1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI Camera Access Layer (CAL) - CAMERARX
4 *
5 * Copyright (c) 2015-2020 Texas Instruments Inc.
6 *
7 * Authors:
8 * Benoit Parrot <bparrot@ti.com>
9 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-subdev.h>
24
25 #include "cal.h"
26 #include "cal_regs.h"
27
28 /* ------------------------------------------------------------------
29 * I/O Register Accessors
30 * ------------------------------------------------------------------
31 */
32
camerarx_read(struct cal_camerarx * phy,u32 offset)33 static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
34 {
35 return ioread32(phy->base + offset);
36 }
37
camerarx_write(struct cal_camerarx * phy,u32 offset,u32 val)38 static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
39 {
40 iowrite32(val, phy->base + offset);
41 }
42
43 /* ------------------------------------------------------------------
44 * CAMERARX Management
45 * ------------------------------------------------------------------
46 */
47
cal_camerarx_get_ext_link_freq(struct cal_camerarx * phy)48 static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
49 {
50 struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
51 u32 num_lanes = mipi_csi2->num_data_lanes;
52 const struct cal_format_info *fmtinfo;
53 u32 bpp;
54 s64 freq;
55
56 fmtinfo = cal_format_by_code(phy->formats[CAL_CAMERARX_PAD_SINK].code);
57 if (!fmtinfo)
58 return -EINVAL;
59
60 bpp = fmtinfo->bpp;
61
62 freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
63 if (freq < 0) {
64 phy_err(phy, "failed to get link freq for subdev '%s'\n",
65 phy->source->name);
66 return freq;
67 }
68
69 phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
70
71 return freq;
72 }
73
cal_camerarx_lane_config(struct cal_camerarx * phy)74 static void cal_camerarx_lane_config(struct cal_camerarx *phy)
75 {
76 u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
77 u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
78 u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
79 struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
80 &phy->endpoint.bus.mipi_csi2;
81 int lane;
82
83 cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
84 cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
85 for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
86 /*
87 * Every lane are one nibble apart starting with the
88 * clock followed by the data lanes so shift masks by 4.
89 */
90 lane_mask <<= 4;
91 polarity_mask <<= 4;
92 cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
93 cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
94 polarity_mask);
95 }
96
97 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
98 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
99 phy->instance, val);
100 }
101
cal_camerarx_enable(struct cal_camerarx * phy)102 static void cal_camerarx_enable(struct cal_camerarx *phy)
103 {
104 u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
105
106 regmap_field_write(phy->fields[F_CAMMODE], 0);
107 /* Always enable all lanes at the phy control level */
108 regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
109 /* F_CSI_MODE is not present on every architecture */
110 if (phy->fields[F_CSI_MODE])
111 regmap_field_write(phy->fields[F_CSI_MODE], 1);
112 regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
113 }
114
cal_camerarx_disable(struct cal_camerarx * phy)115 void cal_camerarx_disable(struct cal_camerarx *phy)
116 {
117 regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
118 }
119
120 /*
121 * TCLK values are OK at their reset values
122 */
123 #define TCLK_TERM 0
124 #define TCLK_MISS 1
125 #define TCLK_SETTLE 14
126
cal_camerarx_config(struct cal_camerarx * phy,s64 link_freq)127 static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
128 {
129 unsigned int reg0, reg1;
130 unsigned int ths_term, ths_settle;
131
132 /* DPHY timing configuration */
133
134 /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
135 ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
136 phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
137
138 /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
139 ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
140 phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
141
142 reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
143 cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
144 CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
145 cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
146 cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
147
148 phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
149 camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
150
151 reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
152 cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
153 cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
154 cal_set_field(®1, TCLK_MISS,
155 CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
156 cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
157
158 phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
159 camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
160 }
161
cal_camerarx_power(struct cal_camerarx * phy,bool enable)162 static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
163 {
164 u32 target_state;
165 unsigned int i;
166
167 target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
168 CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
169
170 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
171 target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
172
173 for (i = 0; i < 10; i++) {
174 u32 current_state;
175
176 current_state = cal_read_field(phy->cal,
177 CAL_CSI2_COMPLEXIO_CFG(phy->instance),
178 CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
179
180 if (current_state == target_state)
181 break;
182
183 usleep_range(1000, 1100);
184 }
185
186 if (i == 10)
187 phy_err(phy, "Failed to power %s complexio\n",
188 enable ? "up" : "down");
189 }
190
cal_camerarx_wait_reset(struct cal_camerarx * phy)191 static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
192 {
193 unsigned long timeout;
194
195 timeout = jiffies + msecs_to_jiffies(750);
196 while (time_before(jiffies, timeout)) {
197 if (cal_read_field(phy->cal,
198 CAL_CSI2_COMPLEXIO_CFG(phy->instance),
199 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
200 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
201 break;
202 usleep_range(500, 5000);
203 }
204
205 if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
206 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
207 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
208 phy_err(phy, "Timeout waiting for Complex IO reset done\n");
209 }
210
cal_camerarx_wait_stop_state(struct cal_camerarx * phy)211 static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
212 {
213 unsigned long timeout;
214
215 timeout = jiffies + msecs_to_jiffies(750);
216 while (time_before(jiffies, timeout)) {
217 if (cal_read_field(phy->cal,
218 CAL_CSI2_TIMING(phy->instance),
219 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
220 break;
221 usleep_range(500, 5000);
222 }
223
224 if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
225 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
226 phy_err(phy, "Timeout waiting for stop state\n");
227 }
228
cal_camerarx_enable_irqs(struct cal_camerarx * phy)229 static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
230 {
231 const u32 cio_err_mask =
232 CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
233 CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
234 CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
235 CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
236 const u32 vc_err_mask =
237 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
238 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
239 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
240 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
241 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
242 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
243 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
244 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
245
246 /* Enable CIO & VC error IRQs. */
247 cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
248 CAL_HL_IRQ_CIO_MASK(phy->instance) |
249 CAL_HL_IRQ_VC_MASK(phy->instance));
250 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
251 cio_err_mask);
252 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
253 vc_err_mask);
254 }
255
cal_camerarx_disable_irqs(struct cal_camerarx * phy)256 static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
257 {
258 /* Disable CIO error irqs */
259 cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
260 CAL_HL_IRQ_CIO_MASK(phy->instance) |
261 CAL_HL_IRQ_VC_MASK(phy->instance));
262 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
263 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
264 }
265
cal_camerarx_ppi_enable(struct cal_camerarx * phy)266 static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
267 {
268 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
269 1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
270
271 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
272 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
273 }
274
cal_camerarx_ppi_disable(struct cal_camerarx * phy)275 static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
276 {
277 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
278 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
279 }
280
cal_camerarx_start(struct cal_camerarx * phy)281 static int cal_camerarx_start(struct cal_camerarx *phy)
282 {
283 s64 link_freq;
284 u32 sscounter;
285 u32 val;
286 int ret;
287
288 if (phy->enable_count > 0) {
289 phy->enable_count++;
290 return 0;
291 }
292
293 link_freq = cal_camerarx_get_ext_link_freq(phy);
294 if (link_freq < 0)
295 return link_freq;
296
297 ret = v4l2_subdev_call(phy->source, core, s_power, 1);
298 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
299 phy_err(phy, "power on failed in subdev\n");
300 return ret;
301 }
302
303 cal_camerarx_enable_irqs(phy);
304
305 /*
306 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
307 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
308 * DRA80xM TRMs have a a slightly simplified sequence.
309 */
310
311 /*
312 * 1. Configure all CSI-2 low level protocol registers to be ready to
313 * receive signals/data from the CSI-2 PHY.
314 *
315 * i.-v. Configure the lanes position and polarity.
316 */
317 cal_camerarx_lane_config(phy);
318
319 /*
320 * vi.-vii. Configure D-PHY mode, enable the required lanes and
321 * enable the CAMERARX clock.
322 */
323 cal_camerarx_enable(phy);
324
325 /*
326 * 2. CSI PHY and link initialization sequence.
327 *
328 * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
329 * at this point, as it requires the external source to send the
330 * CSI-2 HS clock.
331 */
332 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
333 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
334 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
335 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
336 phy->instance,
337 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
338
339 /* Dummy read to allow SCP reset to complete. */
340 camerarx_read(phy, CAL_CSI2_PHY_REG0);
341
342 /* Program the PHY timing parameters. */
343 cal_camerarx_config(phy, link_freq);
344
345 /*
346 * b. Assert the FORCERXMODE signal.
347 *
348 * The stop-state-counter is based on fclk cycles, and we always use
349 * the x16 and x4 settings, so stop-state-timeout =
350 * fclk-cycle * 16 * 4 * counter.
351 *
352 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
353 * calculate a timeout that's 100us (rounding up).
354 */
355 sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
356
357 val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
358 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
359 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
360 cal_set_field(&val, sscounter,
361 CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
362 cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
363 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
364 phy->instance,
365 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
366
367 /* Assert the FORCERXMODE signal. */
368 cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
369 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
370 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
371 phy->instance,
372 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
373
374 /*
375 * c. Connect pull-down on CSI-2 PHY link (using pad control).
376 *
377 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
378 * implemented.
379 */
380
381 /*
382 * d. Power up the CSI-2 PHY.
383 * e. Check whether the state status reaches the ON state.
384 */
385 cal_camerarx_power(phy, true);
386
387 /*
388 * Start the source to enable the CSI-2 HS clock. We can now wait for
389 * CSI-2 PHY reset to complete.
390 */
391 ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
392 if (ret) {
393 v4l2_subdev_call(phy->source, core, s_power, 0);
394 cal_camerarx_disable_irqs(phy);
395 phy_err(phy, "stream on failed in subdev\n");
396 return ret;
397 }
398
399 cal_camerarx_wait_reset(phy);
400
401 /* f. Wait for STOPSTATE=1 for all enabled lane modules. */
402 cal_camerarx_wait_stop_state(phy);
403
404 phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
405 phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
406
407 /*
408 * g. Disable pull-down on CSI-2 PHY link (using pad control).
409 *
410 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
411 * implemented.
412 */
413
414 /* Finally, enable the PHY Protocol Interface (PPI). */
415 cal_camerarx_ppi_enable(phy);
416
417 phy->enable_count++;
418
419 return 0;
420 }
421
cal_camerarx_stop(struct cal_camerarx * phy)422 static void cal_camerarx_stop(struct cal_camerarx *phy)
423 {
424 int ret;
425
426 if (--phy->enable_count > 0)
427 return;
428
429 cal_camerarx_ppi_disable(phy);
430
431 cal_camerarx_disable_irqs(phy);
432
433 cal_camerarx_power(phy, false);
434
435 /* Assert Complex IO Reset */
436 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
437 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
438 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
439
440 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
441 phy->instance,
442 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
443
444 /* Disable the phy */
445 cal_camerarx_disable(phy);
446
447 if (v4l2_subdev_call(phy->source, video, s_stream, 0))
448 phy_err(phy, "stream off failed in subdev\n");
449
450 ret = v4l2_subdev_call(phy->source, core, s_power, 0);
451 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
452 phy_err(phy, "power off failed in subdev\n");
453 }
454
455 /*
456 * Errata i913: CSI2 LDO Needs to be disabled when module is powered on
457 *
458 * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
459 * LDOs on the device are disabled if CSI-2 module is powered on
460 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
461 * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
462 * current draw on the module supply in active mode.
463 *
464 * Errata does not apply when CSI-2 module is powered off
465 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
466 *
467 * SW Workaround:
468 * Set the following register bits to disable the LDO,
469 * which is essentially CSI2 REG10 bit 6:
470 *
471 * Core 0: 0x4845 B828 = 0x0000 0040
472 * Core 1: 0x4845 B928 = 0x0000 0040
473 */
cal_camerarx_i913_errata(struct cal_camerarx * phy)474 void cal_camerarx_i913_errata(struct cal_camerarx *phy)
475 {
476 u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
477
478 cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
479
480 phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
481 camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
482 }
483
cal_camerarx_regmap_init(struct cal_dev * cal,struct cal_camerarx * phy)484 static int cal_camerarx_regmap_init(struct cal_dev *cal,
485 struct cal_camerarx *phy)
486 {
487 const struct cal_camerarx_data *phy_data;
488 unsigned int i;
489
490 if (!cal->data)
491 return -EINVAL;
492
493 phy_data = &cal->data->camerarx[phy->instance];
494
495 for (i = 0; i < F_MAX_FIELDS; i++) {
496 struct reg_field field = {
497 .reg = cal->syscon_camerrx_offset,
498 .lsb = phy_data->fields[i].lsb,
499 .msb = phy_data->fields[i].msb,
500 };
501
502 /*
503 * Here we update the reg offset with the
504 * value found in DT
505 */
506 phy->fields[i] = devm_regmap_field_alloc(cal->dev,
507 cal->syscon_camerrx,
508 field);
509 if (IS_ERR(phy->fields[i])) {
510 cal_err(cal, "Unable to allocate regmap fields\n");
511 return PTR_ERR(phy->fields[i]);
512 }
513 }
514
515 return 0;
516 }
517
cal_camerarx_parse_dt(struct cal_camerarx * phy)518 static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
519 {
520 struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
521 char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES * 2];
522 struct device_node *ep_node;
523 unsigned int i;
524 int ret;
525
526 /*
527 * Find the endpoint node for the port corresponding to the PHY
528 * instance, and parse its CSI-2-related properties.
529 */
530 ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
531 phy->instance, 0);
532 if (!ep_node) {
533 /*
534 * The endpoint is not mandatory, not all PHY instances need to
535 * be connected in DT.
536 */
537 phy_dbg(3, phy, "Port has no endpoint\n");
538 return 0;
539 }
540
541 endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
542 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
543 if (ret < 0) {
544 phy_err(phy, "Failed to parse endpoint\n");
545 goto done;
546 }
547
548 for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
549 unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
550
551 if (lane > 4) {
552 phy_err(phy, "Invalid position %u for data lane %u\n",
553 lane, i);
554 ret = -EINVAL;
555 goto done;
556 }
557
558 data_lanes[i*2] = '0' + lane;
559 data_lanes[i*2+1] = ' ';
560 }
561
562 data_lanes[i*2-1] = '\0';
563
564 phy_dbg(3, phy,
565 "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
566 endpoint->bus.mipi_csi2.clock_lane, data_lanes,
567 endpoint->bus.mipi_csi2.flags);
568
569 /* Retrieve the connected device and store it for later use. */
570 phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
571 phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
572 if (!phy->source_node) {
573 phy_dbg(3, phy, "Can't get remote parent\n");
574 of_node_put(phy->source_ep_node);
575 ret = -EINVAL;
576 goto done;
577 }
578
579 phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
580
581 done:
582 of_node_put(ep_node);
583 return ret;
584 }
585
586 /* ------------------------------------------------------------------
587 * V4L2 Subdev Operations
588 * ------------------------------------------------------------------
589 */
590
to_cal_camerarx(struct v4l2_subdev * sd)591 static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
592 {
593 return container_of(sd, struct cal_camerarx, subdev);
594 }
595
596 static struct v4l2_mbus_framefmt *
cal_camerarx_get_pad_format(struct cal_camerarx * phy,struct v4l2_subdev_state * sd_state,unsigned int pad,u32 which)597 cal_camerarx_get_pad_format(struct cal_camerarx *phy,
598 struct v4l2_subdev_state *sd_state,
599 unsigned int pad, u32 which)
600 {
601 switch (which) {
602 case V4L2_SUBDEV_FORMAT_TRY:
603 return v4l2_subdev_get_try_format(&phy->subdev, sd_state, pad);
604 case V4L2_SUBDEV_FORMAT_ACTIVE:
605 return &phy->formats[pad];
606 default:
607 return NULL;
608 }
609 }
610
cal_camerarx_sd_s_stream(struct v4l2_subdev * sd,int enable)611 static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
612 {
613 struct cal_camerarx *phy = to_cal_camerarx(sd);
614 int ret = 0;
615
616 mutex_lock(&phy->mutex);
617
618 if (enable)
619 ret = cal_camerarx_start(phy);
620 else
621 cal_camerarx_stop(phy);
622
623 mutex_unlock(&phy->mutex);
624
625 return ret;
626 }
627
cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)628 static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
629 struct v4l2_subdev_state *sd_state,
630 struct v4l2_subdev_mbus_code_enum *code)
631 {
632 struct cal_camerarx *phy = to_cal_camerarx(sd);
633 int ret = 0;
634
635 mutex_lock(&phy->mutex);
636
637 /* No transcoding, source and sink codes must match. */
638 if (cal_rx_pad_is_source(code->pad)) {
639 struct v4l2_mbus_framefmt *fmt;
640
641 if (code->index > 0) {
642 ret = -EINVAL;
643 goto out;
644 }
645
646 fmt = cal_camerarx_get_pad_format(phy, sd_state,
647 CAL_CAMERARX_PAD_SINK,
648 code->which);
649 code->code = fmt->code;
650 } else {
651 if (code->index >= cal_num_formats) {
652 ret = -EINVAL;
653 goto out;
654 }
655
656 code->code = cal_formats[code->index].code;
657 }
658
659 out:
660 mutex_unlock(&phy->mutex);
661
662 return ret;
663 }
664
cal_camerarx_sd_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)665 static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
666 struct v4l2_subdev_state *sd_state,
667 struct v4l2_subdev_frame_size_enum *fse)
668 {
669 struct cal_camerarx *phy = to_cal_camerarx(sd);
670 const struct cal_format_info *fmtinfo;
671 int ret = 0;
672
673 if (fse->index > 0)
674 return -EINVAL;
675
676 mutex_lock(&phy->mutex);
677
678 /* No transcoding, source and sink formats must match. */
679 if (cal_rx_pad_is_source(fse->pad)) {
680 struct v4l2_mbus_framefmt *fmt;
681
682 fmt = cal_camerarx_get_pad_format(phy, sd_state,
683 CAL_CAMERARX_PAD_SINK,
684 fse->which);
685 if (fse->code != fmt->code) {
686 ret = -EINVAL;
687 goto out;
688 }
689
690 fse->min_width = fmt->width;
691 fse->max_width = fmt->width;
692 fse->min_height = fmt->height;
693 fse->max_height = fmt->height;
694 } else {
695 fmtinfo = cal_format_by_code(fse->code);
696 if (!fmtinfo) {
697 ret = -EINVAL;
698 goto out;
699 }
700
701 fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
702 fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
703 fse->min_height = CAL_MIN_HEIGHT_LINES;
704 fse->max_height = CAL_MAX_HEIGHT_LINES;
705 }
706
707 out:
708 mutex_unlock(&phy->mutex);
709
710 return ret;
711 }
712
cal_camerarx_sd_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)713 static int cal_camerarx_sd_get_fmt(struct v4l2_subdev *sd,
714 struct v4l2_subdev_state *sd_state,
715 struct v4l2_subdev_format *format)
716 {
717 struct cal_camerarx *phy = to_cal_camerarx(sd);
718 struct v4l2_mbus_framefmt *fmt;
719
720 mutex_lock(&phy->mutex);
721
722 fmt = cal_camerarx_get_pad_format(phy, sd_state, format->pad,
723 format->which);
724 format->format = *fmt;
725
726 mutex_unlock(&phy->mutex);
727
728 return 0;
729 }
730
cal_camerarx_sd_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)731 static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
732 struct v4l2_subdev_state *sd_state,
733 struct v4l2_subdev_format *format)
734 {
735 struct cal_camerarx *phy = to_cal_camerarx(sd);
736 const struct cal_format_info *fmtinfo;
737 struct v4l2_mbus_framefmt *fmt;
738 unsigned int bpp;
739
740 /* No transcoding, source and sink formats must match. */
741 if (cal_rx_pad_is_source(format->pad))
742 return cal_camerarx_sd_get_fmt(sd, sd_state, format);
743
744 /*
745 * Default to the first format if the requested media bus code isn't
746 * supported.
747 */
748 fmtinfo = cal_format_by_code(format->format.code);
749 if (!fmtinfo)
750 fmtinfo = &cal_formats[0];
751
752 /* Clamp the size, update the code. The colorspace is accepted as-is. */
753 bpp = ALIGN(fmtinfo->bpp, 8);
754
755 format->format.width = clamp_t(unsigned int, format->format.width,
756 CAL_MIN_WIDTH_BYTES * 8 / bpp,
757 CAL_MAX_WIDTH_BYTES * 8 / bpp);
758 format->format.height = clamp_t(unsigned int, format->format.height,
759 CAL_MIN_HEIGHT_LINES,
760 CAL_MAX_HEIGHT_LINES);
761 format->format.code = fmtinfo->code;
762 format->format.field = V4L2_FIELD_NONE;
763
764 /* Store the format and propagate it to the source pad. */
765
766 mutex_lock(&phy->mutex);
767
768 fmt = cal_camerarx_get_pad_format(phy, sd_state,
769 CAL_CAMERARX_PAD_SINK,
770 format->which);
771 *fmt = format->format;
772
773 fmt = cal_camerarx_get_pad_format(phy, sd_state,
774 CAL_CAMERARX_PAD_FIRST_SOURCE,
775 format->which);
776 *fmt = format->format;
777
778 mutex_unlock(&phy->mutex);
779
780 return 0;
781 }
782
cal_camerarx_sd_init_cfg(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)783 static int cal_camerarx_sd_init_cfg(struct v4l2_subdev *sd,
784 struct v4l2_subdev_state *sd_state)
785 {
786 struct v4l2_subdev_format format = {
787 .which = sd_state ? V4L2_SUBDEV_FORMAT_TRY
788 : V4L2_SUBDEV_FORMAT_ACTIVE,
789 .pad = CAL_CAMERARX_PAD_SINK,
790 .format = {
791 .width = 640,
792 .height = 480,
793 .code = MEDIA_BUS_FMT_UYVY8_2X8,
794 .field = V4L2_FIELD_NONE,
795 .colorspace = V4L2_COLORSPACE_SRGB,
796 .ycbcr_enc = V4L2_YCBCR_ENC_601,
797 .quantization = V4L2_QUANTIZATION_LIM_RANGE,
798 .xfer_func = V4L2_XFER_FUNC_SRGB,
799 },
800 };
801
802 return cal_camerarx_sd_set_fmt(sd, sd_state, &format);
803 }
804
805 static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
806 .s_stream = cal_camerarx_sd_s_stream,
807 };
808
809 static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
810 .init_cfg = cal_camerarx_sd_init_cfg,
811 .enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
812 .enum_frame_size = cal_camerarx_sd_enum_frame_size,
813 .get_fmt = cal_camerarx_sd_get_fmt,
814 .set_fmt = cal_camerarx_sd_set_fmt,
815 };
816
817 static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
818 .video = &cal_camerarx_video_ops,
819 .pad = &cal_camerarx_pad_ops,
820 };
821
822 static struct media_entity_operations cal_camerarx_media_ops = {
823 .link_validate = v4l2_subdev_link_validate,
824 };
825
826 /* ------------------------------------------------------------------
827 * Create and Destroy
828 * ------------------------------------------------------------------
829 */
830
cal_camerarx_create(struct cal_dev * cal,unsigned int instance)831 struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
832 unsigned int instance)
833 {
834 struct platform_device *pdev = to_platform_device(cal->dev);
835 struct cal_camerarx *phy;
836 struct v4l2_subdev *sd;
837 unsigned int i;
838 int ret;
839
840 phy = kzalloc(sizeof(*phy), GFP_KERNEL);
841 if (!phy)
842 return ERR_PTR(-ENOMEM);
843
844 phy->cal = cal;
845 phy->instance = instance;
846
847 mutex_init(&phy->mutex);
848
849 phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
850 (instance == 0) ?
851 "cal_rx_core0" :
852 "cal_rx_core1");
853 phy->base = devm_ioremap_resource(cal->dev, phy->res);
854 if (IS_ERR(phy->base)) {
855 cal_err(cal, "failed to ioremap\n");
856 ret = PTR_ERR(phy->base);
857 goto error;
858 }
859
860 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
861 phy->res->name, &phy->res->start, &phy->res->end);
862
863 ret = cal_camerarx_regmap_init(cal, phy);
864 if (ret)
865 goto error;
866
867 ret = cal_camerarx_parse_dt(phy);
868 if (ret)
869 goto error;
870
871 /* Initialize the V4L2 subdev and media entity. */
872 sd = &phy->subdev;
873 v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
874 sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
875 sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
876 snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
877 sd->dev = cal->dev;
878
879 phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
880 for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
881 phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
882 sd->entity.ops = &cal_camerarx_media_ops;
883 ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
884 phy->pads);
885 if (ret)
886 goto error;
887
888 ret = cal_camerarx_sd_init_cfg(sd, NULL);
889 if (ret)
890 goto error;
891
892 ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
893 if (ret)
894 goto error;
895
896 return phy;
897
898 error:
899 media_entity_cleanup(&phy->subdev.entity);
900 kfree(phy);
901 return ERR_PTR(ret);
902 }
903
cal_camerarx_destroy(struct cal_camerarx * phy)904 void cal_camerarx_destroy(struct cal_camerarx *phy)
905 {
906 if (!phy)
907 return;
908
909 v4l2_device_unregister_subdev(&phy->subdev);
910 media_entity_cleanup(&phy->subdev.entity);
911 of_node_put(phy->source_ep_node);
912 of_node_put(phy->source_node);
913 mutex_destroy(&phy->mutex);
914 kfree(phy);
915 }
916