1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49
50 #include <linux/uaccess.h>
51
52 #include <trace/hooks/mmc.h>
53
54 #include "queue.h"
55 #include "block.h"
56 #include "core.h"
57 #include "card.h"
58 #include "crypto.h"
59 #include "host.h"
60 #include "bus.h"
61 #include "mmc_ops.h"
62 #include "quirks.h"
63 #include "sd_ops.h"
64
65 MODULE_ALIAS("mmc:block");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "mmcblk."
70
71 /*
72 * Set a 10 second timeout for polling write request busy state. Note, mmc core
73 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
74 * second software timer to timeout the whole request, so 10 seconds should be
75 * ample.
76 */
77 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
78 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
79 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
80
81 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
82 (rq_data_dir(req) == WRITE))
83 static DEFINE_MUTEX(block_mutex);
84
85 /*
86 * The defaults come from config options but can be overriden by module
87 * or bootarg options.
88 */
89 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
90
91 /*
92 * We've only got one major, so number of mmcblk devices is
93 * limited to (1 << 20) / number of minors per device. It is also
94 * limited by the MAX_DEVICES below.
95 */
96 static int max_devices;
97
98 #define MAX_DEVICES 256
99
100 static DEFINE_IDA(mmc_blk_ida);
101 static DEFINE_IDA(mmc_rpmb_ida);
102
103 struct mmc_blk_busy_data {
104 struct mmc_card *card;
105 u32 status;
106 };
107
108 /*
109 * There is one mmc_blk_data per slot.
110 */
111 struct mmc_blk_data {
112 struct device *parent;
113 struct gendisk *disk;
114 struct mmc_queue queue;
115 struct list_head part;
116 struct list_head rpmbs;
117
118 unsigned int flags;
119 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
120 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
121
122 struct kref kref;
123 unsigned int read_only;
124 unsigned int part_type;
125 unsigned int reset_done;
126 #define MMC_BLK_READ BIT(0)
127 #define MMC_BLK_WRITE BIT(1)
128 #define MMC_BLK_DISCARD BIT(2)
129 #define MMC_BLK_SECDISCARD BIT(3)
130 #define MMC_BLK_CQE_RECOVERY BIT(4)
131
132 /*
133 * Only set in main mmc_blk_data associated
134 * with mmc_card with dev_set_drvdata, and keeps
135 * track of the current selected device partition.
136 */
137 unsigned int part_curr;
138 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
139 int area_type;
140
141 /* debugfs files (only in main mmc_blk_data) */
142 struct dentry *status_dentry;
143 struct dentry *ext_csd_dentry;
144 };
145
146 /* Device type for RPMB character devices */
147 static dev_t mmc_rpmb_devt;
148
149 /* Bus type for RPMB character devices */
150 static struct bus_type mmc_rpmb_bus_type = {
151 .name = "mmc_rpmb",
152 };
153
154 /**
155 * struct mmc_rpmb_data - special RPMB device type for these areas
156 * @dev: the device for the RPMB area
157 * @chrdev: character device for the RPMB area
158 * @id: unique device ID number
159 * @part_index: partition index (0 on first)
160 * @md: parent MMC block device
161 * @node: list item, so we can put this device on a list
162 */
163 struct mmc_rpmb_data {
164 struct device dev;
165 struct cdev chrdev;
166 int id;
167 unsigned int part_index;
168 struct mmc_blk_data *md;
169 struct list_head node;
170 };
171
172 static DEFINE_MUTEX(open_lock);
173
174 module_param(perdev_minors, int, 0444);
175 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
176
177 static inline int mmc_blk_part_switch(struct mmc_card *card,
178 unsigned int part_type);
179 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
180 struct mmc_card *card,
181 int recovery_mode,
182 struct mmc_queue *mq);
183 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
184
mmc_blk_get(struct gendisk * disk)185 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
186 {
187 struct mmc_blk_data *md;
188
189 mutex_lock(&open_lock);
190 md = disk->private_data;
191 if (md && !kref_get_unless_zero(&md->kref))
192 md = NULL;
193 mutex_unlock(&open_lock);
194
195 return md;
196 }
197
mmc_get_devidx(struct gendisk * disk)198 static inline int mmc_get_devidx(struct gendisk *disk)
199 {
200 int devidx = disk->first_minor / perdev_minors;
201 return devidx;
202 }
203
mmc_blk_kref_release(struct kref * ref)204 static void mmc_blk_kref_release(struct kref *ref)
205 {
206 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
207 int devidx;
208
209 devidx = mmc_get_devidx(md->disk);
210 ida_simple_remove(&mmc_blk_ida, devidx);
211
212 mutex_lock(&open_lock);
213 md->disk->private_data = NULL;
214 mutex_unlock(&open_lock);
215
216 put_disk(md->disk);
217 kfree(md);
218 }
219
mmc_blk_put(struct mmc_blk_data * md)220 static void mmc_blk_put(struct mmc_blk_data *md)
221 {
222 kref_put(&md->kref, mmc_blk_kref_release);
223 }
224
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)225 static ssize_t power_ro_lock_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227 {
228 int ret;
229 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
230 struct mmc_card *card = md->queue.card;
231 int locked = 0;
232
233 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
234 locked = 2;
235 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
236 locked = 1;
237
238 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
239
240 mmc_blk_put(md);
241
242 return ret;
243 }
244
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)245 static ssize_t power_ro_lock_store(struct device *dev,
246 struct device_attribute *attr, const char *buf, size_t count)
247 {
248 int ret;
249 struct mmc_blk_data *md, *part_md;
250 struct mmc_queue *mq;
251 struct request *req;
252 unsigned long set;
253
254 if (kstrtoul(buf, 0, &set))
255 return -EINVAL;
256
257 if (set != 1)
258 return count;
259
260 md = mmc_blk_get(dev_to_disk(dev));
261 mq = &md->queue;
262
263 /* Dispatch locking to the block layer */
264 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
265 if (IS_ERR(req)) {
266 count = PTR_ERR(req);
267 goto out_put;
268 }
269 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
270 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
271 blk_execute_rq(NULL, req, 0);
272 ret = req_to_mmc_queue_req(req)->drv_op_result;
273 blk_put_request(req);
274
275 if (!ret) {
276 pr_info("%s: Locking boot partition ro until next power on\n",
277 md->disk->disk_name);
278 set_disk_ro(md->disk, 1);
279
280 list_for_each_entry(part_md, &md->part, part)
281 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
282 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
283 set_disk_ro(part_md->disk, 1);
284 }
285 }
286 out_put:
287 mmc_blk_put(md);
288 return count;
289 }
290
291 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
292 power_ro_lock_show, power_ro_lock_store);
293
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
295 char *buf)
296 {
297 int ret;
298 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
299
300 ret = snprintf(buf, PAGE_SIZE, "%d\n",
301 get_disk_ro(dev_to_disk(dev)) ^
302 md->read_only);
303 mmc_blk_put(md);
304 return ret;
305 }
306
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)307 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
308 const char *buf, size_t count)
309 {
310 int ret;
311 char *end;
312 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
313 unsigned long set = simple_strtoul(buf, &end, 0);
314 if (end == buf) {
315 ret = -EINVAL;
316 goto out;
317 }
318
319 set_disk_ro(dev_to_disk(dev), set || md->read_only);
320 ret = count;
321 out:
322 mmc_blk_put(md);
323 return ret;
324 }
325
326 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
327
328 static struct attribute *mmc_disk_attrs[] = {
329 &dev_attr_force_ro.attr,
330 &dev_attr_ro_lock_until_next_power_on.attr,
331 NULL,
332 };
333
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)334 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
335 struct attribute *a, int n)
336 {
337 struct device *dev = container_of(kobj, struct device, kobj);
338 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
339 umode_t mode = a->mode;
340
341 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
342 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
343 md->queue.card->ext_csd.boot_ro_lockable) {
344 mode = S_IRUGO;
345 if (!(md->queue.card->ext_csd.boot_ro_lock &
346 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
347 mode |= S_IWUSR;
348 }
349
350 mmc_blk_put(md);
351 return mode;
352 }
353
354 static const struct attribute_group mmc_disk_attr_group = {
355 .is_visible = mmc_disk_attrs_is_visible,
356 .attrs = mmc_disk_attrs,
357 };
358
359 static const struct attribute_group *mmc_disk_attr_groups[] = {
360 &mmc_disk_attr_group,
361 NULL,
362 };
363
mmc_blk_open(struct block_device * bdev,fmode_t mode)364 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
365 {
366 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
367 int ret = -ENXIO;
368
369 mutex_lock(&block_mutex);
370 if (md) {
371 ret = 0;
372 if ((mode & FMODE_WRITE) && md->read_only) {
373 mmc_blk_put(md);
374 ret = -EROFS;
375 }
376 }
377 mutex_unlock(&block_mutex);
378
379 return ret;
380 }
381
mmc_blk_release(struct gendisk * disk,fmode_t mode)382 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
383 {
384 struct mmc_blk_data *md = disk->private_data;
385
386 mutex_lock(&block_mutex);
387 mmc_blk_put(md);
388 mutex_unlock(&block_mutex);
389 }
390
391 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)392 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
393 {
394 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
395 geo->heads = 4;
396 geo->sectors = 16;
397 return 0;
398 }
399
400 struct mmc_blk_ioc_data {
401 struct mmc_ioc_cmd ic;
402 unsigned char *buf;
403 u64 buf_bytes;
404 unsigned int flags;
405 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
406 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
407
408 struct mmc_rpmb_data *rpmb;
409 };
410
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)411 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
412 struct mmc_ioc_cmd __user *user)
413 {
414 struct mmc_blk_ioc_data *idata;
415 int err;
416
417 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
418 if (!idata) {
419 err = -ENOMEM;
420 goto out;
421 }
422
423 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
424 err = -EFAULT;
425 goto idata_err;
426 }
427
428 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
429 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
430 err = -EOVERFLOW;
431 goto idata_err;
432 }
433
434 if (!idata->buf_bytes) {
435 idata->buf = NULL;
436 return idata;
437 }
438
439 idata->buf = memdup_user((void __user *)(unsigned long)
440 idata->ic.data_ptr, idata->buf_bytes);
441 if (IS_ERR(idata->buf)) {
442 err = PTR_ERR(idata->buf);
443 goto idata_err;
444 }
445
446 return idata;
447
448 idata_err:
449 kfree(idata);
450 out:
451 return ERR_PTR(err);
452 }
453
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)454 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
455 struct mmc_blk_ioc_data *idata)
456 {
457 struct mmc_ioc_cmd *ic = &idata->ic;
458
459 if (copy_to_user(&(ic_ptr->response), ic->response,
460 sizeof(ic->response)))
461 return -EFAULT;
462
463 if (!idata->ic.write_flag) {
464 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
465 idata->buf, idata->buf_bytes))
466 return -EFAULT;
467 }
468
469 return 0;
470 }
471
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 struct mmc_blk_ioc_data **idatas, int i)
474 {
475 struct mmc_command cmd = {}, sbc = {};
476 struct mmc_data data = {};
477 struct mmc_request mrq = {};
478 struct scatterlist sg;
479 int err;
480 unsigned int target_part;
481 struct mmc_blk_ioc_data *idata = idatas[i];
482 struct mmc_blk_ioc_data *prev_idata = NULL;
483
484 if (!card || !md || !idata)
485 return -EINVAL;
486
487 if (idata->flags & MMC_BLK_IOC_DROP)
488 return 0;
489
490 if (idata->flags & MMC_BLK_IOC_SBC)
491 prev_idata = idatas[i - 1];
492
493 /*
494 * The RPMB accesses comes in from the character device, so we
495 * need to target these explicitly. Else we just target the
496 * partition type for the block device the ioctl() was issued
497 * on.
498 */
499 if (idata->rpmb) {
500 /* Support multiple RPMB partitions */
501 target_part = idata->rpmb->part_index;
502 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
503 } else {
504 target_part = md->part_type;
505 }
506
507 cmd.opcode = idata->ic.opcode;
508 cmd.arg = idata->ic.arg;
509 cmd.flags = idata->ic.flags;
510
511 if (idata->buf_bytes) {
512 data.sg = &sg;
513 data.sg_len = 1;
514 data.blksz = idata->ic.blksz;
515 data.blocks = idata->ic.blocks;
516
517 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
518
519 if (idata->ic.write_flag)
520 data.flags = MMC_DATA_WRITE;
521 else
522 data.flags = MMC_DATA_READ;
523
524 /* data.flags must already be set before doing this. */
525 mmc_set_data_timeout(&data, card);
526
527 /* Allow overriding the timeout_ns for empirical tuning. */
528 if (idata->ic.data_timeout_ns)
529 data.timeout_ns = idata->ic.data_timeout_ns;
530
531 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
532 /*
533 * Pretend this is a data transfer and rely on the
534 * host driver to compute timeout. When all host
535 * drivers support cmd.cmd_timeout for R1B, this
536 * can be changed to:
537 *
538 * mrq.data = NULL;
539 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
540 */
541 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
542 }
543
544 mrq.data = &data;
545 }
546
547 mrq.cmd = &cmd;
548
549 err = mmc_blk_part_switch(card, target_part);
550 if (err)
551 return err;
552
553 if (idata->ic.is_acmd) {
554 err = mmc_app_cmd(card->host, card);
555 if (err)
556 return err;
557 }
558
559 if (idata->rpmb || prev_idata) {
560 sbc.opcode = MMC_SET_BLOCK_COUNT;
561 /*
562 * We don't do any blockcount validation because the max size
563 * may be increased by a future standard. We just copy the
564 * 'Reliable Write' bit here.
565 */
566 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
567 if (prev_idata)
568 sbc.arg = prev_idata->ic.arg;
569 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
570 mrq.sbc = &sbc;
571 }
572
573 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
574 (cmd.opcode == MMC_SWITCH))
575 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
576
577 mmc_wait_for_req(card->host, &mrq);
578 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
579
580 if (prev_idata) {
581 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
582 if (sbc.error) {
583 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
584 __func__, sbc.error);
585 return sbc.error;
586 }
587 }
588
589 if (cmd.error) {
590 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
591 __func__, cmd.error);
592 return cmd.error;
593 }
594 if (data.error) {
595 dev_err(mmc_dev(card->host), "%s: data error %d\n",
596 __func__, data.error);
597 return data.error;
598 }
599
600 /*
601 * Make sure the cache of the PARTITION_CONFIG register and
602 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
603 * changed it successfully.
604 */
605 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
606 (cmd.opcode == MMC_SWITCH)) {
607 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
608 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
609
610 /*
611 * Update cache so the next mmc_blk_part_switch call operates
612 * on up-to-date data.
613 */
614 card->ext_csd.part_config = value;
615 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
616 }
617
618 /*
619 * Make sure to update CACHE_CTRL in case it was changed. The cache
620 * will get turned back on if the card is re-initialized, e.g.
621 * suspend/resume or hw reset in recovery.
622 */
623 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
624 (cmd.opcode == MMC_SWITCH)) {
625 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
626
627 card->ext_csd.cache_ctrl = value;
628 }
629
630 /*
631 * According to the SD specs, some commands require a delay after
632 * issuing the command.
633 */
634 if (idata->ic.postsleep_min_us)
635 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
636
637 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
638 /*
639 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
640 * allow to override the default timeout value if a custom timeout is specified.
641 */
642 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
643 false, MMC_BUSY_IO);
644 }
645
646 return err;
647 }
648
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)649 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
650 struct mmc_ioc_cmd __user *ic_ptr,
651 struct mmc_rpmb_data *rpmb)
652 {
653 struct mmc_blk_ioc_data *idata;
654 struct mmc_blk_ioc_data *idatas[1];
655 struct mmc_queue *mq;
656 struct mmc_card *card;
657 int err = 0, ioc_err = 0;
658 struct request *req;
659
660 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
661 if (IS_ERR(idata))
662 return PTR_ERR(idata);
663 /* This will be NULL on non-RPMB ioctl():s */
664 idata->rpmb = rpmb;
665
666 card = md->queue.card;
667 if (IS_ERR(card)) {
668 err = PTR_ERR(card);
669 goto cmd_done;
670 }
671
672 /*
673 * Dispatch the ioctl() into the block request queue.
674 */
675 mq = &md->queue;
676 req = blk_get_request(mq->queue,
677 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
678 if (IS_ERR(req)) {
679 err = PTR_ERR(req);
680 goto cmd_done;
681 }
682 idatas[0] = idata;
683 req_to_mmc_queue_req(req)->drv_op =
684 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
685 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
686 req_to_mmc_queue_req(req)->drv_op_data = idatas;
687 req_to_mmc_queue_req(req)->ioc_count = 1;
688 blk_execute_rq(NULL, req, 0);
689 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
690 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
691 blk_put_request(req);
692
693 cmd_done:
694 kfree(idata->buf);
695 kfree(idata);
696 return ioc_err ? ioc_err : err;
697 }
698
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)699 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
700 struct mmc_ioc_multi_cmd __user *user,
701 struct mmc_rpmb_data *rpmb)
702 {
703 struct mmc_blk_ioc_data **idata = NULL;
704 struct mmc_ioc_cmd __user *cmds = user->cmds;
705 struct mmc_card *card;
706 struct mmc_queue *mq;
707 int i, err = 0, ioc_err = 0;
708 __u64 num_of_cmds;
709 struct request *req;
710
711 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
712 sizeof(num_of_cmds)))
713 return -EFAULT;
714
715 if (!num_of_cmds)
716 return 0;
717
718 if (num_of_cmds > MMC_IOC_MAX_CMDS)
719 return -EINVAL;
720
721 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
722 if (!idata)
723 return -ENOMEM;
724
725 for (i = 0; i < num_of_cmds; i++) {
726 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
727 if (IS_ERR(idata[i])) {
728 err = PTR_ERR(idata[i]);
729 num_of_cmds = i;
730 goto cmd_err;
731 }
732 /* This will be NULL on non-RPMB ioctl():s */
733 idata[i]->rpmb = rpmb;
734 }
735
736 card = md->queue.card;
737 if (IS_ERR(card)) {
738 err = PTR_ERR(card);
739 goto cmd_err;
740 }
741
742
743 /*
744 * Dispatch the ioctl()s into the block request queue.
745 */
746 mq = &md->queue;
747 req = blk_get_request(mq->queue,
748 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
749 if (IS_ERR(req)) {
750 err = PTR_ERR(req);
751 goto cmd_err;
752 }
753 req_to_mmc_queue_req(req)->drv_op =
754 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
755 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
756 req_to_mmc_queue_req(req)->drv_op_data = idata;
757 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
758 blk_execute_rq(NULL, req, 0);
759 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
760
761 /* copy to user if data and response */
762 for (i = 0; i < num_of_cmds && !err; i++)
763 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
764
765 blk_put_request(req);
766
767 cmd_err:
768 for (i = 0; i < num_of_cmds; i++) {
769 kfree(idata[i]->buf);
770 kfree(idata[i]);
771 }
772 kfree(idata);
773 return ioc_err ? ioc_err : err;
774 }
775
mmc_blk_check_blkdev(struct block_device * bdev)776 static int mmc_blk_check_blkdev(struct block_device *bdev)
777 {
778 /*
779 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
780 * whole block device, not on a partition. This prevents overspray
781 * between sibling partitions.
782 */
783 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
784 return -EPERM;
785 return 0;
786 }
787
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)788 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
789 unsigned int cmd, unsigned long arg)
790 {
791 struct mmc_blk_data *md;
792 int ret;
793
794 switch (cmd) {
795 case MMC_IOC_CMD:
796 ret = mmc_blk_check_blkdev(bdev);
797 if (ret)
798 return ret;
799 md = mmc_blk_get(bdev->bd_disk);
800 if (!md)
801 return -EINVAL;
802 ret = mmc_blk_ioctl_cmd(md,
803 (struct mmc_ioc_cmd __user *)arg,
804 NULL);
805 mmc_blk_put(md);
806 return ret;
807 case MMC_IOC_MULTI_CMD:
808 ret = mmc_blk_check_blkdev(bdev);
809 if (ret)
810 return ret;
811 md = mmc_blk_get(bdev->bd_disk);
812 if (!md)
813 return -EINVAL;
814 ret = mmc_blk_ioctl_multi_cmd(md,
815 (struct mmc_ioc_multi_cmd __user *)arg,
816 NULL);
817 mmc_blk_put(md);
818 return ret;
819 default:
820 return -EINVAL;
821 }
822 }
823
824 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)825 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
826 unsigned int cmd, unsigned long arg)
827 {
828 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
829 }
830 #endif
831
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)832 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
833 sector_t *sector)
834 {
835 struct mmc_blk_data *md;
836 int ret;
837
838 md = mmc_blk_get(disk);
839 if (!md)
840 return -EINVAL;
841
842 if (md->queue.card)
843 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
844 else
845 ret = -ENODEV;
846
847 mmc_blk_put(md);
848
849 return ret;
850 }
851
852 static const struct block_device_operations mmc_bdops = {
853 .open = mmc_blk_open,
854 .release = mmc_blk_release,
855 .getgeo = mmc_blk_getgeo,
856 .owner = THIS_MODULE,
857 .ioctl = mmc_blk_ioctl,
858 #ifdef CONFIG_COMPAT
859 .compat_ioctl = mmc_blk_compat_ioctl,
860 #endif
861 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
862 };
863
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)864 static int mmc_blk_part_switch_pre(struct mmc_card *card,
865 unsigned int part_type)
866 {
867 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
868 int ret = 0;
869
870 if ((part_type & mask) == mask) {
871 if (card->ext_csd.cmdq_en) {
872 ret = mmc_cmdq_disable(card);
873 if (ret)
874 return ret;
875 }
876 mmc_retune_pause(card->host);
877 }
878
879 return ret;
880 }
881
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)882 static int mmc_blk_part_switch_post(struct mmc_card *card,
883 unsigned int part_type)
884 {
885 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
886 int ret = 0;
887
888 if ((part_type & mask) == mask) {
889 mmc_retune_unpause(card->host);
890 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
891 ret = mmc_cmdq_enable(card);
892 }
893
894 return ret;
895 }
896
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)897 static inline int mmc_blk_part_switch(struct mmc_card *card,
898 unsigned int part_type)
899 {
900 int ret = 0;
901 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
902
903 if (main_md->part_curr == part_type)
904 return 0;
905
906 if (mmc_card_mmc(card)) {
907 u8 part_config = card->ext_csd.part_config;
908
909 ret = mmc_blk_part_switch_pre(card, part_type);
910 if (ret)
911 return ret;
912
913 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
914 part_config |= part_type;
915
916 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
917 EXT_CSD_PART_CONFIG, part_config,
918 card->ext_csd.part_time);
919 if (ret) {
920 mmc_blk_part_switch_post(card, part_type);
921 return ret;
922 }
923
924 card->ext_csd.part_config = part_config;
925
926 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
927 }
928
929 main_md->part_curr = part_type;
930 return ret;
931 }
932
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)933 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
934 {
935 int err;
936 u32 result;
937 __be32 *blocks;
938
939 struct mmc_request mrq = {};
940 struct mmc_command cmd = {};
941 struct mmc_data data = {};
942
943 struct scatterlist sg;
944
945 cmd.opcode = MMC_APP_CMD;
946 cmd.arg = card->rca << 16;
947 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
948
949 err = mmc_wait_for_cmd(card->host, &cmd, 0);
950 if (err)
951 return err;
952 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
953 return -EIO;
954
955 memset(&cmd, 0, sizeof(struct mmc_command));
956
957 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
958 cmd.arg = 0;
959 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
960
961 data.blksz = 4;
962 data.blocks = 1;
963 data.flags = MMC_DATA_READ;
964 data.sg = &sg;
965 data.sg_len = 1;
966 mmc_set_data_timeout(&data, card);
967
968 mrq.cmd = &cmd;
969 mrq.data = &data;
970
971 blocks = kmalloc(4, GFP_KERNEL);
972 if (!blocks)
973 return -ENOMEM;
974
975 sg_init_one(&sg, blocks, 4);
976
977 mmc_wait_for_req(card->host, &mrq);
978
979 result = ntohl(*blocks);
980 kfree(blocks);
981
982 if (cmd.error || data.error)
983 return -EIO;
984
985 *written_blocks = result;
986
987 return 0;
988 }
989
mmc_blk_clock_khz(struct mmc_host * host)990 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
991 {
992 if (host->actual_clock)
993 return host->actual_clock / 1000;
994
995 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
996 if (host->ios.clock)
997 return host->ios.clock / 2000;
998
999 /* How can there be no clock */
1000 WARN_ON_ONCE(1);
1001 return 100; /* 100 kHz is minimum possible value */
1002 }
1003
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1004 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1005 struct mmc_data *data)
1006 {
1007 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1008 unsigned int khz;
1009
1010 if (data->timeout_clks) {
1011 khz = mmc_blk_clock_khz(host);
1012 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1013 }
1014
1015 return ms;
1016 }
1017
1018 /*
1019 * Attempts to reset the card and get back to the requested partition.
1020 * Therefore any error here must result in cancelling the block layer
1021 * request, it must not be reattempted without going through the mmc_blk
1022 * partition sanity checks.
1023 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1024 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1025 int type)
1026 {
1027 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1028 int err;
1029
1030 if (md->reset_done & type)
1031 return -EEXIST;
1032
1033 md->reset_done |= type;
1034 err = mmc_hw_reset(host);
1035 /*
1036 * A successful reset will leave the card in the main partition, but
1037 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1038 * in that case.
1039 */
1040 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1041 if (err) {
1042 trace_android_vh_mmc_blk_reset(host, err);
1043 return err;
1044 }
1045 /* Ensure we switch back to the correct partition */
1046 if (mmc_blk_part_switch(host->card, md->part_type))
1047 /*
1048 * We have failed to get back into the correct
1049 * partition, so we need to abort the whole request.
1050 */
1051 return -ENODEV;
1052 return 0;
1053 }
1054
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056 {
1057 md->reset_done &= ~type;
1058 }
1059
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1060 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061 {
1062 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 int i;
1064
1065 for (i = 1; i < mq_rq->ioc_count; i++) {
1066 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 mmc_op_multi(idata[i]->ic.opcode)) {
1068 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * The non-block commands come back from the block layer after it queued it and
1076 * processed it with all other requests and then they get issued in this
1077 * function.
1078 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1079 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080 {
1081 struct mmc_queue_req *mq_rq;
1082 struct mmc_card *card = mq->card;
1083 struct mmc_blk_data *md = mq->blkdata;
1084 struct mmc_blk_ioc_data **idata;
1085 bool rpmb_ioctl;
1086 u8 **ext_csd;
1087 u32 status;
1088 int ret;
1089 int i;
1090
1091 mq_rq = req_to_mmc_queue_req(req);
1092 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093
1094 switch (mq_rq->drv_op) {
1095 case MMC_DRV_OP_IOCTL:
1096 if (card->ext_csd.cmdq_en) {
1097 ret = mmc_cmdq_disable(card);
1098 if (ret)
1099 break;
1100 }
1101
1102 mmc_blk_check_sbc(mq_rq);
1103
1104 fallthrough;
1105 case MMC_DRV_OP_IOCTL_RPMB:
1106 idata = mq_rq->drv_op_data;
1107 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 if (ret)
1110 break;
1111 }
1112 /* Always switch back to main area after RPMB access */
1113 if (rpmb_ioctl)
1114 mmc_blk_part_switch(card, 0);
1115 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 mmc_cmdq_enable(card);
1117 break;
1118 case MMC_DRV_OP_BOOT_WP:
1119 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 card->ext_csd.boot_ro_lock |
1121 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 card->ext_csd.part_time);
1123 if (ret)
1124 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 md->disk->disk_name, ret);
1126 else
1127 card->ext_csd.boot_ro_lock |=
1128 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 break;
1130 case MMC_DRV_OP_GET_CARD_STATUS:
1131 ret = mmc_send_status(card, &status);
1132 if (!ret)
1133 ret = status;
1134 break;
1135 case MMC_DRV_OP_GET_EXT_CSD:
1136 ext_csd = mq_rq->drv_op_data;
1137 ret = mmc_get_ext_csd(card, ext_csd);
1138 break;
1139 default:
1140 pr_err("%s: unknown driver specific operation\n",
1141 md->disk->disk_name);
1142 ret = -EINVAL;
1143 break;
1144 }
1145 mq_rq->drv_op_result = ret;
1146 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147 }
1148
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1149 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1150 {
1151 struct mmc_blk_data *md = mq->blkdata;
1152 struct mmc_card *card = md->queue.card;
1153 unsigned int from, nr;
1154 int err = 0, type = MMC_BLK_DISCARD;
1155 blk_status_t status = BLK_STS_OK;
1156
1157 if (!mmc_can_erase(card)) {
1158 status = BLK_STS_NOTSUPP;
1159 goto fail;
1160 }
1161
1162 from = blk_rq_pos(req);
1163 nr = blk_rq_sectors(req);
1164
1165 do {
1166 unsigned int erase_arg = card->erase_arg;
1167
1168 if (mmc_card_broken_sd_discard(card))
1169 erase_arg = SD_ERASE_ARG;
1170
1171 err = 0;
1172 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1173 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1174 INAND_CMD38_ARG_EXT_CSD,
1175 card->erase_arg == MMC_TRIM_ARG ?
1176 INAND_CMD38_ARG_TRIM :
1177 INAND_CMD38_ARG_ERASE,
1178 card->ext_csd.generic_cmd6_time);
1179 }
1180 if (!err)
1181 err = mmc_erase(card, from, nr, erase_arg);
1182 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1183 if (err)
1184 status = BLK_STS_IOERR;
1185 else
1186 mmc_blk_reset_success(md, type);
1187 fail:
1188 blk_mq_end_request(req, status);
1189 }
1190
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1191 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1192 struct request *req)
1193 {
1194 struct mmc_blk_data *md = mq->blkdata;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int from, nr, arg;
1197 int err = 0, type = MMC_BLK_SECDISCARD;
1198 blk_status_t status = BLK_STS_OK;
1199
1200 if (!(mmc_can_secure_erase_trim(card))) {
1201 status = BLK_STS_NOTSUPP;
1202 goto out;
1203 }
1204
1205 from = blk_rq_pos(req);
1206 nr = blk_rq_sectors(req);
1207
1208 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1209 arg = MMC_SECURE_TRIM1_ARG;
1210 else
1211 arg = MMC_SECURE_ERASE_ARG;
1212
1213 retry:
1214 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1215 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1216 INAND_CMD38_ARG_EXT_CSD,
1217 arg == MMC_SECURE_TRIM1_ARG ?
1218 INAND_CMD38_ARG_SECTRIM1 :
1219 INAND_CMD38_ARG_SECERASE,
1220 card->ext_csd.generic_cmd6_time);
1221 if (err)
1222 goto out_retry;
1223 }
1224
1225 err = mmc_erase(card, from, nr, arg);
1226 if (err == -EIO)
1227 goto out_retry;
1228 if (err) {
1229 status = BLK_STS_IOERR;
1230 goto out;
1231 }
1232
1233 if (arg == MMC_SECURE_TRIM1_ARG) {
1234 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1235 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1236 INAND_CMD38_ARG_EXT_CSD,
1237 INAND_CMD38_ARG_SECTRIM2,
1238 card->ext_csd.generic_cmd6_time);
1239 if (err)
1240 goto out_retry;
1241 }
1242
1243 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1244 if (err == -EIO)
1245 goto out_retry;
1246 if (err) {
1247 status = BLK_STS_IOERR;
1248 goto out;
1249 }
1250 }
1251
1252 out_retry:
1253 if (err && !mmc_blk_reset(md, card->host, type))
1254 goto retry;
1255 if (!err)
1256 mmc_blk_reset_success(md, type);
1257 out:
1258 blk_mq_end_request(req, status);
1259 }
1260
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1261 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1262 {
1263 struct mmc_blk_data *md = mq->blkdata;
1264 struct mmc_card *card = md->queue.card;
1265 int ret = 0;
1266
1267 ret = mmc_flush_cache(card->host);
1268 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1269 }
1270
1271 /*
1272 * Reformat current write as a reliable write, supporting
1273 * both legacy and the enhanced reliable write MMC cards.
1274 * In each transfer we'll handle only as much as a single
1275 * reliable write can handle, thus finish the request in
1276 * partial completions.
1277 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1278 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1279 struct mmc_card *card,
1280 struct request *req)
1281 {
1282 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1283 /* Legacy mode imposes restrictions on transfers. */
1284 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1285 brq->data.blocks = 1;
1286
1287 if (brq->data.blocks > card->ext_csd.rel_sectors)
1288 brq->data.blocks = card->ext_csd.rel_sectors;
1289 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1290 brq->data.blocks = 1;
1291 }
1292 }
1293
1294 #define CMD_ERRORS_EXCL_OOR \
1295 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1296 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1297 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1298 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1299 R1_CC_ERROR | /* Card controller error */ \
1300 R1_ERROR) /* General/unknown error */
1301
1302 #define CMD_ERRORS \
1303 (CMD_ERRORS_EXCL_OOR | \
1304 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1305
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1306 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1307 {
1308 u32 val;
1309
1310 /*
1311 * Per the SD specification(physical layer version 4.10)[1],
1312 * section 4.3.3, it explicitly states that "When the last
1313 * block of user area is read using CMD18, the host should
1314 * ignore OUT_OF_RANGE error that may occur even the sequence
1315 * is correct". And JESD84-B51 for eMMC also has a similar
1316 * statement on section 6.8.3.
1317 *
1318 * Multiple block read/write could be done by either predefined
1319 * method, namely CMD23, or open-ending mode. For open-ending mode,
1320 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1321 *
1322 * However the spec[1] doesn't tell us whether we should also
1323 * ignore that for predefined method. But per the spec[1], section
1324 * 4.15 Set Block Count Command, it says"If illegal block count
1325 * is set, out of range error will be indicated during read/write
1326 * operation (For example, data transfer is stopped at user area
1327 * boundary)." In another word, we could expect a out of range error
1328 * in the response for the following CMD18/25. And if argument of
1329 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1330 * we could also expect to get a -ETIMEDOUT or any error number from
1331 * the host drivers due to missing data response(for write)/data(for
1332 * read), as the cards will stop the data transfer by itself per the
1333 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1334 */
1335
1336 if (!brq->stop.error) {
1337 bool oor_with_open_end;
1338 /* If there is no error yet, check R1 response */
1339
1340 val = brq->stop.resp[0] & CMD_ERRORS;
1341 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1342
1343 if (val && !oor_with_open_end)
1344 brq->stop.error = -EIO;
1345 }
1346 }
1347
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1348 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1349 int recovery_mode, bool *do_rel_wr_p,
1350 bool *do_data_tag_p)
1351 {
1352 struct mmc_blk_data *md = mq->blkdata;
1353 struct mmc_card *card = md->queue.card;
1354 struct mmc_blk_request *brq = &mqrq->brq;
1355 struct request *req = mmc_queue_req_to_req(mqrq);
1356 bool do_rel_wr, do_data_tag;
1357
1358 /*
1359 * Reliable writes are used to implement Forced Unit Access and
1360 * are supported only on MMCs.
1361 */
1362 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1363 rq_data_dir(req) == WRITE &&
1364 (md->flags & MMC_BLK_REL_WR);
1365
1366 memset(brq, 0, sizeof(struct mmc_blk_request));
1367
1368 mmc_crypto_prepare_req(mqrq);
1369
1370 brq->mrq.data = &brq->data;
1371 brq->mrq.tag = req->tag;
1372
1373 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1374 brq->stop.arg = 0;
1375
1376 if (rq_data_dir(req) == READ) {
1377 brq->data.flags = MMC_DATA_READ;
1378 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1379 } else {
1380 brq->data.flags = MMC_DATA_WRITE;
1381 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1382 }
1383
1384 brq->data.blksz = 512;
1385 brq->data.blocks = blk_rq_sectors(req);
1386 brq->data.blk_addr = blk_rq_pos(req);
1387
1388 /*
1389 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1390 * The eMMC will give "high" priority tasks priority over "simple"
1391 * priority tasks. Here we always set "simple" priority by not setting
1392 * MMC_DATA_PRIO.
1393 */
1394
1395 /*
1396 * The block layer doesn't support all sector count
1397 * restrictions, so we need to be prepared for too big
1398 * requests.
1399 */
1400 if (brq->data.blocks > card->host->max_blk_count)
1401 brq->data.blocks = card->host->max_blk_count;
1402
1403 if (brq->data.blocks > 1) {
1404 /*
1405 * Some SD cards in SPI mode return a CRC error or even lock up
1406 * completely when trying to read the last block using a
1407 * multiblock read command.
1408 */
1409 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1410 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1411 get_capacity(md->disk)))
1412 brq->data.blocks--;
1413
1414 /*
1415 * After a read error, we redo the request one (native) sector
1416 * at a time in order to accurately determine which
1417 * sectors can be read successfully.
1418 */
1419 if (recovery_mode)
1420 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1421
1422 /*
1423 * Some controllers have HW issues while operating
1424 * in multiple I/O mode
1425 */
1426 if (card->host->ops->multi_io_quirk)
1427 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1428 (rq_data_dir(req) == READ) ?
1429 MMC_DATA_READ : MMC_DATA_WRITE,
1430 brq->data.blocks);
1431 }
1432
1433 if (do_rel_wr) {
1434 mmc_apply_rel_rw(brq, card, req);
1435 brq->data.flags |= MMC_DATA_REL_WR;
1436 }
1437
1438 /*
1439 * Data tag is used only during writing meta data to speed
1440 * up write and any subsequent read of this meta data
1441 */
1442 do_data_tag = card->ext_csd.data_tag_unit_size &&
1443 (req->cmd_flags & REQ_META) &&
1444 (rq_data_dir(req) == WRITE) &&
1445 ((brq->data.blocks * brq->data.blksz) >=
1446 card->ext_csd.data_tag_unit_size);
1447
1448 if (do_data_tag)
1449 brq->data.flags |= MMC_DATA_DAT_TAG;
1450
1451 mmc_set_data_timeout(&brq->data, card);
1452
1453 brq->data.sg = mqrq->sg;
1454 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1455
1456 /*
1457 * Adjust the sg list so it is the same size as the
1458 * request.
1459 */
1460 if (brq->data.blocks != blk_rq_sectors(req)) {
1461 int i, data_size = brq->data.blocks << 9;
1462 struct scatterlist *sg;
1463
1464 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1465 data_size -= sg->length;
1466 if (data_size <= 0) {
1467 sg->length += data_size;
1468 i++;
1469 break;
1470 }
1471 }
1472 brq->data.sg_len = i;
1473 }
1474
1475 if (do_rel_wr_p)
1476 *do_rel_wr_p = do_rel_wr;
1477
1478 if (do_data_tag_p)
1479 *do_data_tag_p = do_data_tag;
1480 }
1481
1482 #define MMC_CQE_RETRIES 2
1483
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1484 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1485 {
1486 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1487 struct mmc_request *mrq = &mqrq->brq.mrq;
1488 struct request_queue *q = req->q;
1489 struct mmc_host *host = mq->card->host;
1490 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1491 unsigned long flags;
1492 bool put_card;
1493 int err;
1494
1495 mmc_cqe_post_req(host, mrq);
1496
1497 if (mrq->cmd && mrq->cmd->error)
1498 err = mrq->cmd->error;
1499 else if (mrq->data && mrq->data->error)
1500 err = mrq->data->error;
1501 else
1502 err = 0;
1503
1504 if (err) {
1505 if (mqrq->retries++ < MMC_CQE_RETRIES)
1506 blk_mq_requeue_request(req, true);
1507 else
1508 blk_mq_end_request(req, BLK_STS_IOERR);
1509 } else if (mrq->data) {
1510 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1511 blk_mq_requeue_request(req, true);
1512 else
1513 __blk_mq_end_request(req, BLK_STS_OK);
1514 } else if (mq->in_recovery) {
1515 blk_mq_requeue_request(req, true);
1516 } else {
1517 blk_mq_end_request(req, BLK_STS_OK);
1518 }
1519
1520 spin_lock_irqsave(&mq->lock, flags);
1521
1522 mq->in_flight[issue_type] -= 1;
1523
1524 put_card = (mmc_tot_in_flight(mq) == 0);
1525
1526 mmc_cqe_check_busy(mq);
1527
1528 spin_unlock_irqrestore(&mq->lock, flags);
1529
1530 if (!mq->cqe_busy)
1531 blk_mq_run_hw_queues(q, true);
1532
1533 if (put_card)
1534 mmc_put_card(mq->card, &mq->ctx);
1535 }
1536
mmc_blk_cqe_recovery(struct mmc_queue * mq)1537 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1538 {
1539 struct mmc_card *card = mq->card;
1540 struct mmc_host *host = card->host;
1541 int err;
1542
1543 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1544
1545 err = mmc_cqe_recovery(host);
1546 if (err || host->cqe_recovery_reset_always)
1547 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1548 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1549
1550 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1551 }
1552
mmc_blk_cqe_req_done(struct mmc_request * mrq)1553 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1554 {
1555 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1556 brq.mrq);
1557 struct request *req = mmc_queue_req_to_req(mqrq);
1558 struct request_queue *q = req->q;
1559 struct mmc_queue *mq = q->queuedata;
1560
1561 /*
1562 * Block layer timeouts race with completions which means the normal
1563 * completion path cannot be used during recovery.
1564 */
1565 if (mq->in_recovery)
1566 mmc_blk_cqe_complete_rq(mq, req);
1567 else if (likely(!blk_should_fake_timeout(req->q)))
1568 blk_mq_complete_request(req);
1569 }
1570
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1571 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1572 {
1573 mrq->done = mmc_blk_cqe_req_done;
1574 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1575
1576 return mmc_cqe_start_req(host, mrq);
1577 }
1578
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1579 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1580 struct request *req)
1581 {
1582 struct mmc_blk_request *brq = &mqrq->brq;
1583
1584 memset(brq, 0, sizeof(*brq));
1585
1586 brq->mrq.cmd = &brq->cmd;
1587 brq->mrq.tag = req->tag;
1588
1589 return &brq->mrq;
1590 }
1591
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1592 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1593 {
1594 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1595 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1596
1597 mrq->cmd->opcode = MMC_SWITCH;
1598 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1599 (EXT_CSD_FLUSH_CACHE << 16) |
1600 (1 << 8) |
1601 EXT_CSD_CMD_SET_NORMAL;
1602 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1603
1604 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1605 }
1606
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1607 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1608 {
1609 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1610 struct mmc_host *host = mq->card->host;
1611 int err;
1612
1613 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1614 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1615 mmc_pre_req(host, &mqrq->brq.mrq);
1616
1617 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1618 if (err)
1619 mmc_post_req(host, &mqrq->brq.mrq, err);
1620
1621 return err;
1622 }
1623
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1624 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1625 {
1626 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1627 struct mmc_host *host = mq->card->host;
1628
1629 if (host->hsq_enabled)
1630 return mmc_blk_hsq_issue_rw_rq(mq, req);
1631
1632 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1633
1634 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1635 }
1636
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1637 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1638 struct mmc_card *card,
1639 int recovery_mode,
1640 struct mmc_queue *mq)
1641 {
1642 u32 readcmd, writecmd;
1643 struct mmc_blk_request *brq = &mqrq->brq;
1644 struct request *req = mmc_queue_req_to_req(mqrq);
1645 struct mmc_blk_data *md = mq->blkdata;
1646 bool do_rel_wr, do_data_tag;
1647
1648 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1649
1650 brq->mrq.cmd = &brq->cmd;
1651
1652 brq->cmd.arg = blk_rq_pos(req);
1653 if (!mmc_card_blockaddr(card))
1654 brq->cmd.arg <<= 9;
1655 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1656
1657 if (brq->data.blocks > 1 || do_rel_wr) {
1658 /* SPI multiblock writes terminate using a special
1659 * token, not a STOP_TRANSMISSION request.
1660 */
1661 if (!mmc_host_is_spi(card->host) ||
1662 rq_data_dir(req) == READ)
1663 brq->mrq.stop = &brq->stop;
1664 readcmd = MMC_READ_MULTIPLE_BLOCK;
1665 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1666 } else {
1667 brq->mrq.stop = NULL;
1668 readcmd = MMC_READ_SINGLE_BLOCK;
1669 writecmd = MMC_WRITE_BLOCK;
1670 }
1671 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1672
1673 /*
1674 * Pre-defined multi-block transfers are preferable to
1675 * open ended-ones (and necessary for reliable writes).
1676 * However, it is not sufficient to just send CMD23,
1677 * and avoid the final CMD12, as on an error condition
1678 * CMD12 (stop) needs to be sent anyway. This, coupled
1679 * with Auto-CMD23 enhancements provided by some
1680 * hosts, means that the complexity of dealing
1681 * with this is best left to the host. If CMD23 is
1682 * supported by card and host, we'll fill sbc in and let
1683 * the host deal with handling it correctly. This means
1684 * that for hosts that don't expose MMC_CAP_CMD23, no
1685 * change of behavior will be observed.
1686 *
1687 * N.B: Some MMC cards experience perf degradation.
1688 * We'll avoid using CMD23-bounded multiblock writes for
1689 * these, while retaining features like reliable writes.
1690 */
1691 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1692 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1693 do_data_tag)) {
1694 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1695 brq->sbc.arg = brq->data.blocks |
1696 (do_rel_wr ? (1 << 31) : 0) |
1697 (do_data_tag ? (1 << 29) : 0);
1698 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699 brq->mrq.sbc = &brq->sbc;
1700 }
1701 }
1702
1703 #define MMC_MAX_RETRIES 5
1704 #define MMC_DATA_RETRIES 2
1705 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1706
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1707 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1708 {
1709 struct mmc_command cmd = {
1710 .opcode = MMC_STOP_TRANSMISSION,
1711 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1712 /* Some hosts wait for busy anyway, so provide a busy timeout */
1713 .busy_timeout = timeout,
1714 };
1715
1716 return mmc_wait_for_cmd(card->host, &cmd, 5);
1717 }
1718
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1719 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1720 {
1721 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1722 struct mmc_blk_request *brq = &mqrq->brq;
1723 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1724 int err;
1725
1726 mmc_retune_hold_now(card->host);
1727
1728 mmc_blk_send_stop(card, timeout);
1729
1730 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1731
1732 mmc_retune_release(card->host);
1733
1734 return err;
1735 }
1736
1737 #define MMC_READ_SINGLE_RETRIES 2
1738
1739 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1740 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1741 {
1742 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1743 struct mmc_request *mrq = &mqrq->brq.mrq;
1744 struct mmc_card *card = mq->card;
1745 struct mmc_host *host = card->host;
1746 blk_status_t error = BLK_STS_OK;
1747 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1748
1749 do {
1750 u32 status;
1751 int err;
1752 int retries = 0;
1753
1754 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1755 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1756
1757 mmc_wait_for_req(host, mrq);
1758
1759 err = mmc_send_status(card, &status);
1760 if (err)
1761 goto error_exit;
1762
1763 if (!mmc_host_is_spi(host) &&
1764 !mmc_ready_for_data(status)) {
1765 err = mmc_blk_fix_state(card, req);
1766 if (err)
1767 goto error_exit;
1768 }
1769
1770 if (!mrq->cmd->error)
1771 break;
1772 }
1773
1774 if (mrq->cmd->error ||
1775 mrq->data->error ||
1776 (!mmc_host_is_spi(host) &&
1777 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1778 error = BLK_STS_IOERR;
1779 else
1780 error = BLK_STS_OK;
1781
1782 } while (blk_update_request(req, error, bytes_per_read));
1783
1784 return;
1785
1786 error_exit:
1787 mrq->data->bytes_xfered = 0;
1788 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1789 /* Let it try the remaining request again */
1790 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1791 mqrq->retries = MMC_MAX_RETRIES - 1;
1792 }
1793
mmc_blk_oor_valid(struct mmc_blk_request * brq)1794 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1795 {
1796 return !!brq->mrq.sbc;
1797 }
1798
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1799 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1800 {
1801 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1802 }
1803
1804 /*
1805 * Check for errors the host controller driver might not have seen such as
1806 * response mode errors or invalid card state.
1807 */
mmc_blk_status_error(struct request * req,u32 status)1808 static bool mmc_blk_status_error(struct request *req, u32 status)
1809 {
1810 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1811 struct mmc_blk_request *brq = &mqrq->brq;
1812 struct mmc_queue *mq = req->q->queuedata;
1813 u32 stop_err_bits;
1814
1815 if (mmc_host_is_spi(mq->card->host))
1816 return false;
1817
1818 stop_err_bits = mmc_blk_stop_err_bits(brq);
1819
1820 return brq->cmd.resp[0] & CMD_ERRORS ||
1821 brq->stop.resp[0] & stop_err_bits ||
1822 status & stop_err_bits ||
1823 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1824 }
1825
mmc_blk_cmd_started(struct mmc_blk_request * brq)1826 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1827 {
1828 return !brq->sbc.error && !brq->cmd.error &&
1829 !(brq->cmd.resp[0] & CMD_ERRORS);
1830 }
1831
1832 /*
1833 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1834 * policy:
1835 * 1. A request that has transferred at least some data is considered
1836 * successful and will be requeued if there is remaining data to
1837 * transfer.
1838 * 2. Otherwise the number of retries is incremented and the request
1839 * will be requeued if there are remaining retries.
1840 * 3. Otherwise the request will be errored out.
1841 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1842 * mqrq->retries. So there are only 4 possible actions here:
1843 * 1. do not accept the bytes_xfered value i.e. set it to zero
1844 * 2. change mqrq->retries to determine the number of retries
1845 * 3. try to reset the card
1846 * 4. read one sector at a time
1847 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1848 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1849 {
1850 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1851 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1852 struct mmc_blk_request *brq = &mqrq->brq;
1853 struct mmc_blk_data *md = mq->blkdata;
1854 struct mmc_card *card = mq->card;
1855 u32 status;
1856 u32 blocks;
1857 int err;
1858
1859 /*
1860 * Some errors the host driver might not have seen. Set the number of
1861 * bytes transferred to zero in that case.
1862 */
1863 err = __mmc_send_status(card, &status, 0);
1864 if (err || mmc_blk_status_error(req, status))
1865 brq->data.bytes_xfered = 0;
1866
1867 mmc_retune_release(card->host);
1868
1869 /*
1870 * Try again to get the status. This also provides an opportunity for
1871 * re-tuning.
1872 */
1873 if (err)
1874 err = __mmc_send_status(card, &status, 0);
1875
1876 /*
1877 * Nothing more to do after the number of bytes transferred has been
1878 * updated and there is no card.
1879 */
1880 if (err && mmc_detect_card_removed(card->host))
1881 return;
1882
1883 /* Try to get back to "tran" state */
1884 if (!mmc_host_is_spi(mq->card->host) &&
1885 (err || !mmc_ready_for_data(status)))
1886 err = mmc_blk_fix_state(mq->card, req);
1887
1888 /*
1889 * Special case for SD cards where the card might record the number of
1890 * blocks written.
1891 */
1892 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1893 rq_data_dir(req) == WRITE) {
1894 if (mmc_sd_num_wr_blocks(card, &blocks))
1895 brq->data.bytes_xfered = 0;
1896 else
1897 brq->data.bytes_xfered = blocks << 9;
1898 }
1899
1900 /* Reset if the card is in a bad state */
1901 if (!mmc_host_is_spi(mq->card->host) &&
1902 err && mmc_blk_reset(md, card->host, type)) {
1903 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1904 mqrq->retries = MMC_NO_RETRIES;
1905 trace_android_vh_mmc_blk_mq_rw_recovery(card);
1906 return;
1907 }
1908
1909 /*
1910 * If anything was done, just return and if there is anything remaining
1911 * on the request it will get requeued.
1912 */
1913 if (brq->data.bytes_xfered)
1914 return;
1915
1916 /* Reset before last retry */
1917 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1918 mmc_blk_reset(md, card->host, type))
1919 return;
1920
1921 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1922 if (brq->sbc.error || brq->cmd.error)
1923 return;
1924
1925 /* Reduce the remaining retries for data errors */
1926 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1927 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1928 return;
1929 }
1930
1931 if (rq_data_dir(req) == READ && brq->data.blocks >
1932 queue_physical_block_size(mq->queue) >> 9) {
1933 /* Read one (native) sector at a time */
1934 mmc_blk_read_single(mq, req);
1935 return;
1936 }
1937 }
1938
mmc_blk_rq_error(struct mmc_blk_request * brq)1939 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1940 {
1941 mmc_blk_eval_resp_error(brq);
1942
1943 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1944 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1945 }
1946
mmc_spi_err_check(struct mmc_card * card)1947 static int mmc_spi_err_check(struct mmc_card *card)
1948 {
1949 u32 status = 0;
1950 int err;
1951
1952 /*
1953 * SPI does not have a TRAN state we have to wait on, instead the
1954 * card is ready again when it no longer holds the line LOW.
1955 * We still have to ensure two things here before we know the write
1956 * was successful:
1957 * 1. The card has not disconnected during busy and we actually read our
1958 * own pull-up, thinking it was still connected, so ensure it
1959 * still responds.
1960 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1961 * just reconnected card after being disconnected during busy.
1962 */
1963 err = __mmc_send_status(card, &status, 0);
1964 if (err)
1965 return err;
1966 /* All R1 and R2 bits of SPI are errors in our case */
1967 if (status)
1968 return -EIO;
1969 return 0;
1970 }
1971
mmc_blk_busy_cb(void * cb_data,bool * busy)1972 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1973 {
1974 struct mmc_blk_busy_data *data = cb_data;
1975 u32 status = 0;
1976 int err;
1977
1978 err = mmc_send_status(data->card, &status);
1979 if (err)
1980 return err;
1981
1982 /* Accumulate response error bits. */
1983 data->status |= status;
1984
1985 *busy = !mmc_ready_for_data(status);
1986 return 0;
1987 }
1988
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1989 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1990 {
1991 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1992 struct mmc_blk_busy_data cb_data;
1993 int err;
1994
1995 if (rq_data_dir(req) == READ)
1996 return 0;
1997
1998 if (mmc_host_is_spi(card->host)) {
1999 err = mmc_spi_err_check(card);
2000 if (err)
2001 mqrq->brq.data.bytes_xfered = 0;
2002 return err;
2003 }
2004
2005 cb_data.card = card;
2006 cb_data.status = 0;
2007 err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
2008 &cb_data);
2009
2010 /*
2011 * Do not assume data transferred correctly if there are any error bits
2012 * set.
2013 */
2014 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2015 mqrq->brq.data.bytes_xfered = 0;
2016 err = err ? err : -EIO;
2017 }
2018
2019 /* Copy the exception bit so it will be seen later on */
2020 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2021 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2022
2023 return err;
2024 }
2025
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2026 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2027 struct request *req)
2028 {
2029 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2030
2031 mmc_blk_reset_success(mq->blkdata, type);
2032 }
2033
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2034 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2035 {
2036 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2037 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2038
2039 if (nr_bytes) {
2040 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2041 blk_mq_requeue_request(req, true);
2042 else
2043 __blk_mq_end_request(req, BLK_STS_OK);
2044 } else if (!blk_rq_bytes(req)) {
2045 __blk_mq_end_request(req, BLK_STS_IOERR);
2046 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2047 blk_mq_requeue_request(req, true);
2048 } else {
2049 if (mmc_card_removed(mq->card))
2050 req->rq_flags |= RQF_QUIET;
2051 blk_mq_end_request(req, BLK_STS_IOERR);
2052 }
2053 }
2054
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2055 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2056 struct mmc_queue_req *mqrq)
2057 {
2058 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2059 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2060 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2061 }
2062
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2063 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2064 struct mmc_queue_req *mqrq)
2065 {
2066 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2067 mmc_run_bkops(mq->card);
2068 }
2069
mmc_blk_hsq_req_done(struct mmc_request * mrq)2070 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2071 {
2072 struct mmc_queue_req *mqrq =
2073 container_of(mrq, struct mmc_queue_req, brq.mrq);
2074 struct request *req = mmc_queue_req_to_req(mqrq);
2075 struct request_queue *q = req->q;
2076 struct mmc_queue *mq = q->queuedata;
2077 struct mmc_host *host = mq->card->host;
2078 unsigned long flags;
2079
2080 if (mmc_blk_rq_error(&mqrq->brq) ||
2081 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2082 spin_lock_irqsave(&mq->lock, flags);
2083 mq->recovery_needed = true;
2084 mq->recovery_req = req;
2085 spin_unlock_irqrestore(&mq->lock, flags);
2086
2087 host->cqe_ops->cqe_recovery_start(host);
2088
2089 schedule_work(&mq->recovery_work);
2090 return;
2091 }
2092
2093 mmc_blk_rw_reset_success(mq, req);
2094
2095 /*
2096 * Block layer timeouts race with completions which means the normal
2097 * completion path cannot be used during recovery.
2098 */
2099 if (mq->in_recovery)
2100 mmc_blk_cqe_complete_rq(mq, req);
2101 else if (likely(!blk_should_fake_timeout(req->q)))
2102 blk_mq_complete_request(req);
2103 }
2104
mmc_blk_mq_complete(struct request * req)2105 void mmc_blk_mq_complete(struct request *req)
2106 {
2107 struct mmc_queue *mq = req->q->queuedata;
2108 struct mmc_host *host = mq->card->host;
2109
2110 if (host->cqe_enabled)
2111 mmc_blk_cqe_complete_rq(mq, req);
2112 else if (likely(!blk_should_fake_timeout(req->q)))
2113 mmc_blk_mq_complete_rq(mq, req);
2114 }
2115
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2116 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2117 struct request *req)
2118 {
2119 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120 struct mmc_host *host = mq->card->host;
2121
2122 if (mmc_blk_rq_error(&mqrq->brq) ||
2123 mmc_blk_card_busy(mq->card, req)) {
2124 mmc_blk_mq_rw_recovery(mq, req);
2125 } else {
2126 mmc_blk_rw_reset_success(mq, req);
2127 mmc_retune_release(host);
2128 }
2129
2130 mmc_blk_urgent_bkops(mq, mqrq);
2131 }
2132
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2133 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2134 {
2135 unsigned long flags;
2136 bool put_card;
2137
2138 spin_lock_irqsave(&mq->lock, flags);
2139
2140 mq->in_flight[issue_type] -= 1;
2141
2142 put_card = (mmc_tot_in_flight(mq) == 0);
2143
2144 spin_unlock_irqrestore(&mq->lock, flags);
2145
2146 if (put_card)
2147 mmc_put_card(mq->card, &mq->ctx);
2148 }
2149
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)2150 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2151 {
2152 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2153 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2154 struct mmc_request *mrq = &mqrq->brq.mrq;
2155 struct mmc_host *host = mq->card->host;
2156
2157 mmc_post_req(host, mrq, 0);
2158
2159 /*
2160 * Block layer timeouts race with completions which means the normal
2161 * completion path cannot be used during recovery.
2162 */
2163 if (mq->in_recovery)
2164 mmc_blk_mq_complete_rq(mq, req);
2165 else if (likely(!blk_should_fake_timeout(req->q)))
2166 blk_mq_complete_request(req);
2167
2168 mmc_blk_mq_dec_in_flight(mq, issue_type);
2169 }
2170
mmc_blk_mq_recovery(struct mmc_queue * mq)2171 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2172 {
2173 struct request *req = mq->recovery_req;
2174 struct mmc_host *host = mq->card->host;
2175 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2176
2177 mq->recovery_req = NULL;
2178 mq->rw_wait = false;
2179
2180 if (mmc_blk_rq_error(&mqrq->brq)) {
2181 mmc_retune_hold_now(host);
2182 mmc_blk_mq_rw_recovery(mq, req);
2183 }
2184
2185 mmc_blk_urgent_bkops(mq, mqrq);
2186
2187 mmc_blk_mq_post_req(mq, req);
2188 }
2189
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2190 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2191 struct request **prev_req)
2192 {
2193 if (mmc_host_done_complete(mq->card->host))
2194 return;
2195
2196 mutex_lock(&mq->complete_lock);
2197
2198 if (!mq->complete_req)
2199 goto out_unlock;
2200
2201 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2202
2203 if (prev_req)
2204 *prev_req = mq->complete_req;
2205 else
2206 mmc_blk_mq_post_req(mq, mq->complete_req);
2207
2208 mq->complete_req = NULL;
2209
2210 out_unlock:
2211 mutex_unlock(&mq->complete_lock);
2212 }
2213
mmc_blk_mq_complete_work(struct work_struct * work)2214 void mmc_blk_mq_complete_work(struct work_struct *work)
2215 {
2216 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2217 complete_work);
2218
2219 mmc_blk_mq_complete_prev_req(mq, NULL);
2220 }
2221
mmc_blk_mq_req_done(struct mmc_request * mrq)2222 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2223 {
2224 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2225 brq.mrq);
2226 struct request *req = mmc_queue_req_to_req(mqrq);
2227 struct request_queue *q = req->q;
2228 struct mmc_queue *mq = q->queuedata;
2229 struct mmc_host *host = mq->card->host;
2230 unsigned long flags;
2231
2232 if (!mmc_host_done_complete(host)) {
2233 bool waiting;
2234
2235 /*
2236 * We cannot complete the request in this context, so record
2237 * that there is a request to complete, and that a following
2238 * request does not need to wait (although it does need to
2239 * complete complete_req first).
2240 */
2241 spin_lock_irqsave(&mq->lock, flags);
2242 mq->complete_req = req;
2243 mq->rw_wait = false;
2244 waiting = mq->waiting;
2245 spin_unlock_irqrestore(&mq->lock, flags);
2246
2247 /*
2248 * If 'waiting' then the waiting task will complete this
2249 * request, otherwise queue a work to do it. Note that
2250 * complete_work may still race with the dispatch of a following
2251 * request.
2252 */
2253 if (waiting)
2254 wake_up(&mq->wait);
2255 else
2256 queue_work(mq->card->complete_wq, &mq->complete_work);
2257
2258 return;
2259 }
2260
2261 /* Take the recovery path for errors or urgent background operations */
2262 if (mmc_blk_rq_error(&mqrq->brq) ||
2263 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2264 spin_lock_irqsave(&mq->lock, flags);
2265 mq->recovery_needed = true;
2266 mq->recovery_req = req;
2267 spin_unlock_irqrestore(&mq->lock, flags);
2268 wake_up(&mq->wait);
2269 schedule_work(&mq->recovery_work);
2270 return;
2271 }
2272
2273 mmc_blk_rw_reset_success(mq, req);
2274
2275 mq->rw_wait = false;
2276 wake_up(&mq->wait);
2277
2278 mmc_blk_mq_post_req(mq, req);
2279 }
2280
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2281 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2282 {
2283 unsigned long flags;
2284 bool done;
2285
2286 /*
2287 * Wait while there is another request in progress, but not if recovery
2288 * is needed. Also indicate whether there is a request waiting to start.
2289 */
2290 spin_lock_irqsave(&mq->lock, flags);
2291 if (mq->recovery_needed) {
2292 *err = -EBUSY;
2293 done = true;
2294 } else {
2295 done = !mq->rw_wait;
2296 }
2297 mq->waiting = !done;
2298 spin_unlock_irqrestore(&mq->lock, flags);
2299
2300 return done;
2301 }
2302
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2303 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2304 {
2305 int err = 0;
2306
2307 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2308
2309 /* Always complete the previous request if there is one */
2310 mmc_blk_mq_complete_prev_req(mq, prev_req);
2311
2312 return err;
2313 }
2314
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2315 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2316 struct request *req)
2317 {
2318 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2319 struct mmc_host *host = mq->card->host;
2320 struct request *prev_req = NULL;
2321 int err = 0;
2322
2323 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2324
2325 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2326
2327 mmc_pre_req(host, &mqrq->brq.mrq);
2328
2329 err = mmc_blk_rw_wait(mq, &prev_req);
2330 if (err)
2331 goto out_post_req;
2332
2333 mq->rw_wait = true;
2334
2335 err = mmc_start_request(host, &mqrq->brq.mrq);
2336
2337 if (prev_req)
2338 mmc_blk_mq_post_req(mq, prev_req);
2339
2340 if (err)
2341 mq->rw_wait = false;
2342
2343 /* Release re-tuning here where there is no synchronization required */
2344 if (err || mmc_host_done_complete(host))
2345 mmc_retune_release(host);
2346
2347 out_post_req:
2348 if (err)
2349 mmc_post_req(host, &mqrq->brq.mrq, err);
2350
2351 return err;
2352 }
2353
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2354 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2355 {
2356 if (host->cqe_enabled)
2357 return host->cqe_ops->cqe_wait_for_idle(host);
2358
2359 return mmc_blk_rw_wait(mq, NULL);
2360 }
2361
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2362 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2363 {
2364 struct mmc_blk_data *md = mq->blkdata;
2365 struct mmc_card *card = md->queue.card;
2366 struct mmc_host *host = card->host;
2367 int ret;
2368
2369 ret = mmc_blk_part_switch(card, md->part_type);
2370 if (ret)
2371 return MMC_REQ_FAILED_TO_START;
2372
2373 switch (mmc_issue_type(mq, req)) {
2374 case MMC_ISSUE_SYNC:
2375 ret = mmc_blk_wait_for_idle(mq, host);
2376 if (ret)
2377 return MMC_REQ_BUSY;
2378 switch (req_op(req)) {
2379 case REQ_OP_DRV_IN:
2380 case REQ_OP_DRV_OUT:
2381 mmc_blk_issue_drv_op(mq, req);
2382 break;
2383 case REQ_OP_DISCARD:
2384 mmc_blk_issue_discard_rq(mq, req);
2385 break;
2386 case REQ_OP_SECURE_ERASE:
2387 mmc_blk_issue_secdiscard_rq(mq, req);
2388 break;
2389 case REQ_OP_FLUSH:
2390 mmc_blk_issue_flush(mq, req);
2391 break;
2392 default:
2393 WARN_ON_ONCE(1);
2394 return MMC_REQ_FAILED_TO_START;
2395 }
2396 return MMC_REQ_FINISHED;
2397 case MMC_ISSUE_DCMD:
2398 case MMC_ISSUE_ASYNC:
2399 switch (req_op(req)) {
2400 case REQ_OP_FLUSH:
2401 if (!mmc_cache_enabled(host)) {
2402 blk_mq_end_request(req, BLK_STS_OK);
2403 return MMC_REQ_FINISHED;
2404 }
2405 ret = mmc_blk_cqe_issue_flush(mq, req);
2406 break;
2407 case REQ_OP_READ:
2408 case REQ_OP_WRITE:
2409 if (host->cqe_enabled)
2410 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2411 else
2412 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2413 break;
2414 default:
2415 WARN_ON_ONCE(1);
2416 ret = -EINVAL;
2417 }
2418 if (!ret)
2419 return MMC_REQ_STARTED;
2420 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2421 default:
2422 WARN_ON_ONCE(1);
2423 return MMC_REQ_FAILED_TO_START;
2424 }
2425 }
2426
mmc_blk_readonly(struct mmc_card * card)2427 static inline int mmc_blk_readonly(struct mmc_card *card)
2428 {
2429 return mmc_card_readonly(card) ||
2430 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2431 }
2432
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2433 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2434 struct device *parent,
2435 sector_t size,
2436 bool default_ro,
2437 const char *subname,
2438 int area_type,
2439 unsigned int part_type)
2440 {
2441 struct mmc_blk_data *md;
2442 int devidx, ret;
2443 char cap_str[10];
2444 bool cache_enabled = false;
2445 bool fua_enabled = false;
2446
2447 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2448 if (devidx < 0) {
2449 /*
2450 * We get -ENOSPC because there are no more any available
2451 * devidx. The reason may be that, either userspace haven't yet
2452 * unmounted the partitions, which postpones mmc_blk_release()
2453 * from being called, or the device has more partitions than
2454 * what we support.
2455 */
2456 if (devidx == -ENOSPC)
2457 dev_err(mmc_dev(card->host),
2458 "no more device IDs available\n");
2459
2460 return ERR_PTR(devidx);
2461 }
2462
2463 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2464 if (!md) {
2465 ret = -ENOMEM;
2466 goto out;
2467 }
2468
2469 md->area_type = area_type;
2470
2471 /*
2472 * Set the read-only status based on the supported commands
2473 * and the write protect switch.
2474 */
2475 md->read_only = mmc_blk_readonly(card);
2476
2477 md->disk = mmc_init_queue(&md->queue, card);
2478 if (IS_ERR(md->disk)) {
2479 ret = PTR_ERR(md->disk);
2480 goto err_kfree;
2481 }
2482
2483 INIT_LIST_HEAD(&md->part);
2484 INIT_LIST_HEAD(&md->rpmbs);
2485 kref_init(&md->kref);
2486
2487 md->queue.blkdata = md;
2488 md->part_type = part_type;
2489
2490 md->disk->major = MMC_BLOCK_MAJOR;
2491 md->disk->minors = perdev_minors;
2492 md->disk->first_minor = devidx * perdev_minors;
2493 md->disk->fops = &mmc_bdops;
2494 md->disk->private_data = md;
2495 md->parent = parent;
2496 set_disk_ro(md->disk, md->read_only || default_ro);
2497 md->disk->flags = GENHD_FL_EXT_DEVT;
2498 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2499 md->disk->flags |= GENHD_FL_NO_PART |
2500 GENHD_FL_SUPPRESS_PARTITION_INFO;
2501
2502 /*
2503 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2504 *
2505 * - be set for removable media with permanent block devices
2506 * - be unset for removable block devices with permanent media
2507 *
2508 * Since MMC block devices clearly fall under the second
2509 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2510 * should use the block device creation/destruction hotplug
2511 * messages to tell when the card is present.
2512 */
2513
2514 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2515 "mmcblk%u%s", card->host->index, subname ? subname : "");
2516
2517 set_capacity(md->disk, size);
2518
2519 if (mmc_host_cmd23(card->host)) {
2520 if ((mmc_card_mmc(card) &&
2521 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2522 (mmc_card_sd(card) &&
2523 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2524 md->flags |= MMC_BLK_CMD23;
2525 }
2526
2527 if (md->flags & MMC_BLK_CMD23 &&
2528 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2529 card->ext_csd.rel_sectors)) {
2530 md->flags |= MMC_BLK_REL_WR;
2531 fua_enabled = true;
2532 cache_enabled = true;
2533 }
2534 if (mmc_cache_enabled(card->host))
2535 cache_enabled = true;
2536
2537 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2538
2539 string_get_size((u64)size, 512, STRING_UNITS_2,
2540 cap_str, sizeof(cap_str));
2541 pr_info("%s: %s %s %s %s\n",
2542 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2543 cap_str, md->read_only ? "(ro)" : "");
2544
2545 /* used in ->open, must be set before add_disk: */
2546 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2547 dev_set_drvdata(&card->dev, md);
2548 device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2549 return md;
2550
2551 err_kfree:
2552 kfree(md);
2553 out:
2554 ida_simple_remove(&mmc_blk_ida, devidx);
2555 return ERR_PTR(ret);
2556 }
2557
mmc_blk_alloc(struct mmc_card * card)2558 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2559 {
2560 sector_t size;
2561
2562 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2563 /*
2564 * The EXT_CSD sector count is in number or 512 byte
2565 * sectors.
2566 */
2567 size = card->ext_csd.sectors;
2568 } else {
2569 /*
2570 * The CSD capacity field is in units of read_blkbits.
2571 * set_capacity takes units of 512 bytes.
2572 */
2573 size = (typeof(sector_t))card->csd.capacity
2574 << (card->csd.read_blkbits - 9);
2575 }
2576
2577 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2578 MMC_BLK_DATA_AREA_MAIN, 0);
2579 }
2580
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2581 static int mmc_blk_alloc_part(struct mmc_card *card,
2582 struct mmc_blk_data *md,
2583 unsigned int part_type,
2584 sector_t size,
2585 bool default_ro,
2586 const char *subname,
2587 int area_type)
2588 {
2589 struct mmc_blk_data *part_md;
2590
2591 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2592 subname, area_type, part_type);
2593 if (IS_ERR(part_md))
2594 return PTR_ERR(part_md);
2595 list_add(&part_md->part, &md->part);
2596
2597 return 0;
2598 }
2599
2600 /**
2601 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2602 * @filp: the character device file
2603 * @cmd: the ioctl() command
2604 * @arg: the argument from userspace
2605 *
2606 * This will essentially just redirect the ioctl()s coming in over to
2607 * the main block device spawning the RPMB character device.
2608 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2609 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2610 unsigned long arg)
2611 {
2612 struct mmc_rpmb_data *rpmb = filp->private_data;
2613 int ret;
2614
2615 switch (cmd) {
2616 case MMC_IOC_CMD:
2617 ret = mmc_blk_ioctl_cmd(rpmb->md,
2618 (struct mmc_ioc_cmd __user *)arg,
2619 rpmb);
2620 break;
2621 case MMC_IOC_MULTI_CMD:
2622 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2623 (struct mmc_ioc_multi_cmd __user *)arg,
2624 rpmb);
2625 break;
2626 default:
2627 ret = -EINVAL;
2628 break;
2629 }
2630
2631 return ret;
2632 }
2633
2634 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2635 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2636 unsigned long arg)
2637 {
2638 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2639 }
2640 #endif
2641
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2642 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2643 {
2644 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2645 struct mmc_rpmb_data, chrdev);
2646
2647 get_device(&rpmb->dev);
2648 filp->private_data = rpmb;
2649 mmc_blk_get(rpmb->md->disk);
2650
2651 return nonseekable_open(inode, filp);
2652 }
2653
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2654 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2655 {
2656 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2657 struct mmc_rpmb_data, chrdev);
2658
2659 mmc_blk_put(rpmb->md);
2660 put_device(&rpmb->dev);
2661
2662 return 0;
2663 }
2664
2665 static const struct file_operations mmc_rpmb_fileops = {
2666 .release = mmc_rpmb_chrdev_release,
2667 .open = mmc_rpmb_chrdev_open,
2668 .owner = THIS_MODULE,
2669 .llseek = no_llseek,
2670 .unlocked_ioctl = mmc_rpmb_ioctl,
2671 #ifdef CONFIG_COMPAT
2672 .compat_ioctl = mmc_rpmb_ioctl_compat,
2673 #endif
2674 };
2675
mmc_blk_rpmb_device_release(struct device * dev)2676 static void mmc_blk_rpmb_device_release(struct device *dev)
2677 {
2678 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2679
2680 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2681 kfree(rpmb);
2682 }
2683
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2684 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2685 struct mmc_blk_data *md,
2686 unsigned int part_index,
2687 sector_t size,
2688 const char *subname)
2689 {
2690 int devidx, ret;
2691 char rpmb_name[DISK_NAME_LEN];
2692 char cap_str[10];
2693 struct mmc_rpmb_data *rpmb;
2694
2695 /* This creates the minor number for the RPMB char device */
2696 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2697 if (devidx < 0)
2698 return devidx;
2699
2700 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2701 if (!rpmb) {
2702 ida_simple_remove(&mmc_rpmb_ida, devidx);
2703 return -ENOMEM;
2704 }
2705
2706 snprintf(rpmb_name, sizeof(rpmb_name),
2707 "mmcblk%u%s", card->host->index, subname ? subname : "");
2708
2709 rpmb->id = devidx;
2710 rpmb->part_index = part_index;
2711 rpmb->dev.init_name = rpmb_name;
2712 rpmb->dev.bus = &mmc_rpmb_bus_type;
2713 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2714 rpmb->dev.parent = &card->dev;
2715 rpmb->dev.release = mmc_blk_rpmb_device_release;
2716 device_initialize(&rpmb->dev);
2717 dev_set_drvdata(&rpmb->dev, rpmb);
2718 rpmb->md = md;
2719
2720 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2721 rpmb->chrdev.owner = THIS_MODULE;
2722 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2723 if (ret) {
2724 pr_err("%s: could not add character device\n", rpmb_name);
2725 goto out_put_device;
2726 }
2727
2728 list_add(&rpmb->node, &md->rpmbs);
2729
2730 string_get_size((u64)size, 512, STRING_UNITS_2,
2731 cap_str, sizeof(cap_str));
2732
2733 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2734 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2735 MAJOR(mmc_rpmb_devt), rpmb->id);
2736
2737 return 0;
2738
2739 out_put_device:
2740 put_device(&rpmb->dev);
2741 return ret;
2742 }
2743
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2744 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2745
2746 {
2747 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2748 put_device(&rpmb->dev);
2749 }
2750
2751 /* MMC Physical partitions consist of two boot partitions and
2752 * up to four general purpose partitions.
2753 * For each partition enabled in EXT_CSD a block device will be allocatedi
2754 * to provide access to the partition.
2755 */
2756
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2757 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2758 {
2759 int idx, ret;
2760
2761 if (!mmc_card_mmc(card))
2762 return 0;
2763
2764 for (idx = 0; idx < card->nr_parts; idx++) {
2765 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2766 /*
2767 * RPMB partitions does not provide block access, they
2768 * are only accessed using ioctl():s. Thus create
2769 * special RPMB block devices that do not have a
2770 * backing block queue for these.
2771 */
2772 ret = mmc_blk_alloc_rpmb_part(card, md,
2773 card->part[idx].part_cfg,
2774 card->part[idx].size >> 9,
2775 card->part[idx].name);
2776 if (ret)
2777 return ret;
2778 } else if (card->part[idx].size) {
2779 ret = mmc_blk_alloc_part(card, md,
2780 card->part[idx].part_cfg,
2781 card->part[idx].size >> 9,
2782 card->part[idx].force_ro,
2783 card->part[idx].name,
2784 card->part[idx].area_type);
2785 if (ret)
2786 return ret;
2787 }
2788 }
2789
2790 return 0;
2791 }
2792
mmc_blk_remove_req(struct mmc_blk_data * md)2793 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2794 {
2795 /*
2796 * Flush remaining requests and free queues. It is freeing the queue
2797 * that stops new requests from being accepted.
2798 */
2799 del_gendisk(md->disk);
2800 mmc_cleanup_queue(&md->queue);
2801 mmc_blk_put(md);
2802 }
2803
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2804 static void mmc_blk_remove_parts(struct mmc_card *card,
2805 struct mmc_blk_data *md)
2806 {
2807 struct list_head *pos, *q;
2808 struct mmc_blk_data *part_md;
2809 struct mmc_rpmb_data *rpmb;
2810
2811 /* Remove RPMB partitions */
2812 list_for_each_safe(pos, q, &md->rpmbs) {
2813 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2814 list_del(pos);
2815 mmc_blk_remove_rpmb_part(rpmb);
2816 }
2817 /* Remove block partitions */
2818 list_for_each_safe(pos, q, &md->part) {
2819 part_md = list_entry(pos, struct mmc_blk_data, part);
2820 list_del(pos);
2821 mmc_blk_remove_req(part_md);
2822 }
2823 }
2824
2825 #ifdef CONFIG_DEBUG_FS
2826
mmc_dbg_card_status_get(void * data,u64 * val)2827 static int mmc_dbg_card_status_get(void *data, u64 *val)
2828 {
2829 struct mmc_card *card = data;
2830 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2831 struct mmc_queue *mq = &md->queue;
2832 struct request *req;
2833 int ret;
2834
2835 /* Ask the block layer about the card status */
2836 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2837 if (IS_ERR(req))
2838 return PTR_ERR(req);
2839 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2840 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2841 blk_execute_rq(NULL, req, 0);
2842 ret = req_to_mmc_queue_req(req)->drv_op_result;
2843 if (ret >= 0) {
2844 *val = ret;
2845 ret = 0;
2846 }
2847 blk_put_request(req);
2848
2849 return ret;
2850 }
2851 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2852 NULL, "%08llx\n");
2853
2854 /* That is two digits * 512 + 1 for newline */
2855 #define EXT_CSD_STR_LEN 1025
2856
mmc_ext_csd_open(struct inode * inode,struct file * filp)2857 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2858 {
2859 struct mmc_card *card = inode->i_private;
2860 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2861 struct mmc_queue *mq = &md->queue;
2862 struct request *req;
2863 char *buf;
2864 ssize_t n = 0;
2865 u8 *ext_csd;
2866 int err, i;
2867
2868 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2869 if (!buf)
2870 return -ENOMEM;
2871
2872 /* Ask the block layer for the EXT CSD */
2873 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2874 if (IS_ERR(req)) {
2875 err = PTR_ERR(req);
2876 goto out_free;
2877 }
2878 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2879 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2880 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2881 blk_execute_rq(NULL, req, 0);
2882 err = req_to_mmc_queue_req(req)->drv_op_result;
2883 blk_put_request(req);
2884 if (err) {
2885 pr_err("FAILED %d\n", err);
2886 goto out_free;
2887 }
2888
2889 for (i = 0; i < 512; i++)
2890 n += sprintf(buf + n, "%02x", ext_csd[i]);
2891 n += sprintf(buf + n, "\n");
2892
2893 if (n != EXT_CSD_STR_LEN) {
2894 err = -EINVAL;
2895 kfree(ext_csd);
2896 goto out_free;
2897 }
2898
2899 filp->private_data = buf;
2900 kfree(ext_csd);
2901 return 0;
2902
2903 out_free:
2904 kfree(buf);
2905 return err;
2906 }
2907
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2908 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2909 size_t cnt, loff_t *ppos)
2910 {
2911 char *buf = filp->private_data;
2912
2913 return simple_read_from_buffer(ubuf, cnt, ppos,
2914 buf, EXT_CSD_STR_LEN);
2915 }
2916
mmc_ext_csd_release(struct inode * inode,struct file * file)2917 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2918 {
2919 kfree(file->private_data);
2920 return 0;
2921 }
2922
2923 static const struct file_operations mmc_dbg_ext_csd_fops = {
2924 .open = mmc_ext_csd_open,
2925 .read = mmc_ext_csd_read,
2926 .release = mmc_ext_csd_release,
2927 .llseek = default_llseek,
2928 };
2929
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2930 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2931 {
2932 struct dentry *root;
2933
2934 if (!card->debugfs_root)
2935 return 0;
2936
2937 root = card->debugfs_root;
2938
2939 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2940 md->status_dentry =
2941 debugfs_create_file_unsafe("status", 0400, root,
2942 card,
2943 &mmc_dbg_card_status_fops);
2944 if (!md->status_dentry)
2945 return -EIO;
2946 }
2947
2948 if (mmc_card_mmc(card)) {
2949 md->ext_csd_dentry =
2950 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2951 &mmc_dbg_ext_csd_fops);
2952 if (!md->ext_csd_dentry)
2953 return -EIO;
2954 }
2955
2956 return 0;
2957 }
2958
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2959 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2960 struct mmc_blk_data *md)
2961 {
2962 if (!card->debugfs_root)
2963 return;
2964
2965 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2966 debugfs_remove(md->status_dentry);
2967 md->status_dentry = NULL;
2968 }
2969
2970 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2971 debugfs_remove(md->ext_csd_dentry);
2972 md->ext_csd_dentry = NULL;
2973 }
2974 }
2975
2976 #else
2977
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2978 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2979 {
2980 return 0;
2981 }
2982
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2983 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2984 struct mmc_blk_data *md)
2985 {
2986 }
2987
2988 #endif /* CONFIG_DEBUG_FS */
2989
mmc_blk_probe(struct mmc_card * card)2990 static int mmc_blk_probe(struct mmc_card *card)
2991 {
2992 struct mmc_blk_data *md;
2993 int ret = 0;
2994
2995 /*
2996 * Check that the card supports the command class(es) we need.
2997 */
2998 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2999 return -ENODEV;
3000
3001 mmc_fixup_device(card, mmc_blk_fixups);
3002
3003 card->complete_wq = alloc_workqueue("mmc_complete",
3004 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3005 if (!card->complete_wq) {
3006 pr_err("Failed to create mmc completion workqueue");
3007 return -ENOMEM;
3008 }
3009
3010 md = mmc_blk_alloc(card);
3011 if (IS_ERR(md)) {
3012 ret = PTR_ERR(md);
3013 goto out_free;
3014 }
3015
3016 ret = mmc_blk_alloc_parts(card, md);
3017 if (ret)
3018 goto out;
3019
3020 /* Add two debugfs entries */
3021 mmc_blk_add_debugfs(card, md);
3022
3023 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3024 pm_runtime_use_autosuspend(&card->dev);
3025
3026 /*
3027 * Don't enable runtime PM for SD-combo cards here. Leave that
3028 * decision to be taken during the SDIO init sequence instead.
3029 */
3030 if (card->type != MMC_TYPE_SD_COMBO) {
3031 pm_runtime_set_active(&card->dev);
3032 pm_runtime_enable(&card->dev);
3033 }
3034
3035 return 0;
3036
3037 out:
3038 mmc_blk_remove_parts(card, md);
3039 mmc_blk_remove_req(md);
3040 out_free:
3041 destroy_workqueue(card->complete_wq);
3042 return ret;
3043 }
3044
mmc_blk_remove(struct mmc_card * card)3045 static void mmc_blk_remove(struct mmc_card *card)
3046 {
3047 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3048
3049 mmc_blk_remove_debugfs(card, md);
3050 mmc_blk_remove_parts(card, md);
3051 pm_runtime_get_sync(&card->dev);
3052 if (md->part_curr != md->part_type) {
3053 mmc_claim_host(card->host);
3054 mmc_blk_part_switch(card, md->part_type);
3055 mmc_release_host(card->host);
3056 }
3057 if (card->type != MMC_TYPE_SD_COMBO)
3058 pm_runtime_disable(&card->dev);
3059 pm_runtime_put_noidle(&card->dev);
3060 mmc_blk_remove_req(md);
3061 dev_set_drvdata(&card->dev, NULL);
3062 destroy_workqueue(card->complete_wq);
3063 }
3064
_mmc_blk_suspend(struct mmc_card * card)3065 static int _mmc_blk_suspend(struct mmc_card *card)
3066 {
3067 struct mmc_blk_data *part_md;
3068 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3069
3070 if (md) {
3071 mmc_queue_suspend(&md->queue);
3072 list_for_each_entry(part_md, &md->part, part) {
3073 mmc_queue_suspend(&part_md->queue);
3074 }
3075 }
3076 return 0;
3077 }
3078
mmc_blk_shutdown(struct mmc_card * card)3079 static void mmc_blk_shutdown(struct mmc_card *card)
3080 {
3081 _mmc_blk_suspend(card);
3082 }
3083
3084 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3085 static int mmc_blk_suspend(struct device *dev)
3086 {
3087 struct mmc_card *card = mmc_dev_to_card(dev);
3088
3089 return _mmc_blk_suspend(card);
3090 }
3091
mmc_blk_resume(struct device * dev)3092 static int mmc_blk_resume(struct device *dev)
3093 {
3094 struct mmc_blk_data *part_md;
3095 struct mmc_blk_data *md = dev_get_drvdata(dev);
3096
3097 if (md) {
3098 /*
3099 * Resume involves the card going into idle state,
3100 * so current partition is always the main one.
3101 */
3102 md->part_curr = md->part_type;
3103 mmc_queue_resume(&md->queue);
3104 list_for_each_entry(part_md, &md->part, part) {
3105 mmc_queue_resume(&part_md->queue);
3106 }
3107 }
3108 return 0;
3109 }
3110 #endif
3111
3112 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3113
3114 static struct mmc_driver mmc_driver = {
3115 .drv = {
3116 .name = "mmcblk",
3117 .pm = &mmc_blk_pm_ops,
3118 },
3119 .probe = mmc_blk_probe,
3120 .remove = mmc_blk_remove,
3121 .shutdown = mmc_blk_shutdown,
3122 };
3123
mmc_blk_init(void)3124 static int __init mmc_blk_init(void)
3125 {
3126 int res;
3127
3128 res = bus_register(&mmc_rpmb_bus_type);
3129 if (res < 0) {
3130 pr_err("mmcblk: could not register RPMB bus type\n");
3131 return res;
3132 }
3133 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3134 if (res < 0) {
3135 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3136 goto out_bus_unreg;
3137 }
3138
3139 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3140 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3141
3142 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3143
3144 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3145 if (res)
3146 goto out_chrdev_unreg;
3147
3148 res = mmc_register_driver(&mmc_driver);
3149 if (res)
3150 goto out_blkdev_unreg;
3151
3152 return 0;
3153
3154 out_blkdev_unreg:
3155 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3156 out_chrdev_unreg:
3157 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3158 out_bus_unreg:
3159 bus_unregister(&mmc_rpmb_bus_type);
3160 return res;
3161 }
3162
mmc_blk_exit(void)3163 static void __exit mmc_blk_exit(void)
3164 {
3165 mmc_unregister_driver(&mmc_driver);
3166 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3167 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3168 bus_unregister(&mmc_rpmb_bus_type);
3169 }
3170
3171 module_init(mmc_blk_init);
3172 module_exit(mmc_blk_exit);
3173
3174 MODULE_LICENSE("GPL");
3175 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3176