• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include <trace/hooks/mmc.h>
53 
54 #include "queue.h"
55 #include "block.h"
56 #include "core.h"
57 #include "card.h"
58 #include "crypto.h"
59 #include "host.h"
60 #include "bus.h"
61 #include "mmc_ops.h"
62 #include "quirks.h"
63 #include "sd_ops.h"
64 
65 MODULE_ALIAS("mmc:block");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "mmcblk."
70 
71 /*
72  * Set a 10 second timeout for polling write request busy state. Note, mmc core
73  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
74  * second software timer to timeout the whole request, so 10 seconds should be
75  * ample.
76  */
77 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
78 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
79 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
80 
81 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
82 				  (rq_data_dir(req) == WRITE))
83 static DEFINE_MUTEX(block_mutex);
84 
85 /*
86  * The defaults come from config options but can be overriden by module
87  * or bootarg options.
88  */
89 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
90 
91 /*
92  * We've only got one major, so number of mmcblk devices is
93  * limited to (1 << 20) / number of minors per device.  It is also
94  * limited by the MAX_DEVICES below.
95  */
96 static int max_devices;
97 
98 #define MAX_DEVICES 256
99 
100 static DEFINE_IDA(mmc_blk_ida);
101 static DEFINE_IDA(mmc_rpmb_ida);
102 
103 struct mmc_blk_busy_data {
104 	struct mmc_card *card;
105 	u32 status;
106 };
107 
108 /*
109  * There is one mmc_blk_data per slot.
110  */
111 struct mmc_blk_data {
112 	struct device	*parent;
113 	struct gendisk	*disk;
114 	struct mmc_queue queue;
115 	struct list_head part;
116 	struct list_head rpmbs;
117 
118 	unsigned int	flags;
119 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
120 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
121 
122 	struct kref	kref;
123 	unsigned int	read_only;
124 	unsigned int	part_type;
125 	unsigned int	reset_done;
126 #define MMC_BLK_READ		BIT(0)
127 #define MMC_BLK_WRITE		BIT(1)
128 #define MMC_BLK_DISCARD		BIT(2)
129 #define MMC_BLK_SECDISCARD	BIT(3)
130 #define MMC_BLK_CQE_RECOVERY	BIT(4)
131 
132 	/*
133 	 * Only set in main mmc_blk_data associated
134 	 * with mmc_card with dev_set_drvdata, and keeps
135 	 * track of the current selected device partition.
136 	 */
137 	unsigned int	part_curr;
138 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
139 	int	area_type;
140 
141 	/* debugfs files (only in main mmc_blk_data) */
142 	struct dentry *status_dentry;
143 	struct dentry *ext_csd_dentry;
144 };
145 
146 /* Device type for RPMB character devices */
147 static dev_t mmc_rpmb_devt;
148 
149 /* Bus type for RPMB character devices */
150 static struct bus_type mmc_rpmb_bus_type = {
151 	.name = "mmc_rpmb",
152 };
153 
154 /**
155  * struct mmc_rpmb_data - special RPMB device type for these areas
156  * @dev: the device for the RPMB area
157  * @chrdev: character device for the RPMB area
158  * @id: unique device ID number
159  * @part_index: partition index (0 on first)
160  * @md: parent MMC block device
161  * @node: list item, so we can put this device on a list
162  */
163 struct mmc_rpmb_data {
164 	struct device dev;
165 	struct cdev chrdev;
166 	int id;
167 	unsigned int part_index;
168 	struct mmc_blk_data *md;
169 	struct list_head node;
170 };
171 
172 static DEFINE_MUTEX(open_lock);
173 
174 module_param(perdev_minors, int, 0444);
175 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
176 
177 static inline int mmc_blk_part_switch(struct mmc_card *card,
178 				      unsigned int part_type);
179 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
180 			       struct mmc_card *card,
181 			       int recovery_mode,
182 			       struct mmc_queue *mq);
183 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
184 
mmc_blk_get(struct gendisk * disk)185 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
186 {
187 	struct mmc_blk_data *md;
188 
189 	mutex_lock(&open_lock);
190 	md = disk->private_data;
191 	if (md && !kref_get_unless_zero(&md->kref))
192 		md = NULL;
193 	mutex_unlock(&open_lock);
194 
195 	return md;
196 }
197 
mmc_get_devidx(struct gendisk * disk)198 static inline int mmc_get_devidx(struct gendisk *disk)
199 {
200 	int devidx = disk->first_minor / perdev_minors;
201 	return devidx;
202 }
203 
mmc_blk_kref_release(struct kref * ref)204 static void mmc_blk_kref_release(struct kref *ref)
205 {
206 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
207 	int devidx;
208 
209 	devidx = mmc_get_devidx(md->disk);
210 	ida_simple_remove(&mmc_blk_ida, devidx);
211 
212 	mutex_lock(&open_lock);
213 	md->disk->private_data = NULL;
214 	mutex_unlock(&open_lock);
215 
216 	put_disk(md->disk);
217 	kfree(md);
218 }
219 
mmc_blk_put(struct mmc_blk_data * md)220 static void mmc_blk_put(struct mmc_blk_data *md)
221 {
222 	kref_put(&md->kref, mmc_blk_kref_release);
223 }
224 
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)225 static ssize_t power_ro_lock_show(struct device *dev,
226 		struct device_attribute *attr, char *buf)
227 {
228 	int ret;
229 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
230 	struct mmc_card *card = md->queue.card;
231 	int locked = 0;
232 
233 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
234 		locked = 2;
235 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
236 		locked = 1;
237 
238 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
239 
240 	mmc_blk_put(md);
241 
242 	return ret;
243 }
244 
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)245 static ssize_t power_ro_lock_store(struct device *dev,
246 		struct device_attribute *attr, const char *buf, size_t count)
247 {
248 	int ret;
249 	struct mmc_blk_data *md, *part_md;
250 	struct mmc_queue *mq;
251 	struct request *req;
252 	unsigned long set;
253 
254 	if (kstrtoul(buf, 0, &set))
255 		return -EINVAL;
256 
257 	if (set != 1)
258 		return count;
259 
260 	md = mmc_blk_get(dev_to_disk(dev));
261 	mq = &md->queue;
262 
263 	/* Dispatch locking to the block layer */
264 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
265 	if (IS_ERR(req)) {
266 		count = PTR_ERR(req);
267 		goto out_put;
268 	}
269 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
270 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
271 	blk_execute_rq(NULL, req, 0);
272 	ret = req_to_mmc_queue_req(req)->drv_op_result;
273 	blk_put_request(req);
274 
275 	if (!ret) {
276 		pr_info("%s: Locking boot partition ro until next power on\n",
277 			md->disk->disk_name);
278 		set_disk_ro(md->disk, 1);
279 
280 		list_for_each_entry(part_md, &md->part, part)
281 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
282 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
283 				set_disk_ro(part_md->disk, 1);
284 			}
285 	}
286 out_put:
287 	mmc_blk_put(md);
288 	return count;
289 }
290 
291 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
292 		power_ro_lock_show, power_ro_lock_store);
293 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
295 			     char *buf)
296 {
297 	int ret;
298 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
299 
300 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
301 		       get_disk_ro(dev_to_disk(dev)) ^
302 		       md->read_only);
303 	mmc_blk_put(md);
304 	return ret;
305 }
306 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)307 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
308 			      const char *buf, size_t count)
309 {
310 	int ret;
311 	char *end;
312 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
313 	unsigned long set = simple_strtoul(buf, &end, 0);
314 	if (end == buf) {
315 		ret = -EINVAL;
316 		goto out;
317 	}
318 
319 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
320 	ret = count;
321 out:
322 	mmc_blk_put(md);
323 	return ret;
324 }
325 
326 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
327 
328 static struct attribute *mmc_disk_attrs[] = {
329 	&dev_attr_force_ro.attr,
330 	&dev_attr_ro_lock_until_next_power_on.attr,
331 	NULL,
332 };
333 
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)334 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
335 		struct attribute *a, int n)
336 {
337 	struct device *dev = container_of(kobj, struct device, kobj);
338 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
339 	umode_t mode = a->mode;
340 
341 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
342 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
343 	    md->queue.card->ext_csd.boot_ro_lockable) {
344 		mode = S_IRUGO;
345 		if (!(md->queue.card->ext_csd.boot_ro_lock &
346 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
347 			mode |= S_IWUSR;
348 	}
349 
350 	mmc_blk_put(md);
351 	return mode;
352 }
353 
354 static const struct attribute_group mmc_disk_attr_group = {
355 	.is_visible	= mmc_disk_attrs_is_visible,
356 	.attrs		= mmc_disk_attrs,
357 };
358 
359 static const struct attribute_group *mmc_disk_attr_groups[] = {
360 	&mmc_disk_attr_group,
361 	NULL,
362 };
363 
mmc_blk_open(struct block_device * bdev,fmode_t mode)364 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
365 {
366 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
367 	int ret = -ENXIO;
368 
369 	mutex_lock(&block_mutex);
370 	if (md) {
371 		ret = 0;
372 		if ((mode & FMODE_WRITE) && md->read_only) {
373 			mmc_blk_put(md);
374 			ret = -EROFS;
375 		}
376 	}
377 	mutex_unlock(&block_mutex);
378 
379 	return ret;
380 }
381 
mmc_blk_release(struct gendisk * disk,fmode_t mode)382 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
383 {
384 	struct mmc_blk_data *md = disk->private_data;
385 
386 	mutex_lock(&block_mutex);
387 	mmc_blk_put(md);
388 	mutex_unlock(&block_mutex);
389 }
390 
391 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)392 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
393 {
394 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
395 	geo->heads = 4;
396 	geo->sectors = 16;
397 	return 0;
398 }
399 
400 struct mmc_blk_ioc_data {
401 	struct mmc_ioc_cmd ic;
402 	unsigned char *buf;
403 	u64 buf_bytes;
404 	unsigned int flags;
405 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
406 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
407 
408 	struct mmc_rpmb_data *rpmb;
409 };
410 
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)411 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
412 	struct mmc_ioc_cmd __user *user)
413 {
414 	struct mmc_blk_ioc_data *idata;
415 	int err;
416 
417 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
418 	if (!idata) {
419 		err = -ENOMEM;
420 		goto out;
421 	}
422 
423 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
424 		err = -EFAULT;
425 		goto idata_err;
426 	}
427 
428 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
429 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
430 		err = -EOVERFLOW;
431 		goto idata_err;
432 	}
433 
434 	if (!idata->buf_bytes) {
435 		idata->buf = NULL;
436 		return idata;
437 	}
438 
439 	idata->buf = memdup_user((void __user *)(unsigned long)
440 				 idata->ic.data_ptr, idata->buf_bytes);
441 	if (IS_ERR(idata->buf)) {
442 		err = PTR_ERR(idata->buf);
443 		goto idata_err;
444 	}
445 
446 	return idata;
447 
448 idata_err:
449 	kfree(idata);
450 out:
451 	return ERR_PTR(err);
452 }
453 
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)454 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
455 				      struct mmc_blk_ioc_data *idata)
456 {
457 	struct mmc_ioc_cmd *ic = &idata->ic;
458 
459 	if (copy_to_user(&(ic_ptr->response), ic->response,
460 			 sizeof(ic->response)))
461 		return -EFAULT;
462 
463 	if (!idata->ic.write_flag) {
464 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
465 				 idata->buf, idata->buf_bytes))
466 			return -EFAULT;
467 	}
468 
469 	return 0;
470 }
471 
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 			       struct mmc_blk_ioc_data **idatas, int i)
474 {
475 	struct mmc_command cmd = {}, sbc = {};
476 	struct mmc_data data = {};
477 	struct mmc_request mrq = {};
478 	struct scatterlist sg;
479 	int err;
480 	unsigned int target_part;
481 	struct mmc_blk_ioc_data *idata = idatas[i];
482 	struct mmc_blk_ioc_data *prev_idata = NULL;
483 
484 	if (!card || !md || !idata)
485 		return -EINVAL;
486 
487 	if (idata->flags & MMC_BLK_IOC_DROP)
488 		return 0;
489 
490 	if (idata->flags & MMC_BLK_IOC_SBC)
491 		prev_idata = idatas[i - 1];
492 
493 	/*
494 	 * The RPMB accesses comes in from the character device, so we
495 	 * need to target these explicitly. Else we just target the
496 	 * partition type for the block device the ioctl() was issued
497 	 * on.
498 	 */
499 	if (idata->rpmb) {
500 		/* Support multiple RPMB partitions */
501 		target_part = idata->rpmb->part_index;
502 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
503 	} else {
504 		target_part = md->part_type;
505 	}
506 
507 	cmd.opcode = idata->ic.opcode;
508 	cmd.arg = idata->ic.arg;
509 	cmd.flags = idata->ic.flags;
510 
511 	if (idata->buf_bytes) {
512 		data.sg = &sg;
513 		data.sg_len = 1;
514 		data.blksz = idata->ic.blksz;
515 		data.blocks = idata->ic.blocks;
516 
517 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
518 
519 		if (idata->ic.write_flag)
520 			data.flags = MMC_DATA_WRITE;
521 		else
522 			data.flags = MMC_DATA_READ;
523 
524 		/* data.flags must already be set before doing this. */
525 		mmc_set_data_timeout(&data, card);
526 
527 		/* Allow overriding the timeout_ns for empirical tuning. */
528 		if (idata->ic.data_timeout_ns)
529 			data.timeout_ns = idata->ic.data_timeout_ns;
530 
531 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
532 			/*
533 			 * Pretend this is a data transfer and rely on the
534 			 * host driver to compute timeout.  When all host
535 			 * drivers support cmd.cmd_timeout for R1B, this
536 			 * can be changed to:
537 			 *
538 			 *     mrq.data = NULL;
539 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
540 			 */
541 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
542 		}
543 
544 		mrq.data = &data;
545 	}
546 
547 	mrq.cmd = &cmd;
548 
549 	err = mmc_blk_part_switch(card, target_part);
550 	if (err)
551 		return err;
552 
553 	if (idata->ic.is_acmd) {
554 		err = mmc_app_cmd(card->host, card);
555 		if (err)
556 			return err;
557 	}
558 
559 	if (idata->rpmb || prev_idata) {
560 		sbc.opcode = MMC_SET_BLOCK_COUNT;
561 		/*
562 		 * We don't do any blockcount validation because the max size
563 		 * may be increased by a future standard. We just copy the
564 		 * 'Reliable Write' bit here.
565 		 */
566 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
567 		if (prev_idata)
568 			sbc.arg = prev_idata->ic.arg;
569 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
570 		mrq.sbc = &sbc;
571 	}
572 
573 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
574 	    (cmd.opcode == MMC_SWITCH))
575 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
576 
577 	mmc_wait_for_req(card->host, &mrq);
578 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
579 
580 	if (prev_idata) {
581 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
582 		if (sbc.error) {
583 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
584 							__func__, sbc.error);
585 			return sbc.error;
586 		}
587 	}
588 
589 	if (cmd.error) {
590 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
591 						__func__, cmd.error);
592 		return cmd.error;
593 	}
594 	if (data.error) {
595 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
596 						__func__, data.error);
597 		return data.error;
598 	}
599 
600 	/*
601 	 * Make sure the cache of the PARTITION_CONFIG register and
602 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
603 	 * changed it successfully.
604 	 */
605 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
606 	    (cmd.opcode == MMC_SWITCH)) {
607 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
608 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
609 
610 		/*
611 		 * Update cache so the next mmc_blk_part_switch call operates
612 		 * on up-to-date data.
613 		 */
614 		card->ext_csd.part_config = value;
615 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
616 	}
617 
618 	/*
619 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
620 	 * will get turned back on if the card is re-initialized, e.g.
621 	 * suspend/resume or hw reset in recovery.
622 	 */
623 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
624 	    (cmd.opcode == MMC_SWITCH)) {
625 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
626 
627 		card->ext_csd.cache_ctrl = value;
628 	}
629 
630 	/*
631 	 * According to the SD specs, some commands require a delay after
632 	 * issuing the command.
633 	 */
634 	if (idata->ic.postsleep_min_us)
635 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
636 
637 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
638 		/*
639 		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
640 		 * allow to override the default timeout value if a custom timeout is specified.
641 		 */
642 		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
643 					false, MMC_BUSY_IO);
644 	}
645 
646 	return err;
647 }
648 
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)649 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
650 			     struct mmc_ioc_cmd __user *ic_ptr,
651 			     struct mmc_rpmb_data *rpmb)
652 {
653 	struct mmc_blk_ioc_data *idata;
654 	struct mmc_blk_ioc_data *idatas[1];
655 	struct mmc_queue *mq;
656 	struct mmc_card *card;
657 	int err = 0, ioc_err = 0;
658 	struct request *req;
659 
660 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
661 	if (IS_ERR(idata))
662 		return PTR_ERR(idata);
663 	/* This will be NULL on non-RPMB ioctl():s */
664 	idata->rpmb = rpmb;
665 
666 	card = md->queue.card;
667 	if (IS_ERR(card)) {
668 		err = PTR_ERR(card);
669 		goto cmd_done;
670 	}
671 
672 	/*
673 	 * Dispatch the ioctl() into the block request queue.
674 	 */
675 	mq = &md->queue;
676 	req = blk_get_request(mq->queue,
677 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
678 	if (IS_ERR(req)) {
679 		err = PTR_ERR(req);
680 		goto cmd_done;
681 	}
682 	idatas[0] = idata;
683 	req_to_mmc_queue_req(req)->drv_op =
684 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
685 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
686 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
687 	req_to_mmc_queue_req(req)->ioc_count = 1;
688 	blk_execute_rq(NULL, req, 0);
689 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
690 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
691 	blk_put_request(req);
692 
693 cmd_done:
694 	kfree(idata->buf);
695 	kfree(idata);
696 	return ioc_err ? ioc_err : err;
697 }
698 
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)699 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
700 				   struct mmc_ioc_multi_cmd __user *user,
701 				   struct mmc_rpmb_data *rpmb)
702 {
703 	struct mmc_blk_ioc_data **idata = NULL;
704 	struct mmc_ioc_cmd __user *cmds = user->cmds;
705 	struct mmc_card *card;
706 	struct mmc_queue *mq;
707 	int i, err = 0, ioc_err = 0;
708 	__u64 num_of_cmds;
709 	struct request *req;
710 
711 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
712 			   sizeof(num_of_cmds)))
713 		return -EFAULT;
714 
715 	if (!num_of_cmds)
716 		return 0;
717 
718 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
719 		return -EINVAL;
720 
721 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
722 	if (!idata)
723 		return -ENOMEM;
724 
725 	for (i = 0; i < num_of_cmds; i++) {
726 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
727 		if (IS_ERR(idata[i])) {
728 			err = PTR_ERR(idata[i]);
729 			num_of_cmds = i;
730 			goto cmd_err;
731 		}
732 		/* This will be NULL on non-RPMB ioctl():s */
733 		idata[i]->rpmb = rpmb;
734 	}
735 
736 	card = md->queue.card;
737 	if (IS_ERR(card)) {
738 		err = PTR_ERR(card);
739 		goto cmd_err;
740 	}
741 
742 
743 	/*
744 	 * Dispatch the ioctl()s into the block request queue.
745 	 */
746 	mq = &md->queue;
747 	req = blk_get_request(mq->queue,
748 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
749 	if (IS_ERR(req)) {
750 		err = PTR_ERR(req);
751 		goto cmd_err;
752 	}
753 	req_to_mmc_queue_req(req)->drv_op =
754 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
755 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
756 	req_to_mmc_queue_req(req)->drv_op_data = idata;
757 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
758 	blk_execute_rq(NULL, req, 0);
759 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
760 
761 	/* copy to user if data and response */
762 	for (i = 0; i < num_of_cmds && !err; i++)
763 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
764 
765 	blk_put_request(req);
766 
767 cmd_err:
768 	for (i = 0; i < num_of_cmds; i++) {
769 		kfree(idata[i]->buf);
770 		kfree(idata[i]);
771 	}
772 	kfree(idata);
773 	return ioc_err ? ioc_err : err;
774 }
775 
mmc_blk_check_blkdev(struct block_device * bdev)776 static int mmc_blk_check_blkdev(struct block_device *bdev)
777 {
778 	/*
779 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
780 	 * whole block device, not on a partition.  This prevents overspray
781 	 * between sibling partitions.
782 	 */
783 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
784 		return -EPERM;
785 	return 0;
786 }
787 
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)788 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
789 	unsigned int cmd, unsigned long arg)
790 {
791 	struct mmc_blk_data *md;
792 	int ret;
793 
794 	switch (cmd) {
795 	case MMC_IOC_CMD:
796 		ret = mmc_blk_check_blkdev(bdev);
797 		if (ret)
798 			return ret;
799 		md = mmc_blk_get(bdev->bd_disk);
800 		if (!md)
801 			return -EINVAL;
802 		ret = mmc_blk_ioctl_cmd(md,
803 					(struct mmc_ioc_cmd __user *)arg,
804 					NULL);
805 		mmc_blk_put(md);
806 		return ret;
807 	case MMC_IOC_MULTI_CMD:
808 		ret = mmc_blk_check_blkdev(bdev);
809 		if (ret)
810 			return ret;
811 		md = mmc_blk_get(bdev->bd_disk);
812 		if (!md)
813 			return -EINVAL;
814 		ret = mmc_blk_ioctl_multi_cmd(md,
815 					(struct mmc_ioc_multi_cmd __user *)arg,
816 					NULL);
817 		mmc_blk_put(md);
818 		return ret;
819 	default:
820 		return -EINVAL;
821 	}
822 }
823 
824 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)825 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
826 	unsigned int cmd, unsigned long arg)
827 {
828 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
829 }
830 #endif
831 
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)832 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
833 					  sector_t *sector)
834 {
835 	struct mmc_blk_data *md;
836 	int ret;
837 
838 	md = mmc_blk_get(disk);
839 	if (!md)
840 		return -EINVAL;
841 
842 	if (md->queue.card)
843 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
844 	else
845 		ret = -ENODEV;
846 
847 	mmc_blk_put(md);
848 
849 	return ret;
850 }
851 
852 static const struct block_device_operations mmc_bdops = {
853 	.open			= mmc_blk_open,
854 	.release		= mmc_blk_release,
855 	.getgeo			= mmc_blk_getgeo,
856 	.owner			= THIS_MODULE,
857 	.ioctl			= mmc_blk_ioctl,
858 #ifdef CONFIG_COMPAT
859 	.compat_ioctl		= mmc_blk_compat_ioctl,
860 #endif
861 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
862 };
863 
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)864 static int mmc_blk_part_switch_pre(struct mmc_card *card,
865 				   unsigned int part_type)
866 {
867 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
868 	int ret = 0;
869 
870 	if ((part_type & mask) == mask) {
871 		if (card->ext_csd.cmdq_en) {
872 			ret = mmc_cmdq_disable(card);
873 			if (ret)
874 				return ret;
875 		}
876 		mmc_retune_pause(card->host);
877 	}
878 
879 	return ret;
880 }
881 
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)882 static int mmc_blk_part_switch_post(struct mmc_card *card,
883 				    unsigned int part_type)
884 {
885 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
886 	int ret = 0;
887 
888 	if ((part_type & mask) == mask) {
889 		mmc_retune_unpause(card->host);
890 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
891 			ret = mmc_cmdq_enable(card);
892 	}
893 
894 	return ret;
895 }
896 
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)897 static inline int mmc_blk_part_switch(struct mmc_card *card,
898 				      unsigned int part_type)
899 {
900 	int ret = 0;
901 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
902 
903 	if (main_md->part_curr == part_type)
904 		return 0;
905 
906 	if (mmc_card_mmc(card)) {
907 		u8 part_config = card->ext_csd.part_config;
908 
909 		ret = mmc_blk_part_switch_pre(card, part_type);
910 		if (ret)
911 			return ret;
912 
913 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
914 		part_config |= part_type;
915 
916 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
917 				 EXT_CSD_PART_CONFIG, part_config,
918 				 card->ext_csd.part_time);
919 		if (ret) {
920 			mmc_blk_part_switch_post(card, part_type);
921 			return ret;
922 		}
923 
924 		card->ext_csd.part_config = part_config;
925 
926 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
927 	}
928 
929 	main_md->part_curr = part_type;
930 	return ret;
931 }
932 
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)933 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
934 {
935 	int err;
936 	u32 result;
937 	__be32 *blocks;
938 
939 	struct mmc_request mrq = {};
940 	struct mmc_command cmd = {};
941 	struct mmc_data data = {};
942 
943 	struct scatterlist sg;
944 
945 	cmd.opcode = MMC_APP_CMD;
946 	cmd.arg = card->rca << 16;
947 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
948 
949 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
950 	if (err)
951 		return err;
952 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
953 		return -EIO;
954 
955 	memset(&cmd, 0, sizeof(struct mmc_command));
956 
957 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
958 	cmd.arg = 0;
959 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
960 
961 	data.blksz = 4;
962 	data.blocks = 1;
963 	data.flags = MMC_DATA_READ;
964 	data.sg = &sg;
965 	data.sg_len = 1;
966 	mmc_set_data_timeout(&data, card);
967 
968 	mrq.cmd = &cmd;
969 	mrq.data = &data;
970 
971 	blocks = kmalloc(4, GFP_KERNEL);
972 	if (!blocks)
973 		return -ENOMEM;
974 
975 	sg_init_one(&sg, blocks, 4);
976 
977 	mmc_wait_for_req(card->host, &mrq);
978 
979 	result = ntohl(*blocks);
980 	kfree(blocks);
981 
982 	if (cmd.error || data.error)
983 		return -EIO;
984 
985 	*written_blocks = result;
986 
987 	return 0;
988 }
989 
mmc_blk_clock_khz(struct mmc_host * host)990 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
991 {
992 	if (host->actual_clock)
993 		return host->actual_clock / 1000;
994 
995 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
996 	if (host->ios.clock)
997 		return host->ios.clock / 2000;
998 
999 	/* How can there be no clock */
1000 	WARN_ON_ONCE(1);
1001 	return 100; /* 100 kHz is minimum possible value */
1002 }
1003 
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1004 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1005 					    struct mmc_data *data)
1006 {
1007 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1008 	unsigned int khz;
1009 
1010 	if (data->timeout_clks) {
1011 		khz = mmc_blk_clock_khz(host);
1012 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1013 	}
1014 
1015 	return ms;
1016 }
1017 
1018 /*
1019  * Attempts to reset the card and get back to the requested partition.
1020  * Therefore any error here must result in cancelling the block layer
1021  * request, it must not be reattempted without going through the mmc_blk
1022  * partition sanity checks.
1023  */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1024 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1025 			 int type)
1026 {
1027 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1028 	int err;
1029 
1030 	if (md->reset_done & type)
1031 		return -EEXIST;
1032 
1033 	md->reset_done |= type;
1034 	err = mmc_hw_reset(host);
1035 	/*
1036 	 * A successful reset will leave the card in the main partition, but
1037 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1038 	 * in that case.
1039 	 */
1040 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1041 	if (err) {
1042 		trace_android_vh_mmc_blk_reset(host, err);
1043 		return err;
1044 	}
1045 	/* Ensure we switch back to the correct partition */
1046 	if (mmc_blk_part_switch(host->card, md->part_type))
1047 		/*
1048 		 * We have failed to get back into the correct
1049 		 * partition, so we need to abort the whole request.
1050 		 */
1051 		return -ENODEV;
1052 	return 0;
1053 }
1054 
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056 {
1057 	md->reset_done &= ~type;
1058 }
1059 
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1060 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061 {
1062 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 	int i;
1064 
1065 	for (i = 1; i < mq_rq->ioc_count; i++) {
1066 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 		    mmc_op_multi(idata[i]->ic.opcode)) {
1068 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * The non-block commands come back from the block layer after it queued it and
1076  * processed it with all other requests and then they get issued in this
1077  * function.
1078  */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1079 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080 {
1081 	struct mmc_queue_req *mq_rq;
1082 	struct mmc_card *card = mq->card;
1083 	struct mmc_blk_data *md = mq->blkdata;
1084 	struct mmc_blk_ioc_data **idata;
1085 	bool rpmb_ioctl;
1086 	u8 **ext_csd;
1087 	u32 status;
1088 	int ret;
1089 	int i;
1090 
1091 	mq_rq = req_to_mmc_queue_req(req);
1092 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093 
1094 	switch (mq_rq->drv_op) {
1095 	case MMC_DRV_OP_IOCTL:
1096 		if (card->ext_csd.cmdq_en) {
1097 			ret = mmc_cmdq_disable(card);
1098 			if (ret)
1099 				break;
1100 		}
1101 
1102 		mmc_blk_check_sbc(mq_rq);
1103 
1104 		fallthrough;
1105 	case MMC_DRV_OP_IOCTL_RPMB:
1106 		idata = mq_rq->drv_op_data;
1107 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 			if (ret)
1110 				break;
1111 		}
1112 		/* Always switch back to main area after RPMB access */
1113 		if (rpmb_ioctl)
1114 			mmc_blk_part_switch(card, 0);
1115 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 			mmc_cmdq_enable(card);
1117 		break;
1118 	case MMC_DRV_OP_BOOT_WP:
1119 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 				 card->ext_csd.boot_ro_lock |
1121 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 				 card->ext_csd.part_time);
1123 		if (ret)
1124 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 			       md->disk->disk_name, ret);
1126 		else
1127 			card->ext_csd.boot_ro_lock |=
1128 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 		break;
1130 	case MMC_DRV_OP_GET_CARD_STATUS:
1131 		ret = mmc_send_status(card, &status);
1132 		if (!ret)
1133 			ret = status;
1134 		break;
1135 	case MMC_DRV_OP_GET_EXT_CSD:
1136 		ext_csd = mq_rq->drv_op_data;
1137 		ret = mmc_get_ext_csd(card, ext_csd);
1138 		break;
1139 	default:
1140 		pr_err("%s: unknown driver specific operation\n",
1141 		       md->disk->disk_name);
1142 		ret = -EINVAL;
1143 		break;
1144 	}
1145 	mq_rq->drv_op_result = ret;
1146 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147 }
1148 
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1149 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1150 {
1151 	struct mmc_blk_data *md = mq->blkdata;
1152 	struct mmc_card *card = md->queue.card;
1153 	unsigned int from, nr;
1154 	int err = 0, type = MMC_BLK_DISCARD;
1155 	blk_status_t status = BLK_STS_OK;
1156 
1157 	if (!mmc_can_erase(card)) {
1158 		status = BLK_STS_NOTSUPP;
1159 		goto fail;
1160 	}
1161 
1162 	from = blk_rq_pos(req);
1163 	nr = blk_rq_sectors(req);
1164 
1165 	do {
1166 		unsigned int erase_arg = card->erase_arg;
1167 
1168 		if (mmc_card_broken_sd_discard(card))
1169 			erase_arg = SD_ERASE_ARG;
1170 
1171 		err = 0;
1172 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1173 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1174 					 INAND_CMD38_ARG_EXT_CSD,
1175 					 card->erase_arg == MMC_TRIM_ARG ?
1176 					 INAND_CMD38_ARG_TRIM :
1177 					 INAND_CMD38_ARG_ERASE,
1178 					 card->ext_csd.generic_cmd6_time);
1179 		}
1180 		if (!err)
1181 			err = mmc_erase(card, from, nr, erase_arg);
1182 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1183 	if (err)
1184 		status = BLK_STS_IOERR;
1185 	else
1186 		mmc_blk_reset_success(md, type);
1187 fail:
1188 	blk_mq_end_request(req, status);
1189 }
1190 
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1191 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1192 				       struct request *req)
1193 {
1194 	struct mmc_blk_data *md = mq->blkdata;
1195 	struct mmc_card *card = md->queue.card;
1196 	unsigned int from, nr, arg;
1197 	int err = 0, type = MMC_BLK_SECDISCARD;
1198 	blk_status_t status = BLK_STS_OK;
1199 
1200 	if (!(mmc_can_secure_erase_trim(card))) {
1201 		status = BLK_STS_NOTSUPP;
1202 		goto out;
1203 	}
1204 
1205 	from = blk_rq_pos(req);
1206 	nr = blk_rq_sectors(req);
1207 
1208 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1209 		arg = MMC_SECURE_TRIM1_ARG;
1210 	else
1211 		arg = MMC_SECURE_ERASE_ARG;
1212 
1213 retry:
1214 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1215 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1216 				 INAND_CMD38_ARG_EXT_CSD,
1217 				 arg == MMC_SECURE_TRIM1_ARG ?
1218 				 INAND_CMD38_ARG_SECTRIM1 :
1219 				 INAND_CMD38_ARG_SECERASE,
1220 				 card->ext_csd.generic_cmd6_time);
1221 		if (err)
1222 			goto out_retry;
1223 	}
1224 
1225 	err = mmc_erase(card, from, nr, arg);
1226 	if (err == -EIO)
1227 		goto out_retry;
1228 	if (err) {
1229 		status = BLK_STS_IOERR;
1230 		goto out;
1231 	}
1232 
1233 	if (arg == MMC_SECURE_TRIM1_ARG) {
1234 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1235 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1236 					 INAND_CMD38_ARG_EXT_CSD,
1237 					 INAND_CMD38_ARG_SECTRIM2,
1238 					 card->ext_csd.generic_cmd6_time);
1239 			if (err)
1240 				goto out_retry;
1241 		}
1242 
1243 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1244 		if (err == -EIO)
1245 			goto out_retry;
1246 		if (err) {
1247 			status = BLK_STS_IOERR;
1248 			goto out;
1249 		}
1250 	}
1251 
1252 out_retry:
1253 	if (err && !mmc_blk_reset(md, card->host, type))
1254 		goto retry;
1255 	if (!err)
1256 		mmc_blk_reset_success(md, type);
1257 out:
1258 	blk_mq_end_request(req, status);
1259 }
1260 
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1261 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1262 {
1263 	struct mmc_blk_data *md = mq->blkdata;
1264 	struct mmc_card *card = md->queue.card;
1265 	int ret = 0;
1266 
1267 	ret = mmc_flush_cache(card->host);
1268 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1269 }
1270 
1271 /*
1272  * Reformat current write as a reliable write, supporting
1273  * both legacy and the enhanced reliable write MMC cards.
1274  * In each transfer we'll handle only as much as a single
1275  * reliable write can handle, thus finish the request in
1276  * partial completions.
1277  */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1278 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1279 				    struct mmc_card *card,
1280 				    struct request *req)
1281 {
1282 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1283 		/* Legacy mode imposes restrictions on transfers. */
1284 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1285 			brq->data.blocks = 1;
1286 
1287 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1288 			brq->data.blocks = card->ext_csd.rel_sectors;
1289 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1290 			brq->data.blocks = 1;
1291 	}
1292 }
1293 
1294 #define CMD_ERRORS_EXCL_OOR						\
1295 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1296 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1297 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1298 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1299 	 R1_CC_ERROR |		/* Card controller error */		\
1300 	 R1_ERROR)		/* General/unknown error */
1301 
1302 #define CMD_ERRORS							\
1303 	(CMD_ERRORS_EXCL_OOR |						\
1304 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1305 
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1306 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1307 {
1308 	u32 val;
1309 
1310 	/*
1311 	 * Per the SD specification(physical layer version 4.10)[1],
1312 	 * section 4.3.3, it explicitly states that "When the last
1313 	 * block of user area is read using CMD18, the host should
1314 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1315 	 * is correct". And JESD84-B51 for eMMC also has a similar
1316 	 * statement on section 6.8.3.
1317 	 *
1318 	 * Multiple block read/write could be done by either predefined
1319 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1320 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1321 	 *
1322 	 * However the spec[1] doesn't tell us whether we should also
1323 	 * ignore that for predefined method. But per the spec[1], section
1324 	 * 4.15 Set Block Count Command, it says"If illegal block count
1325 	 * is set, out of range error will be indicated during read/write
1326 	 * operation (For example, data transfer is stopped at user area
1327 	 * boundary)." In another word, we could expect a out of range error
1328 	 * in the response for the following CMD18/25. And if argument of
1329 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1330 	 * we could also expect to get a -ETIMEDOUT or any error number from
1331 	 * the host drivers due to missing data response(for write)/data(for
1332 	 * read), as the cards will stop the data transfer by itself per the
1333 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1334 	 */
1335 
1336 	if (!brq->stop.error) {
1337 		bool oor_with_open_end;
1338 		/* If there is no error yet, check R1 response */
1339 
1340 		val = brq->stop.resp[0] & CMD_ERRORS;
1341 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1342 
1343 		if (val && !oor_with_open_end)
1344 			brq->stop.error = -EIO;
1345 	}
1346 }
1347 
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1348 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1349 			      int recovery_mode, bool *do_rel_wr_p,
1350 			      bool *do_data_tag_p)
1351 {
1352 	struct mmc_blk_data *md = mq->blkdata;
1353 	struct mmc_card *card = md->queue.card;
1354 	struct mmc_blk_request *brq = &mqrq->brq;
1355 	struct request *req = mmc_queue_req_to_req(mqrq);
1356 	bool do_rel_wr, do_data_tag;
1357 
1358 	/*
1359 	 * Reliable writes are used to implement Forced Unit Access and
1360 	 * are supported only on MMCs.
1361 	 */
1362 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1363 		    rq_data_dir(req) == WRITE &&
1364 		    (md->flags & MMC_BLK_REL_WR);
1365 
1366 	memset(brq, 0, sizeof(struct mmc_blk_request));
1367 
1368 	mmc_crypto_prepare_req(mqrq);
1369 
1370 	brq->mrq.data = &brq->data;
1371 	brq->mrq.tag = req->tag;
1372 
1373 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1374 	brq->stop.arg = 0;
1375 
1376 	if (rq_data_dir(req) == READ) {
1377 		brq->data.flags = MMC_DATA_READ;
1378 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1379 	} else {
1380 		brq->data.flags = MMC_DATA_WRITE;
1381 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1382 	}
1383 
1384 	brq->data.blksz = 512;
1385 	brq->data.blocks = blk_rq_sectors(req);
1386 	brq->data.blk_addr = blk_rq_pos(req);
1387 
1388 	/*
1389 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1390 	 * The eMMC will give "high" priority tasks priority over "simple"
1391 	 * priority tasks. Here we always set "simple" priority by not setting
1392 	 * MMC_DATA_PRIO.
1393 	 */
1394 
1395 	/*
1396 	 * The block layer doesn't support all sector count
1397 	 * restrictions, so we need to be prepared for too big
1398 	 * requests.
1399 	 */
1400 	if (brq->data.blocks > card->host->max_blk_count)
1401 		brq->data.blocks = card->host->max_blk_count;
1402 
1403 	if (brq->data.blocks > 1) {
1404 		/*
1405 		 * Some SD cards in SPI mode return a CRC error or even lock up
1406 		 * completely when trying to read the last block using a
1407 		 * multiblock read command.
1408 		 */
1409 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1410 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1411 		     get_capacity(md->disk)))
1412 			brq->data.blocks--;
1413 
1414 		/*
1415 		 * After a read error, we redo the request one (native) sector
1416 		 * at a time in order to accurately determine which
1417 		 * sectors can be read successfully.
1418 		 */
1419 		if (recovery_mode)
1420 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1421 
1422 		/*
1423 		 * Some controllers have HW issues while operating
1424 		 * in multiple I/O mode
1425 		 */
1426 		if (card->host->ops->multi_io_quirk)
1427 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1428 						(rq_data_dir(req) == READ) ?
1429 						MMC_DATA_READ : MMC_DATA_WRITE,
1430 						brq->data.blocks);
1431 	}
1432 
1433 	if (do_rel_wr) {
1434 		mmc_apply_rel_rw(brq, card, req);
1435 		brq->data.flags |= MMC_DATA_REL_WR;
1436 	}
1437 
1438 	/*
1439 	 * Data tag is used only during writing meta data to speed
1440 	 * up write and any subsequent read of this meta data
1441 	 */
1442 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1443 		      (req->cmd_flags & REQ_META) &&
1444 		      (rq_data_dir(req) == WRITE) &&
1445 		      ((brq->data.blocks * brq->data.blksz) >=
1446 		       card->ext_csd.data_tag_unit_size);
1447 
1448 	if (do_data_tag)
1449 		brq->data.flags |= MMC_DATA_DAT_TAG;
1450 
1451 	mmc_set_data_timeout(&brq->data, card);
1452 
1453 	brq->data.sg = mqrq->sg;
1454 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1455 
1456 	/*
1457 	 * Adjust the sg list so it is the same size as the
1458 	 * request.
1459 	 */
1460 	if (brq->data.blocks != blk_rq_sectors(req)) {
1461 		int i, data_size = brq->data.blocks << 9;
1462 		struct scatterlist *sg;
1463 
1464 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1465 			data_size -= sg->length;
1466 			if (data_size <= 0) {
1467 				sg->length += data_size;
1468 				i++;
1469 				break;
1470 			}
1471 		}
1472 		brq->data.sg_len = i;
1473 	}
1474 
1475 	if (do_rel_wr_p)
1476 		*do_rel_wr_p = do_rel_wr;
1477 
1478 	if (do_data_tag_p)
1479 		*do_data_tag_p = do_data_tag;
1480 }
1481 
1482 #define MMC_CQE_RETRIES 2
1483 
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1484 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1485 {
1486 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1487 	struct mmc_request *mrq = &mqrq->brq.mrq;
1488 	struct request_queue *q = req->q;
1489 	struct mmc_host *host = mq->card->host;
1490 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1491 	unsigned long flags;
1492 	bool put_card;
1493 	int err;
1494 
1495 	mmc_cqe_post_req(host, mrq);
1496 
1497 	if (mrq->cmd && mrq->cmd->error)
1498 		err = mrq->cmd->error;
1499 	else if (mrq->data && mrq->data->error)
1500 		err = mrq->data->error;
1501 	else
1502 		err = 0;
1503 
1504 	if (err) {
1505 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1506 			blk_mq_requeue_request(req, true);
1507 		else
1508 			blk_mq_end_request(req, BLK_STS_IOERR);
1509 	} else if (mrq->data) {
1510 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1511 			blk_mq_requeue_request(req, true);
1512 		else
1513 			__blk_mq_end_request(req, BLK_STS_OK);
1514 	} else if (mq->in_recovery) {
1515 		blk_mq_requeue_request(req, true);
1516 	} else {
1517 		blk_mq_end_request(req, BLK_STS_OK);
1518 	}
1519 
1520 	spin_lock_irqsave(&mq->lock, flags);
1521 
1522 	mq->in_flight[issue_type] -= 1;
1523 
1524 	put_card = (mmc_tot_in_flight(mq) == 0);
1525 
1526 	mmc_cqe_check_busy(mq);
1527 
1528 	spin_unlock_irqrestore(&mq->lock, flags);
1529 
1530 	if (!mq->cqe_busy)
1531 		blk_mq_run_hw_queues(q, true);
1532 
1533 	if (put_card)
1534 		mmc_put_card(mq->card, &mq->ctx);
1535 }
1536 
mmc_blk_cqe_recovery(struct mmc_queue * mq)1537 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1538 {
1539 	struct mmc_card *card = mq->card;
1540 	struct mmc_host *host = card->host;
1541 	int err;
1542 
1543 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1544 
1545 	err = mmc_cqe_recovery(host);
1546 	if (err || host->cqe_recovery_reset_always)
1547 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1548 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1549 
1550 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1551 }
1552 
mmc_blk_cqe_req_done(struct mmc_request * mrq)1553 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1554 {
1555 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1556 						  brq.mrq);
1557 	struct request *req = mmc_queue_req_to_req(mqrq);
1558 	struct request_queue *q = req->q;
1559 	struct mmc_queue *mq = q->queuedata;
1560 
1561 	/*
1562 	 * Block layer timeouts race with completions which means the normal
1563 	 * completion path cannot be used during recovery.
1564 	 */
1565 	if (mq->in_recovery)
1566 		mmc_blk_cqe_complete_rq(mq, req);
1567 	else if (likely(!blk_should_fake_timeout(req->q)))
1568 		blk_mq_complete_request(req);
1569 }
1570 
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1571 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1572 {
1573 	mrq->done		= mmc_blk_cqe_req_done;
1574 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1575 
1576 	return mmc_cqe_start_req(host, mrq);
1577 }
1578 
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1579 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1580 						 struct request *req)
1581 {
1582 	struct mmc_blk_request *brq = &mqrq->brq;
1583 
1584 	memset(brq, 0, sizeof(*brq));
1585 
1586 	brq->mrq.cmd = &brq->cmd;
1587 	brq->mrq.tag = req->tag;
1588 
1589 	return &brq->mrq;
1590 }
1591 
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1592 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1593 {
1594 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1595 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1596 
1597 	mrq->cmd->opcode = MMC_SWITCH;
1598 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1599 			(EXT_CSD_FLUSH_CACHE << 16) |
1600 			(1 << 8) |
1601 			EXT_CSD_CMD_SET_NORMAL;
1602 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1603 
1604 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1605 }
1606 
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1607 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1608 {
1609 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1610 	struct mmc_host *host = mq->card->host;
1611 	int err;
1612 
1613 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1614 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1615 	mmc_pre_req(host, &mqrq->brq.mrq);
1616 
1617 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1618 	if (err)
1619 		mmc_post_req(host, &mqrq->brq.mrq, err);
1620 
1621 	return err;
1622 }
1623 
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1624 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1625 {
1626 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1627 	struct mmc_host *host = mq->card->host;
1628 
1629 	if (host->hsq_enabled)
1630 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1631 
1632 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1633 
1634 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1635 }
1636 
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1637 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1638 			       struct mmc_card *card,
1639 			       int recovery_mode,
1640 			       struct mmc_queue *mq)
1641 {
1642 	u32 readcmd, writecmd;
1643 	struct mmc_blk_request *brq = &mqrq->brq;
1644 	struct request *req = mmc_queue_req_to_req(mqrq);
1645 	struct mmc_blk_data *md = mq->blkdata;
1646 	bool do_rel_wr, do_data_tag;
1647 
1648 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1649 
1650 	brq->mrq.cmd = &brq->cmd;
1651 
1652 	brq->cmd.arg = blk_rq_pos(req);
1653 	if (!mmc_card_blockaddr(card))
1654 		brq->cmd.arg <<= 9;
1655 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1656 
1657 	if (brq->data.blocks > 1 || do_rel_wr) {
1658 		/* SPI multiblock writes terminate using a special
1659 		 * token, not a STOP_TRANSMISSION request.
1660 		 */
1661 		if (!mmc_host_is_spi(card->host) ||
1662 		    rq_data_dir(req) == READ)
1663 			brq->mrq.stop = &brq->stop;
1664 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1665 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1666 	} else {
1667 		brq->mrq.stop = NULL;
1668 		readcmd = MMC_READ_SINGLE_BLOCK;
1669 		writecmd = MMC_WRITE_BLOCK;
1670 	}
1671 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1672 
1673 	/*
1674 	 * Pre-defined multi-block transfers are preferable to
1675 	 * open ended-ones (and necessary for reliable writes).
1676 	 * However, it is not sufficient to just send CMD23,
1677 	 * and avoid the final CMD12, as on an error condition
1678 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1679 	 * with Auto-CMD23 enhancements provided by some
1680 	 * hosts, means that the complexity of dealing
1681 	 * with this is best left to the host. If CMD23 is
1682 	 * supported by card and host, we'll fill sbc in and let
1683 	 * the host deal with handling it correctly. This means
1684 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1685 	 * change of behavior will be observed.
1686 	 *
1687 	 * N.B: Some MMC cards experience perf degradation.
1688 	 * We'll avoid using CMD23-bounded multiblock writes for
1689 	 * these, while retaining features like reliable writes.
1690 	 */
1691 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1692 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1693 	     do_data_tag)) {
1694 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1695 		brq->sbc.arg = brq->data.blocks |
1696 			(do_rel_wr ? (1 << 31) : 0) |
1697 			(do_data_tag ? (1 << 29) : 0);
1698 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1699 		brq->mrq.sbc = &brq->sbc;
1700 	}
1701 }
1702 
1703 #define MMC_MAX_RETRIES		5
1704 #define MMC_DATA_RETRIES	2
1705 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1706 
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1707 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1708 {
1709 	struct mmc_command cmd = {
1710 		.opcode = MMC_STOP_TRANSMISSION,
1711 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1712 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1713 		.busy_timeout = timeout,
1714 	};
1715 
1716 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1717 }
1718 
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1719 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1720 {
1721 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1722 	struct mmc_blk_request *brq = &mqrq->brq;
1723 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1724 	int err;
1725 
1726 	mmc_retune_hold_now(card->host);
1727 
1728 	mmc_blk_send_stop(card, timeout);
1729 
1730 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1731 
1732 	mmc_retune_release(card->host);
1733 
1734 	return err;
1735 }
1736 
1737 #define MMC_READ_SINGLE_RETRIES	2
1738 
1739 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1740 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1741 {
1742 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1743 	struct mmc_request *mrq = &mqrq->brq.mrq;
1744 	struct mmc_card *card = mq->card;
1745 	struct mmc_host *host = card->host;
1746 	blk_status_t error = BLK_STS_OK;
1747 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1748 
1749 	do {
1750 		u32 status;
1751 		int err;
1752 		int retries = 0;
1753 
1754 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1755 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1756 
1757 			mmc_wait_for_req(host, mrq);
1758 
1759 			err = mmc_send_status(card, &status);
1760 			if (err)
1761 				goto error_exit;
1762 
1763 			if (!mmc_host_is_spi(host) &&
1764 			    !mmc_ready_for_data(status)) {
1765 				err = mmc_blk_fix_state(card, req);
1766 				if (err)
1767 					goto error_exit;
1768 			}
1769 
1770 			if (!mrq->cmd->error)
1771 				break;
1772 		}
1773 
1774 		if (mrq->cmd->error ||
1775 		    mrq->data->error ||
1776 		    (!mmc_host_is_spi(host) &&
1777 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1778 			error = BLK_STS_IOERR;
1779 		else
1780 			error = BLK_STS_OK;
1781 
1782 	} while (blk_update_request(req, error, bytes_per_read));
1783 
1784 	return;
1785 
1786 error_exit:
1787 	mrq->data->bytes_xfered = 0;
1788 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1789 	/* Let it try the remaining request again */
1790 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1791 		mqrq->retries = MMC_MAX_RETRIES - 1;
1792 }
1793 
mmc_blk_oor_valid(struct mmc_blk_request * brq)1794 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1795 {
1796 	return !!brq->mrq.sbc;
1797 }
1798 
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1799 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1800 {
1801 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1802 }
1803 
1804 /*
1805  * Check for errors the host controller driver might not have seen such as
1806  * response mode errors or invalid card state.
1807  */
mmc_blk_status_error(struct request * req,u32 status)1808 static bool mmc_blk_status_error(struct request *req, u32 status)
1809 {
1810 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1811 	struct mmc_blk_request *brq = &mqrq->brq;
1812 	struct mmc_queue *mq = req->q->queuedata;
1813 	u32 stop_err_bits;
1814 
1815 	if (mmc_host_is_spi(mq->card->host))
1816 		return false;
1817 
1818 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1819 
1820 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1821 	       brq->stop.resp[0] & stop_err_bits ||
1822 	       status            & stop_err_bits ||
1823 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1824 }
1825 
mmc_blk_cmd_started(struct mmc_blk_request * brq)1826 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1827 {
1828 	return !brq->sbc.error && !brq->cmd.error &&
1829 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1830 }
1831 
1832 /*
1833  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1834  * policy:
1835  * 1. A request that has transferred at least some data is considered
1836  * successful and will be requeued if there is remaining data to
1837  * transfer.
1838  * 2. Otherwise the number of retries is incremented and the request
1839  * will be requeued if there are remaining retries.
1840  * 3. Otherwise the request will be errored out.
1841  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1842  * mqrq->retries. So there are only 4 possible actions here:
1843  *	1. do not accept the bytes_xfered value i.e. set it to zero
1844  *	2. change mqrq->retries to determine the number of retries
1845  *	3. try to reset the card
1846  *	4. read one sector at a time
1847  */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1848 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1849 {
1850 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1851 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1852 	struct mmc_blk_request *brq = &mqrq->brq;
1853 	struct mmc_blk_data *md = mq->blkdata;
1854 	struct mmc_card *card = mq->card;
1855 	u32 status;
1856 	u32 blocks;
1857 	int err;
1858 
1859 	/*
1860 	 * Some errors the host driver might not have seen. Set the number of
1861 	 * bytes transferred to zero in that case.
1862 	 */
1863 	err = __mmc_send_status(card, &status, 0);
1864 	if (err || mmc_blk_status_error(req, status))
1865 		brq->data.bytes_xfered = 0;
1866 
1867 	mmc_retune_release(card->host);
1868 
1869 	/*
1870 	 * Try again to get the status. This also provides an opportunity for
1871 	 * re-tuning.
1872 	 */
1873 	if (err)
1874 		err = __mmc_send_status(card, &status, 0);
1875 
1876 	/*
1877 	 * Nothing more to do after the number of bytes transferred has been
1878 	 * updated and there is no card.
1879 	 */
1880 	if (err && mmc_detect_card_removed(card->host))
1881 		return;
1882 
1883 	/* Try to get back to "tran" state */
1884 	if (!mmc_host_is_spi(mq->card->host) &&
1885 	    (err || !mmc_ready_for_data(status)))
1886 		err = mmc_blk_fix_state(mq->card, req);
1887 
1888 	/*
1889 	 * Special case for SD cards where the card might record the number of
1890 	 * blocks written.
1891 	 */
1892 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1893 	    rq_data_dir(req) == WRITE) {
1894 		if (mmc_sd_num_wr_blocks(card, &blocks))
1895 			brq->data.bytes_xfered = 0;
1896 		else
1897 			brq->data.bytes_xfered = blocks << 9;
1898 	}
1899 
1900 	/* Reset if the card is in a bad state */
1901 	if (!mmc_host_is_spi(mq->card->host) &&
1902 	    err && mmc_blk_reset(md, card->host, type)) {
1903 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1904 		mqrq->retries = MMC_NO_RETRIES;
1905 		trace_android_vh_mmc_blk_mq_rw_recovery(card);
1906 		return;
1907 	}
1908 
1909 	/*
1910 	 * If anything was done, just return and if there is anything remaining
1911 	 * on the request it will get requeued.
1912 	 */
1913 	if (brq->data.bytes_xfered)
1914 		return;
1915 
1916 	/* Reset before last retry */
1917 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1918 	    mmc_blk_reset(md, card->host, type))
1919 		return;
1920 
1921 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1922 	if (brq->sbc.error || brq->cmd.error)
1923 		return;
1924 
1925 	/* Reduce the remaining retries for data errors */
1926 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1927 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1928 		return;
1929 	}
1930 
1931 	if (rq_data_dir(req) == READ && brq->data.blocks >
1932 			queue_physical_block_size(mq->queue) >> 9) {
1933 		/* Read one (native) sector at a time */
1934 		mmc_blk_read_single(mq, req);
1935 		return;
1936 	}
1937 }
1938 
mmc_blk_rq_error(struct mmc_blk_request * brq)1939 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1940 {
1941 	mmc_blk_eval_resp_error(brq);
1942 
1943 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1944 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1945 }
1946 
mmc_spi_err_check(struct mmc_card * card)1947 static int mmc_spi_err_check(struct mmc_card *card)
1948 {
1949 	u32 status = 0;
1950 	int err;
1951 
1952 	/*
1953 	 * SPI does not have a TRAN state we have to wait on, instead the
1954 	 * card is ready again when it no longer holds the line LOW.
1955 	 * We still have to ensure two things here before we know the write
1956 	 * was successful:
1957 	 * 1. The card has not disconnected during busy and we actually read our
1958 	 * own pull-up, thinking it was still connected, so ensure it
1959 	 * still responds.
1960 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1961 	 * just reconnected card after being disconnected during busy.
1962 	 */
1963 	err = __mmc_send_status(card, &status, 0);
1964 	if (err)
1965 		return err;
1966 	/* All R1 and R2 bits of SPI are errors in our case */
1967 	if (status)
1968 		return -EIO;
1969 	return 0;
1970 }
1971 
mmc_blk_busy_cb(void * cb_data,bool * busy)1972 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1973 {
1974 	struct mmc_blk_busy_data *data = cb_data;
1975 	u32 status = 0;
1976 	int err;
1977 
1978 	err = mmc_send_status(data->card, &status);
1979 	if (err)
1980 		return err;
1981 
1982 	/* Accumulate response error bits. */
1983 	data->status |= status;
1984 
1985 	*busy = !mmc_ready_for_data(status);
1986 	return 0;
1987 }
1988 
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1989 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1990 {
1991 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1992 	struct mmc_blk_busy_data cb_data;
1993 	int err;
1994 
1995 	if (rq_data_dir(req) == READ)
1996 		return 0;
1997 
1998 	if (mmc_host_is_spi(card->host)) {
1999 		err = mmc_spi_err_check(card);
2000 		if (err)
2001 			mqrq->brq.data.bytes_xfered = 0;
2002 		return err;
2003 	}
2004 
2005 	cb_data.card = card;
2006 	cb_data.status = 0;
2007 	err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
2008 				  &cb_data);
2009 
2010 	/*
2011 	 * Do not assume data transferred correctly if there are any error bits
2012 	 * set.
2013 	 */
2014 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2015 		mqrq->brq.data.bytes_xfered = 0;
2016 		err = err ? err : -EIO;
2017 	}
2018 
2019 	/* Copy the exception bit so it will be seen later on */
2020 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2021 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2022 
2023 	return err;
2024 }
2025 
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2026 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2027 					    struct request *req)
2028 {
2029 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2030 
2031 	mmc_blk_reset_success(mq->blkdata, type);
2032 }
2033 
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2034 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2035 {
2036 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2037 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2038 
2039 	if (nr_bytes) {
2040 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2041 			blk_mq_requeue_request(req, true);
2042 		else
2043 			__blk_mq_end_request(req, BLK_STS_OK);
2044 	} else if (!blk_rq_bytes(req)) {
2045 		__blk_mq_end_request(req, BLK_STS_IOERR);
2046 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2047 		blk_mq_requeue_request(req, true);
2048 	} else {
2049 		if (mmc_card_removed(mq->card))
2050 			req->rq_flags |= RQF_QUIET;
2051 		blk_mq_end_request(req, BLK_STS_IOERR);
2052 	}
2053 }
2054 
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2055 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2056 					struct mmc_queue_req *mqrq)
2057 {
2058 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2059 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2060 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2061 }
2062 
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2063 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2064 				 struct mmc_queue_req *mqrq)
2065 {
2066 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2067 		mmc_run_bkops(mq->card);
2068 }
2069 
mmc_blk_hsq_req_done(struct mmc_request * mrq)2070 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2071 {
2072 	struct mmc_queue_req *mqrq =
2073 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2074 	struct request *req = mmc_queue_req_to_req(mqrq);
2075 	struct request_queue *q = req->q;
2076 	struct mmc_queue *mq = q->queuedata;
2077 	struct mmc_host *host = mq->card->host;
2078 	unsigned long flags;
2079 
2080 	if (mmc_blk_rq_error(&mqrq->brq) ||
2081 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2082 		spin_lock_irqsave(&mq->lock, flags);
2083 		mq->recovery_needed = true;
2084 		mq->recovery_req = req;
2085 		spin_unlock_irqrestore(&mq->lock, flags);
2086 
2087 		host->cqe_ops->cqe_recovery_start(host);
2088 
2089 		schedule_work(&mq->recovery_work);
2090 		return;
2091 	}
2092 
2093 	mmc_blk_rw_reset_success(mq, req);
2094 
2095 	/*
2096 	 * Block layer timeouts race with completions which means the normal
2097 	 * completion path cannot be used during recovery.
2098 	 */
2099 	if (mq->in_recovery)
2100 		mmc_blk_cqe_complete_rq(mq, req);
2101 	else if (likely(!blk_should_fake_timeout(req->q)))
2102 		blk_mq_complete_request(req);
2103 }
2104 
mmc_blk_mq_complete(struct request * req)2105 void mmc_blk_mq_complete(struct request *req)
2106 {
2107 	struct mmc_queue *mq = req->q->queuedata;
2108 	struct mmc_host *host = mq->card->host;
2109 
2110 	if (host->cqe_enabled)
2111 		mmc_blk_cqe_complete_rq(mq, req);
2112 	else if (likely(!blk_should_fake_timeout(req->q)))
2113 		mmc_blk_mq_complete_rq(mq, req);
2114 }
2115 
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2116 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2117 				       struct request *req)
2118 {
2119 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120 	struct mmc_host *host = mq->card->host;
2121 
2122 	if (mmc_blk_rq_error(&mqrq->brq) ||
2123 	    mmc_blk_card_busy(mq->card, req)) {
2124 		mmc_blk_mq_rw_recovery(mq, req);
2125 	} else {
2126 		mmc_blk_rw_reset_success(mq, req);
2127 		mmc_retune_release(host);
2128 	}
2129 
2130 	mmc_blk_urgent_bkops(mq, mqrq);
2131 }
2132 
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2133 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2134 {
2135 	unsigned long flags;
2136 	bool put_card;
2137 
2138 	spin_lock_irqsave(&mq->lock, flags);
2139 
2140 	mq->in_flight[issue_type] -= 1;
2141 
2142 	put_card = (mmc_tot_in_flight(mq) == 0);
2143 
2144 	spin_unlock_irqrestore(&mq->lock, flags);
2145 
2146 	if (put_card)
2147 		mmc_put_card(mq->card, &mq->ctx);
2148 }
2149 
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)2150 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2151 {
2152 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2153 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2154 	struct mmc_request *mrq = &mqrq->brq.mrq;
2155 	struct mmc_host *host = mq->card->host;
2156 
2157 	mmc_post_req(host, mrq, 0);
2158 
2159 	/*
2160 	 * Block layer timeouts race with completions which means the normal
2161 	 * completion path cannot be used during recovery.
2162 	 */
2163 	if (mq->in_recovery)
2164 		mmc_blk_mq_complete_rq(mq, req);
2165 	else if (likely(!blk_should_fake_timeout(req->q)))
2166 		blk_mq_complete_request(req);
2167 
2168 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2169 }
2170 
mmc_blk_mq_recovery(struct mmc_queue * mq)2171 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2172 {
2173 	struct request *req = mq->recovery_req;
2174 	struct mmc_host *host = mq->card->host;
2175 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2176 
2177 	mq->recovery_req = NULL;
2178 	mq->rw_wait = false;
2179 
2180 	if (mmc_blk_rq_error(&mqrq->brq)) {
2181 		mmc_retune_hold_now(host);
2182 		mmc_blk_mq_rw_recovery(mq, req);
2183 	}
2184 
2185 	mmc_blk_urgent_bkops(mq, mqrq);
2186 
2187 	mmc_blk_mq_post_req(mq, req);
2188 }
2189 
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2190 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2191 					 struct request **prev_req)
2192 {
2193 	if (mmc_host_done_complete(mq->card->host))
2194 		return;
2195 
2196 	mutex_lock(&mq->complete_lock);
2197 
2198 	if (!mq->complete_req)
2199 		goto out_unlock;
2200 
2201 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2202 
2203 	if (prev_req)
2204 		*prev_req = mq->complete_req;
2205 	else
2206 		mmc_blk_mq_post_req(mq, mq->complete_req);
2207 
2208 	mq->complete_req = NULL;
2209 
2210 out_unlock:
2211 	mutex_unlock(&mq->complete_lock);
2212 }
2213 
mmc_blk_mq_complete_work(struct work_struct * work)2214 void mmc_blk_mq_complete_work(struct work_struct *work)
2215 {
2216 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2217 					    complete_work);
2218 
2219 	mmc_blk_mq_complete_prev_req(mq, NULL);
2220 }
2221 
mmc_blk_mq_req_done(struct mmc_request * mrq)2222 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2223 {
2224 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2225 						  brq.mrq);
2226 	struct request *req = mmc_queue_req_to_req(mqrq);
2227 	struct request_queue *q = req->q;
2228 	struct mmc_queue *mq = q->queuedata;
2229 	struct mmc_host *host = mq->card->host;
2230 	unsigned long flags;
2231 
2232 	if (!mmc_host_done_complete(host)) {
2233 		bool waiting;
2234 
2235 		/*
2236 		 * We cannot complete the request in this context, so record
2237 		 * that there is a request to complete, and that a following
2238 		 * request does not need to wait (although it does need to
2239 		 * complete complete_req first).
2240 		 */
2241 		spin_lock_irqsave(&mq->lock, flags);
2242 		mq->complete_req = req;
2243 		mq->rw_wait = false;
2244 		waiting = mq->waiting;
2245 		spin_unlock_irqrestore(&mq->lock, flags);
2246 
2247 		/*
2248 		 * If 'waiting' then the waiting task will complete this
2249 		 * request, otherwise queue a work to do it. Note that
2250 		 * complete_work may still race with the dispatch of a following
2251 		 * request.
2252 		 */
2253 		if (waiting)
2254 			wake_up(&mq->wait);
2255 		else
2256 			queue_work(mq->card->complete_wq, &mq->complete_work);
2257 
2258 		return;
2259 	}
2260 
2261 	/* Take the recovery path for errors or urgent background operations */
2262 	if (mmc_blk_rq_error(&mqrq->brq) ||
2263 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2264 		spin_lock_irqsave(&mq->lock, flags);
2265 		mq->recovery_needed = true;
2266 		mq->recovery_req = req;
2267 		spin_unlock_irqrestore(&mq->lock, flags);
2268 		wake_up(&mq->wait);
2269 		schedule_work(&mq->recovery_work);
2270 		return;
2271 	}
2272 
2273 	mmc_blk_rw_reset_success(mq, req);
2274 
2275 	mq->rw_wait = false;
2276 	wake_up(&mq->wait);
2277 
2278 	mmc_blk_mq_post_req(mq, req);
2279 }
2280 
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2281 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2282 {
2283 	unsigned long flags;
2284 	bool done;
2285 
2286 	/*
2287 	 * Wait while there is another request in progress, but not if recovery
2288 	 * is needed. Also indicate whether there is a request waiting to start.
2289 	 */
2290 	spin_lock_irqsave(&mq->lock, flags);
2291 	if (mq->recovery_needed) {
2292 		*err = -EBUSY;
2293 		done = true;
2294 	} else {
2295 		done = !mq->rw_wait;
2296 	}
2297 	mq->waiting = !done;
2298 	spin_unlock_irqrestore(&mq->lock, flags);
2299 
2300 	return done;
2301 }
2302 
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2303 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2304 {
2305 	int err = 0;
2306 
2307 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2308 
2309 	/* Always complete the previous request if there is one */
2310 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2311 
2312 	return err;
2313 }
2314 
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2315 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2316 				  struct request *req)
2317 {
2318 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2319 	struct mmc_host *host = mq->card->host;
2320 	struct request *prev_req = NULL;
2321 	int err = 0;
2322 
2323 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2324 
2325 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2326 
2327 	mmc_pre_req(host, &mqrq->brq.mrq);
2328 
2329 	err = mmc_blk_rw_wait(mq, &prev_req);
2330 	if (err)
2331 		goto out_post_req;
2332 
2333 	mq->rw_wait = true;
2334 
2335 	err = mmc_start_request(host, &mqrq->brq.mrq);
2336 
2337 	if (prev_req)
2338 		mmc_blk_mq_post_req(mq, prev_req);
2339 
2340 	if (err)
2341 		mq->rw_wait = false;
2342 
2343 	/* Release re-tuning here where there is no synchronization required */
2344 	if (err || mmc_host_done_complete(host))
2345 		mmc_retune_release(host);
2346 
2347 out_post_req:
2348 	if (err)
2349 		mmc_post_req(host, &mqrq->brq.mrq, err);
2350 
2351 	return err;
2352 }
2353 
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2354 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2355 {
2356 	if (host->cqe_enabled)
2357 		return host->cqe_ops->cqe_wait_for_idle(host);
2358 
2359 	return mmc_blk_rw_wait(mq, NULL);
2360 }
2361 
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2362 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2363 {
2364 	struct mmc_blk_data *md = mq->blkdata;
2365 	struct mmc_card *card = md->queue.card;
2366 	struct mmc_host *host = card->host;
2367 	int ret;
2368 
2369 	ret = mmc_blk_part_switch(card, md->part_type);
2370 	if (ret)
2371 		return MMC_REQ_FAILED_TO_START;
2372 
2373 	switch (mmc_issue_type(mq, req)) {
2374 	case MMC_ISSUE_SYNC:
2375 		ret = mmc_blk_wait_for_idle(mq, host);
2376 		if (ret)
2377 			return MMC_REQ_BUSY;
2378 		switch (req_op(req)) {
2379 		case REQ_OP_DRV_IN:
2380 		case REQ_OP_DRV_OUT:
2381 			mmc_blk_issue_drv_op(mq, req);
2382 			break;
2383 		case REQ_OP_DISCARD:
2384 			mmc_blk_issue_discard_rq(mq, req);
2385 			break;
2386 		case REQ_OP_SECURE_ERASE:
2387 			mmc_blk_issue_secdiscard_rq(mq, req);
2388 			break;
2389 		case REQ_OP_FLUSH:
2390 			mmc_blk_issue_flush(mq, req);
2391 			break;
2392 		default:
2393 			WARN_ON_ONCE(1);
2394 			return MMC_REQ_FAILED_TO_START;
2395 		}
2396 		return MMC_REQ_FINISHED;
2397 	case MMC_ISSUE_DCMD:
2398 	case MMC_ISSUE_ASYNC:
2399 		switch (req_op(req)) {
2400 		case REQ_OP_FLUSH:
2401 			if (!mmc_cache_enabled(host)) {
2402 				blk_mq_end_request(req, BLK_STS_OK);
2403 				return MMC_REQ_FINISHED;
2404 			}
2405 			ret = mmc_blk_cqe_issue_flush(mq, req);
2406 			break;
2407 		case REQ_OP_READ:
2408 		case REQ_OP_WRITE:
2409 			if (host->cqe_enabled)
2410 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2411 			else
2412 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2413 			break;
2414 		default:
2415 			WARN_ON_ONCE(1);
2416 			ret = -EINVAL;
2417 		}
2418 		if (!ret)
2419 			return MMC_REQ_STARTED;
2420 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2421 	default:
2422 		WARN_ON_ONCE(1);
2423 		return MMC_REQ_FAILED_TO_START;
2424 	}
2425 }
2426 
mmc_blk_readonly(struct mmc_card * card)2427 static inline int mmc_blk_readonly(struct mmc_card *card)
2428 {
2429 	return mmc_card_readonly(card) ||
2430 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2431 }
2432 
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2433 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2434 					      struct device *parent,
2435 					      sector_t size,
2436 					      bool default_ro,
2437 					      const char *subname,
2438 					      int area_type,
2439 					      unsigned int part_type)
2440 {
2441 	struct mmc_blk_data *md;
2442 	int devidx, ret;
2443 	char cap_str[10];
2444 	bool cache_enabled = false;
2445 	bool fua_enabled = false;
2446 
2447 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2448 	if (devidx < 0) {
2449 		/*
2450 		 * We get -ENOSPC because there are no more any available
2451 		 * devidx. The reason may be that, either userspace haven't yet
2452 		 * unmounted the partitions, which postpones mmc_blk_release()
2453 		 * from being called, or the device has more partitions than
2454 		 * what we support.
2455 		 */
2456 		if (devidx == -ENOSPC)
2457 			dev_err(mmc_dev(card->host),
2458 				"no more device IDs available\n");
2459 
2460 		return ERR_PTR(devidx);
2461 	}
2462 
2463 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2464 	if (!md) {
2465 		ret = -ENOMEM;
2466 		goto out;
2467 	}
2468 
2469 	md->area_type = area_type;
2470 
2471 	/*
2472 	 * Set the read-only status based on the supported commands
2473 	 * and the write protect switch.
2474 	 */
2475 	md->read_only = mmc_blk_readonly(card);
2476 
2477 	md->disk = mmc_init_queue(&md->queue, card);
2478 	if (IS_ERR(md->disk)) {
2479 		ret = PTR_ERR(md->disk);
2480 		goto err_kfree;
2481 	}
2482 
2483 	INIT_LIST_HEAD(&md->part);
2484 	INIT_LIST_HEAD(&md->rpmbs);
2485 	kref_init(&md->kref);
2486 
2487 	md->queue.blkdata = md;
2488 	md->part_type = part_type;
2489 
2490 	md->disk->major	= MMC_BLOCK_MAJOR;
2491 	md->disk->minors = perdev_minors;
2492 	md->disk->first_minor = devidx * perdev_minors;
2493 	md->disk->fops = &mmc_bdops;
2494 	md->disk->private_data = md;
2495 	md->parent = parent;
2496 	set_disk_ro(md->disk, md->read_only || default_ro);
2497 	md->disk->flags = GENHD_FL_EXT_DEVT;
2498 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2499 		md->disk->flags |= GENHD_FL_NO_PART |
2500 				   GENHD_FL_SUPPRESS_PARTITION_INFO;
2501 
2502 	/*
2503 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2504 	 *
2505 	 * - be set for removable media with permanent block devices
2506 	 * - be unset for removable block devices with permanent media
2507 	 *
2508 	 * Since MMC block devices clearly fall under the second
2509 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2510 	 * should use the block device creation/destruction hotplug
2511 	 * messages to tell when the card is present.
2512 	 */
2513 
2514 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2515 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2516 
2517 	set_capacity(md->disk, size);
2518 
2519 	if (mmc_host_cmd23(card->host)) {
2520 		if ((mmc_card_mmc(card) &&
2521 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2522 		    (mmc_card_sd(card) &&
2523 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2524 			md->flags |= MMC_BLK_CMD23;
2525 	}
2526 
2527 	if (md->flags & MMC_BLK_CMD23 &&
2528 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2529 	     card->ext_csd.rel_sectors)) {
2530 		md->flags |= MMC_BLK_REL_WR;
2531 		fua_enabled = true;
2532 		cache_enabled = true;
2533 	}
2534 	if (mmc_cache_enabled(card->host))
2535 		cache_enabled  = true;
2536 
2537 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2538 
2539 	string_get_size((u64)size, 512, STRING_UNITS_2,
2540 			cap_str, sizeof(cap_str));
2541 	pr_info("%s: %s %s %s %s\n",
2542 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2543 		cap_str, md->read_only ? "(ro)" : "");
2544 
2545 	/* used in ->open, must be set before add_disk: */
2546 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2547 		dev_set_drvdata(&card->dev, md);
2548 	device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2549 	return md;
2550 
2551  err_kfree:
2552 	kfree(md);
2553  out:
2554 	ida_simple_remove(&mmc_blk_ida, devidx);
2555 	return ERR_PTR(ret);
2556 }
2557 
mmc_blk_alloc(struct mmc_card * card)2558 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2559 {
2560 	sector_t size;
2561 
2562 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2563 		/*
2564 		 * The EXT_CSD sector count is in number or 512 byte
2565 		 * sectors.
2566 		 */
2567 		size = card->ext_csd.sectors;
2568 	} else {
2569 		/*
2570 		 * The CSD capacity field is in units of read_blkbits.
2571 		 * set_capacity takes units of 512 bytes.
2572 		 */
2573 		size = (typeof(sector_t))card->csd.capacity
2574 			<< (card->csd.read_blkbits - 9);
2575 	}
2576 
2577 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2578 					MMC_BLK_DATA_AREA_MAIN, 0);
2579 }
2580 
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2581 static int mmc_blk_alloc_part(struct mmc_card *card,
2582 			      struct mmc_blk_data *md,
2583 			      unsigned int part_type,
2584 			      sector_t size,
2585 			      bool default_ro,
2586 			      const char *subname,
2587 			      int area_type)
2588 {
2589 	struct mmc_blk_data *part_md;
2590 
2591 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2592 				    subname, area_type, part_type);
2593 	if (IS_ERR(part_md))
2594 		return PTR_ERR(part_md);
2595 	list_add(&part_md->part, &md->part);
2596 
2597 	return 0;
2598 }
2599 
2600 /**
2601  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2602  * @filp: the character device file
2603  * @cmd: the ioctl() command
2604  * @arg: the argument from userspace
2605  *
2606  * This will essentially just redirect the ioctl()s coming in over to
2607  * the main block device spawning the RPMB character device.
2608  */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2609 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2610 			   unsigned long arg)
2611 {
2612 	struct mmc_rpmb_data *rpmb = filp->private_data;
2613 	int ret;
2614 
2615 	switch (cmd) {
2616 	case MMC_IOC_CMD:
2617 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2618 					(struct mmc_ioc_cmd __user *)arg,
2619 					rpmb);
2620 		break;
2621 	case MMC_IOC_MULTI_CMD:
2622 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2623 					(struct mmc_ioc_multi_cmd __user *)arg,
2624 					rpmb);
2625 		break;
2626 	default:
2627 		ret = -EINVAL;
2628 		break;
2629 	}
2630 
2631 	return ret;
2632 }
2633 
2634 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2635 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2636 			      unsigned long arg)
2637 {
2638 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2639 }
2640 #endif
2641 
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2642 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2643 {
2644 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2645 						  struct mmc_rpmb_data, chrdev);
2646 
2647 	get_device(&rpmb->dev);
2648 	filp->private_data = rpmb;
2649 	mmc_blk_get(rpmb->md->disk);
2650 
2651 	return nonseekable_open(inode, filp);
2652 }
2653 
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2654 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2655 {
2656 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2657 						  struct mmc_rpmb_data, chrdev);
2658 
2659 	mmc_blk_put(rpmb->md);
2660 	put_device(&rpmb->dev);
2661 
2662 	return 0;
2663 }
2664 
2665 static const struct file_operations mmc_rpmb_fileops = {
2666 	.release = mmc_rpmb_chrdev_release,
2667 	.open = mmc_rpmb_chrdev_open,
2668 	.owner = THIS_MODULE,
2669 	.llseek = no_llseek,
2670 	.unlocked_ioctl = mmc_rpmb_ioctl,
2671 #ifdef CONFIG_COMPAT
2672 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2673 #endif
2674 };
2675 
mmc_blk_rpmb_device_release(struct device * dev)2676 static void mmc_blk_rpmb_device_release(struct device *dev)
2677 {
2678 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2679 
2680 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2681 	kfree(rpmb);
2682 }
2683 
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2684 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2685 				   struct mmc_blk_data *md,
2686 				   unsigned int part_index,
2687 				   sector_t size,
2688 				   const char *subname)
2689 {
2690 	int devidx, ret;
2691 	char rpmb_name[DISK_NAME_LEN];
2692 	char cap_str[10];
2693 	struct mmc_rpmb_data *rpmb;
2694 
2695 	/* This creates the minor number for the RPMB char device */
2696 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2697 	if (devidx < 0)
2698 		return devidx;
2699 
2700 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2701 	if (!rpmb) {
2702 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2703 		return -ENOMEM;
2704 	}
2705 
2706 	snprintf(rpmb_name, sizeof(rpmb_name),
2707 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2708 
2709 	rpmb->id = devidx;
2710 	rpmb->part_index = part_index;
2711 	rpmb->dev.init_name = rpmb_name;
2712 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2713 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2714 	rpmb->dev.parent = &card->dev;
2715 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2716 	device_initialize(&rpmb->dev);
2717 	dev_set_drvdata(&rpmb->dev, rpmb);
2718 	rpmb->md = md;
2719 
2720 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2721 	rpmb->chrdev.owner = THIS_MODULE;
2722 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2723 	if (ret) {
2724 		pr_err("%s: could not add character device\n", rpmb_name);
2725 		goto out_put_device;
2726 	}
2727 
2728 	list_add(&rpmb->node, &md->rpmbs);
2729 
2730 	string_get_size((u64)size, 512, STRING_UNITS_2,
2731 			cap_str, sizeof(cap_str));
2732 
2733 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2734 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2735 		MAJOR(mmc_rpmb_devt), rpmb->id);
2736 
2737 	return 0;
2738 
2739 out_put_device:
2740 	put_device(&rpmb->dev);
2741 	return ret;
2742 }
2743 
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2744 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2745 
2746 {
2747 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2748 	put_device(&rpmb->dev);
2749 }
2750 
2751 /* MMC Physical partitions consist of two boot partitions and
2752  * up to four general purpose partitions.
2753  * For each partition enabled in EXT_CSD a block device will be allocatedi
2754  * to provide access to the partition.
2755  */
2756 
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2757 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2758 {
2759 	int idx, ret;
2760 
2761 	if (!mmc_card_mmc(card))
2762 		return 0;
2763 
2764 	for (idx = 0; idx < card->nr_parts; idx++) {
2765 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2766 			/*
2767 			 * RPMB partitions does not provide block access, they
2768 			 * are only accessed using ioctl():s. Thus create
2769 			 * special RPMB block devices that do not have a
2770 			 * backing block queue for these.
2771 			 */
2772 			ret = mmc_blk_alloc_rpmb_part(card, md,
2773 				card->part[idx].part_cfg,
2774 				card->part[idx].size >> 9,
2775 				card->part[idx].name);
2776 			if (ret)
2777 				return ret;
2778 		} else if (card->part[idx].size) {
2779 			ret = mmc_blk_alloc_part(card, md,
2780 				card->part[idx].part_cfg,
2781 				card->part[idx].size >> 9,
2782 				card->part[idx].force_ro,
2783 				card->part[idx].name,
2784 				card->part[idx].area_type);
2785 			if (ret)
2786 				return ret;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 }
2792 
mmc_blk_remove_req(struct mmc_blk_data * md)2793 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2794 {
2795 	/*
2796 	 * Flush remaining requests and free queues. It is freeing the queue
2797 	 * that stops new requests from being accepted.
2798 	 */
2799 	del_gendisk(md->disk);
2800 	mmc_cleanup_queue(&md->queue);
2801 	mmc_blk_put(md);
2802 }
2803 
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2804 static void mmc_blk_remove_parts(struct mmc_card *card,
2805 				 struct mmc_blk_data *md)
2806 {
2807 	struct list_head *pos, *q;
2808 	struct mmc_blk_data *part_md;
2809 	struct mmc_rpmb_data *rpmb;
2810 
2811 	/* Remove RPMB partitions */
2812 	list_for_each_safe(pos, q, &md->rpmbs) {
2813 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2814 		list_del(pos);
2815 		mmc_blk_remove_rpmb_part(rpmb);
2816 	}
2817 	/* Remove block partitions */
2818 	list_for_each_safe(pos, q, &md->part) {
2819 		part_md = list_entry(pos, struct mmc_blk_data, part);
2820 		list_del(pos);
2821 		mmc_blk_remove_req(part_md);
2822 	}
2823 }
2824 
2825 #ifdef CONFIG_DEBUG_FS
2826 
mmc_dbg_card_status_get(void * data,u64 * val)2827 static int mmc_dbg_card_status_get(void *data, u64 *val)
2828 {
2829 	struct mmc_card *card = data;
2830 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2831 	struct mmc_queue *mq = &md->queue;
2832 	struct request *req;
2833 	int ret;
2834 
2835 	/* Ask the block layer about the card status */
2836 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2837 	if (IS_ERR(req))
2838 		return PTR_ERR(req);
2839 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2840 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2841 	blk_execute_rq(NULL, req, 0);
2842 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2843 	if (ret >= 0) {
2844 		*val = ret;
2845 		ret = 0;
2846 	}
2847 	blk_put_request(req);
2848 
2849 	return ret;
2850 }
2851 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2852 			 NULL, "%08llx\n");
2853 
2854 /* That is two digits * 512 + 1 for newline */
2855 #define EXT_CSD_STR_LEN 1025
2856 
mmc_ext_csd_open(struct inode * inode,struct file * filp)2857 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2858 {
2859 	struct mmc_card *card = inode->i_private;
2860 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2861 	struct mmc_queue *mq = &md->queue;
2862 	struct request *req;
2863 	char *buf;
2864 	ssize_t n = 0;
2865 	u8 *ext_csd;
2866 	int err, i;
2867 
2868 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2869 	if (!buf)
2870 		return -ENOMEM;
2871 
2872 	/* Ask the block layer for the EXT CSD */
2873 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2874 	if (IS_ERR(req)) {
2875 		err = PTR_ERR(req);
2876 		goto out_free;
2877 	}
2878 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2879 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2880 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2881 	blk_execute_rq(NULL, req, 0);
2882 	err = req_to_mmc_queue_req(req)->drv_op_result;
2883 	blk_put_request(req);
2884 	if (err) {
2885 		pr_err("FAILED %d\n", err);
2886 		goto out_free;
2887 	}
2888 
2889 	for (i = 0; i < 512; i++)
2890 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2891 	n += sprintf(buf + n, "\n");
2892 
2893 	if (n != EXT_CSD_STR_LEN) {
2894 		err = -EINVAL;
2895 		kfree(ext_csd);
2896 		goto out_free;
2897 	}
2898 
2899 	filp->private_data = buf;
2900 	kfree(ext_csd);
2901 	return 0;
2902 
2903 out_free:
2904 	kfree(buf);
2905 	return err;
2906 }
2907 
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2908 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2909 				size_t cnt, loff_t *ppos)
2910 {
2911 	char *buf = filp->private_data;
2912 
2913 	return simple_read_from_buffer(ubuf, cnt, ppos,
2914 				       buf, EXT_CSD_STR_LEN);
2915 }
2916 
mmc_ext_csd_release(struct inode * inode,struct file * file)2917 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2918 {
2919 	kfree(file->private_data);
2920 	return 0;
2921 }
2922 
2923 static const struct file_operations mmc_dbg_ext_csd_fops = {
2924 	.open		= mmc_ext_csd_open,
2925 	.read		= mmc_ext_csd_read,
2926 	.release	= mmc_ext_csd_release,
2927 	.llseek		= default_llseek,
2928 };
2929 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2930 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2931 {
2932 	struct dentry *root;
2933 
2934 	if (!card->debugfs_root)
2935 		return 0;
2936 
2937 	root = card->debugfs_root;
2938 
2939 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2940 		md->status_dentry =
2941 			debugfs_create_file_unsafe("status", 0400, root,
2942 						   card,
2943 						   &mmc_dbg_card_status_fops);
2944 		if (!md->status_dentry)
2945 			return -EIO;
2946 	}
2947 
2948 	if (mmc_card_mmc(card)) {
2949 		md->ext_csd_dentry =
2950 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2951 					    &mmc_dbg_ext_csd_fops);
2952 		if (!md->ext_csd_dentry)
2953 			return -EIO;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2959 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2960 				   struct mmc_blk_data *md)
2961 {
2962 	if (!card->debugfs_root)
2963 		return;
2964 
2965 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2966 		debugfs_remove(md->status_dentry);
2967 		md->status_dentry = NULL;
2968 	}
2969 
2970 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2971 		debugfs_remove(md->ext_csd_dentry);
2972 		md->ext_csd_dentry = NULL;
2973 	}
2974 }
2975 
2976 #else
2977 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2978 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2979 {
2980 	return 0;
2981 }
2982 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2983 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2984 				   struct mmc_blk_data *md)
2985 {
2986 }
2987 
2988 #endif /* CONFIG_DEBUG_FS */
2989 
mmc_blk_probe(struct mmc_card * card)2990 static int mmc_blk_probe(struct mmc_card *card)
2991 {
2992 	struct mmc_blk_data *md;
2993 	int ret = 0;
2994 
2995 	/*
2996 	 * Check that the card supports the command class(es) we need.
2997 	 */
2998 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2999 		return -ENODEV;
3000 
3001 	mmc_fixup_device(card, mmc_blk_fixups);
3002 
3003 	card->complete_wq = alloc_workqueue("mmc_complete",
3004 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3005 	if (!card->complete_wq) {
3006 		pr_err("Failed to create mmc completion workqueue");
3007 		return -ENOMEM;
3008 	}
3009 
3010 	md = mmc_blk_alloc(card);
3011 	if (IS_ERR(md)) {
3012 		ret = PTR_ERR(md);
3013 		goto out_free;
3014 	}
3015 
3016 	ret = mmc_blk_alloc_parts(card, md);
3017 	if (ret)
3018 		goto out;
3019 
3020 	/* Add two debugfs entries */
3021 	mmc_blk_add_debugfs(card, md);
3022 
3023 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3024 	pm_runtime_use_autosuspend(&card->dev);
3025 
3026 	/*
3027 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3028 	 * decision to be taken during the SDIO init sequence instead.
3029 	 */
3030 	if (card->type != MMC_TYPE_SD_COMBO) {
3031 		pm_runtime_set_active(&card->dev);
3032 		pm_runtime_enable(&card->dev);
3033 	}
3034 
3035 	return 0;
3036 
3037 out:
3038 	mmc_blk_remove_parts(card, md);
3039 	mmc_blk_remove_req(md);
3040 out_free:
3041 	destroy_workqueue(card->complete_wq);
3042 	return ret;
3043 }
3044 
mmc_blk_remove(struct mmc_card * card)3045 static void mmc_blk_remove(struct mmc_card *card)
3046 {
3047 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3048 
3049 	mmc_blk_remove_debugfs(card, md);
3050 	mmc_blk_remove_parts(card, md);
3051 	pm_runtime_get_sync(&card->dev);
3052 	if (md->part_curr != md->part_type) {
3053 		mmc_claim_host(card->host);
3054 		mmc_blk_part_switch(card, md->part_type);
3055 		mmc_release_host(card->host);
3056 	}
3057 	if (card->type != MMC_TYPE_SD_COMBO)
3058 		pm_runtime_disable(&card->dev);
3059 	pm_runtime_put_noidle(&card->dev);
3060 	mmc_blk_remove_req(md);
3061 	dev_set_drvdata(&card->dev, NULL);
3062 	destroy_workqueue(card->complete_wq);
3063 }
3064 
_mmc_blk_suspend(struct mmc_card * card)3065 static int _mmc_blk_suspend(struct mmc_card *card)
3066 {
3067 	struct mmc_blk_data *part_md;
3068 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3069 
3070 	if (md) {
3071 		mmc_queue_suspend(&md->queue);
3072 		list_for_each_entry(part_md, &md->part, part) {
3073 			mmc_queue_suspend(&part_md->queue);
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
mmc_blk_shutdown(struct mmc_card * card)3079 static void mmc_blk_shutdown(struct mmc_card *card)
3080 {
3081 	_mmc_blk_suspend(card);
3082 }
3083 
3084 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3085 static int mmc_blk_suspend(struct device *dev)
3086 {
3087 	struct mmc_card *card = mmc_dev_to_card(dev);
3088 
3089 	return _mmc_blk_suspend(card);
3090 }
3091 
mmc_blk_resume(struct device * dev)3092 static int mmc_blk_resume(struct device *dev)
3093 {
3094 	struct mmc_blk_data *part_md;
3095 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3096 
3097 	if (md) {
3098 		/*
3099 		 * Resume involves the card going into idle state,
3100 		 * so current partition is always the main one.
3101 		 */
3102 		md->part_curr = md->part_type;
3103 		mmc_queue_resume(&md->queue);
3104 		list_for_each_entry(part_md, &md->part, part) {
3105 			mmc_queue_resume(&part_md->queue);
3106 		}
3107 	}
3108 	return 0;
3109 }
3110 #endif
3111 
3112 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3113 
3114 static struct mmc_driver mmc_driver = {
3115 	.drv		= {
3116 		.name	= "mmcblk",
3117 		.pm	= &mmc_blk_pm_ops,
3118 	},
3119 	.probe		= mmc_blk_probe,
3120 	.remove		= mmc_blk_remove,
3121 	.shutdown	= mmc_blk_shutdown,
3122 };
3123 
mmc_blk_init(void)3124 static int __init mmc_blk_init(void)
3125 {
3126 	int res;
3127 
3128 	res  = bus_register(&mmc_rpmb_bus_type);
3129 	if (res < 0) {
3130 		pr_err("mmcblk: could not register RPMB bus type\n");
3131 		return res;
3132 	}
3133 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3134 	if (res < 0) {
3135 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3136 		goto out_bus_unreg;
3137 	}
3138 
3139 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3140 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3141 
3142 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3143 
3144 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3145 	if (res)
3146 		goto out_chrdev_unreg;
3147 
3148 	res = mmc_register_driver(&mmc_driver);
3149 	if (res)
3150 		goto out_blkdev_unreg;
3151 
3152 	return 0;
3153 
3154 out_blkdev_unreg:
3155 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3156 out_chrdev_unreg:
3157 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3158 out_bus_unreg:
3159 	bus_unregister(&mmc_rpmb_bus_type);
3160 	return res;
3161 }
3162 
mmc_blk_exit(void)3163 static void __exit mmc_blk_exit(void)
3164 {
3165 	mmc_unregister_driver(&mmc_driver);
3166 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3167 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3168 	bus_unregister(&mmc_rpmb_bus_type);
3169 }
3170 
3171 module_init(mmc_blk_init);
3172 module_exit(mmc_blk_exit);
3173 
3174 MODULE_LICENSE("GPL");
3175 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3176