }
1932
smq_exit(void)1933 static void __exit smq_exit(void)
1934 {
1935 dm_cache_policy_unregister(&cleaner_policy_type);
1936 dm_cache_policy_unregister(&smq_policy_type);
1937 dm_cache_policy_unregister(&mq_policy_type);
1938 dm_cache_policy_unregister(&default_policy_type);
1939 }
1940
1941 module_init(smq_init);
1942 module_exit(smq_exit);
1943
1944 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1945 MODULE_LICENSE("GPL");
1946 MODULE_DESCRIPTION("smq cache policy");
1947
1948 MODULE_ALIAS("dm-cache-default");
1949 MODULE_ALIAS("dm-cache-mq");
1950 MODULE_ALIAS("dm-cache-cleaner");
1951