1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61 {
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80 }
81
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
get_resync_r1bio(struct bio * bio)125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 return get_resync_pages(bio)->raid_bio;
128 }
129
r1bio_pool_alloc(gfp_t gfp_flags,void * data)130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
r1buf_pool_alloc(gfp_t gfp_flags,void * data)146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
178 */
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
186 bio = r1_bio->bios[j];
187
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
204 out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
207
208 out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
212
213 out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
216 }
217
r1buf_pool_free(void * __r1_bio,void * data)218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
224
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r1bio, data);
235 }
236
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 }
247 }
248
free_r1bio(struct r1bio * r1_bio)249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 struct r1conf *conf = r1_bio->mddev->private;
252
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256
put_buf(struct r1bio * r1_bio)257 static void put_buf(struct r1bio *r1_bio)
258 {
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
262
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
268
269 mempool_free(r1_bio, &conf->r1buf_pool);
270
271 lower_barrier(conf, sect);
272 }
273
reschedule_retry(struct r1bio * r1_bio)274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
280
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
call_bio_endio(struct r1bio * r1_bio)296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 struct bio *bio = r1_bio->master_bio;
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
302
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
305 bio_endio(bio);
306 }
307
raid_end_bio_io(struct r1bio * r1_bio)308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
319
320 call_bio_endio(r1_bio);
321 }
322 /*
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
325 */
326 allow_barrier(conf, r1_bio->sector);
327
328 free_r1bio(r1_bio);
329 }
330
331 /*
332 * Update disk head position estimator based on IRQ completion info.
333 */
update_head_pos(int disk,struct r1bio * r1_bio)334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335 {
336 struct r1conf *conf = r1_bio->mddev->private;
337
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
340 }
341
342 /*
343 * Find the disk number which triggered given bio
344 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346 {
347 int mirror;
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
350
351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 if (r1_bio->bios[mirror] == bio)
353 break;
354
355 BUG_ON(mirror == raid_disks * 2);
356 update_head_pos(mirror, r1_bio);
357
358 return mirror;
359 }
360
raid1_end_read_request(struct bio * bio)361 static void raid1_end_read_request(struct bio *bio)
362 {
363 int uptodate = !bio->bi_status;
364 struct r1bio *r1_bio = bio->bi_private;
365 struct r1conf *conf = r1_bio->mddev->private;
366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367
368 /*
369 * this branch is our 'one mirror IO has finished' event handler:
370 */
371 update_head_pos(r1_bio->read_disk, r1_bio);
372
373 if (uptodate)
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
378 * want to retry */
379 ;
380 else {
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
384 */
385 unsigned long flags;
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 test_bit(In_sync, &rdev->flags)))
390 uptodate = 1;
391 spin_unlock_irqrestore(&conf->device_lock, flags);
392 }
393
394 if (uptodate) {
395 raid_end_bio_io(r1_bio);
396 rdev_dec_pending(rdev, conf->mddev);
397 } else {
398 /*
399 * oops, read error:
400 */
401 char b[BDEVNAME_SIZE];
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410 }
411
close_write(struct r1bio * r1_bio)412 static void close_write(struct r1bio *r1_bio)
413 {
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
419 }
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
426 }
427
r1_bio_write_done(struct r1bio * r1_bio)428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
441 }
442 }
443
raid1_end_write_request(struct bio * bio)444 static void raid1_end_write_request(struct bio *bio)
445 {
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 bool discard_error;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
480 else {
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
487 } else {
488 /*
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
497 */
498 sector_t first_bad;
499 int bad_sectors;
500
501 r1_bio->bios[mirror] = NULL;
502 to_put = bio;
503 /*
504 * Do not set R1BIO_Uptodate if the current device is
505 * rebuilding or Faulty. This is because we cannot use
506 * such device for properly reading the data back (we could
507 * potentially use it, if the current write would have felt
508 * before rdev->recovery_offset, but for simplicity we don't
509 * check this here.
510 */
511 if (test_bit(In_sync, &rdev->flags) &&
512 !test_bit(Faulty, &rdev->flags))
513 set_bit(R1BIO_Uptodate, &r1_bio->state);
514
515 /* Maybe we can clear some bad blocks. */
516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517 &first_bad, &bad_sectors) && !discard_error) {
518 r1_bio->bios[mirror] = IO_MADE_GOOD;
519 set_bit(R1BIO_MadeGood, &r1_bio->state);
520 }
521 }
522
523 if (behind) {
524 if (test_bit(CollisionCheck, &rdev->flags))
525 remove_serial(rdev, lo, hi);
526 if (test_bit(WriteMostly, &rdev->flags))
527 atomic_dec(&r1_bio->behind_remaining);
528
529 /*
530 * In behind mode, we ACK the master bio once the I/O
531 * has safely reached all non-writemostly
532 * disks. Setting the Returned bit ensures that this
533 * gets done only once -- we don't ever want to return
534 * -EIO here, instead we'll wait
535 */
536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 /* Maybe we can return now */
539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 struct bio *mbio = r1_bio->master_bio;
541 pr_debug("raid1: behind end write sectors"
542 " %llu-%llu\n",
543 (unsigned long long) mbio->bi_iter.bi_sector,
544 (unsigned long long) bio_end_sector(mbio) - 1);
545 call_bio_endio(r1_bio);
546 }
547 }
548 } else if (rdev->mddev->serialize_policy)
549 remove_serial(rdev, lo, hi);
550 if (r1_bio->bios[mirror] == NULL)
551 rdev_dec_pending(rdev, conf->mddev);
552
553 /*
554 * Let's see if all mirrored write operations have finished
555 * already.
556 */
557 r1_bio_write_done(r1_bio);
558
559 if (to_put)
560 bio_put(to_put);
561 }
562
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)563 static sector_t align_to_barrier_unit_end(sector_t start_sector,
564 sector_t sectors)
565 {
566 sector_t len;
567
568 WARN_ON(sectors == 0);
569 /*
570 * len is the number of sectors from start_sector to end of the
571 * barrier unit which start_sector belongs to.
572 */
573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574 start_sector;
575
576 if (len > sectors)
577 len = sectors;
578
579 return len;
580 }
581
582 /*
583 * This routine returns the disk from which the requested read should
584 * be done. There is a per-array 'next expected sequential IO' sector
585 * number - if this matches on the next IO then we use the last disk.
586 * There is also a per-disk 'last know head position' sector that is
587 * maintained from IRQ contexts, both the normal and the resync IO
588 * completion handlers update this position correctly. If there is no
589 * perfect sequential match then we pick the disk whose head is closest.
590 *
591 * If there are 2 mirrors in the same 2 devices, performance degrades
592 * because position is mirror, not device based.
593 *
594 * The rdev for the device selected will have nr_pending incremented.
595 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
597 {
598 const sector_t this_sector = r1_bio->sector;
599 int sectors;
600 int best_good_sectors;
601 int best_disk, best_dist_disk, best_pending_disk;
602 int has_nonrot_disk;
603 int disk;
604 sector_t best_dist;
605 unsigned int min_pending;
606 struct md_rdev *rdev;
607 int choose_first;
608 int choose_next_idle;
609
610 rcu_read_lock();
611 /*
612 * Check if we can balance. We can balance on the whole
613 * device if no resync is going on, or below the resync window.
614 * We take the first readable disk when above the resync window.
615 */
616 retry:
617 sectors = r1_bio->sectors;
618 best_disk = -1;
619 best_dist_disk = -1;
620 best_dist = MaxSector;
621 best_pending_disk = -1;
622 min_pending = UINT_MAX;
623 best_good_sectors = 0;
624 has_nonrot_disk = 0;
625 choose_next_idle = 0;
626 clear_bit(R1BIO_FailFast, &r1_bio->state);
627
628 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 (mddev_is_clustered(conf->mddev) &&
630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631 this_sector + sectors)))
632 choose_first = 1;
633 else
634 choose_first = 0;
635
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 sector_t dist;
638 sector_t first_bad;
639 int bad_sectors;
640 unsigned int pending;
641 bool nonrot;
642
643 rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 if (r1_bio->bios[disk] == IO_BLOCKED
645 || rdev == NULL
646 || test_bit(Faulty, &rdev->flags))
647 continue;
648 if (!test_bit(In_sync, &rdev->flags) &&
649 rdev->recovery_offset < this_sector + sectors)
650 continue;
651 if (test_bit(WriteMostly, &rdev->flags)) {
652 /* Don't balance among write-mostly, just
653 * use the first as a last resort */
654 if (best_dist_disk < 0) {
655 if (is_badblock(rdev, this_sector, sectors,
656 &first_bad, &bad_sectors)) {
657 if (first_bad <= this_sector)
658 /* Cannot use this */
659 continue;
660 best_good_sectors = first_bad - this_sector;
661 } else
662 best_good_sectors = sectors;
663 best_dist_disk = disk;
664 best_pending_disk = disk;
665 }
666 continue;
667 }
668 /* This is a reasonable device to use. It might
669 * even be best.
670 */
671 if (is_badblock(rdev, this_sector, sectors,
672 &first_bad, &bad_sectors)) {
673 if (best_dist < MaxSector)
674 /* already have a better device */
675 continue;
676 if (first_bad <= this_sector) {
677 /* cannot read here. If this is the 'primary'
678 * device, then we must not read beyond
679 * bad_sectors from another device..
680 */
681 bad_sectors -= (this_sector - first_bad);
682 if (choose_first && sectors > bad_sectors)
683 sectors = bad_sectors;
684 if (best_good_sectors > sectors)
685 best_good_sectors = sectors;
686
687 } else {
688 sector_t good_sectors = first_bad - this_sector;
689 if (good_sectors > best_good_sectors) {
690 best_good_sectors = good_sectors;
691 best_disk = disk;
692 }
693 if (choose_first)
694 break;
695 }
696 continue;
697 } else {
698 if ((sectors > best_good_sectors) && (best_disk >= 0))
699 best_disk = -1;
700 best_good_sectors = sectors;
701 }
702
703 if (best_disk >= 0)
704 /* At least two disks to choose from so failfast is OK */
705 set_bit(R1BIO_FailFast, &r1_bio->state);
706
707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 has_nonrot_disk |= nonrot;
709 pending = atomic_read(&rdev->nr_pending);
710 dist = abs(this_sector - conf->mirrors[disk].head_position);
711 if (choose_first) {
712 best_disk = disk;
713 break;
714 }
715 /* Don't change to another disk for sequential reads */
716 if (conf->mirrors[disk].next_seq_sect == this_sector
717 || dist == 0) {
718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 struct raid1_info *mirror = &conf->mirrors[disk];
720
721 best_disk = disk;
722 /*
723 * If buffered sequential IO size exceeds optimal
724 * iosize, check if there is idle disk. If yes, choose
725 * the idle disk. read_balance could already choose an
726 * idle disk before noticing it's a sequential IO in
727 * this disk. This doesn't matter because this disk
728 * will idle, next time it will be utilized after the
729 * first disk has IO size exceeds optimal iosize. In
730 * this way, iosize of the first disk will be optimal
731 * iosize at least. iosize of the second disk might be
732 * small, but not a big deal since when the second disk
733 * starts IO, the first disk is likely still busy.
734 */
735 if (nonrot && opt_iosize > 0 &&
736 mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >=
739 mirror->seq_start) {
740 choose_next_idle = 1;
741 continue;
742 }
743 break;
744 }
745
746 if (choose_next_idle)
747 continue;
748
749 if (min_pending > pending) {
750 min_pending = pending;
751 best_pending_disk = disk;
752 }
753
754 if (dist < best_dist) {
755 best_dist = dist;
756 best_dist_disk = disk;
757 }
758 }
759
760 /*
761 * If all disks are rotational, choose the closest disk. If any disk is
762 * non-rotational, choose the disk with less pending request even the
763 * disk is rotational, which might/might not be optimal for raids with
764 * mixed ratation/non-rotational disks depending on workload.
765 */
766 if (best_disk == -1) {
767 if (has_nonrot_disk || min_pending == 0)
768 best_disk = best_pending_disk;
769 else
770 best_disk = best_dist_disk;
771 }
772
773 if (best_disk >= 0) {
774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
775 if (!rdev)
776 goto retry;
777 atomic_inc(&rdev->nr_pending);
778 sectors = best_good_sectors;
779
780 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 conf->mirrors[best_disk].seq_start = this_sector;
782
783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
784 }
785 rcu_read_unlock();
786 *max_sectors = sectors;
787
788 return best_disk;
789 }
790
flush_bio_list(struct r1conf * conf,struct bio * bio)791 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792 {
793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
794 md_bitmap_unplug(conf->mddev->bitmap);
795 wake_up(&conf->wait_barrier);
796
797 while (bio) { /* submit pending writes */
798 struct bio *next = bio->bi_next;
799 struct md_rdev *rdev = (void *)bio->bi_bdev;
800 bio->bi_next = NULL;
801 bio_set_dev(bio, rdev->bdev);
802 if (test_bit(Faulty, &rdev->flags)) {
803 bio_io_error(bio);
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
806 /* Just ignore it */
807 bio_endio(bio);
808 else
809 submit_bio_noacct(bio);
810 bio = next;
811 cond_resched();
812 }
813 }
814
flush_pending_writes(struct r1conf * conf)815 static void flush_pending_writes(struct r1conf *conf)
816 {
817 /* Any writes that have been queued but are awaiting
818 * bitmap updates get flushed here.
819 */
820 spin_lock_irq(&conf->device_lock);
821
822 if (conf->pending_bio_list.head) {
823 struct blk_plug plug;
824 struct bio *bio;
825
826 bio = bio_list_get(&conf->pending_bio_list);
827 conf->pending_count = 0;
828 spin_unlock_irq(&conf->device_lock);
829
830 /*
831 * As this is called in a wait_event() loop (see freeze_array),
832 * current->state might be TASK_UNINTERRUPTIBLE which will
833 * cause a warning when we prepare to wait again. As it is
834 * rare that this path is taken, it is perfectly safe to force
835 * us to go around the wait_event() loop again, so the warning
836 * is a false-positive. Silence the warning by resetting
837 * thread state
838 */
839 __set_current_state(TASK_RUNNING);
840 blk_start_plug(&plug);
841 flush_bio_list(conf, bio);
842 blk_finish_plug(&plug);
843 } else
844 spin_unlock_irq(&conf->device_lock);
845 }
846
847 /* Barriers....
848 * Sometimes we need to suspend IO while we do something else,
849 * either some resync/recovery, or reconfigure the array.
850 * To do this we raise a 'barrier'.
851 * The 'barrier' is a counter that can be raised multiple times
852 * to count how many activities are happening which preclude
853 * normal IO.
854 * We can only raise the barrier if there is no pending IO.
855 * i.e. if nr_pending == 0.
856 * We choose only to raise the barrier if no-one is waiting for the
857 * barrier to go down. This means that as soon as an IO request
858 * is ready, no other operations which require a barrier will start
859 * until the IO request has had a chance.
860 *
861 * So: regular IO calls 'wait_barrier'. When that returns there
862 * is no backgroup IO happening, It must arrange to call
863 * allow_barrier when it has finished its IO.
864 * backgroup IO calls must call raise_barrier. Once that returns
865 * there is no normal IO happeing. It must arrange to call
866 * lower_barrier when the particular background IO completes.
867 *
868 * If resync/recovery is interrupted, returns -EINTR;
869 * Otherwise, returns 0.
870 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
872 {
873 int idx = sector_to_idx(sector_nr);
874
875 spin_lock_irq(&conf->resync_lock);
876
877 /* Wait until no block IO is waiting */
878 wait_event_lock_irq(conf->wait_barrier,
879 !atomic_read(&conf->nr_waiting[idx]),
880 conf->resync_lock);
881
882 /* block any new IO from starting */
883 atomic_inc(&conf->barrier[idx]);
884 /*
885 * In raise_barrier() we firstly increase conf->barrier[idx] then
886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887 * increase conf->nr_pending[idx] then check conf->barrier[idx].
888 * A memory barrier here to make sure conf->nr_pending[idx] won't
889 * be fetched before conf->barrier[idx] is increased. Otherwise
890 * there will be a race between raise_barrier() and _wait_barrier().
891 */
892 smp_mb__after_atomic();
893
894 /* For these conditions we must wait:
895 * A: while the array is in frozen state
896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897 * existing in corresponding I/O barrier bucket.
898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899 * max resync count which allowed on current I/O barrier bucket.
900 */
901 wait_event_lock_irq(conf->wait_barrier,
902 (!conf->array_frozen &&
903 !atomic_read(&conf->nr_pending[idx]) &&
904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
906 conf->resync_lock);
907
908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909 atomic_dec(&conf->barrier[idx]);
910 spin_unlock_irq(&conf->resync_lock);
911 wake_up(&conf->wait_barrier);
912 return -EINTR;
913 }
914
915 atomic_inc(&conf->nr_sync_pending);
916 spin_unlock_irq(&conf->resync_lock);
917
918 return 0;
919 }
920
lower_barrier(struct r1conf * conf,sector_t sector_nr)921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
922 {
923 int idx = sector_to_idx(sector_nr);
924
925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
926
927 atomic_dec(&conf->barrier[idx]);
928 atomic_dec(&conf->nr_sync_pending);
929 wake_up(&conf->wait_barrier);
930 }
931
_wait_barrier(struct r1conf * conf,int idx)932 static void _wait_barrier(struct r1conf *conf, int idx)
933 {
934 /*
935 * We need to increase conf->nr_pending[idx] very early here,
936 * then raise_barrier() can be blocked when it waits for
937 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 * conf->resync_lock when there is no barrier raised in same
939 * barrier unit bucket. Also if the array is frozen, I/O
940 * should be blocked until array is unfrozen.
941 */
942 atomic_inc(&conf->nr_pending[idx]);
943 /*
944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 * will be a race between _wait_barrier() and raise_barrier().
950 */
951 smp_mb__after_atomic();
952
953 /*
954 * Don't worry about checking two atomic_t variables at same time
955 * here. If during we check conf->barrier[idx], the array is
956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 * 0, it is safe to return and make the I/O continue. Because the
958 * array is frozen, all I/O returned here will eventually complete
959 * or be queued, no race will happen. See code comment in
960 * frozen_array().
961 */
962 if (!READ_ONCE(conf->array_frozen) &&
963 !atomic_read(&conf->barrier[idx]))
964 return;
965
966 /*
967 * After holding conf->resync_lock, conf->nr_pending[idx]
968 * should be decreased before waiting for barrier to drop.
969 * Otherwise, we may encounter a race condition because
970 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 * to be 0 at same time.
972 */
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
976 /*
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
979 */
980 wake_up(&conf->wait_barrier);
981 /* Wait for the barrier in same barrier unit bucket to drop. */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->array_frozen &&
984 !atomic_read(&conf->barrier[idx]),
985 conf->resync_lock);
986 atomic_inc(&conf->nr_pending[idx]);
987 atomic_dec(&conf->nr_waiting[idx]);
988 spin_unlock_irq(&conf->resync_lock);
989 }
990
wait_read_barrier(struct r1conf * conf,sector_t sector_nr)991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
992 {
993 int idx = sector_to_idx(sector_nr);
994
995 /*
996 * Very similar to _wait_barrier(). The difference is, for read
997 * I/O we don't need wait for sync I/O, but if the whole array
998 * is frozen, the read I/O still has to wait until the array is
999 * unfrozen. Since there is no ordering requirement with
1000 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1001 */
1002 atomic_inc(&conf->nr_pending[idx]);
1003
1004 if (!READ_ONCE(conf->array_frozen))
1005 return;
1006
1007 spin_lock_irq(&conf->resync_lock);
1008 atomic_inc(&conf->nr_waiting[idx]);
1009 atomic_dec(&conf->nr_pending[idx]);
1010 /*
1011 * In case freeze_array() is waiting for
1012 * get_unqueued_pending() == extra
1013 */
1014 wake_up(&conf->wait_barrier);
1015 /* Wait for array to be unfrozen */
1016 wait_event_lock_irq(conf->wait_barrier,
1017 !conf->array_frozen,
1018 conf->resync_lock);
1019 atomic_inc(&conf->nr_pending[idx]);
1020 atomic_dec(&conf->nr_waiting[idx]);
1021 spin_unlock_irq(&conf->resync_lock);
1022 }
1023
wait_barrier(struct r1conf * conf,sector_t sector_nr)1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1025 {
1026 int idx = sector_to_idx(sector_nr);
1027
1028 _wait_barrier(conf, idx);
1029 }
1030
_allow_barrier(struct r1conf * conf,int idx)1031 static void _allow_barrier(struct r1conf *conf, int idx)
1032 {
1033 atomic_dec(&conf->nr_pending[idx]);
1034 wake_up(&conf->wait_barrier);
1035 }
1036
allow_barrier(struct r1conf * conf,sector_t sector_nr)1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1038 {
1039 int idx = sector_to_idx(sector_nr);
1040
1041 _allow_barrier(conf, idx);
1042 }
1043
1044 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1045 static int get_unqueued_pending(struct r1conf *conf)
1046 {
1047 int idx, ret;
1048
1049 ret = atomic_read(&conf->nr_sync_pending);
1050 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1051 ret += atomic_read(&conf->nr_pending[idx]) -
1052 atomic_read(&conf->nr_queued[idx]);
1053
1054 return ret;
1055 }
1056
freeze_array(struct r1conf * conf,int extra)1057 static void freeze_array(struct r1conf *conf, int extra)
1058 {
1059 /* Stop sync I/O and normal I/O and wait for everything to
1060 * go quiet.
1061 * This is called in two situations:
1062 * 1) management command handlers (reshape, remove disk, quiesce).
1063 * 2) one normal I/O request failed.
1064
1065 * After array_frozen is set to 1, new sync IO will be blocked at
1066 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1067 * or wait_read_barrier(). The flying I/Os will either complete or be
1068 * queued. When everything goes quite, there are only queued I/Os left.
1069
1070 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1071 * barrier bucket index which this I/O request hits. When all sync and
1072 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1073 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1074 * in handle_read_error(), we may call freeze_array() before trying to
1075 * fix the read error. In this case, the error read I/O is not queued,
1076 * so get_unqueued_pending() == 1.
1077 *
1078 * Therefore before this function returns, we need to wait until
1079 * get_unqueued_pendings(conf) gets equal to extra. For
1080 * normal I/O context, extra is 1, in rested situations extra is 0.
1081 */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->array_frozen = 1;
1084 raid1_log(conf->mddev, "wait freeze");
1085 wait_event_lock_irq_cmd(
1086 conf->wait_barrier,
1087 get_unqueued_pending(conf) == extra,
1088 conf->resync_lock,
1089 flush_pending_writes(conf));
1090 spin_unlock_irq(&conf->resync_lock);
1091 }
unfreeze_array(struct r1conf * conf)1092 static void unfreeze_array(struct r1conf *conf)
1093 {
1094 /* reverse the effect of the freeze */
1095 spin_lock_irq(&conf->resync_lock);
1096 conf->array_frozen = 0;
1097 spin_unlock_irq(&conf->resync_lock);
1098 wake_up(&conf->wait_barrier);
1099 }
1100
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1101 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1102 struct bio *bio)
1103 {
1104 int size = bio->bi_iter.bi_size;
1105 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1106 int i = 0;
1107 struct bio *behind_bio = NULL;
1108
1109 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1110 if (!behind_bio)
1111 return;
1112
1113 /* discard op, we don't support writezero/writesame yet */
1114 if (!bio_has_data(bio)) {
1115 behind_bio->bi_iter.bi_size = size;
1116 goto skip_copy;
1117 }
1118
1119 behind_bio->bi_write_hint = bio->bi_write_hint;
1120
1121 while (i < vcnt && size) {
1122 struct page *page;
1123 int len = min_t(int, PAGE_SIZE, size);
1124
1125 page = alloc_page(GFP_NOIO);
1126 if (unlikely(!page))
1127 goto free_pages;
1128
1129 bio_add_page(behind_bio, page, len, 0);
1130
1131 size -= len;
1132 i++;
1133 }
1134
1135 bio_copy_data(behind_bio, bio);
1136 skip_copy:
1137 r1_bio->behind_master_bio = behind_bio;
1138 set_bit(R1BIO_BehindIO, &r1_bio->state);
1139
1140 return;
1141
1142 free_pages:
1143 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1144 bio->bi_iter.bi_size);
1145 bio_free_pages(behind_bio);
1146 bio_put(behind_bio);
1147 }
1148
1149 struct raid1_plug_cb {
1150 struct blk_plug_cb cb;
1151 struct bio_list pending;
1152 int pending_cnt;
1153 };
1154
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1156 {
1157 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1158 cb);
1159 struct mddev *mddev = plug->cb.data;
1160 struct r1conf *conf = mddev->private;
1161 struct bio *bio;
1162
1163 if (from_schedule || current->bio_list) {
1164 spin_lock_irq(&conf->device_lock);
1165 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1166 conf->pending_count += plug->pending_cnt;
1167 spin_unlock_irq(&conf->device_lock);
1168 wake_up(&conf->wait_barrier);
1169 md_wakeup_thread(mddev->thread);
1170 kfree(plug);
1171 return;
1172 }
1173
1174 /* we aren't scheduling, so we can do the write-out directly. */
1175 bio = bio_list_get(&plug->pending);
1176 flush_bio_list(conf, bio);
1177 kfree(plug);
1178 }
1179
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1181 {
1182 r1_bio->master_bio = bio;
1183 r1_bio->sectors = bio_sectors(bio);
1184 r1_bio->state = 0;
1185 r1_bio->mddev = mddev;
1186 r1_bio->sector = bio->bi_iter.bi_sector;
1187 }
1188
1189 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1190 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1191 {
1192 struct r1conf *conf = mddev->private;
1193 struct r1bio *r1_bio;
1194
1195 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1196 /* Ensure no bio records IO_BLOCKED */
1197 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1198 init_r1bio(r1_bio, mddev, bio);
1199 return r1_bio;
1200 }
1201
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1203 int max_read_sectors, struct r1bio *r1_bio)
1204 {
1205 struct r1conf *conf = mddev->private;
1206 struct raid1_info *mirror;
1207 struct bio *read_bio;
1208 struct bitmap *bitmap = mddev->bitmap;
1209 const int op = bio_op(bio);
1210 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1211 int max_sectors;
1212 int rdisk;
1213 bool r1bio_existed = !!r1_bio;
1214 char b[BDEVNAME_SIZE];
1215
1216 /*
1217 * If r1_bio is set, we are blocking the raid1d thread
1218 * so there is a tiny risk of deadlock. So ask for
1219 * emergency memory if needed.
1220 */
1221 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1222
1223 if (r1bio_existed) {
1224 /* Need to get the block device name carefully */
1225 struct md_rdev *rdev;
1226 rcu_read_lock();
1227 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1228 if (rdev)
1229 bdevname(rdev->bdev, b);
1230 else
1231 strcpy(b, "???");
1232 rcu_read_unlock();
1233 }
1234
1235 /*
1236 * Still need barrier for READ in case that whole
1237 * array is frozen.
1238 */
1239 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1240
1241 if (!r1_bio)
1242 r1_bio = alloc_r1bio(mddev, bio);
1243 else
1244 init_r1bio(r1_bio, mddev, bio);
1245 r1_bio->sectors = max_read_sectors;
1246
1247 /*
1248 * make_request() can abort the operation when read-ahead is being
1249 * used and no empty request is available.
1250 */
1251 rdisk = read_balance(conf, r1_bio, &max_sectors);
1252
1253 if (rdisk < 0) {
1254 /* couldn't find anywhere to read from */
1255 if (r1bio_existed) {
1256 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1257 mdname(mddev),
1258 b,
1259 (unsigned long long)r1_bio->sector);
1260 }
1261 raid_end_bio_io(r1_bio);
1262 return;
1263 }
1264 mirror = conf->mirrors + rdisk;
1265
1266 if (r1bio_existed)
1267 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1268 mdname(mddev),
1269 (unsigned long long)r1_bio->sector,
1270 bdevname(mirror->rdev->bdev, b));
1271
1272 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1273 bitmap) {
1274 /*
1275 * Reading from a write-mostly device must take care not to
1276 * over-take any writes that are 'behind'
1277 */
1278 raid1_log(mddev, "wait behind writes");
1279 wait_event(bitmap->behind_wait,
1280 atomic_read(&bitmap->behind_writes) == 0);
1281 }
1282
1283 if (max_sectors < bio_sectors(bio)) {
1284 struct bio *split = bio_split(bio, max_sectors,
1285 gfp, &conf->bio_split);
1286 bio_chain(split, bio);
1287 submit_bio_noacct(bio);
1288 bio = split;
1289 r1_bio->master_bio = bio;
1290 r1_bio->sectors = max_sectors;
1291 }
1292
1293 r1_bio->read_disk = rdisk;
1294
1295 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1296 r1_bio->start_time = bio_start_io_acct(bio);
1297
1298 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1299
1300 r1_bio->bios[rdisk] = read_bio;
1301
1302 read_bio->bi_iter.bi_sector = r1_bio->sector +
1303 mirror->rdev->data_offset;
1304 bio_set_dev(read_bio, mirror->rdev->bdev);
1305 read_bio->bi_end_io = raid1_end_read_request;
1306 bio_set_op_attrs(read_bio, op, do_sync);
1307 if (test_bit(FailFast, &mirror->rdev->flags) &&
1308 test_bit(R1BIO_FailFast, &r1_bio->state))
1309 read_bio->bi_opf |= MD_FAILFAST;
1310 read_bio->bi_private = r1_bio;
1311
1312 if (mddev->gendisk)
1313 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1314 r1_bio->sector);
1315
1316 submit_bio_noacct(read_bio);
1317 }
1318
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1319 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1320 int max_write_sectors)
1321 {
1322 struct r1conf *conf = mddev->private;
1323 struct r1bio *r1_bio;
1324 int i, disks;
1325 struct bitmap *bitmap = mddev->bitmap;
1326 unsigned long flags;
1327 struct md_rdev *blocked_rdev;
1328 struct blk_plug_cb *cb;
1329 struct raid1_plug_cb *plug = NULL;
1330 int first_clone;
1331 int max_sectors;
1332 bool write_behind = false;
1333
1334 if (mddev_is_clustered(mddev) &&
1335 md_cluster_ops->area_resyncing(mddev, WRITE,
1336 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1337
1338 DEFINE_WAIT(w);
1339 for (;;) {
1340 prepare_to_wait(&conf->wait_barrier,
1341 &w, TASK_IDLE);
1342 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1343 bio->bi_iter.bi_sector,
1344 bio_end_sector(bio)))
1345 break;
1346 schedule();
1347 }
1348 finish_wait(&conf->wait_barrier, &w);
1349 }
1350
1351 /*
1352 * Register the new request and wait if the reconstruction
1353 * thread has put up a bar for new requests.
1354 * Continue immediately if no resync is active currently.
1355 */
1356 wait_barrier(conf, bio->bi_iter.bi_sector);
1357
1358 r1_bio = alloc_r1bio(mddev, bio);
1359 r1_bio->sectors = max_write_sectors;
1360
1361 /* first select target devices under rcu_lock and
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
1364 * If there are known/acknowledged bad blocks on any device on
1365 * which we have seen a write error, we want to avoid writing those
1366 * blocks.
1367 * This potentially requires several writes to write around
1368 * the bad blocks. Each set of writes gets it's own r1bio
1369 * with a set of bios attached.
1370 */
1371
1372 disks = conf->raid_disks * 2;
1373 retry_write:
1374 blocked_rdev = NULL;
1375 rcu_read_lock();
1376 max_sectors = r1_bio->sectors;
1377 for (i = 0; i < disks; i++) {
1378 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379
1380 /*
1381 * The write-behind io is only attempted on drives marked as
1382 * write-mostly, which means we could allocate write behind
1383 * bio later.
1384 */
1385 if (rdev && test_bit(WriteMostly, &rdev->flags))
1386 write_behind = true;
1387
1388 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1389 atomic_inc(&rdev->nr_pending);
1390 blocked_rdev = rdev;
1391 break;
1392 }
1393 r1_bio->bios[i] = NULL;
1394 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1395 if (i < conf->raid_disks)
1396 set_bit(R1BIO_Degraded, &r1_bio->state);
1397 continue;
1398 }
1399
1400 atomic_inc(&rdev->nr_pending);
1401 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1402 sector_t first_bad;
1403 int bad_sectors;
1404 int is_bad;
1405
1406 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1407 &first_bad, &bad_sectors);
1408 if (is_bad < 0) {
1409 /* mustn't write here until the bad block is
1410 * acknowledged*/
1411 set_bit(BlockedBadBlocks, &rdev->flags);
1412 blocked_rdev = rdev;
1413 break;
1414 }
1415 if (is_bad && first_bad <= r1_bio->sector) {
1416 /* Cannot write here at all */
1417 bad_sectors -= (r1_bio->sector - first_bad);
1418 if (bad_sectors < max_sectors)
1419 /* mustn't write more than bad_sectors
1420 * to other devices yet
1421 */
1422 max_sectors = bad_sectors;
1423 rdev_dec_pending(rdev, mddev);
1424 /* We don't set R1BIO_Degraded as that
1425 * only applies if the disk is
1426 * missing, so it might be re-added,
1427 * and we want to know to recover this
1428 * chunk.
1429 * In this case the device is here,
1430 * and the fact that this chunk is not
1431 * in-sync is recorded in the bad
1432 * block log
1433 */
1434 continue;
1435 }
1436 if (is_bad) {
1437 int good_sectors = first_bad - r1_bio->sector;
1438 if (good_sectors < max_sectors)
1439 max_sectors = good_sectors;
1440 }
1441 }
1442 r1_bio->bios[i] = bio;
1443 }
1444 rcu_read_unlock();
1445
1446 if (unlikely(blocked_rdev)) {
1447 /* Wait for this device to become unblocked */
1448 int j;
1449
1450 for (j = 0; j < i; j++)
1451 if (r1_bio->bios[j])
1452 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1453 r1_bio->state = 0;
1454 allow_barrier(conf, bio->bi_iter.bi_sector);
1455 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1456 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1457 wait_barrier(conf, bio->bi_iter.bi_sector);
1458 goto retry_write;
1459 }
1460
1461 /*
1462 * When using a bitmap, we may call alloc_behind_master_bio below.
1463 * alloc_behind_master_bio allocates a copy of the data payload a page
1464 * at a time and thus needs a new bio that can fit the whole payload
1465 * this bio in page sized chunks.
1466 */
1467 if (write_behind && bitmap)
1468 max_sectors = min_t(int, max_sectors,
1469 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1470 if (max_sectors < bio_sectors(bio)) {
1471 struct bio *split = bio_split(bio, max_sectors,
1472 GFP_NOIO, &conf->bio_split);
1473 bio_chain(split, bio);
1474 submit_bio_noacct(bio);
1475 bio = split;
1476 r1_bio->master_bio = bio;
1477 r1_bio->sectors = max_sectors;
1478 }
1479
1480 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1481 r1_bio->start_time = bio_start_io_acct(bio);
1482 atomic_set(&r1_bio->remaining, 1);
1483 atomic_set(&r1_bio->behind_remaining, 0);
1484
1485 first_clone = 1;
1486
1487 for (i = 0; i < disks; i++) {
1488 struct bio *mbio = NULL;
1489 struct md_rdev *rdev = conf->mirrors[i].rdev;
1490 if (!r1_bio->bios[i])
1491 continue;
1492
1493 if (first_clone) {
1494 /* do behind I/O ?
1495 * Not if there are too many, or cannot
1496 * allocate memory, or a reader on WriteMostly
1497 * is waiting for behind writes to flush */
1498 if (bitmap &&
1499 test_bit(WriteMostly, &rdev->flags) &&
1500 (atomic_read(&bitmap->behind_writes)
1501 < mddev->bitmap_info.max_write_behind) &&
1502 !waitqueue_active(&bitmap->behind_wait)) {
1503 alloc_behind_master_bio(r1_bio, bio);
1504 }
1505
1506 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1507 test_bit(R1BIO_BehindIO, &r1_bio->state));
1508 first_clone = 0;
1509 }
1510
1511 if (r1_bio->behind_master_bio)
1512 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1513 GFP_NOIO, &mddev->bio_set);
1514 else
1515 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1516
1517 if (r1_bio->behind_master_bio) {
1518 if (test_bit(CollisionCheck, &rdev->flags))
1519 wait_for_serialization(rdev, r1_bio);
1520 if (test_bit(WriteMostly, &rdev->flags))
1521 atomic_inc(&r1_bio->behind_remaining);
1522 } else if (mddev->serialize_policy)
1523 wait_for_serialization(rdev, r1_bio);
1524
1525 r1_bio->bios[i] = mbio;
1526
1527 mbio->bi_iter.bi_sector = (r1_bio->sector +
1528 conf->mirrors[i].rdev->data_offset);
1529 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1530 mbio->bi_end_io = raid1_end_write_request;
1531 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1532 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1533 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1534 conf->raid_disks - mddev->degraded > 1)
1535 mbio->bi_opf |= MD_FAILFAST;
1536 mbio->bi_private = r1_bio;
1537
1538 atomic_inc(&r1_bio->remaining);
1539
1540 if (mddev->gendisk)
1541 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1542 r1_bio->sector);
1543 /* flush_pending_writes() needs access to the rdev so...*/
1544 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1545
1546 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1547 if (cb)
1548 plug = container_of(cb, struct raid1_plug_cb, cb);
1549 else
1550 plug = NULL;
1551 if (plug) {
1552 bio_list_add(&plug->pending, mbio);
1553 plug->pending_cnt++;
1554 } else {
1555 spin_lock_irqsave(&conf->device_lock, flags);
1556 bio_list_add(&conf->pending_bio_list, mbio);
1557 conf->pending_count++;
1558 spin_unlock_irqrestore(&conf->device_lock, flags);
1559 md_wakeup_thread(mddev->thread);
1560 }
1561 }
1562
1563 r1_bio_write_done(r1_bio);
1564
1565 /* In case raid1d snuck in to freeze_array */
1566 wake_up(&conf->wait_barrier);
1567 }
1568
raid1_make_request(struct mddev * mddev,struct bio * bio)1569 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1570 {
1571 sector_t sectors;
1572
1573 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1574 && md_flush_request(mddev, bio))
1575 return true;
1576
1577 /*
1578 * There is a limit to the maximum size, but
1579 * the read/write handler might find a lower limit
1580 * due to bad blocks. To avoid multiple splits,
1581 * we pass the maximum number of sectors down
1582 * and let the lower level perform the split.
1583 */
1584 sectors = align_to_barrier_unit_end(
1585 bio->bi_iter.bi_sector, bio_sectors(bio));
1586
1587 if (bio_data_dir(bio) == READ)
1588 raid1_read_request(mddev, bio, sectors, NULL);
1589 else {
1590 if (!md_write_start(mddev,bio))
1591 return false;
1592 raid1_write_request(mddev, bio, sectors);
1593 }
1594 return true;
1595 }
1596
raid1_status(struct seq_file * seq,struct mddev * mddev)1597 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1598 {
1599 struct r1conf *conf = mddev->private;
1600 int i;
1601
1602 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1603 conf->raid_disks - mddev->degraded);
1604 rcu_read_lock();
1605 for (i = 0; i < conf->raid_disks; i++) {
1606 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1607 seq_printf(seq, "%s",
1608 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609 }
1610 rcu_read_unlock();
1611 seq_printf(seq, "]");
1612 }
1613
1614 /**
1615 * raid1_error() - RAID1 error handler.
1616 * @mddev: affected md device.
1617 * @rdev: member device to fail.
1618 *
1619 * The routine acknowledges &rdev failure and determines new @mddev state.
1620 * If it failed, then:
1621 * - &MD_BROKEN flag is set in &mddev->flags.
1622 * - recovery is disabled.
1623 * Otherwise, it must be degraded:
1624 * - recovery is interrupted.
1625 * - &mddev->degraded is bumped.
1626 *
1627 * @rdev is marked as &Faulty excluding case when array is failed and
1628 * &mddev->fail_last_dev is off.
1629 */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1630 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 char b[BDEVNAME_SIZE];
1633 struct r1conf *conf = mddev->private;
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&conf->device_lock, flags);
1637
1638 if (test_bit(In_sync, &rdev->flags) &&
1639 (conf->raid_disks - mddev->degraded) == 1) {
1640 set_bit(MD_BROKEN, &mddev->flags);
1641
1642 if (!mddev->fail_last_dev) {
1643 conf->recovery_disabled = mddev->recovery_disabled;
1644 spin_unlock_irqrestore(&conf->device_lock, flags);
1645 return;
1646 }
1647 }
1648 set_bit(Blocked, &rdev->flags);
1649 if (test_and_clear_bit(In_sync, &rdev->flags))
1650 mddev->degraded++;
1651 set_bit(Faulty, &rdev->flags);
1652 spin_unlock_irqrestore(&conf->device_lock, flags);
1653 /*
1654 * if recovery is running, make sure it aborts.
1655 */
1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 set_mask_bits(&mddev->sb_flags, 0,
1658 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1659 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1660 "md/raid1:%s: Operation continuing on %d devices.\n",
1661 mdname(mddev), bdevname(rdev->bdev, b),
1662 mdname(mddev), conf->raid_disks - mddev->degraded);
1663 }
1664
print_conf(struct r1conf * conf)1665 static void print_conf(struct r1conf *conf)
1666 {
1667 int i;
1668
1669 pr_debug("RAID1 conf printout:\n");
1670 if (!conf) {
1671 pr_debug("(!conf)\n");
1672 return;
1673 }
1674 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1675 conf->raid_disks);
1676
1677 rcu_read_lock();
1678 for (i = 0; i < conf->raid_disks; i++) {
1679 char b[BDEVNAME_SIZE];
1680 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1681 if (rdev)
1682 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1683 i, !test_bit(In_sync, &rdev->flags),
1684 !test_bit(Faulty, &rdev->flags),
1685 bdevname(rdev->bdev,b));
1686 }
1687 rcu_read_unlock();
1688 }
1689
close_sync(struct r1conf * conf)1690 static void close_sync(struct r1conf *conf)
1691 {
1692 int idx;
1693
1694 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1695 _wait_barrier(conf, idx);
1696 _allow_barrier(conf, idx);
1697 }
1698
1699 mempool_exit(&conf->r1buf_pool);
1700 }
1701
raid1_spare_active(struct mddev * mddev)1702 static int raid1_spare_active(struct mddev *mddev)
1703 {
1704 int i;
1705 struct r1conf *conf = mddev->private;
1706 int count = 0;
1707 unsigned long flags;
1708
1709 /*
1710 * Find all failed disks within the RAID1 configuration
1711 * and mark them readable.
1712 * Called under mddev lock, so rcu protection not needed.
1713 * device_lock used to avoid races with raid1_end_read_request
1714 * which expects 'In_sync' flags and ->degraded to be consistent.
1715 */
1716 spin_lock_irqsave(&conf->device_lock, flags);
1717 for (i = 0; i < conf->raid_disks; i++) {
1718 struct md_rdev *rdev = conf->mirrors[i].rdev;
1719 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1720 if (repl
1721 && !test_bit(Candidate, &repl->flags)
1722 && repl->recovery_offset == MaxSector
1723 && !test_bit(Faulty, &repl->flags)
1724 && !test_and_set_bit(In_sync, &repl->flags)) {
1725 /* replacement has just become active */
1726 if (!rdev ||
1727 !test_and_clear_bit(In_sync, &rdev->flags))
1728 count++;
1729 if (rdev) {
1730 /* Replaced device not technically
1731 * faulty, but we need to be sure
1732 * it gets removed and never re-added
1733 */
1734 set_bit(Faulty, &rdev->flags);
1735 sysfs_notify_dirent_safe(
1736 rdev->sysfs_state);
1737 }
1738 }
1739 if (rdev
1740 && rdev->recovery_offset == MaxSector
1741 && !test_bit(Faulty, &rdev->flags)
1742 && !test_and_set_bit(In_sync, &rdev->flags)) {
1743 count++;
1744 sysfs_notify_dirent_safe(rdev->sysfs_state);
1745 }
1746 }
1747 mddev->degraded -= count;
1748 spin_unlock_irqrestore(&conf->device_lock, flags);
1749
1750 print_conf(conf);
1751 return count;
1752 }
1753
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1754 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755 {
1756 struct r1conf *conf = mddev->private;
1757 int err = -EEXIST;
1758 int mirror = 0;
1759 struct raid1_info *p;
1760 int first = 0;
1761 int last = conf->raid_disks - 1;
1762
1763 if (mddev->recovery_disabled == conf->recovery_disabled)
1764 return -EBUSY;
1765
1766 if (md_integrity_add_rdev(rdev, mddev))
1767 return -ENXIO;
1768
1769 if (rdev->raid_disk >= 0)
1770 first = last = rdev->raid_disk;
1771
1772 /*
1773 * find the disk ... but prefer rdev->saved_raid_disk
1774 * if possible.
1775 */
1776 if (rdev->saved_raid_disk >= 0 &&
1777 rdev->saved_raid_disk >= first &&
1778 rdev->saved_raid_disk < conf->raid_disks &&
1779 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780 first = last = rdev->saved_raid_disk;
1781
1782 for (mirror = first; mirror <= last; mirror++) {
1783 p = conf->mirrors + mirror;
1784 if (!p->rdev) {
1785 if (mddev->gendisk)
1786 disk_stack_limits(mddev->gendisk, rdev->bdev,
1787 rdev->data_offset << 9);
1788
1789 p->head_position = 0;
1790 rdev->raid_disk = mirror;
1791 err = 0;
1792 /* As all devices are equivalent, we don't need a full recovery
1793 * if this was recently any drive of the array
1794 */
1795 if (rdev->saved_raid_disk < 0)
1796 conf->fullsync = 1;
1797 rcu_assign_pointer(p->rdev, rdev);
1798 break;
1799 }
1800 if (test_bit(WantReplacement, &p->rdev->flags) &&
1801 p[conf->raid_disks].rdev == NULL) {
1802 /* Add this device as a replacement */
1803 clear_bit(In_sync, &rdev->flags);
1804 set_bit(Replacement, &rdev->flags);
1805 rdev->raid_disk = mirror;
1806 err = 0;
1807 conf->fullsync = 1;
1808 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1809 break;
1810 }
1811 }
1812 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1813 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1814 print_conf(conf);
1815 return err;
1816 }
1817
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1818 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820 struct r1conf *conf = mddev->private;
1821 int err = 0;
1822 int number = rdev->raid_disk;
1823 struct raid1_info *p = conf->mirrors + number;
1824
1825 if (unlikely(number >= conf->raid_disks))
1826 goto abort;
1827
1828 if (rdev != p->rdev)
1829 p = conf->mirrors + conf->raid_disks + number;
1830
1831 print_conf(conf);
1832 if (rdev == p->rdev) {
1833 if (test_bit(In_sync, &rdev->flags) ||
1834 atomic_read(&rdev->nr_pending)) {
1835 err = -EBUSY;
1836 goto abort;
1837 }
1838 /* Only remove non-faulty devices if recovery
1839 * is not possible.
1840 */
1841 if (!test_bit(Faulty, &rdev->flags) &&
1842 mddev->recovery_disabled != conf->recovery_disabled &&
1843 mddev->degraded < conf->raid_disks) {
1844 err = -EBUSY;
1845 goto abort;
1846 }
1847 p->rdev = NULL;
1848 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1849 synchronize_rcu();
1850 if (atomic_read(&rdev->nr_pending)) {
1851 /* lost the race, try later */
1852 err = -EBUSY;
1853 p->rdev = rdev;
1854 goto abort;
1855 }
1856 }
1857 if (conf->mirrors[conf->raid_disks + number].rdev) {
1858 /* We just removed a device that is being replaced.
1859 * Move down the replacement. We drain all IO before
1860 * doing this to avoid confusion.
1861 */
1862 struct md_rdev *repl =
1863 conf->mirrors[conf->raid_disks + number].rdev;
1864 freeze_array(conf, 0);
1865 if (atomic_read(&repl->nr_pending)) {
1866 /* It means that some queued IO of retry_list
1867 * hold repl. Thus, we cannot set replacement
1868 * as NULL, avoiding rdev NULL pointer
1869 * dereference in sync_request_write and
1870 * handle_write_finished.
1871 */
1872 err = -EBUSY;
1873 unfreeze_array(conf);
1874 goto abort;
1875 }
1876 clear_bit(Replacement, &repl->flags);
1877 p->rdev = repl;
1878 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1879 unfreeze_array(conf);
1880 }
1881
1882 clear_bit(WantReplacement, &rdev->flags);
1883 err = md_integrity_register(mddev);
1884 }
1885 abort:
1886
1887 print_conf(conf);
1888 return err;
1889 }
1890
end_sync_read(struct bio * bio)1891 static void end_sync_read(struct bio *bio)
1892 {
1893 struct r1bio *r1_bio = get_resync_r1bio(bio);
1894
1895 update_head_pos(r1_bio->read_disk, r1_bio);
1896
1897 /*
1898 * we have read a block, now it needs to be re-written,
1899 * or re-read if the read failed.
1900 * We don't do much here, just schedule handling by raid1d
1901 */
1902 if (!bio->bi_status)
1903 set_bit(R1BIO_Uptodate, &r1_bio->state);
1904
1905 if (atomic_dec_and_test(&r1_bio->remaining))
1906 reschedule_retry(r1_bio);
1907 }
1908
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)1909 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1910 {
1911 sector_t sync_blocks = 0;
1912 sector_t s = r1_bio->sector;
1913 long sectors_to_go = r1_bio->sectors;
1914
1915 /* make sure these bits don't get cleared. */
1916 do {
1917 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1918 s += sync_blocks;
1919 sectors_to_go -= sync_blocks;
1920 } while (sectors_to_go > 0);
1921 }
1922
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)1923 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1924 {
1925 if (atomic_dec_and_test(&r1_bio->remaining)) {
1926 struct mddev *mddev = r1_bio->mddev;
1927 int s = r1_bio->sectors;
1928
1929 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1930 test_bit(R1BIO_WriteError, &r1_bio->state))
1931 reschedule_retry(r1_bio);
1932 else {
1933 put_buf(r1_bio);
1934 md_done_sync(mddev, s, uptodate);
1935 }
1936 }
1937 }
1938
end_sync_write(struct bio * bio)1939 static void end_sync_write(struct bio *bio)
1940 {
1941 int uptodate = !bio->bi_status;
1942 struct r1bio *r1_bio = get_resync_r1bio(bio);
1943 struct mddev *mddev = r1_bio->mddev;
1944 struct r1conf *conf = mddev->private;
1945 sector_t first_bad;
1946 int bad_sectors;
1947 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1948
1949 if (!uptodate) {
1950 abort_sync_write(mddev, r1_bio);
1951 set_bit(WriteErrorSeen, &rdev->flags);
1952 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1953 set_bit(MD_RECOVERY_NEEDED, &
1954 mddev->recovery);
1955 set_bit(R1BIO_WriteError, &r1_bio->state);
1956 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1957 &first_bad, &bad_sectors) &&
1958 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1959 r1_bio->sector,
1960 r1_bio->sectors,
1961 &first_bad, &bad_sectors)
1962 )
1963 set_bit(R1BIO_MadeGood, &r1_bio->state);
1964
1965 put_sync_write_buf(r1_bio, uptodate);
1966 }
1967
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1968 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1969 int sectors, struct page *page, int rw)
1970 {
1971 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1972 /* success */
1973 return 1;
1974 if (rw == WRITE) {
1975 set_bit(WriteErrorSeen, &rdev->flags);
1976 if (!test_and_set_bit(WantReplacement,
1977 &rdev->flags))
1978 set_bit(MD_RECOVERY_NEEDED, &
1979 rdev->mddev->recovery);
1980 }
1981 /* need to record an error - either for the block or the device */
1982 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1983 md_error(rdev->mddev, rdev);
1984 return 0;
1985 }
1986
fix_sync_read_error(struct r1bio * r1_bio)1987 static int fix_sync_read_error(struct r1bio *r1_bio)
1988 {
1989 /* Try some synchronous reads of other devices to get
1990 * good data, much like with normal read errors. Only
1991 * read into the pages we already have so we don't
1992 * need to re-issue the read request.
1993 * We don't need to freeze the array, because being in an
1994 * active sync request, there is no normal IO, and
1995 * no overlapping syncs.
1996 * We don't need to check is_badblock() again as we
1997 * made sure that anything with a bad block in range
1998 * will have bi_end_io clear.
1999 */
2000 struct mddev *mddev = r1_bio->mddev;
2001 struct r1conf *conf = mddev->private;
2002 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2003 struct page **pages = get_resync_pages(bio)->pages;
2004 sector_t sect = r1_bio->sector;
2005 int sectors = r1_bio->sectors;
2006 int idx = 0;
2007 struct md_rdev *rdev;
2008
2009 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2010 if (test_bit(FailFast, &rdev->flags)) {
2011 /* Don't try recovering from here - just fail it
2012 * ... unless it is the last working device of course */
2013 md_error(mddev, rdev);
2014 if (test_bit(Faulty, &rdev->flags))
2015 /* Don't try to read from here, but make sure
2016 * put_buf does it's thing
2017 */
2018 bio->bi_end_io = end_sync_write;
2019 }
2020
2021 while(sectors) {
2022 int s = sectors;
2023 int d = r1_bio->read_disk;
2024 int success = 0;
2025 int start;
2026
2027 if (s > (PAGE_SIZE>>9))
2028 s = PAGE_SIZE >> 9;
2029 do {
2030 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2031 /* No rcu protection needed here devices
2032 * can only be removed when no resync is
2033 * active, and resync is currently active
2034 */
2035 rdev = conf->mirrors[d].rdev;
2036 if (sync_page_io(rdev, sect, s<<9,
2037 pages[idx],
2038 REQ_OP_READ, 0, false)) {
2039 success = 1;
2040 break;
2041 }
2042 }
2043 d++;
2044 if (d == conf->raid_disks * 2)
2045 d = 0;
2046 } while (!success && d != r1_bio->read_disk);
2047
2048 if (!success) {
2049 char b[BDEVNAME_SIZE];
2050 int abort = 0;
2051 /* Cannot read from anywhere, this block is lost.
2052 * Record a bad block on each device. If that doesn't
2053 * work just disable and interrupt the recovery.
2054 * Don't fail devices as that won't really help.
2055 */
2056 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2057 mdname(mddev), bio_devname(bio, b),
2058 (unsigned long long)r1_bio->sector);
2059 for (d = 0; d < conf->raid_disks * 2; d++) {
2060 rdev = conf->mirrors[d].rdev;
2061 if (!rdev || test_bit(Faulty, &rdev->flags))
2062 continue;
2063 if (!rdev_set_badblocks(rdev, sect, s, 0))
2064 abort = 1;
2065 }
2066 if (abort) {
2067 conf->recovery_disabled =
2068 mddev->recovery_disabled;
2069 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2070 md_done_sync(mddev, r1_bio->sectors, 0);
2071 put_buf(r1_bio);
2072 return 0;
2073 }
2074 /* Try next page */
2075 sectors -= s;
2076 sect += s;
2077 idx++;
2078 continue;
2079 }
2080
2081 start = d;
2082 /* write it back and re-read */
2083 while (d != r1_bio->read_disk) {
2084 if (d == 0)
2085 d = conf->raid_disks * 2;
2086 d--;
2087 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088 continue;
2089 rdev = conf->mirrors[d].rdev;
2090 if (r1_sync_page_io(rdev, sect, s,
2091 pages[idx],
2092 WRITE) == 0) {
2093 r1_bio->bios[d]->bi_end_io = NULL;
2094 rdev_dec_pending(rdev, mddev);
2095 }
2096 }
2097 d = start;
2098 while (d != r1_bio->read_disk) {
2099 if (d == 0)
2100 d = conf->raid_disks * 2;
2101 d--;
2102 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2103 continue;
2104 rdev = conf->mirrors[d].rdev;
2105 if (r1_sync_page_io(rdev, sect, s,
2106 pages[idx],
2107 READ) != 0)
2108 atomic_add(s, &rdev->corrected_errors);
2109 }
2110 sectors -= s;
2111 sect += s;
2112 idx ++;
2113 }
2114 set_bit(R1BIO_Uptodate, &r1_bio->state);
2115 bio->bi_status = 0;
2116 return 1;
2117 }
2118
process_checks(struct r1bio * r1_bio)2119 static void process_checks(struct r1bio *r1_bio)
2120 {
2121 /* We have read all readable devices. If we haven't
2122 * got the block, then there is no hope left.
2123 * If we have, then we want to do a comparison
2124 * and skip the write if everything is the same.
2125 * If any blocks failed to read, then we need to
2126 * attempt an over-write
2127 */
2128 struct mddev *mddev = r1_bio->mddev;
2129 struct r1conf *conf = mddev->private;
2130 int primary;
2131 int i;
2132 int vcnt;
2133
2134 /* Fix variable parts of all bios */
2135 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2136 for (i = 0; i < conf->raid_disks * 2; i++) {
2137 blk_status_t status;
2138 struct bio *b = r1_bio->bios[i];
2139 struct resync_pages *rp = get_resync_pages(b);
2140 if (b->bi_end_io != end_sync_read)
2141 continue;
2142 /* fixup the bio for reuse, but preserve errno */
2143 status = b->bi_status;
2144 bio_reset(b);
2145 b->bi_status = status;
2146 b->bi_iter.bi_sector = r1_bio->sector +
2147 conf->mirrors[i].rdev->data_offset;
2148 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2149 b->bi_end_io = end_sync_read;
2150 rp->raid_bio = r1_bio;
2151 b->bi_private = rp;
2152
2153 /* initialize bvec table again */
2154 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2155 }
2156 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158 !r1_bio->bios[primary]->bi_status) {
2159 r1_bio->bios[primary]->bi_end_io = NULL;
2160 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2161 break;
2162 }
2163 r1_bio->read_disk = primary;
2164 for (i = 0; i < conf->raid_disks * 2; i++) {
2165 int j = 0;
2166 struct bio *pbio = r1_bio->bios[primary];
2167 struct bio *sbio = r1_bio->bios[i];
2168 blk_status_t status = sbio->bi_status;
2169 struct page **ppages = get_resync_pages(pbio)->pages;
2170 struct page **spages = get_resync_pages(sbio)->pages;
2171 struct bio_vec *bi;
2172 int page_len[RESYNC_PAGES] = { 0 };
2173 struct bvec_iter_all iter_all;
2174
2175 if (sbio->bi_end_io != end_sync_read)
2176 continue;
2177 /* Now we can 'fixup' the error value */
2178 sbio->bi_status = 0;
2179
2180 bio_for_each_segment_all(bi, sbio, iter_all)
2181 page_len[j++] = bi->bv_len;
2182
2183 if (!status) {
2184 for (j = vcnt; j-- ; ) {
2185 if (memcmp(page_address(ppages[j]),
2186 page_address(spages[j]),
2187 page_len[j]))
2188 break;
2189 }
2190 } else
2191 j = 0;
2192 if (j >= 0)
2193 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2195 && !status)) {
2196 /* No need to write to this device. */
2197 sbio->bi_end_io = NULL;
2198 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2199 continue;
2200 }
2201
2202 bio_copy_data(sbio, pbio);
2203 }
2204 }
2205
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2206 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2207 {
2208 struct r1conf *conf = mddev->private;
2209 int i;
2210 int disks = conf->raid_disks * 2;
2211 struct bio *wbio;
2212
2213 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214 /* ouch - failed to read all of that. */
2215 if (!fix_sync_read_error(r1_bio))
2216 return;
2217
2218 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219 process_checks(r1_bio);
2220
2221 /*
2222 * schedule writes
2223 */
2224 atomic_set(&r1_bio->remaining, 1);
2225 for (i = 0; i < disks ; i++) {
2226 wbio = r1_bio->bios[i];
2227 if (wbio->bi_end_io == NULL ||
2228 (wbio->bi_end_io == end_sync_read &&
2229 (i == r1_bio->read_disk ||
2230 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2231 continue;
2232 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233 abort_sync_write(mddev, r1_bio);
2234 continue;
2235 }
2236
2237 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2238 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239 wbio->bi_opf |= MD_FAILFAST;
2240
2241 wbio->bi_end_io = end_sync_write;
2242 atomic_inc(&r1_bio->remaining);
2243 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2244
2245 submit_bio_noacct(wbio);
2246 }
2247
2248 put_sync_write_buf(r1_bio, 1);
2249 }
2250
2251 /*
2252 * This is a kernel thread which:
2253 *
2254 * 1. Retries failed read operations on working mirrors.
2255 * 2. Updates the raid superblock when problems encounter.
2256 * 3. Performs writes following reads for array synchronising.
2257 */
2258
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2259 static void fix_read_error(struct r1conf *conf, int read_disk,
2260 sector_t sect, int sectors)
2261 {
2262 struct mddev *mddev = conf->mddev;
2263 while(sectors) {
2264 int s = sectors;
2265 int d = read_disk;
2266 int success = 0;
2267 int start;
2268 struct md_rdev *rdev;
2269
2270 if (s > (PAGE_SIZE>>9))
2271 s = PAGE_SIZE >> 9;
2272
2273 do {
2274 sector_t first_bad;
2275 int bad_sectors;
2276
2277 rcu_read_lock();
2278 rdev = rcu_dereference(conf->mirrors[d].rdev);
2279 if (rdev &&
2280 (test_bit(In_sync, &rdev->flags) ||
2281 (!test_bit(Faulty, &rdev->flags) &&
2282 rdev->recovery_offset >= sect + s)) &&
2283 is_badblock(rdev, sect, s,
2284 &first_bad, &bad_sectors) == 0) {
2285 atomic_inc(&rdev->nr_pending);
2286 rcu_read_unlock();
2287 if (sync_page_io(rdev, sect, s<<9,
2288 conf->tmppage, REQ_OP_READ, 0, false))
2289 success = 1;
2290 rdev_dec_pending(rdev, mddev);
2291 if (success)
2292 break;
2293 } else
2294 rcu_read_unlock();
2295 d++;
2296 if (d == conf->raid_disks * 2)
2297 d = 0;
2298 } while (!success && d != read_disk);
2299
2300 if (!success) {
2301 /* Cannot read from anywhere - mark it bad */
2302 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2303 if (!rdev_set_badblocks(rdev, sect, s, 0))
2304 md_error(mddev, rdev);
2305 break;
2306 }
2307 /* write it back and re-read */
2308 start = d;
2309 while (d != read_disk) {
2310 if (d==0)
2311 d = conf->raid_disks * 2;
2312 d--;
2313 rcu_read_lock();
2314 rdev = rcu_dereference(conf->mirrors[d].rdev);
2315 if (rdev &&
2316 !test_bit(Faulty, &rdev->flags)) {
2317 atomic_inc(&rdev->nr_pending);
2318 rcu_read_unlock();
2319 r1_sync_page_io(rdev, sect, s,
2320 conf->tmppage, WRITE);
2321 rdev_dec_pending(rdev, mddev);
2322 } else
2323 rcu_read_unlock();
2324 }
2325 d = start;
2326 while (d != read_disk) {
2327 char b[BDEVNAME_SIZE];
2328 if (d==0)
2329 d = conf->raid_disks * 2;
2330 d--;
2331 rcu_read_lock();
2332 rdev = rcu_dereference(conf->mirrors[d].rdev);
2333 if (rdev &&
2334 !test_bit(Faulty, &rdev->flags)) {
2335 atomic_inc(&rdev->nr_pending);
2336 rcu_read_unlock();
2337 if (r1_sync_page_io(rdev, sect, s,
2338 conf->tmppage, READ)) {
2339 atomic_add(s, &rdev->corrected_errors);
2340 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2341 mdname(mddev), s,
2342 (unsigned long long)(sect +
2343 rdev->data_offset),
2344 bdevname(rdev->bdev, b));
2345 }
2346 rdev_dec_pending(rdev, mddev);
2347 } else
2348 rcu_read_unlock();
2349 }
2350 sectors -= s;
2351 sect += s;
2352 }
2353 }
2354
narrow_write_error(struct r1bio * r1_bio,int i)2355 static int narrow_write_error(struct r1bio *r1_bio, int i)
2356 {
2357 struct mddev *mddev = r1_bio->mddev;
2358 struct r1conf *conf = mddev->private;
2359 struct md_rdev *rdev = conf->mirrors[i].rdev;
2360
2361 /* bio has the data to be written to device 'i' where
2362 * we just recently had a write error.
2363 * We repeatedly clone the bio and trim down to one block,
2364 * then try the write. Where the write fails we record
2365 * a bad block.
2366 * It is conceivable that the bio doesn't exactly align with
2367 * blocks. We must handle this somehow.
2368 *
2369 * We currently own a reference on the rdev.
2370 */
2371
2372 int block_sectors;
2373 sector_t sector;
2374 int sectors;
2375 int sect_to_write = r1_bio->sectors;
2376 int ok = 1;
2377
2378 if (rdev->badblocks.shift < 0)
2379 return 0;
2380
2381 block_sectors = roundup(1 << rdev->badblocks.shift,
2382 bdev_logical_block_size(rdev->bdev) >> 9);
2383 sector = r1_bio->sector;
2384 sectors = ((sector + block_sectors)
2385 & ~(sector_t)(block_sectors - 1))
2386 - sector;
2387
2388 while (sect_to_write) {
2389 struct bio *wbio;
2390 if (sectors > sect_to_write)
2391 sectors = sect_to_write;
2392 /* Write at 'sector' for 'sectors'*/
2393
2394 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2395 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2396 GFP_NOIO,
2397 &mddev->bio_set);
2398 } else {
2399 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2400 &mddev->bio_set);
2401 }
2402
2403 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2404 wbio->bi_iter.bi_sector = r1_bio->sector;
2405 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2406
2407 bio_trim(wbio, sector - r1_bio->sector, sectors);
2408 wbio->bi_iter.bi_sector += rdev->data_offset;
2409 bio_set_dev(wbio, rdev->bdev);
2410
2411 if (submit_bio_wait(wbio) < 0)
2412 /* failure! */
2413 ok = rdev_set_badblocks(rdev, sector,
2414 sectors, 0)
2415 && ok;
2416
2417 bio_put(wbio);
2418 sect_to_write -= sectors;
2419 sector += sectors;
2420 sectors = block_sectors;
2421 }
2422 return ok;
2423 }
2424
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2425 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2426 {
2427 int m;
2428 int s = r1_bio->sectors;
2429 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2430 struct md_rdev *rdev = conf->mirrors[m].rdev;
2431 struct bio *bio = r1_bio->bios[m];
2432 if (bio->bi_end_io == NULL)
2433 continue;
2434 if (!bio->bi_status &&
2435 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2436 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2437 }
2438 if (bio->bi_status &&
2439 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2440 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2441 md_error(conf->mddev, rdev);
2442 }
2443 }
2444 put_buf(r1_bio);
2445 md_done_sync(conf->mddev, s, 1);
2446 }
2447
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2448 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2449 {
2450 int m, idx;
2451 bool fail = false;
2452
2453 for (m = 0; m < conf->raid_disks * 2 ; m++)
2454 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2455 struct md_rdev *rdev = conf->mirrors[m].rdev;
2456 rdev_clear_badblocks(rdev,
2457 r1_bio->sector,
2458 r1_bio->sectors, 0);
2459 rdev_dec_pending(rdev, conf->mddev);
2460 } else if (r1_bio->bios[m] != NULL) {
2461 /* This drive got a write error. We need to
2462 * narrow down and record precise write
2463 * errors.
2464 */
2465 fail = true;
2466 if (!narrow_write_error(r1_bio, m)) {
2467 md_error(conf->mddev,
2468 conf->mirrors[m].rdev);
2469 /* an I/O failed, we can't clear the bitmap */
2470 set_bit(R1BIO_Degraded, &r1_bio->state);
2471 }
2472 rdev_dec_pending(conf->mirrors[m].rdev,
2473 conf->mddev);
2474 }
2475 if (fail) {
2476 spin_lock_irq(&conf->device_lock);
2477 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2478 idx = sector_to_idx(r1_bio->sector);
2479 atomic_inc(&conf->nr_queued[idx]);
2480 spin_unlock_irq(&conf->device_lock);
2481 /*
2482 * In case freeze_array() is waiting for condition
2483 * get_unqueued_pending() == extra to be true.
2484 */
2485 wake_up(&conf->wait_barrier);
2486 md_wakeup_thread(conf->mddev->thread);
2487 } else {
2488 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2489 close_write(r1_bio);
2490 raid_end_bio_io(r1_bio);
2491 }
2492 }
2493
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2494 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2495 {
2496 struct mddev *mddev = conf->mddev;
2497 struct bio *bio;
2498 struct md_rdev *rdev;
2499
2500 clear_bit(R1BIO_ReadError, &r1_bio->state);
2501 /* we got a read error. Maybe the drive is bad. Maybe just
2502 * the block and we can fix it.
2503 * We freeze all other IO, and try reading the block from
2504 * other devices. When we find one, we re-write
2505 * and check it that fixes the read error.
2506 * This is all done synchronously while the array is
2507 * frozen
2508 */
2509
2510 bio = r1_bio->bios[r1_bio->read_disk];
2511 bio_put(bio);
2512 r1_bio->bios[r1_bio->read_disk] = NULL;
2513
2514 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2515 if (mddev->ro == 0
2516 && !test_bit(FailFast, &rdev->flags)) {
2517 freeze_array(conf, 1);
2518 fix_read_error(conf, r1_bio->read_disk,
2519 r1_bio->sector, r1_bio->sectors);
2520 unfreeze_array(conf);
2521 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2522 md_error(mddev, rdev);
2523 } else {
2524 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2525 }
2526
2527 rdev_dec_pending(rdev, conf->mddev);
2528 allow_barrier(conf, r1_bio->sector);
2529 bio = r1_bio->master_bio;
2530
2531 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2532 r1_bio->state = 0;
2533 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2534 }
2535
raid1d(struct md_thread * thread)2536 static void raid1d(struct md_thread *thread)
2537 {
2538 struct mddev *mddev = thread->mddev;
2539 struct r1bio *r1_bio;
2540 unsigned long flags;
2541 struct r1conf *conf = mddev->private;
2542 struct list_head *head = &conf->retry_list;
2543 struct blk_plug plug;
2544 int idx;
2545
2546 md_check_recovery(mddev);
2547
2548 if (!list_empty_careful(&conf->bio_end_io_list) &&
2549 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2550 LIST_HEAD(tmp);
2551 spin_lock_irqsave(&conf->device_lock, flags);
2552 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2553 list_splice_init(&conf->bio_end_io_list, &tmp);
2554 spin_unlock_irqrestore(&conf->device_lock, flags);
2555 while (!list_empty(&tmp)) {
2556 r1_bio = list_first_entry(&tmp, struct r1bio,
2557 retry_list);
2558 list_del(&r1_bio->retry_list);
2559 idx = sector_to_idx(r1_bio->sector);
2560 atomic_dec(&conf->nr_queued[idx]);
2561 if (mddev->degraded)
2562 set_bit(R1BIO_Degraded, &r1_bio->state);
2563 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2564 close_write(r1_bio);
2565 raid_end_bio_io(r1_bio);
2566 }
2567 }
2568
2569 blk_start_plug(&plug);
2570 for (;;) {
2571
2572 flush_pending_writes(conf);
2573
2574 spin_lock_irqsave(&conf->device_lock, flags);
2575 if (list_empty(head)) {
2576 spin_unlock_irqrestore(&conf->device_lock, flags);
2577 break;
2578 }
2579 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2580 list_del(head->prev);
2581 idx = sector_to_idx(r1_bio->sector);
2582 atomic_dec(&conf->nr_queued[idx]);
2583 spin_unlock_irqrestore(&conf->device_lock, flags);
2584
2585 mddev = r1_bio->mddev;
2586 conf = mddev->private;
2587 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2588 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2589 test_bit(R1BIO_WriteError, &r1_bio->state))
2590 handle_sync_write_finished(conf, r1_bio);
2591 else
2592 sync_request_write(mddev, r1_bio);
2593 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2594 test_bit(R1BIO_WriteError, &r1_bio->state))
2595 handle_write_finished(conf, r1_bio);
2596 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2597 handle_read_error(conf, r1_bio);
2598 else
2599 WARN_ON_ONCE(1);
2600
2601 cond_resched();
2602 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2603 md_check_recovery(mddev);
2604 }
2605 blk_finish_plug(&plug);
2606 }
2607
init_resync(struct r1conf * conf)2608 static int init_resync(struct r1conf *conf)
2609 {
2610 int buffs;
2611
2612 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2613 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2614
2615 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2616 r1buf_pool_free, conf->poolinfo);
2617 }
2618
raid1_alloc_init_r1buf(struct r1conf * conf)2619 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2620 {
2621 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2622 struct resync_pages *rps;
2623 struct bio *bio;
2624 int i;
2625
2626 for (i = conf->poolinfo->raid_disks; i--; ) {
2627 bio = r1bio->bios[i];
2628 rps = bio->bi_private;
2629 bio_reset(bio);
2630 bio->bi_private = rps;
2631 }
2632 r1bio->master_bio = NULL;
2633 return r1bio;
2634 }
2635
2636 /*
2637 * perform a "sync" on one "block"
2638 *
2639 * We need to make sure that no normal I/O request - particularly write
2640 * requests - conflict with active sync requests.
2641 *
2642 * This is achieved by tracking pending requests and a 'barrier' concept
2643 * that can be installed to exclude normal IO requests.
2644 */
2645
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2646 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2647 int *skipped)
2648 {
2649 struct r1conf *conf = mddev->private;
2650 struct r1bio *r1_bio;
2651 struct bio *bio;
2652 sector_t max_sector, nr_sectors;
2653 int disk = -1;
2654 int i;
2655 int wonly = -1;
2656 int write_targets = 0, read_targets = 0;
2657 sector_t sync_blocks;
2658 int still_degraded = 0;
2659 int good_sectors = RESYNC_SECTORS;
2660 int min_bad = 0; /* number of sectors that are bad in all devices */
2661 int idx = sector_to_idx(sector_nr);
2662 int page_idx = 0;
2663
2664 if (!mempool_initialized(&conf->r1buf_pool))
2665 if (init_resync(conf))
2666 return 0;
2667
2668 max_sector = mddev->dev_sectors;
2669 if (sector_nr >= max_sector) {
2670 /* If we aborted, we need to abort the
2671 * sync on the 'current' bitmap chunk (there will
2672 * only be one in raid1 resync.
2673 * We can find the current addess in mddev->curr_resync
2674 */
2675 if (mddev->curr_resync < max_sector) /* aborted */
2676 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2677 &sync_blocks, 1);
2678 else /* completed sync */
2679 conf->fullsync = 0;
2680
2681 md_bitmap_close_sync(mddev->bitmap);
2682 close_sync(conf);
2683
2684 if (mddev_is_clustered(mddev)) {
2685 conf->cluster_sync_low = 0;
2686 conf->cluster_sync_high = 0;
2687 }
2688 return 0;
2689 }
2690
2691 if (mddev->bitmap == NULL &&
2692 mddev->recovery_cp == MaxSector &&
2693 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2694 conf->fullsync == 0) {
2695 *skipped = 1;
2696 return max_sector - sector_nr;
2697 }
2698 /* before building a request, check if we can skip these blocks..
2699 * This call the bitmap_start_sync doesn't actually record anything
2700 */
2701 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2702 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2703 /* We can skip this block, and probably several more */
2704 *skipped = 1;
2705 return sync_blocks;
2706 }
2707
2708 /*
2709 * If there is non-resync activity waiting for a turn, then let it
2710 * though before starting on this new sync request.
2711 */
2712 if (atomic_read(&conf->nr_waiting[idx]))
2713 schedule_timeout_uninterruptible(1);
2714
2715 /* we are incrementing sector_nr below. To be safe, we check against
2716 * sector_nr + two times RESYNC_SECTORS
2717 */
2718
2719 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2720 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2721
2722
2723 if (raise_barrier(conf, sector_nr))
2724 return 0;
2725
2726 r1_bio = raid1_alloc_init_r1buf(conf);
2727
2728 rcu_read_lock();
2729 /*
2730 * If we get a correctably read error during resync or recovery,
2731 * we might want to read from a different device. So we
2732 * flag all drives that could conceivably be read from for READ,
2733 * and any others (which will be non-In_sync devices) for WRITE.
2734 * If a read fails, we try reading from something else for which READ
2735 * is OK.
2736 */
2737
2738 r1_bio->mddev = mddev;
2739 r1_bio->sector = sector_nr;
2740 r1_bio->state = 0;
2741 set_bit(R1BIO_IsSync, &r1_bio->state);
2742 /* make sure good_sectors won't go across barrier unit boundary */
2743 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2744
2745 for (i = 0; i < conf->raid_disks * 2; i++) {
2746 struct md_rdev *rdev;
2747 bio = r1_bio->bios[i];
2748
2749 rdev = rcu_dereference(conf->mirrors[i].rdev);
2750 if (rdev == NULL ||
2751 test_bit(Faulty, &rdev->flags)) {
2752 if (i < conf->raid_disks)
2753 still_degraded = 1;
2754 } else if (!test_bit(In_sync, &rdev->flags)) {
2755 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2756 bio->bi_end_io = end_sync_write;
2757 write_targets ++;
2758 } else {
2759 /* may need to read from here */
2760 sector_t first_bad = MaxSector;
2761 int bad_sectors;
2762
2763 if (is_badblock(rdev, sector_nr, good_sectors,
2764 &first_bad, &bad_sectors)) {
2765 if (first_bad > sector_nr)
2766 good_sectors = first_bad - sector_nr;
2767 else {
2768 bad_sectors -= (sector_nr - first_bad);
2769 if (min_bad == 0 ||
2770 min_bad > bad_sectors)
2771 min_bad = bad_sectors;
2772 }
2773 }
2774 if (sector_nr < first_bad) {
2775 if (test_bit(WriteMostly, &rdev->flags)) {
2776 if (wonly < 0)
2777 wonly = i;
2778 } else {
2779 if (disk < 0)
2780 disk = i;
2781 }
2782 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2783 bio->bi_end_io = end_sync_read;
2784 read_targets++;
2785 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2786 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2787 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2788 /*
2789 * The device is suitable for reading (InSync),
2790 * but has bad block(s) here. Let's try to correct them,
2791 * if we are doing resync or repair. Otherwise, leave
2792 * this device alone for this sync request.
2793 */
2794 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2795 bio->bi_end_io = end_sync_write;
2796 write_targets++;
2797 }
2798 }
2799 if (rdev && bio->bi_end_io) {
2800 atomic_inc(&rdev->nr_pending);
2801 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2802 bio_set_dev(bio, rdev->bdev);
2803 if (test_bit(FailFast, &rdev->flags))
2804 bio->bi_opf |= MD_FAILFAST;
2805 }
2806 }
2807 rcu_read_unlock();
2808 if (disk < 0)
2809 disk = wonly;
2810 r1_bio->read_disk = disk;
2811
2812 if (read_targets == 0 && min_bad > 0) {
2813 /* These sectors are bad on all InSync devices, so we
2814 * need to mark them bad on all write targets
2815 */
2816 int ok = 1;
2817 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2818 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2819 struct md_rdev *rdev = conf->mirrors[i].rdev;
2820 ok = rdev_set_badblocks(rdev, sector_nr,
2821 min_bad, 0
2822 ) && ok;
2823 }
2824 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2825 *skipped = 1;
2826 put_buf(r1_bio);
2827
2828 if (!ok) {
2829 /* Cannot record the badblocks, so need to
2830 * abort the resync.
2831 * If there are multiple read targets, could just
2832 * fail the really bad ones ???
2833 */
2834 conf->recovery_disabled = mddev->recovery_disabled;
2835 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2836 return 0;
2837 } else
2838 return min_bad;
2839
2840 }
2841 if (min_bad > 0 && min_bad < good_sectors) {
2842 /* only resync enough to reach the next bad->good
2843 * transition */
2844 good_sectors = min_bad;
2845 }
2846
2847 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2848 /* extra read targets are also write targets */
2849 write_targets += read_targets-1;
2850
2851 if (write_targets == 0 || read_targets == 0) {
2852 /* There is nowhere to write, so all non-sync
2853 * drives must be failed - so we are finished
2854 */
2855 sector_t rv;
2856 if (min_bad > 0)
2857 max_sector = sector_nr + min_bad;
2858 rv = max_sector - sector_nr;
2859 *skipped = 1;
2860 put_buf(r1_bio);
2861 return rv;
2862 }
2863
2864 if (max_sector > mddev->resync_max)
2865 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2866 if (max_sector > sector_nr + good_sectors)
2867 max_sector = sector_nr + good_sectors;
2868 nr_sectors = 0;
2869 sync_blocks = 0;
2870 do {
2871 struct page *page;
2872 int len = PAGE_SIZE;
2873 if (sector_nr + (len>>9) > max_sector)
2874 len = (max_sector - sector_nr) << 9;
2875 if (len == 0)
2876 break;
2877 if (sync_blocks == 0) {
2878 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2879 &sync_blocks, still_degraded) &&
2880 !conf->fullsync &&
2881 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2882 break;
2883 if ((len >> 9) > sync_blocks)
2884 len = sync_blocks<<9;
2885 }
2886
2887 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2888 struct resync_pages *rp;
2889
2890 bio = r1_bio->bios[i];
2891 rp = get_resync_pages(bio);
2892 if (bio->bi_end_io) {
2893 page = resync_fetch_page(rp, page_idx);
2894
2895 /*
2896 * won't fail because the vec table is big
2897 * enough to hold all these pages
2898 */
2899 bio_add_page(bio, page, len, 0);
2900 }
2901 }
2902 nr_sectors += len>>9;
2903 sector_nr += len>>9;
2904 sync_blocks -= (len>>9);
2905 } while (++page_idx < RESYNC_PAGES);
2906
2907 r1_bio->sectors = nr_sectors;
2908
2909 if (mddev_is_clustered(mddev) &&
2910 conf->cluster_sync_high < sector_nr + nr_sectors) {
2911 conf->cluster_sync_low = mddev->curr_resync_completed;
2912 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2913 /* Send resync message */
2914 md_cluster_ops->resync_info_update(mddev,
2915 conf->cluster_sync_low,
2916 conf->cluster_sync_high);
2917 }
2918
2919 /* For a user-requested sync, we read all readable devices and do a
2920 * compare
2921 */
2922 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2923 atomic_set(&r1_bio->remaining, read_targets);
2924 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2925 bio = r1_bio->bios[i];
2926 if (bio->bi_end_io == end_sync_read) {
2927 read_targets--;
2928 md_sync_acct_bio(bio, nr_sectors);
2929 if (read_targets == 1)
2930 bio->bi_opf &= ~MD_FAILFAST;
2931 submit_bio_noacct(bio);
2932 }
2933 }
2934 } else {
2935 atomic_set(&r1_bio->remaining, 1);
2936 bio = r1_bio->bios[r1_bio->read_disk];
2937 md_sync_acct_bio(bio, nr_sectors);
2938 if (read_targets == 1)
2939 bio->bi_opf &= ~MD_FAILFAST;
2940 submit_bio_noacct(bio);
2941 }
2942 return nr_sectors;
2943 }
2944
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2945 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2946 {
2947 if (sectors)
2948 return sectors;
2949
2950 return mddev->dev_sectors;
2951 }
2952
setup_conf(struct mddev * mddev)2953 static struct r1conf *setup_conf(struct mddev *mddev)
2954 {
2955 struct r1conf *conf;
2956 int i;
2957 struct raid1_info *disk;
2958 struct md_rdev *rdev;
2959 int err = -ENOMEM;
2960
2961 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2962 if (!conf)
2963 goto abort;
2964
2965 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2966 sizeof(atomic_t), GFP_KERNEL);
2967 if (!conf->nr_pending)
2968 goto abort;
2969
2970 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2971 sizeof(atomic_t), GFP_KERNEL);
2972 if (!conf->nr_waiting)
2973 goto abort;
2974
2975 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2976 sizeof(atomic_t), GFP_KERNEL);
2977 if (!conf->nr_queued)
2978 goto abort;
2979
2980 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2981 sizeof(atomic_t), GFP_KERNEL);
2982 if (!conf->barrier)
2983 goto abort;
2984
2985 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2986 mddev->raid_disks, 2),
2987 GFP_KERNEL);
2988 if (!conf->mirrors)
2989 goto abort;
2990
2991 conf->tmppage = alloc_page(GFP_KERNEL);
2992 if (!conf->tmppage)
2993 goto abort;
2994
2995 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2996 if (!conf->poolinfo)
2997 goto abort;
2998 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2999 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3000 rbio_pool_free, conf->poolinfo);
3001 if (err)
3002 goto abort;
3003
3004 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3005 if (err)
3006 goto abort;
3007
3008 conf->poolinfo->mddev = mddev;
3009
3010 err = -EINVAL;
3011 spin_lock_init(&conf->device_lock);
3012 rdev_for_each(rdev, mddev) {
3013 int disk_idx = rdev->raid_disk;
3014 if (disk_idx >= mddev->raid_disks
3015 || disk_idx < 0)
3016 continue;
3017 if (test_bit(Replacement, &rdev->flags))
3018 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3019 else
3020 disk = conf->mirrors + disk_idx;
3021
3022 if (disk->rdev)
3023 goto abort;
3024 disk->rdev = rdev;
3025 disk->head_position = 0;
3026 disk->seq_start = MaxSector;
3027 }
3028 conf->raid_disks = mddev->raid_disks;
3029 conf->mddev = mddev;
3030 INIT_LIST_HEAD(&conf->retry_list);
3031 INIT_LIST_HEAD(&conf->bio_end_io_list);
3032
3033 spin_lock_init(&conf->resync_lock);
3034 init_waitqueue_head(&conf->wait_barrier);
3035
3036 bio_list_init(&conf->pending_bio_list);
3037 conf->pending_count = 0;
3038 conf->recovery_disabled = mddev->recovery_disabled - 1;
3039
3040 err = -EIO;
3041 for (i = 0; i < conf->raid_disks * 2; i++) {
3042
3043 disk = conf->mirrors + i;
3044
3045 if (i < conf->raid_disks &&
3046 disk[conf->raid_disks].rdev) {
3047 /* This slot has a replacement. */
3048 if (!disk->rdev) {
3049 /* No original, just make the replacement
3050 * a recovering spare
3051 */
3052 disk->rdev =
3053 disk[conf->raid_disks].rdev;
3054 disk[conf->raid_disks].rdev = NULL;
3055 } else if (!test_bit(In_sync, &disk->rdev->flags))
3056 /* Original is not in_sync - bad */
3057 goto abort;
3058 }
3059
3060 if (!disk->rdev ||
3061 !test_bit(In_sync, &disk->rdev->flags)) {
3062 disk->head_position = 0;
3063 if (disk->rdev &&
3064 (disk->rdev->saved_raid_disk < 0))
3065 conf->fullsync = 1;
3066 }
3067 }
3068
3069 err = -ENOMEM;
3070 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3071 if (!conf->thread)
3072 goto abort;
3073
3074 return conf;
3075
3076 abort:
3077 if (conf) {
3078 mempool_exit(&conf->r1bio_pool);
3079 kfree(conf->mirrors);
3080 safe_put_page(conf->tmppage);
3081 kfree(conf->poolinfo);
3082 kfree(conf->nr_pending);
3083 kfree(conf->nr_waiting);
3084 kfree(conf->nr_queued);
3085 kfree(conf->barrier);
3086 bioset_exit(&conf->bio_split);
3087 kfree(conf);
3088 }
3089 return ERR_PTR(err);
3090 }
3091
3092 static void raid1_free(struct mddev *mddev, void *priv);
raid1_run(struct mddev * mddev)3093 static int raid1_run(struct mddev *mddev)
3094 {
3095 struct r1conf *conf;
3096 int i;
3097 struct md_rdev *rdev;
3098 int ret;
3099 bool discard_supported = false;
3100
3101 if (mddev->level != 1) {
3102 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3103 mdname(mddev), mddev->level);
3104 return -EIO;
3105 }
3106 if (mddev->reshape_position != MaxSector) {
3107 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3108 mdname(mddev));
3109 return -EIO;
3110 }
3111 if (mddev_init_writes_pending(mddev) < 0)
3112 return -ENOMEM;
3113 /*
3114 * copy the already verified devices into our private RAID1
3115 * bookkeeping area. [whatever we allocate in run(),
3116 * should be freed in raid1_free()]
3117 */
3118 if (mddev->private == NULL)
3119 conf = setup_conf(mddev);
3120 else
3121 conf = mddev->private;
3122
3123 if (IS_ERR(conf))
3124 return PTR_ERR(conf);
3125
3126 if (mddev->queue) {
3127 blk_queue_max_write_same_sectors(mddev->queue, 0);
3128 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3129 }
3130
3131 rdev_for_each(rdev, mddev) {
3132 if (!mddev->gendisk)
3133 continue;
3134 disk_stack_limits(mddev->gendisk, rdev->bdev,
3135 rdev->data_offset << 9);
3136 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3137 discard_supported = true;
3138 }
3139
3140 mddev->degraded = 0;
3141 for (i = 0; i < conf->raid_disks; i++)
3142 if (conf->mirrors[i].rdev == NULL ||
3143 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3144 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3145 mddev->degraded++;
3146 /*
3147 * RAID1 needs at least one disk in active
3148 */
3149 if (conf->raid_disks - mddev->degraded < 1) {
3150 md_unregister_thread(&conf->thread);
3151 ret = -EINVAL;
3152 goto abort;
3153 }
3154
3155 if (conf->raid_disks - mddev->degraded == 1)
3156 mddev->recovery_cp = MaxSector;
3157
3158 if (mddev->recovery_cp != MaxSector)
3159 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3160 mdname(mddev));
3161 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3162 mdname(mddev), mddev->raid_disks - mddev->degraded,
3163 mddev->raid_disks);
3164
3165 /*
3166 * Ok, everything is just fine now
3167 */
3168 mddev->thread = conf->thread;
3169 conf->thread = NULL;
3170 mddev->private = conf;
3171 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3172
3173 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3174
3175 if (mddev->queue) {
3176 if (discard_supported)
3177 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3178 mddev->queue);
3179 else
3180 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3181 mddev->queue);
3182 }
3183
3184 ret = md_integrity_register(mddev);
3185 if (ret) {
3186 md_unregister_thread(&mddev->thread);
3187 goto abort;
3188 }
3189 return 0;
3190
3191 abort:
3192 raid1_free(mddev, conf);
3193 return ret;
3194 }
3195
raid1_free(struct mddev * mddev,void * priv)3196 static void raid1_free(struct mddev *mddev, void *priv)
3197 {
3198 struct r1conf *conf = priv;
3199
3200 mempool_exit(&conf->r1bio_pool);
3201 kfree(conf->mirrors);
3202 safe_put_page(conf->tmppage);
3203 kfree(conf->poolinfo);
3204 kfree(conf->nr_pending);
3205 kfree(conf->nr_waiting);
3206 kfree(conf->nr_queued);
3207 kfree(conf->barrier);
3208 bioset_exit(&conf->bio_split);
3209 kfree(conf);
3210 }
3211
raid1_resize(struct mddev * mddev,sector_t sectors)3212 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3213 {
3214 /* no resync is happening, and there is enough space
3215 * on all devices, so we can resize.
3216 * We need to make sure resync covers any new space.
3217 * If the array is shrinking we should possibly wait until
3218 * any io in the removed space completes, but it hardly seems
3219 * worth it.
3220 */
3221 sector_t newsize = raid1_size(mddev, sectors, 0);
3222 if (mddev->external_size &&
3223 mddev->array_sectors > newsize)
3224 return -EINVAL;
3225 if (mddev->bitmap) {
3226 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3227 if (ret)
3228 return ret;
3229 }
3230 md_set_array_sectors(mddev, newsize);
3231 if (sectors > mddev->dev_sectors &&
3232 mddev->recovery_cp > mddev->dev_sectors) {
3233 mddev->recovery_cp = mddev->dev_sectors;
3234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3235 }
3236 mddev->dev_sectors = sectors;
3237 mddev->resync_max_sectors = sectors;
3238 return 0;
3239 }
3240
raid1_reshape(struct mddev * mddev)3241 static int raid1_reshape(struct mddev *mddev)
3242 {
3243 /* We need to:
3244 * 1/ resize the r1bio_pool
3245 * 2/ resize conf->mirrors
3246 *
3247 * We allocate a new r1bio_pool if we can.
3248 * Then raise a device barrier and wait until all IO stops.
3249 * Then resize conf->mirrors and swap in the new r1bio pool.
3250 *
3251 * At the same time, we "pack" the devices so that all the missing
3252 * devices have the higher raid_disk numbers.
3253 */
3254 mempool_t newpool, oldpool;
3255 struct pool_info *newpoolinfo;
3256 struct raid1_info *newmirrors;
3257 struct r1conf *conf = mddev->private;
3258 int cnt, raid_disks;
3259 unsigned long flags;
3260 int d, d2;
3261 int ret;
3262
3263 memset(&newpool, 0, sizeof(newpool));
3264 memset(&oldpool, 0, sizeof(oldpool));
3265
3266 /* Cannot change chunk_size, layout, or level */
3267 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3268 mddev->layout != mddev->new_layout ||
3269 mddev->level != mddev->new_level) {
3270 mddev->new_chunk_sectors = mddev->chunk_sectors;
3271 mddev->new_layout = mddev->layout;
3272 mddev->new_level = mddev->level;
3273 return -EINVAL;
3274 }
3275
3276 if (!mddev_is_clustered(mddev))
3277 md_allow_write(mddev);
3278
3279 raid_disks = mddev->raid_disks + mddev->delta_disks;
3280
3281 if (raid_disks < conf->raid_disks) {
3282 cnt=0;
3283 for (d= 0; d < conf->raid_disks; d++)
3284 if (conf->mirrors[d].rdev)
3285 cnt++;
3286 if (cnt > raid_disks)
3287 return -EBUSY;
3288 }
3289
3290 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3291 if (!newpoolinfo)
3292 return -ENOMEM;
3293 newpoolinfo->mddev = mddev;
3294 newpoolinfo->raid_disks = raid_disks * 2;
3295
3296 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3297 rbio_pool_free, newpoolinfo);
3298 if (ret) {
3299 kfree(newpoolinfo);
3300 return ret;
3301 }
3302 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3303 raid_disks, 2),
3304 GFP_KERNEL);
3305 if (!newmirrors) {
3306 kfree(newpoolinfo);
3307 mempool_exit(&newpool);
3308 return -ENOMEM;
3309 }
3310
3311 freeze_array(conf, 0);
3312
3313 /* ok, everything is stopped */
3314 oldpool = conf->r1bio_pool;
3315 conf->r1bio_pool = newpool;
3316
3317 for (d = d2 = 0; d < conf->raid_disks; d++) {
3318 struct md_rdev *rdev = conf->mirrors[d].rdev;
3319 if (rdev && rdev->raid_disk != d2) {
3320 sysfs_unlink_rdev(mddev, rdev);
3321 rdev->raid_disk = d2;
3322 sysfs_unlink_rdev(mddev, rdev);
3323 if (sysfs_link_rdev(mddev, rdev))
3324 pr_warn("md/raid1:%s: cannot register rd%d\n",
3325 mdname(mddev), rdev->raid_disk);
3326 }
3327 if (rdev)
3328 newmirrors[d2++].rdev = rdev;
3329 }
3330 kfree(conf->mirrors);
3331 conf->mirrors = newmirrors;
3332 kfree(conf->poolinfo);
3333 conf->poolinfo = newpoolinfo;
3334
3335 spin_lock_irqsave(&conf->device_lock, flags);
3336 mddev->degraded += (raid_disks - conf->raid_disks);
3337 spin_unlock_irqrestore(&conf->device_lock, flags);
3338 conf->raid_disks = mddev->raid_disks = raid_disks;
3339 mddev->delta_disks = 0;
3340
3341 unfreeze_array(conf);
3342
3343 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3344 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3345 md_wakeup_thread(mddev->thread);
3346
3347 mempool_exit(&oldpool);
3348 return 0;
3349 }
3350
raid1_quiesce(struct mddev * mddev,int quiesce)3351 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3352 {
3353 struct r1conf *conf = mddev->private;
3354
3355 if (quiesce)
3356 freeze_array(conf, 0);
3357 else
3358 unfreeze_array(conf);
3359 }
3360
raid1_takeover(struct mddev * mddev)3361 static void *raid1_takeover(struct mddev *mddev)
3362 {
3363 /* raid1 can take over:
3364 * raid5 with 2 devices, any layout or chunk size
3365 */
3366 if (mddev->level == 5 && mddev->raid_disks == 2) {
3367 struct r1conf *conf;
3368 mddev->new_level = 1;
3369 mddev->new_layout = 0;
3370 mddev->new_chunk_sectors = 0;
3371 conf = setup_conf(mddev);
3372 if (!IS_ERR(conf)) {
3373 /* Array must appear to be quiesced */
3374 conf->array_frozen = 1;
3375 mddev_clear_unsupported_flags(mddev,
3376 UNSUPPORTED_MDDEV_FLAGS);
3377 }
3378 return conf;
3379 }
3380 return ERR_PTR(-EINVAL);
3381 }
3382
3383 static struct md_personality raid1_personality =
3384 {
3385 .name = "raid1",
3386 .level = 1,
3387 .owner = THIS_MODULE,
3388 .make_request = raid1_make_request,
3389 .run = raid1_run,
3390 .free = raid1_free,
3391 .status = raid1_status,
3392 .error_handler = raid1_error,
3393 .hot_add_disk = raid1_add_disk,
3394 .hot_remove_disk= raid1_remove_disk,
3395 .spare_active = raid1_spare_active,
3396 .sync_request = raid1_sync_request,
3397 .resize = raid1_resize,
3398 .size = raid1_size,
3399 .check_reshape = raid1_reshape,
3400 .quiesce = raid1_quiesce,
3401 .takeover = raid1_takeover,
3402 };
3403
raid_init(void)3404 static int __init raid_init(void)
3405 {
3406 return register_md_personality(&raid1_personality);
3407 }
3408
raid_exit(void)3409 static void raid_exit(void)
3410 {
3411 unregister_md_personality(&raid1_personality);
3412 }
3413
3414 module_init(raid_init);
3415 module_exit(raid_exit);
3416 MODULE_LICENSE("GPL");
3417 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3418 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3419 MODULE_ALIAS("md-raid1");
3420 MODULE_ALIAS("md-level-1");
3421
3422