1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24
25 static const u8 tuning_blk_pattern_4bit[] = {
26 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
27 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
28 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
29 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
30 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
31 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
32 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
33 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
34 };
35
36 static const u8 tuning_blk_pattern_8bit[] = {
37 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
38 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
39 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
40 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
41 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
42 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
43 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
44 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
45 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
46 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
47 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
48 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
49 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
50 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
51 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
52 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
53 };
54
55 struct mmc_busy_data {
56 struct mmc_card *card;
57 bool retry_crc_err;
58 enum mmc_busy_cmd busy_cmd;
59 };
60
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)61 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
62 {
63 int err;
64 struct mmc_command cmd = {};
65
66 cmd.opcode = MMC_SEND_STATUS;
67 if (!mmc_host_is_spi(card->host))
68 cmd.arg = card->rca << 16;
69 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
70
71 err = mmc_wait_for_cmd(card->host, &cmd, retries);
72 if (err)
73 return err;
74
75 /* NOTE: callers are required to understand the difference
76 * between "native" and SPI format status words!
77 */
78 if (status)
79 *status = cmd.resp[0];
80
81 return 0;
82 }
83 EXPORT_SYMBOL_GPL(__mmc_send_status);
84
mmc_send_status(struct mmc_card * card,u32 * status)85 int mmc_send_status(struct mmc_card *card, u32 *status)
86 {
87 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
88 }
89 EXPORT_SYMBOL_GPL(mmc_send_status);
90
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)91 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
92 {
93 struct mmc_command cmd = {};
94
95 cmd.opcode = MMC_SELECT_CARD;
96
97 if (card) {
98 cmd.arg = card->rca << 16;
99 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
100 } else {
101 cmd.arg = 0;
102 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
103 }
104
105 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
106 }
107
mmc_select_card(struct mmc_card * card)108 int mmc_select_card(struct mmc_card *card)
109 {
110
111 return _mmc_select_card(card->host, card);
112 }
113 EXPORT_SYMBOL_GPL(mmc_select_card);
114
mmc_deselect_cards(struct mmc_host * host)115 int mmc_deselect_cards(struct mmc_host *host)
116 {
117 return _mmc_select_card(host, NULL);
118 }
119
120 /*
121 * Write the value specified in the device tree or board code into the optional
122 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
123 * drive strength of the DAT and CMD outputs. The actual meaning of a given
124 * value is hardware dependant.
125 * The presence of the DSR register can be determined from the CSD register,
126 * bit 76.
127 */
mmc_set_dsr(struct mmc_host * host)128 int mmc_set_dsr(struct mmc_host *host)
129 {
130 struct mmc_command cmd = {};
131
132 cmd.opcode = MMC_SET_DSR;
133
134 cmd.arg = (host->dsr << 16) | 0xffff;
135 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
136
137 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
138 }
139
mmc_go_idle(struct mmc_host * host)140 int mmc_go_idle(struct mmc_host *host)
141 {
142 int err;
143 struct mmc_command cmd = {};
144
145 /*
146 * Non-SPI hosts need to prevent chipselect going active during
147 * GO_IDLE; that would put chips into SPI mode. Remind them of
148 * that in case of hardware that won't pull up DAT3/nCS otherwise.
149 *
150 * SPI hosts ignore ios.chip_select; it's managed according to
151 * rules that must accommodate non-MMC slaves which this layer
152 * won't even know about.
153 */
154 if (!mmc_host_is_spi(host)) {
155 mmc_set_chip_select(host, MMC_CS_HIGH);
156 mmc_delay(1);
157 }
158
159 cmd.opcode = MMC_GO_IDLE_STATE;
160 cmd.arg = 0;
161 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
162
163 err = mmc_wait_for_cmd(host, &cmd, 0);
164
165 mmc_delay(1);
166
167 if (!mmc_host_is_spi(host)) {
168 mmc_set_chip_select(host, MMC_CS_DONTCARE);
169 mmc_delay(1);
170 }
171
172 host->use_spi_crc = 0;
173
174 return err;
175 }
176
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)177 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
178 {
179 struct mmc_command cmd = {};
180 int i, err = 0;
181
182 cmd.opcode = MMC_SEND_OP_COND;
183 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
184 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
185
186 for (i = 100; i; i--) {
187 err = mmc_wait_for_cmd(host, &cmd, 0);
188 if (err)
189 break;
190
191 /* wait until reset completes */
192 if (mmc_host_is_spi(host)) {
193 if (!(cmd.resp[0] & R1_SPI_IDLE))
194 break;
195 } else {
196 if (cmd.resp[0] & MMC_CARD_BUSY)
197 break;
198 }
199
200 err = -ETIMEDOUT;
201
202 mmc_delay(10);
203
204 /*
205 * According to eMMC specification v5.1 section 6.4.3, we
206 * should issue CMD1 repeatedly in the idle state until
207 * the eMMC is ready. Otherwise some eMMC devices seem to enter
208 * the inactive mode after mmc_init_card() issued CMD0 when
209 * the eMMC device is busy.
210 */
211 if (!ocr && !mmc_host_is_spi(host))
212 cmd.arg = cmd.resp[0] | BIT(30);
213 }
214
215 if (rocr && !mmc_host_is_spi(host))
216 *rocr = cmd.resp[0];
217
218 return err;
219 }
220
mmc_set_relative_addr(struct mmc_card * card)221 int mmc_set_relative_addr(struct mmc_card *card)
222 {
223 struct mmc_command cmd = {};
224
225 cmd.opcode = MMC_SET_RELATIVE_ADDR;
226 cmd.arg = card->rca << 16;
227 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
228
229 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
230 }
231
232 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)233 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
234 {
235 int err;
236 struct mmc_command cmd = {};
237
238 cmd.opcode = opcode;
239 cmd.arg = arg;
240 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
241
242 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
243 if (err)
244 return err;
245
246 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
247
248 return 0;
249 }
250
251 /*
252 * NOTE: void *buf, caller for the buf is required to use DMA-capable
253 * buffer or on-stack buffer (with some overhead in callee).
254 */
mmc_send_adtc_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,u32 args,void * buf,unsigned len)255 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
256 u32 args, void *buf, unsigned len)
257 {
258 struct mmc_request mrq = {};
259 struct mmc_command cmd = {};
260 struct mmc_data data = {};
261 struct scatterlist sg;
262
263 mrq.cmd = &cmd;
264 mrq.data = &data;
265
266 cmd.opcode = opcode;
267 cmd.arg = args;
268
269 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
270 * rely on callers to never use this with "native" calls for reading
271 * CSD or CID. Native versions of those commands use the R2 type,
272 * not R1 plus a data block.
273 */
274 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
275
276 data.blksz = len;
277 data.blocks = 1;
278 data.flags = MMC_DATA_READ;
279 data.sg = &sg;
280 data.sg_len = 1;
281
282 sg_init_one(&sg, buf, len);
283
284 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
285 /*
286 * The spec states that CSR and CID accesses have a timeout
287 * of 64 clock cycles.
288 */
289 data.timeout_ns = 0;
290 data.timeout_clks = 64;
291 } else
292 mmc_set_data_timeout(&data, card);
293
294 mmc_wait_for_req(host, &mrq);
295
296 if (cmd.error)
297 return cmd.error;
298 if (data.error)
299 return data.error;
300
301 return 0;
302 }
303
mmc_spi_send_cxd(struct mmc_host * host,u32 * cxd,u32 opcode)304 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
305 {
306 int ret, i;
307 __be32 *cxd_tmp;
308
309 cxd_tmp = kzalloc(16, GFP_KERNEL);
310 if (!cxd_tmp)
311 return -ENOMEM;
312
313 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
314 if (ret)
315 goto err;
316
317 for (i = 0; i < 4; i++)
318 cxd[i] = be32_to_cpu(cxd_tmp[i]);
319
320 err:
321 kfree(cxd_tmp);
322 return ret;
323 }
324
mmc_send_csd(struct mmc_card * card,u32 * csd)325 int mmc_send_csd(struct mmc_card *card, u32 *csd)
326 {
327 if (mmc_host_is_spi(card->host))
328 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
329
330 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
331 MMC_SEND_CSD);
332 }
333
mmc_send_cid(struct mmc_host * host,u32 * cid)334 int mmc_send_cid(struct mmc_host *host, u32 *cid)
335 {
336 if (mmc_host_is_spi(host))
337 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
338
339 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
340 }
341
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)342 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
343 {
344 int err;
345 u8 *ext_csd;
346
347 if (!card || !new_ext_csd)
348 return -EINVAL;
349
350 if (!mmc_can_ext_csd(card))
351 return -EOPNOTSUPP;
352
353 /*
354 * As the ext_csd is so large and mostly unused, we don't store the
355 * raw block in mmc_card.
356 */
357 ext_csd = kzalloc(512, GFP_KERNEL);
358 if (!ext_csd)
359 return -ENOMEM;
360
361 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
362 512);
363 if (err)
364 kfree(ext_csd);
365 else
366 *new_ext_csd = ext_csd;
367
368 return err;
369 }
370 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
371
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)372 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
373 {
374 struct mmc_command cmd = {};
375 int err;
376
377 cmd.opcode = MMC_SPI_READ_OCR;
378 cmd.arg = highcap ? (1 << 30) : 0;
379 cmd.flags = MMC_RSP_SPI_R3;
380
381 err = mmc_wait_for_cmd(host, &cmd, 0);
382
383 *ocrp = cmd.resp[1];
384 return err;
385 }
386
mmc_spi_set_crc(struct mmc_host * host,int use_crc)387 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
388 {
389 struct mmc_command cmd = {};
390 int err;
391
392 cmd.opcode = MMC_SPI_CRC_ON_OFF;
393 cmd.flags = MMC_RSP_SPI_R1;
394 cmd.arg = use_crc;
395
396 err = mmc_wait_for_cmd(host, &cmd, 0);
397 if (!err)
398 host->use_spi_crc = use_crc;
399 return err;
400 }
401
mmc_switch_status_error(struct mmc_host * host,u32 status)402 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
403 {
404 if (mmc_host_is_spi(host)) {
405 if (status & R1_SPI_ILLEGAL_COMMAND)
406 return -EBADMSG;
407 } else {
408 if (R1_STATUS(status))
409 pr_warn("%s: unexpected status %#x after switch\n",
410 mmc_hostname(host), status);
411 if (status & R1_SWITCH_ERROR)
412 return -EBADMSG;
413 }
414 return 0;
415 }
416
417 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)418 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
419 {
420 u32 status;
421 int err;
422
423 err = mmc_send_status(card, &status);
424 if (!crc_err_fatal && err == -EILSEQ)
425 return 0;
426 if (err)
427 return err;
428
429 return mmc_switch_status_error(card->host, status);
430 }
431
mmc_busy_cb(void * cb_data,bool * busy)432 static int mmc_busy_cb(void *cb_data, bool *busy)
433 {
434 struct mmc_busy_data *data = cb_data;
435 struct mmc_host *host = data->card->host;
436 u32 status = 0;
437 int err;
438
439 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
440 *busy = host->ops->card_busy(host);
441 return 0;
442 }
443
444 err = mmc_send_status(data->card, &status);
445 if (data->retry_crc_err && err == -EILSEQ) {
446 *busy = true;
447 return 0;
448 }
449 if (err)
450 return err;
451
452 switch (data->busy_cmd) {
453 case MMC_BUSY_CMD6:
454 err = mmc_switch_status_error(host, status);
455 break;
456 case MMC_BUSY_ERASE:
457 err = R1_STATUS(status) ? -EIO : 0;
458 break;
459 case MMC_BUSY_HPI:
460 case MMC_BUSY_EXTR_SINGLE:
461 case MMC_BUSY_IO:
462 break;
463 default:
464 err = -EINVAL;
465 }
466
467 if (err)
468 return err;
469
470 *busy = !mmc_ready_for_data(status);
471 return 0;
472 }
473
__mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,int (* busy_cb)(void * cb_data,bool * busy),void * cb_data)474 int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
475 int (*busy_cb)(void *cb_data, bool *busy),
476 void *cb_data)
477 {
478 struct mmc_host *host = card->host;
479 int err;
480 unsigned long timeout;
481 unsigned int udelay = 32, udelay_max = 32768;
482 bool expired = false;
483 bool busy = false;
484
485 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
486 do {
487 /*
488 * Due to the possibility of being preempted while polling,
489 * check the expiration time first.
490 */
491 expired = time_after(jiffies, timeout);
492
493 err = (*busy_cb)(cb_data, &busy);
494 if (err)
495 return err;
496
497 /* Timeout if the device still remains busy. */
498 if (expired && busy) {
499 pr_err("%s: Card stuck being busy! %s\n",
500 mmc_hostname(host), __func__);
501 return -ETIMEDOUT;
502 }
503
504 /* Throttle the polling rate to avoid hogging the CPU. */
505 if (busy) {
506 usleep_range(udelay, udelay * 2);
507 if (udelay < udelay_max)
508 udelay *= 2;
509 }
510 } while (busy);
511
512 return 0;
513 }
514 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
515
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)516 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
517 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
518 {
519 struct mmc_busy_data cb_data;
520
521 cb_data.card = card;
522 cb_data.retry_crc_err = retry_crc_err;
523 cb_data.busy_cmd = busy_cmd;
524
525 return __mmc_poll_for_busy(card, timeout_ms, &mmc_busy_cb, &cb_data);
526 }
527 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
528
mmc_prepare_busy_cmd(struct mmc_host * host,struct mmc_command * cmd,unsigned int timeout_ms)529 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
530 unsigned int timeout_ms)
531 {
532 /*
533 * If the max_busy_timeout of the host is specified, make sure it's
534 * enough to fit the used timeout_ms. In case it's not, let's instruct
535 * the host to avoid HW busy detection, by converting to a R1 response
536 * instead of a R1B. Note, some hosts requires R1B, which also means
537 * they are on their own when it comes to deal with the busy timeout.
538 */
539 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
540 (timeout_ms > host->max_busy_timeout)) {
541 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
542 return false;
543 }
544
545 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
546 cmd->busy_timeout = timeout_ms;
547 return true;
548 }
549 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
550
551 /**
552 * __mmc_switch - modify EXT_CSD register
553 * @card: the MMC card associated with the data transfer
554 * @set: cmd set values
555 * @index: EXT_CSD register index
556 * @value: value to program into EXT_CSD register
557 * @timeout_ms: timeout (ms) for operation performed by register write,
558 * timeout of zero implies maximum possible timeout
559 * @timing: new timing to change to
560 * @send_status: send status cmd to poll for busy
561 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
562 * @retries: number of retries
563 *
564 * Modifies the EXT_CSD register for selected card.
565 */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err,unsigned int retries)566 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
567 unsigned int timeout_ms, unsigned char timing,
568 bool send_status, bool retry_crc_err, unsigned int retries)
569 {
570 struct mmc_host *host = card->host;
571 int err;
572 struct mmc_command cmd = {};
573 bool use_r1b_resp;
574 unsigned char old_timing = host->ios.timing;
575
576 mmc_retune_hold(host);
577
578 if (!timeout_ms) {
579 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
580 mmc_hostname(host));
581 timeout_ms = card->ext_csd.generic_cmd6_time;
582 }
583
584 cmd.opcode = MMC_SWITCH;
585 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
586 (index << 16) |
587 (value << 8) |
588 set;
589 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
590
591 err = mmc_wait_for_cmd(host, &cmd, retries);
592 if (err)
593 goto out;
594
595 /*If SPI or used HW busy detection above, then we don't need to poll. */
596 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
597 mmc_host_is_spi(host))
598 goto out_tim;
599
600 /*
601 * If the host doesn't support HW polling via the ->card_busy() ops and
602 * when it's not allowed to poll by using CMD13, then we need to rely on
603 * waiting the stated timeout to be sufficient.
604 */
605 if (!send_status && !host->ops->card_busy) {
606 mmc_delay(timeout_ms);
607 goto out_tim;
608 }
609
610 /* Let's try to poll to find out when the command is completed. */
611 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
612 if (err)
613 goto out;
614
615 out_tim:
616 /* Switch to new timing before check switch status. */
617 if (timing)
618 mmc_set_timing(host, timing);
619
620 if (send_status) {
621 err = mmc_switch_status(card, true);
622 if (err && timing)
623 mmc_set_timing(host, old_timing);
624 }
625 out:
626 mmc_retune_release(host);
627
628 return err;
629 }
630
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)631 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
632 unsigned int timeout_ms)
633 {
634 return __mmc_switch(card, set, index, value, timeout_ms, 0,
635 true, false, MMC_CMD_RETRIES);
636 }
637 EXPORT_SYMBOL_GPL(mmc_switch);
638
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)639 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
640 {
641 struct mmc_request mrq = {};
642 struct mmc_command cmd = {};
643 struct mmc_data data = {};
644 struct scatterlist sg;
645 struct mmc_ios *ios = &host->ios;
646 const u8 *tuning_block_pattern;
647 int size, err = 0;
648 u8 *data_buf;
649
650 if (ios->bus_width == MMC_BUS_WIDTH_8) {
651 tuning_block_pattern = tuning_blk_pattern_8bit;
652 size = sizeof(tuning_blk_pattern_8bit);
653 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
654 tuning_block_pattern = tuning_blk_pattern_4bit;
655 size = sizeof(tuning_blk_pattern_4bit);
656 } else
657 return -EINVAL;
658
659 data_buf = kzalloc(size, GFP_KERNEL);
660 if (!data_buf)
661 return -ENOMEM;
662
663 mrq.cmd = &cmd;
664 mrq.data = &data;
665
666 cmd.opcode = opcode;
667 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
668
669 data.blksz = size;
670 data.blocks = 1;
671 data.flags = MMC_DATA_READ;
672
673 /*
674 * According to the tuning specs, Tuning process
675 * is normally shorter 40 executions of CMD19,
676 * and timeout value should be shorter than 150 ms
677 */
678 data.timeout_ns = 150 * NSEC_PER_MSEC;
679
680 data.sg = &sg;
681 data.sg_len = 1;
682 sg_init_one(&sg, data_buf, size);
683
684 mmc_wait_for_req(host, &mrq);
685
686 if (cmd_error)
687 *cmd_error = cmd.error;
688
689 if (cmd.error) {
690 err = cmd.error;
691 goto out;
692 }
693
694 if (data.error) {
695 err = data.error;
696 goto out;
697 }
698
699 if (memcmp(data_buf, tuning_block_pattern, size))
700 err = -EIO;
701
702 out:
703 kfree(data_buf);
704 return err;
705 }
706 EXPORT_SYMBOL_GPL(mmc_send_tuning);
707
mmc_send_abort_tuning(struct mmc_host * host,u32 opcode)708 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
709 {
710 struct mmc_command cmd = {};
711
712 /*
713 * eMMC specification specifies that CMD12 can be used to stop a tuning
714 * command, but SD specification does not, so do nothing unless it is
715 * eMMC.
716 */
717 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
718 return 0;
719
720 cmd.opcode = MMC_STOP_TRANSMISSION;
721 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
722
723 /*
724 * For drivers that override R1 to R1b, set an arbitrary timeout based
725 * on the tuning timeout i.e. 150ms.
726 */
727 cmd.busy_timeout = 150;
728
729 return mmc_wait_for_cmd(host, &cmd, 0);
730 }
731 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
732
733 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)734 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
735 u8 len)
736 {
737 struct mmc_request mrq = {};
738 struct mmc_command cmd = {};
739 struct mmc_data data = {};
740 struct scatterlist sg;
741 u8 *data_buf;
742 u8 *test_buf;
743 int i, err;
744 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
745 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
746
747 /* dma onto stack is unsafe/nonportable, but callers to this
748 * routine normally provide temporary on-stack buffers ...
749 */
750 data_buf = kmalloc(len, GFP_KERNEL);
751 if (!data_buf)
752 return -ENOMEM;
753
754 if (len == 8)
755 test_buf = testdata_8bit;
756 else if (len == 4)
757 test_buf = testdata_4bit;
758 else {
759 pr_err("%s: Invalid bus_width %d\n",
760 mmc_hostname(host), len);
761 kfree(data_buf);
762 return -EINVAL;
763 }
764
765 if (opcode == MMC_BUS_TEST_W)
766 memcpy(data_buf, test_buf, len);
767
768 mrq.cmd = &cmd;
769 mrq.data = &data;
770 cmd.opcode = opcode;
771 cmd.arg = 0;
772
773 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
774 * rely on callers to never use this with "native" calls for reading
775 * CSD or CID. Native versions of those commands use the R2 type,
776 * not R1 plus a data block.
777 */
778 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
779
780 data.blksz = len;
781 data.blocks = 1;
782 if (opcode == MMC_BUS_TEST_R)
783 data.flags = MMC_DATA_READ;
784 else
785 data.flags = MMC_DATA_WRITE;
786
787 data.sg = &sg;
788 data.sg_len = 1;
789 mmc_set_data_timeout(&data, card);
790 sg_init_one(&sg, data_buf, len);
791 mmc_wait_for_req(host, &mrq);
792 err = 0;
793 if (opcode == MMC_BUS_TEST_R) {
794 for (i = 0; i < len / 4; i++)
795 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
796 err = -EIO;
797 break;
798 }
799 }
800 kfree(data_buf);
801
802 if (cmd.error)
803 return cmd.error;
804 if (data.error)
805 return data.error;
806
807 return err;
808 }
809
mmc_bus_test(struct mmc_card * card,u8 bus_width)810 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
811 {
812 int width;
813
814 if (bus_width == MMC_BUS_WIDTH_8)
815 width = 8;
816 else if (bus_width == MMC_BUS_WIDTH_4)
817 width = 4;
818 else if (bus_width == MMC_BUS_WIDTH_1)
819 return 0; /* no need for test */
820 else
821 return -EINVAL;
822
823 /*
824 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
825 * is a problem. This improves chances that the test will work.
826 */
827 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
828 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
829 }
830
mmc_send_hpi_cmd(struct mmc_card * card)831 static int mmc_send_hpi_cmd(struct mmc_card *card)
832 {
833 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
834 struct mmc_host *host = card->host;
835 bool use_r1b_resp = false;
836 struct mmc_command cmd = {};
837 int err;
838
839 cmd.opcode = card->ext_csd.hpi_cmd;
840 cmd.arg = card->rca << 16 | 1;
841 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
842
843 if (cmd.opcode == MMC_STOP_TRANSMISSION)
844 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
845 busy_timeout_ms);
846
847 err = mmc_wait_for_cmd(host, &cmd, 0);
848 if (err) {
849 pr_warn("%s: HPI error %d. Command response %#x\n",
850 mmc_hostname(host), err, cmd.resp[0]);
851 return err;
852 }
853
854 /* No need to poll when using HW busy detection. */
855 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
856 return 0;
857
858 /* Let's poll to find out when the HPI request completes. */
859 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
860 }
861
862 /**
863 * mmc_interrupt_hpi - Issue for High priority Interrupt
864 * @card: the MMC card associated with the HPI transfer
865 *
866 * Issued High Priority Interrupt, and check for card status
867 * until out-of prg-state.
868 */
mmc_interrupt_hpi(struct mmc_card * card)869 static int mmc_interrupt_hpi(struct mmc_card *card)
870 {
871 int err;
872 u32 status;
873
874 if (!card->ext_csd.hpi_en) {
875 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
876 return 1;
877 }
878
879 err = mmc_send_status(card, &status);
880 if (err) {
881 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
882 goto out;
883 }
884
885 switch (R1_CURRENT_STATE(status)) {
886 case R1_STATE_IDLE:
887 case R1_STATE_READY:
888 case R1_STATE_STBY:
889 case R1_STATE_TRAN:
890 /*
891 * In idle and transfer states, HPI is not needed and the caller
892 * can issue the next intended command immediately
893 */
894 goto out;
895 case R1_STATE_PRG:
896 break;
897 default:
898 /* In all other states, it's illegal to issue HPI */
899 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
900 mmc_hostname(card->host), R1_CURRENT_STATE(status));
901 err = -EINVAL;
902 goto out;
903 }
904
905 err = mmc_send_hpi_cmd(card);
906 out:
907 return err;
908 }
909
mmc_can_ext_csd(struct mmc_card * card)910 int mmc_can_ext_csd(struct mmc_card *card)
911 {
912 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
913 }
914
mmc_read_bkops_status(struct mmc_card * card)915 static int mmc_read_bkops_status(struct mmc_card *card)
916 {
917 int err;
918 u8 *ext_csd;
919
920 err = mmc_get_ext_csd(card, &ext_csd);
921 if (err)
922 return err;
923
924 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
925 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
926 kfree(ext_csd);
927 return 0;
928 }
929
930 /**
931 * mmc_run_bkops - Run BKOPS for supported cards
932 * @card: MMC card to run BKOPS for
933 *
934 * Run background operations synchronously for cards having manual BKOPS
935 * enabled and in case it reports urgent BKOPS level.
936 */
mmc_run_bkops(struct mmc_card * card)937 void mmc_run_bkops(struct mmc_card *card)
938 {
939 int err;
940
941 if (!card->ext_csd.man_bkops_en)
942 return;
943
944 err = mmc_read_bkops_status(card);
945 if (err) {
946 pr_err("%s: Failed to read bkops status: %d\n",
947 mmc_hostname(card->host), err);
948 return;
949 }
950
951 if (!card->ext_csd.raw_bkops_status ||
952 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
953 return;
954
955 mmc_retune_hold(card->host);
956
957 /*
958 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
959 * synchronously. Future wise, we may consider to start BKOPS, for less
960 * urgent levels by using an asynchronous background task, when idle.
961 */
962 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
963 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
964 /*
965 * If the BKOPS timed out, the card is probably still busy in the
966 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
967 * it with a HPI command to get back into R1_STATE_TRAN.
968 */
969 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
970 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
971 else if (err)
972 pr_warn("%s: Error %d running bkops\n",
973 mmc_hostname(card->host), err);
974
975 mmc_retune_release(card->host);
976 }
977 EXPORT_SYMBOL(mmc_run_bkops);
978
mmc_cmdq_switch(struct mmc_card * card,bool enable)979 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
980 {
981 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
982 int err;
983
984 if (!card->ext_csd.cmdq_support)
985 return -EOPNOTSUPP;
986
987 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
988 val, card->ext_csd.generic_cmd6_time);
989 if (!err)
990 card->ext_csd.cmdq_en = enable;
991
992 return err;
993 }
994
mmc_cmdq_enable(struct mmc_card * card)995 int mmc_cmdq_enable(struct mmc_card *card)
996 {
997 return mmc_cmdq_switch(card, true);
998 }
999 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1000
mmc_cmdq_disable(struct mmc_card * card)1001 int mmc_cmdq_disable(struct mmc_card *card)
1002 {
1003 return mmc_cmdq_switch(card, false);
1004 }
1005 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1006
mmc_sanitize(struct mmc_card * card,unsigned int timeout_ms)1007 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1008 {
1009 struct mmc_host *host = card->host;
1010 int err;
1011
1012 if (!mmc_can_sanitize(card)) {
1013 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1014 return -EOPNOTSUPP;
1015 }
1016
1017 if (!timeout_ms)
1018 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1019
1020 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1021
1022 mmc_retune_hold(host);
1023
1024 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1025 1, timeout_ms, 0, true, false, 0);
1026 if (err)
1027 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1028
1029 /*
1030 * If the sanitize operation timed out, the card is probably still busy
1031 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1032 * it with a HPI command to get back into R1_STATE_TRAN.
1033 */
1034 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1035 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1036
1037 mmc_retune_release(host);
1038
1039 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1040 return err;
1041 }
1042 EXPORT_SYMBOL_GPL(mmc_sanitize);
1043