1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 #include <linux/mmc/sd.h>
20
21 #include <trace/hooks/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "sd.h"
29 #include "sd_ops.h"
30
31 static const unsigned int tran_exp[] = {
32 10000, 100000, 1000000, 10000000,
33 0, 0, 0, 0
34 };
35
36 static const unsigned char tran_mant[] = {
37 0, 10, 12, 13, 15, 20, 25, 30,
38 35, 40, 45, 50, 55, 60, 70, 80,
39 };
40
41 static const unsigned int taac_exp[] = {
42 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
43 };
44
45 static const unsigned int taac_mant[] = {
46 0, 10, 12, 13, 15, 20, 25, 30,
47 35, 40, 45, 50, 55, 60, 70, 80,
48 };
49
50 static const unsigned int sd_au_size[] = {
51 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
52 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
53 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
54 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
55 };
56
57 #define UNSTUFF_BITS(resp,start,size) \
58 ({ \
59 const int __size = size; \
60 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
61 const int __off = 3 - ((start) / 32); \
62 const int __shft = (start) & 31; \
63 u32 __res; \
64 \
65 __res = resp[__off] >> __shft; \
66 if (__size + __shft > 32) \
67 __res |= resp[__off-1] << ((32 - __shft) % 32); \
68 __res & __mask; \
69 })
70
71 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
72 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
73
74 struct sd_busy_data {
75 struct mmc_card *card;
76 u8 *reg_buf;
77 };
78
79 /*
80 * Given the decoded CSD structure, decode the raw CID to our CID structure.
81 */
mmc_decode_cid(struct mmc_card * card)82 void mmc_decode_cid(struct mmc_card *card)
83 {
84 u32 *resp = card->raw_cid;
85
86 /*
87 * SD doesn't currently have a version field so we will
88 * have to assume we can parse this.
89 */
90 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
91 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
92 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
93 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
94 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
95 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
96 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
97 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
98 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
99 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
100 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
101 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
102
103 card->cid.year += 2000; /* SD cards year offset */
104 }
105
106 /*
107 * Given a 128-bit response, decode to our card CSD structure.
108 */
mmc_decode_csd(struct mmc_card * card)109 static int mmc_decode_csd(struct mmc_card *card)
110 {
111 struct mmc_csd *csd = &card->csd;
112 unsigned int e, m, csd_struct;
113 u32 *resp = card->raw_csd;
114
115 csd_struct = UNSTUFF_BITS(resp, 126, 2);
116
117 switch (csd_struct) {
118 case 0:
119 m = UNSTUFF_BITS(resp, 115, 4);
120 e = UNSTUFF_BITS(resp, 112, 3);
121 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
122 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
123
124 m = UNSTUFF_BITS(resp, 99, 4);
125 e = UNSTUFF_BITS(resp, 96, 3);
126 csd->max_dtr = tran_exp[e] * tran_mant[m];
127 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
128
129 e = UNSTUFF_BITS(resp, 47, 3);
130 m = UNSTUFF_BITS(resp, 62, 12);
131 csd->capacity = (1 + m) << (e + 2);
132
133 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
134 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
135 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
136 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
137 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
138 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
139 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
140 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
141
142 if (UNSTUFF_BITS(resp, 46, 1)) {
143 csd->erase_size = 1;
144 } else if (csd->write_blkbits >= 9) {
145 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
146 csd->erase_size <<= csd->write_blkbits - 9;
147 }
148
149 if (UNSTUFF_BITS(resp, 13, 1))
150 mmc_card_set_readonly(card);
151 break;
152 case 1:
153 /*
154 * This is a block-addressed SDHC or SDXC card. Most
155 * interesting fields are unused and have fixed
156 * values. To avoid getting tripped by buggy cards,
157 * we assume those fixed values ourselves.
158 */
159 mmc_card_set_blockaddr(card);
160
161 csd->taac_ns = 0; /* Unused */
162 csd->taac_clks = 0; /* Unused */
163
164 m = UNSTUFF_BITS(resp, 99, 4);
165 e = UNSTUFF_BITS(resp, 96, 3);
166 csd->max_dtr = tran_exp[e] * tran_mant[m];
167 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
168 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
169
170 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
171 if (csd->c_size >= 0xFFFF)
172 mmc_card_set_ext_capacity(card);
173
174 m = UNSTUFF_BITS(resp, 48, 22);
175 csd->capacity = (1 + m) << 10;
176
177 csd->read_blkbits = 9;
178 csd->read_partial = 0;
179 csd->write_misalign = 0;
180 csd->read_misalign = 0;
181 csd->r2w_factor = 4; /* Unused */
182 csd->write_blkbits = 9;
183 csd->write_partial = 0;
184 csd->erase_size = 1;
185
186 if (UNSTUFF_BITS(resp, 13, 1))
187 mmc_card_set_readonly(card);
188 break;
189 default:
190 pr_err("%s: unrecognised CSD structure version %d\n",
191 mmc_hostname(card->host), csd_struct);
192 return -EINVAL;
193 }
194
195 card->erase_size = csd->erase_size;
196
197 return 0;
198 }
199
200 /*
201 * Given a 64-bit response, decode to our card SCR structure.
202 */
mmc_decode_scr(struct mmc_card * card)203 static int mmc_decode_scr(struct mmc_card *card)
204 {
205 struct sd_scr *scr = &card->scr;
206 unsigned int scr_struct;
207 u32 resp[4];
208
209 resp[3] = card->raw_scr[1];
210 resp[2] = card->raw_scr[0];
211
212 scr_struct = UNSTUFF_BITS(resp, 60, 4);
213 if (scr_struct != 0) {
214 pr_err("%s: unrecognised SCR structure version %d\n",
215 mmc_hostname(card->host), scr_struct);
216 return -EINVAL;
217 }
218
219 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
220 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
221 if (scr->sda_vsn == SCR_SPEC_VER_2)
222 /* Check if Physical Layer Spec v3.0 is supported */
223 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
224
225 if (scr->sda_spec3) {
226 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
227 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
228 }
229
230 if (UNSTUFF_BITS(resp, 55, 1))
231 card->erased_byte = 0xFF;
232 else
233 card->erased_byte = 0x0;
234
235 if (scr->sda_spec4)
236 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
237 else if (scr->sda_spec3)
238 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
239
240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
244 return -EINVAL;
245 }
246
247 return 0;
248 }
249
250 /*
251 * Fetch and process SD Status register.
252 */
mmc_read_ssr(struct mmc_card * card)253 static int mmc_read_ssr(struct mmc_card *card)
254 {
255 unsigned int au, es, et, eo;
256 __be32 *raw_ssr;
257 u32 resp[4] = {};
258 u8 discard_support;
259 int i;
260
261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
262 pr_warn("%s: card lacks mandatory SD Status function\n",
263 mmc_hostname(card->host));
264 return 0;
265 }
266
267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
268 if (!raw_ssr)
269 return -ENOMEM;
270
271 if (mmc_app_sd_status(card, raw_ssr)) {
272 pr_warn("%s: problem reading SD Status register\n",
273 mmc_hostname(card->host));
274 kfree(raw_ssr);
275 return 0;
276 }
277
278 for (i = 0; i < 16; i++)
279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
280
281 kfree(raw_ssr);
282
283 /*
284 * UNSTUFF_BITS only works with four u32s so we have to offset the
285 * bitfield positions accordingly.
286 */
287 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
288 if (au) {
289 if (au <= 9 || card->scr.sda_spec3) {
290 card->ssr.au = sd_au_size[au];
291 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
292 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
293 if (es && et) {
294 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
295 card->ssr.erase_timeout = (et * 1000) / es;
296 card->ssr.erase_offset = eo * 1000;
297 }
298 } else {
299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
300 mmc_hostname(card->host));
301 }
302 }
303
304 /*
305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
306 */
307 resp[3] = card->raw_ssr[6];
308 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
309 card->erase_arg = (card->scr.sda_specx && discard_support) ?
310 SD_DISCARD_ARG : SD_ERASE_ARG;
311
312 return 0;
313 }
314
315 /*
316 * Fetches and decodes switch information
317 */
mmc_read_switch(struct mmc_card * card)318 static int mmc_read_switch(struct mmc_card *card)
319 {
320 int err;
321 u8 *status;
322
323 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
324 return 0;
325
326 if (!(card->csd.cmdclass & CCC_SWITCH)) {
327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
328 mmc_hostname(card->host));
329 return 0;
330 }
331
332 status = kmalloc(64, GFP_KERNEL);
333 if (!status)
334 return -ENOMEM;
335
336 /*
337 * Find out the card's support bits with a mode 0 operation.
338 * The argument does not matter, as the support bits do not
339 * change with the arguments.
340 */
341 err = mmc_sd_switch(card, 0, 0, 0, status);
342 if (err) {
343 /*
344 * If the host or the card can't do the switch,
345 * fail more gracefully.
346 */
347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
348 goto out;
349
350 pr_warn("%s: problem reading Bus Speed modes\n",
351 mmc_hostname(card->host));
352 err = 0;
353
354 goto out;
355 }
356
357 if (status[13] & SD_MODE_HIGH_SPEED)
358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
359
360 if (card->scr.sda_spec3) {
361 card->sw_caps.sd3_bus_mode = status[13];
362 /* Driver Strengths supported by the card */
363 card->sw_caps.sd3_drv_type = status[9];
364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
365 }
366
367 out:
368 kfree(status);
369
370 return err;
371 }
372
373 /*
374 * Test if the card supports high-speed mode and, if so, switch to it.
375 */
mmc_sd_switch_hs(struct mmc_card * card)376 int mmc_sd_switch_hs(struct mmc_card *card)
377 {
378 int err;
379 u8 *status;
380
381 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
382 return 0;
383
384 if (!(card->csd.cmdclass & CCC_SWITCH))
385 return 0;
386
387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
388 return 0;
389
390 if (card->sw_caps.hs_max_dtr == 0)
391 return 0;
392
393 status = kmalloc(64, GFP_KERNEL);
394 if (!status)
395 return -ENOMEM;
396
397 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
398 if (err)
399 goto out;
400
401 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
402 pr_warn("%s: Problem switching card into high-speed mode!\n",
403 mmc_hostname(card->host));
404 err = 0;
405 } else {
406 err = 1;
407 }
408
409 out:
410 kfree(status);
411
412 return err;
413 }
414
sd_select_driver_type(struct mmc_card * card,u8 * status)415 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
416 {
417 int card_drv_type, drive_strength, drv_type;
418 int err;
419
420 card->drive_strength = 0;
421
422 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
423
424 drive_strength = mmc_select_drive_strength(card,
425 card->sw_caps.uhs_max_dtr,
426 card_drv_type, &drv_type);
427
428 if (drive_strength) {
429 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
430 if (err)
431 return err;
432 if ((status[15] & 0xF) != drive_strength) {
433 pr_warn("%s: Problem setting drive strength!\n",
434 mmc_hostname(card->host));
435 return 0;
436 }
437 card->drive_strength = drive_strength;
438 }
439
440 if (drv_type)
441 mmc_set_driver_type(card->host, drv_type);
442
443 return 0;
444 }
445
sd_update_bus_speed_mode(struct mmc_card * card)446 static void sd_update_bus_speed_mode(struct mmc_card *card)
447 {
448 /*
449 * If the host doesn't support any of the UHS-I modes, fallback on
450 * default speed.
451 */
452 if (!mmc_host_uhs(card->host)) {
453 card->sd_bus_speed = 0;
454 return;
455 }
456
457 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
458 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
459 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
460 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
461 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
462 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
463 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
464 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
465 SD_MODE_UHS_SDR50)) {
466 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
467 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
468 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
469 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
470 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
471 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
472 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
473 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
474 SD_MODE_UHS_SDR12)) {
475 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
476 }
477
478 trace_android_vh_sd_update_bus_speed_mode(card);
479 }
480
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)481 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
482 {
483 int err;
484 unsigned int timing = 0;
485
486 switch (card->sd_bus_speed) {
487 case UHS_SDR104_BUS_SPEED:
488 timing = MMC_TIMING_UHS_SDR104;
489 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
490 break;
491 case UHS_DDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_DDR50;
493 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
494 break;
495 case UHS_SDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR50;
497 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
498 break;
499 case UHS_SDR25_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR25;
501 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
502 break;
503 case UHS_SDR12_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR12;
505 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
506 break;
507 default:
508 return 0;
509 }
510
511 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
512 if (err)
513 return err;
514
515 if ((status[16] & 0xF) != card->sd_bus_speed)
516 pr_warn("%s: Problem setting bus speed mode!\n",
517 mmc_hostname(card->host));
518 else {
519 mmc_set_timing(card->host, timing);
520 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
521 }
522
523 return 0;
524 }
525
526 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)527 static u32 sd_get_host_max_current(struct mmc_host *host)
528 {
529 u32 voltage, max_current;
530
531 voltage = 1 << host->ios.vdd;
532 switch (voltage) {
533 case MMC_VDD_165_195:
534 max_current = host->max_current_180;
535 break;
536 case MMC_VDD_29_30:
537 case MMC_VDD_30_31:
538 max_current = host->max_current_300;
539 break;
540 case MMC_VDD_32_33:
541 case MMC_VDD_33_34:
542 max_current = host->max_current_330;
543 break;
544 default:
545 max_current = 0;
546 }
547
548 return max_current;
549 }
550
sd_set_current_limit(struct mmc_card * card,u8 * status)551 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
552 {
553 int current_limit = SD_SET_CURRENT_NO_CHANGE;
554 int err;
555 u32 max_current;
556
557 /*
558 * Current limit switch is only defined for SDR50, SDR104, and DDR50
559 * bus speed modes. For other bus speed modes, we do not change the
560 * current limit.
561 */
562 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
563 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
564 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
565 return 0;
566
567 /*
568 * Host has different current capabilities when operating at
569 * different voltages, so find out its max current first.
570 */
571 max_current = sd_get_host_max_current(card->host);
572
573 /*
574 * We only check host's capability here, if we set a limit that is
575 * higher than the card's maximum current, the card will be using its
576 * maximum current, e.g. if the card's maximum current is 300ma, and
577 * when we set current limit to 200ma, the card will draw 200ma, and
578 * when we set current limit to 400/600/800ma, the card will draw its
579 * maximum 300ma from the host.
580 *
581 * The above is incorrect: if we try to set a current limit that is
582 * not supported by the card, the card can rightfully error out the
583 * attempt, and remain at the default current limit. This results
584 * in a 300mA card being limited to 200mA even though the host
585 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
586 * an iMX6 host. --rmk
587 */
588 if (max_current >= 800 &&
589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
590 current_limit = SD_SET_CURRENT_LIMIT_800;
591 else if (max_current >= 600 &&
592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
593 current_limit = SD_SET_CURRENT_LIMIT_600;
594 else if (max_current >= 400 &&
595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
596 current_limit = SD_SET_CURRENT_LIMIT_400;
597 else if (max_current >= 200 &&
598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
599 current_limit = SD_SET_CURRENT_LIMIT_200;
600
601 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
602 err = mmc_sd_switch(card, 1, 3, current_limit, status);
603 if (err)
604 return err;
605
606 if (((status[15] >> 4) & 0x0F) != current_limit)
607 pr_warn("%s: Problem setting current limit!\n",
608 mmc_hostname(card->host));
609
610 }
611
612 return 0;
613 }
614
615 /*
616 * UHS-I specific initialization procedure
617 */
mmc_sd_init_uhs_card(struct mmc_card * card)618 static int mmc_sd_init_uhs_card(struct mmc_card *card)
619 {
620 int err;
621 u8 *status;
622
623 if (!(card->csd.cmdclass & CCC_SWITCH))
624 return 0;
625
626 status = kmalloc(64, GFP_KERNEL);
627 if (!status)
628 return -ENOMEM;
629
630 /* Set 4-bit bus width */
631 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
632 if (err)
633 goto out;
634
635 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
636
637 /*
638 * Select the bus speed mode depending on host
639 * and card capability.
640 */
641 sd_update_bus_speed_mode(card);
642
643 /* Set the driver strength for the card */
644 err = sd_select_driver_type(card, status);
645 if (err)
646 goto out;
647
648 /* Set current limit for the card */
649 err = sd_set_current_limit(card, status);
650 if (err)
651 goto out;
652
653 /* Set bus speed mode of the card */
654 err = sd_set_bus_speed_mode(card, status);
655 if (err)
656 goto out;
657
658 /*
659 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
660 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
661 */
662 if (!mmc_host_is_spi(card->host) &&
663 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
664 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
665 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
666 err = mmc_execute_tuning(card);
667
668 /*
669 * As SD Specifications Part1 Physical Layer Specification
670 * Version 3.01 says, CMD19 tuning is available for unlocked
671 * cards in transfer state of 1.8V signaling mode. The small
672 * difference between v3.00 and 3.01 spec means that CMD19
673 * tuning is also available for DDR50 mode.
674 */
675 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
676 pr_warn("%s: ddr50 tuning failed\n",
677 mmc_hostname(card->host));
678 err = 0;
679 }
680 }
681
682 out:
683 kfree(status);
684
685 return err;
686 }
687
688 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
689 card->raw_cid[2], card->raw_cid[3]);
690 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
691 card->raw_csd[2], card->raw_csd[3]);
692 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
693 MMC_DEV_ATTR(ssr,
694 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
695 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
696 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
697 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
698 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
699 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
700 card->raw_ssr[15]);
701 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
702 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
703 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
704 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
705 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
706 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
707 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
708 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
709 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
710 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
711 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
712
713
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)714 static ssize_t mmc_dsr_show(struct device *dev,
715 struct device_attribute *attr,
716 char *buf)
717 {
718 struct mmc_card *card = mmc_dev_to_card(dev);
719 struct mmc_host *host = card->host;
720
721 if (card->csd.dsr_imp && host->dsr_req)
722 return sprintf(buf, "0x%x\n", host->dsr);
723 else
724 /* return default DSR value */
725 return sprintf(buf, "0x%x\n", 0x404);
726 }
727
728 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
729
730 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
731 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
732 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
733
734 #define sdio_info_attr(num) \
735 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
736 { \
737 struct mmc_card *card = mmc_dev_to_card(dev); \
738 \
739 if (num > card->num_info) \
740 return -ENODATA; \
741 if (!card->info[num-1][0]) \
742 return 0; \
743 return sprintf(buf, "%s\n", card->info[num-1]); \
744 } \
745 static DEVICE_ATTR_RO(info##num)
746
747 sdio_info_attr(1);
748 sdio_info_attr(2);
749 sdio_info_attr(3);
750 sdio_info_attr(4);
751
752 static struct attribute *sd_std_attrs[] = {
753 &dev_attr_vendor.attr,
754 &dev_attr_device.attr,
755 &dev_attr_revision.attr,
756 &dev_attr_info1.attr,
757 &dev_attr_info2.attr,
758 &dev_attr_info3.attr,
759 &dev_attr_info4.attr,
760 &dev_attr_cid.attr,
761 &dev_attr_csd.attr,
762 &dev_attr_scr.attr,
763 &dev_attr_ssr.attr,
764 &dev_attr_date.attr,
765 &dev_attr_erase_size.attr,
766 &dev_attr_preferred_erase_size.attr,
767 &dev_attr_fwrev.attr,
768 &dev_attr_hwrev.attr,
769 &dev_attr_manfid.attr,
770 &dev_attr_name.attr,
771 &dev_attr_oemid.attr,
772 &dev_attr_serial.attr,
773 &dev_attr_ocr.attr,
774 &dev_attr_rca.attr,
775 &dev_attr_dsr.attr,
776 NULL,
777 };
778
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)779 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
780 int index)
781 {
782 struct device *dev = kobj_to_dev(kobj);
783 struct mmc_card *card = mmc_dev_to_card(dev);
784
785 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
786 if ((attr == &dev_attr_vendor.attr ||
787 attr == &dev_attr_device.attr ||
788 attr == &dev_attr_revision.attr ||
789 attr == &dev_attr_info1.attr ||
790 attr == &dev_attr_info2.attr ||
791 attr == &dev_attr_info3.attr ||
792 attr == &dev_attr_info4.attr
793 ) && card->type != MMC_TYPE_SD_COMBO)
794 return 0;
795
796 return attr->mode;
797 }
798
799 static const struct attribute_group sd_std_group = {
800 .attrs = sd_std_attrs,
801 .is_visible = sd_std_is_visible,
802 };
803 __ATTRIBUTE_GROUPS(sd_std);
804
805 struct device_type sd_type = {
806 .groups = sd_std_groups,
807 };
808
809 /*
810 * Fetch CID from card.
811 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)812 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
813 {
814 int err;
815 u32 max_current;
816 int retries = 10;
817 u32 pocr = ocr;
818
819 try_again:
820 if (!retries) {
821 ocr &= ~SD_OCR_S18R;
822 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
823 }
824
825 /*
826 * Since we're changing the OCR value, we seem to
827 * need to tell some cards to go back to the idle
828 * state. We wait 1ms to give cards time to
829 * respond.
830 */
831 mmc_go_idle(host);
832
833 /*
834 * If SD_SEND_IF_COND indicates an SD 2.0
835 * compliant card and we should set bit 30
836 * of the ocr to indicate that we can handle
837 * block-addressed SDHC cards.
838 */
839 err = mmc_send_if_cond(host, ocr);
840 if (!err)
841 ocr |= SD_OCR_CCS;
842
843 /*
844 * If the host supports one of UHS-I modes, request the card
845 * to switch to 1.8V signaling level. If the card has failed
846 * repeatedly to switch however, skip this.
847 */
848 if (retries && mmc_host_uhs(host))
849 ocr |= SD_OCR_S18R;
850
851 /*
852 * If the host can supply more than 150mA at current voltage,
853 * XPC should be set to 1.
854 */
855 max_current = sd_get_host_max_current(host);
856 if (max_current > 150)
857 ocr |= SD_OCR_XPC;
858
859 err = mmc_send_app_op_cond(host, ocr, rocr);
860 if (err)
861 return err;
862
863 /*
864 * In case the S18A bit is set in the response, let's start the signal
865 * voltage switch procedure. SPI mode doesn't support CMD11.
866 * Note that, according to the spec, the S18A bit is not valid unless
867 * the CCS bit is set as well. We deliberately deviate from the spec in
868 * regards to this, which allows UHS-I to be supported for SDSC cards.
869 */
870 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
871 rocr && (*rocr & SD_ROCR_S18A)) {
872 err = mmc_set_uhs_voltage(host, pocr);
873 if (err == -EAGAIN) {
874 retries--;
875 goto try_again;
876 } else if (err) {
877 retries = 0;
878 goto try_again;
879 }
880 }
881
882 err = mmc_send_cid(host, cid);
883 return err;
884 }
885
mmc_sd_get_csd(struct mmc_card * card)886 int mmc_sd_get_csd(struct mmc_card *card)
887 {
888 int err;
889
890 /*
891 * Fetch CSD from card.
892 */
893 err = mmc_send_csd(card, card->raw_csd);
894 if (err)
895 return err;
896
897 err = mmc_decode_csd(card);
898 if (err)
899 return err;
900
901 return 0;
902 }
903
mmc_sd_get_ro(struct mmc_host * host)904 static int mmc_sd_get_ro(struct mmc_host *host)
905 {
906 int ro;
907
908 /*
909 * Some systems don't feature a write-protect pin and don't need one.
910 * E.g. because they only have micro-SD card slot. For those systems
911 * assume that the SD card is always read-write.
912 */
913 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
914 return 0;
915
916 if (!host->ops->get_ro)
917 return -1;
918
919 ro = host->ops->get_ro(host);
920
921 return ro;
922 }
923
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)924 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
925 bool reinit)
926 {
927 int err;
928
929 if (!reinit) {
930 /*
931 * Fetch SCR from card.
932 */
933 err = mmc_app_send_scr(card);
934 if (err)
935 return err;
936
937 err = mmc_decode_scr(card);
938 if (err)
939 return err;
940
941 /*
942 * Fetch and process SD Status register.
943 */
944 err = mmc_read_ssr(card);
945 if (err)
946 return err;
947
948 /* Erase init depends on CSD and SSR */
949 mmc_init_erase(card);
950 }
951
952 /*
953 * Fetch switch information from card. Note, sd3_bus_mode can change if
954 * voltage switch outcome changes, so do this always.
955 */
956 err = mmc_read_switch(card);
957 if (err)
958 return err;
959
960 /*
961 * For SPI, enable CRC as appropriate.
962 * This CRC enable is located AFTER the reading of the
963 * card registers because some SDHC cards are not able
964 * to provide valid CRCs for non-512-byte blocks.
965 */
966 if (mmc_host_is_spi(host)) {
967 err = mmc_spi_set_crc(host, use_spi_crc);
968 if (err)
969 return err;
970 }
971
972 /*
973 * Check if read-only switch is active.
974 */
975 if (!reinit) {
976 int ro = mmc_sd_get_ro(host);
977
978 if (ro < 0) {
979 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
980 mmc_hostname(host));
981 } else if (ro > 0) {
982 mmc_card_set_readonly(card);
983 }
984 }
985
986 return 0;
987 }
988
mmc_sd_get_max_clock(struct mmc_card * card)989 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
990 {
991 unsigned max_dtr = (unsigned int)-1;
992
993 if (mmc_card_hs(card)) {
994 if (max_dtr > card->sw_caps.hs_max_dtr)
995 max_dtr = card->sw_caps.hs_max_dtr;
996 } else if (max_dtr > card->csd.max_dtr) {
997 max_dtr = card->csd.max_dtr;
998 }
999
1000 return max_dtr;
1001 }
1002
mmc_sd_card_using_v18(struct mmc_card * card)1003 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1004 {
1005 /*
1006 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1007 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1008 * they can be used to determine if the card has already switched to
1009 * 1.8V signaling.
1010 */
1011 return card->sw_caps.sd3_bus_mode &
1012 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1013 }
1014
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1015 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1016 u8 reg_data)
1017 {
1018 struct mmc_host *host = card->host;
1019 struct mmc_request mrq = {};
1020 struct mmc_command cmd = {};
1021 struct mmc_data data = {};
1022 struct scatterlist sg;
1023 u8 *reg_buf;
1024
1025 reg_buf = kzalloc(512, GFP_KERNEL);
1026 if (!reg_buf)
1027 return -ENOMEM;
1028
1029 mrq.cmd = &cmd;
1030 mrq.data = &data;
1031
1032 /*
1033 * Arguments of CMD49:
1034 * [31:31] MIO (0 = memory).
1035 * [30:27] FNO (function number).
1036 * [26:26] MW - mask write mode (0 = disable).
1037 * [25:18] page number.
1038 * [17:9] offset address.
1039 * [8:0] length (0 = 1 byte).
1040 */
1041 cmd.arg = fno << 27 | page << 18 | offset << 9;
1042
1043 /* The first byte in the buffer is the data to be written. */
1044 reg_buf[0] = reg_data;
1045
1046 data.flags = MMC_DATA_WRITE;
1047 data.blksz = 512;
1048 data.blocks = 1;
1049 data.sg = &sg;
1050 data.sg_len = 1;
1051 sg_init_one(&sg, reg_buf, 512);
1052
1053 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1054 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1055
1056 mmc_set_data_timeout(&data, card);
1057 mmc_wait_for_req(host, &mrq);
1058
1059 kfree(reg_buf);
1060
1061 /*
1062 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1063 * after the CMD49. Although, let's leave this to be managed by the
1064 * caller.
1065 */
1066
1067 if (cmd.error)
1068 return cmd.error;
1069 if (data.error)
1070 return data.error;
1071
1072 return 0;
1073 }
1074
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1075 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1076 u16 offset, u16 len, u8 *reg_buf)
1077 {
1078 u32 cmd_args;
1079
1080 /*
1081 * Command arguments of CMD48:
1082 * [31:31] MIO (0 = memory).
1083 * [30:27] FNO (function number).
1084 * [26:26] reserved (0).
1085 * [25:18] page number.
1086 * [17:9] offset address.
1087 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1088 */
1089 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1090
1091 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1092 cmd_args, reg_buf, 512);
1093 }
1094
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1095 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1096 u16 offset)
1097 {
1098 int err;
1099 u8 *reg_buf;
1100
1101 reg_buf = kzalloc(512, GFP_KERNEL);
1102 if (!reg_buf)
1103 return -ENOMEM;
1104
1105 /* Read the extension register for power management function. */
1106 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1107 if (err) {
1108 pr_warn("%s: error %d reading PM func of ext reg\n",
1109 mmc_hostname(card->host), err);
1110 goto out;
1111 }
1112
1113 /* PM revision consists of 4 bits. */
1114 card->ext_power.rev = reg_buf[0] & 0xf;
1115
1116 /* Power Off Notification support at bit 4. */
1117 if (reg_buf[1] & BIT(4))
1118 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1119
1120 /* Power Sustenance support at bit 5. */
1121 if (reg_buf[1] & BIT(5))
1122 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1123
1124 /* Power Down Mode support at bit 6. */
1125 if (reg_buf[1] & BIT(6))
1126 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1127
1128 card->ext_power.fno = fno;
1129 card->ext_power.page = page;
1130 card->ext_power.offset = offset;
1131
1132 out:
1133 kfree(reg_buf);
1134 return err;
1135 }
1136
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1137 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1138 u16 offset)
1139 {
1140 int err;
1141 u8 *reg_buf;
1142
1143 reg_buf = kzalloc(512, GFP_KERNEL);
1144 if (!reg_buf)
1145 return -ENOMEM;
1146
1147 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1148 if (err) {
1149 pr_warn("%s: error %d reading PERF func of ext reg\n",
1150 mmc_hostname(card->host), err);
1151 goto out;
1152 }
1153
1154 /* PERF revision. */
1155 card->ext_perf.rev = reg_buf[0];
1156
1157 /* FX_EVENT support at bit 0. */
1158 if (reg_buf[1] & BIT(0))
1159 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1160
1161 /* Card initiated self-maintenance support at bit 0. */
1162 if (reg_buf[2] & BIT(0))
1163 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1164
1165 /* Host initiated self-maintenance support at bit 1. */
1166 if (reg_buf[2] & BIT(1))
1167 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1168
1169 /* Cache support at bit 0. */
1170 if (reg_buf[4] & BIT(0))
1171 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1172
1173 /* Command queue support indicated via queue depth bits (0 to 4). */
1174 if (reg_buf[6] & 0x1f)
1175 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1176
1177 card->ext_perf.fno = fno;
1178 card->ext_perf.page = page;
1179 card->ext_perf.offset = offset;
1180
1181 out:
1182 kfree(reg_buf);
1183 return err;
1184 }
1185
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1186 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1187 u16 *next_ext_addr)
1188 {
1189 u8 num_regs, fno, page;
1190 u16 sfc, offset, ext = *next_ext_addr;
1191 u32 reg_addr;
1192
1193 /*
1194 * Parse only one register set per extension, as that is sufficient to
1195 * support the standard functions. This means another 48 bytes in the
1196 * buffer must be available.
1197 */
1198 if (ext + 48 > 512)
1199 return -EFAULT;
1200
1201 /* Standard Function Code */
1202 memcpy(&sfc, &gen_info_buf[ext], 2);
1203
1204 /* Address to the next extension. */
1205 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1206
1207 /* Number of registers for this extension. */
1208 num_regs = gen_info_buf[ext + 42];
1209
1210 /* We support only one register per extension. */
1211 if (num_regs != 1)
1212 return 0;
1213
1214 /* Extension register address. */
1215 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1216
1217 /* 9 bits (0 to 8) contains the offset address. */
1218 offset = reg_addr & 0x1ff;
1219
1220 /* 8 bits (9 to 16) contains the page number. */
1221 page = reg_addr >> 9 & 0xff ;
1222
1223 /* 4 bits (18 to 21) contains the function number. */
1224 fno = reg_addr >> 18 & 0xf;
1225
1226 /* Standard Function Code for power management. */
1227 if (sfc == 0x1)
1228 return sd_parse_ext_reg_power(card, fno, page, offset);
1229
1230 /* Standard Function Code for performance enhancement. */
1231 if (sfc == 0x2)
1232 return sd_parse_ext_reg_perf(card, fno, page, offset);
1233
1234 return 0;
1235 }
1236
sd_read_ext_regs(struct mmc_card * card)1237 static int sd_read_ext_regs(struct mmc_card *card)
1238 {
1239 int err, i;
1240 u8 num_ext, *gen_info_buf;
1241 u16 rev, len, next_ext_addr;
1242
1243 if (mmc_host_is_spi(card->host))
1244 return 0;
1245
1246 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1247 return 0;
1248
1249 gen_info_buf = kzalloc(512, GFP_KERNEL);
1250 if (!gen_info_buf)
1251 return -ENOMEM;
1252
1253 /*
1254 * Read 512 bytes of general info, which is found at function number 0,
1255 * at page 0 and with no offset.
1256 */
1257 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1258 if (err) {
1259 pr_err("%s: error %d reading general info of SD ext reg\n",
1260 mmc_hostname(card->host), err);
1261 goto out;
1262 }
1263
1264 /* General info structure revision. */
1265 memcpy(&rev, &gen_info_buf[0], 2);
1266
1267 /* Length of general info in bytes. */
1268 memcpy(&len, &gen_info_buf[2], 2);
1269
1270 /* Number of extensions to be find. */
1271 num_ext = gen_info_buf[4];
1272
1273 /*
1274 * We only support revision 0 and limit it to 512 bytes for simplicity.
1275 * No matter what, let's return zero to allow us to continue using the
1276 * card, even if we can't support the features from the SD function
1277 * extensions registers.
1278 */
1279 if (rev != 0 || len > 512) {
1280 pr_warn("%s: non-supported SD ext reg layout\n",
1281 mmc_hostname(card->host));
1282 goto out;
1283 }
1284
1285 /*
1286 * Parse the extension registers. The first extension should start
1287 * immediately after the general info header (16 bytes).
1288 */
1289 next_ext_addr = 16;
1290 for (i = 0; i < num_ext; i++) {
1291 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1292 if (err) {
1293 pr_err("%s: error %d parsing SD ext reg\n",
1294 mmc_hostname(card->host), err);
1295 goto out;
1296 }
1297 }
1298
1299 out:
1300 kfree(gen_info_buf);
1301 return err;
1302 }
1303
sd_cache_enabled(struct mmc_host * host)1304 static bool sd_cache_enabled(struct mmc_host *host)
1305 {
1306 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1307 }
1308
sd_flush_cache(struct mmc_host * host)1309 static int sd_flush_cache(struct mmc_host *host)
1310 {
1311 struct mmc_card *card = host->card;
1312 u8 *reg_buf, fno, page;
1313 u16 offset;
1314 int err;
1315
1316 if (!sd_cache_enabled(host))
1317 return 0;
1318
1319 reg_buf = kzalloc(512, GFP_KERNEL);
1320 if (!reg_buf)
1321 return -ENOMEM;
1322
1323 /*
1324 * Set Flush Cache at bit 0 in the performance enhancement register at
1325 * 261 bytes offset.
1326 */
1327 fno = card->ext_perf.fno;
1328 page = card->ext_perf.page;
1329 offset = card->ext_perf.offset + 261;
1330
1331 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1332 if (err) {
1333 pr_warn("%s: error %d writing Cache Flush bit\n",
1334 mmc_hostname(host), err);
1335 goto out;
1336 }
1337
1338 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1339 MMC_BUSY_EXTR_SINGLE);
1340 if (err)
1341 goto out;
1342
1343 /*
1344 * Read the Flush Cache bit. The card shall reset it, to confirm that
1345 * it's has completed the flushing of the cache.
1346 */
1347 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1348 if (err) {
1349 pr_warn("%s: error %d reading Cache Flush bit\n",
1350 mmc_hostname(host), err);
1351 goto out;
1352 }
1353
1354 if (reg_buf[0] & BIT(0))
1355 err = -ETIMEDOUT;
1356 out:
1357 kfree(reg_buf);
1358 return err;
1359 }
1360
sd_enable_cache(struct mmc_card * card)1361 static int sd_enable_cache(struct mmc_card *card)
1362 {
1363 u8 *reg_buf;
1364 int err;
1365
1366 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1367
1368 reg_buf = kzalloc(512, GFP_KERNEL);
1369 if (!reg_buf)
1370 return -ENOMEM;
1371
1372 /*
1373 * Set Cache Enable at bit 0 in the performance enhancement register at
1374 * 260 bytes offset.
1375 */
1376 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1377 card->ext_perf.offset + 260, BIT(0));
1378 if (err) {
1379 pr_warn("%s: error %d writing Cache Enable bit\n",
1380 mmc_hostname(card->host), err);
1381 goto out;
1382 }
1383
1384 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1385 MMC_BUSY_EXTR_SINGLE);
1386 if (!err)
1387 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1388
1389 out:
1390 kfree(reg_buf);
1391 return err;
1392 }
1393
1394 /*
1395 * Handle the detection and initialisation of a card.
1396 *
1397 * In the case of a resume, "oldcard" will contain the card
1398 * we're trying to reinitialise.
1399 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1400 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1401 struct mmc_card *oldcard)
1402 {
1403 struct mmc_card *card;
1404 int err;
1405 u32 cid[4];
1406 u32 rocr = 0;
1407 bool v18_fixup_failed = false;
1408
1409 WARN_ON(!host->claimed);
1410 retry:
1411 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1412 if (err)
1413 return err;
1414
1415 if (oldcard) {
1416 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1417 pr_debug("%s: Perhaps the card was replaced\n",
1418 mmc_hostname(host));
1419 return -ENOENT;
1420 }
1421
1422 card = oldcard;
1423 } else {
1424 /*
1425 * Allocate card structure.
1426 */
1427 card = mmc_alloc_card(host, &sd_type);
1428 if (IS_ERR(card))
1429 return PTR_ERR(card);
1430
1431 card->ocr = ocr;
1432 card->type = MMC_TYPE_SD;
1433 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1434 }
1435
1436 /*
1437 * Call the optional HC's init_card function to handle quirks.
1438 */
1439 if (host->ops->init_card)
1440 host->ops->init_card(host, card);
1441
1442 /*
1443 * For native busses: get card RCA and quit open drain mode.
1444 */
1445 if (!mmc_host_is_spi(host)) {
1446 err = mmc_send_relative_addr(host, &card->rca);
1447 if (err)
1448 goto free_card;
1449 }
1450
1451 if (!oldcard) {
1452 err = mmc_sd_get_csd(card);
1453 if (err)
1454 goto free_card;
1455
1456 mmc_decode_cid(card);
1457 }
1458
1459 /*
1460 * handling only for cards supporting DSR and hosts requesting
1461 * DSR configuration
1462 */
1463 if (card->csd.dsr_imp && host->dsr_req)
1464 mmc_set_dsr(host);
1465
1466 /*
1467 * Select card, as all following commands rely on that.
1468 */
1469 if (!mmc_host_is_spi(host)) {
1470 err = mmc_select_card(card);
1471 if (err)
1472 goto free_card;
1473 }
1474
1475 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1476 if (err)
1477 goto free_card;
1478
1479 /*
1480 * If the card has not been power cycled, it may still be using 1.8V
1481 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1482 * transfer mode.
1483 */
1484 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1485 mmc_sd_card_using_v18(card) &&
1486 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1487 if (mmc_host_set_uhs_voltage(host) ||
1488 mmc_sd_init_uhs_card(card)) {
1489 v18_fixup_failed = true;
1490 mmc_power_cycle(host, ocr);
1491 if (!oldcard)
1492 mmc_remove_card(card);
1493 goto retry;
1494 }
1495 goto cont;
1496 }
1497
1498 /* Initialization sequence for UHS-I cards */
1499 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1500 err = mmc_sd_init_uhs_card(card);
1501 if (err)
1502 goto free_card;
1503 } else {
1504 /*
1505 * Attempt to change to high-speed (if supported)
1506 */
1507 err = mmc_sd_switch_hs(card);
1508 if (err > 0)
1509 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1510 else if (err)
1511 goto free_card;
1512
1513 /*
1514 * Set bus speed.
1515 */
1516 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1517
1518 err = 0;
1519 trace_android_vh_mmc_sd_update_cmdline_timing(card, &err);
1520 trace_android_rvh_mmc_sd_cmdline_timing(card, &err);
1521 if (err)
1522 goto free_card;
1523
1524 /*
1525 * Switch to wider bus (if supported).
1526 */
1527 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1528 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1529 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1530 if (err)
1531 goto free_card;
1532
1533 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1534 }
1535
1536 err = 0;
1537 trace_android_vh_mmc_sd_update_dataline_timing(card, &err);
1538 trace_android_rvh_mmc_sd_dataline_timing(card, &err);
1539 if (err)
1540 goto free_card;
1541 }
1542 cont:
1543 if (!oldcard) {
1544 /* Read/parse the extension registers. */
1545 err = sd_read_ext_regs(card);
1546 if (err)
1547 goto free_card;
1548 }
1549
1550 /* Enable internal SD cache if supported. */
1551 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1552 err = sd_enable_cache(card);
1553 if (err)
1554 goto free_card;
1555 }
1556
1557 if (host->cqe_ops && !host->cqe_enabled) {
1558 err = host->cqe_ops->cqe_enable(host, card);
1559 if (!err) {
1560 host->cqe_enabled = true;
1561 host->hsq_enabled = true;
1562 pr_info("%s: Host Software Queue enabled\n",
1563 mmc_hostname(host));
1564 }
1565 }
1566
1567 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1568 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1569 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1570 mmc_hostname(host));
1571 err = -EINVAL;
1572 goto free_card;
1573 }
1574
1575 host->card = card;
1576 return 0;
1577
1578 free_card:
1579 if (!oldcard)
1580 mmc_remove_card(card);
1581
1582 return err;
1583 }
1584
1585 /*
1586 * Host is being removed. Free up the current card.
1587 */
mmc_sd_remove(struct mmc_host * host)1588 static void mmc_sd_remove(struct mmc_host *host)
1589 {
1590 mmc_remove_card(host->card);
1591 host->card = NULL;
1592 }
1593
1594 /*
1595 * Card detection - card is alive.
1596 */
mmc_sd_alive(struct mmc_host * host)1597 static int mmc_sd_alive(struct mmc_host *host)
1598 {
1599 return mmc_send_status(host->card, NULL);
1600 }
1601
1602 /*
1603 * Card detection callback from host.
1604 */
mmc_sd_detect(struct mmc_host * host)1605 static void mmc_sd_detect(struct mmc_host *host)
1606 {
1607 int err;
1608
1609 mmc_get_card(host->card, NULL);
1610
1611 /*
1612 * Just check if our card has been removed.
1613 */
1614 err = _mmc_detect_card_removed(host);
1615
1616 mmc_put_card(host->card, NULL);
1617
1618 if (err) {
1619 mmc_sd_remove(host);
1620
1621 mmc_claim_host(host);
1622 mmc_detach_bus(host);
1623 mmc_power_off(host);
1624 mmc_release_host(host);
1625 }
1626 }
1627
sd_can_poweroff_notify(struct mmc_card * card)1628 static int sd_can_poweroff_notify(struct mmc_card *card)
1629 {
1630 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1631 }
1632
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1633 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1634 {
1635 struct sd_busy_data *data = cb_data;
1636 struct mmc_card *card = data->card;
1637 int err;
1638
1639 /*
1640 * Read the status register for the power management function. It's at
1641 * one byte offset and is one byte long. The Power Off Notification
1642 * Ready is bit 0.
1643 */
1644 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1645 card->ext_power.offset + 1, 1, data->reg_buf);
1646 if (err) {
1647 pr_warn("%s: error %d reading status reg of PM func\n",
1648 mmc_hostname(card->host), err);
1649 return err;
1650 }
1651
1652 *busy = !(data->reg_buf[0] & BIT(0));
1653 return 0;
1654 }
1655
sd_poweroff_notify(struct mmc_card * card)1656 static int sd_poweroff_notify(struct mmc_card *card)
1657 {
1658 struct sd_busy_data cb_data;
1659 u8 *reg_buf;
1660 int err;
1661
1662 reg_buf = kzalloc(512, GFP_KERNEL);
1663 if (!reg_buf)
1664 return -ENOMEM;
1665
1666 /*
1667 * Set the Power Off Notification bit in the power management settings
1668 * register at 2 bytes offset.
1669 */
1670 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1671 card->ext_power.offset + 2, BIT(0));
1672 if (err) {
1673 pr_warn("%s: error %d writing Power Off Notify bit\n",
1674 mmc_hostname(card->host), err);
1675 goto out;
1676 }
1677
1678 /* Find out when the command is completed. */
1679 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1680 MMC_BUSY_EXTR_SINGLE);
1681 if (err)
1682 goto out;
1683
1684 cb_data.card = card;
1685 cb_data.reg_buf = reg_buf;
1686 err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1687 &sd_busy_poweroff_notify_cb, &cb_data);
1688
1689 out:
1690 kfree(reg_buf);
1691 return err;
1692 }
1693
_mmc_sd_suspend(struct mmc_host * host)1694 static int _mmc_sd_suspend(struct mmc_host *host)
1695 {
1696 struct mmc_card *card = host->card;
1697 int err = 0;
1698
1699 mmc_claim_host(host);
1700
1701 if (mmc_card_suspended(card))
1702 goto out;
1703
1704 if (sd_can_poweroff_notify(card))
1705 err = sd_poweroff_notify(card);
1706 else if (!mmc_host_is_spi(host))
1707 err = mmc_deselect_cards(host);
1708
1709 if (!err) {
1710 mmc_power_off(host);
1711 mmc_card_set_suspended(card);
1712 }
1713
1714 out:
1715 mmc_release_host(host);
1716 return err;
1717 }
1718
1719 /*
1720 * Callback for suspend
1721 */
mmc_sd_suspend(struct mmc_host * host)1722 static int mmc_sd_suspend(struct mmc_host *host)
1723 {
1724 int err;
1725
1726 err = _mmc_sd_suspend(host);
1727 if (!err) {
1728 pm_runtime_disable(&host->card->dev);
1729 pm_runtime_set_suspended(&host->card->dev);
1730 }
1731
1732 return err;
1733 }
1734
1735 /*
1736 * This function tries to determine if the same card is still present
1737 * and, if so, restore all state to it.
1738 */
_mmc_sd_resume(struct mmc_host * host)1739 static int _mmc_sd_resume(struct mmc_host *host)
1740 {
1741 int err = 0;
1742
1743 mmc_claim_host(host);
1744
1745 if (!mmc_card_suspended(host->card))
1746 goto out;
1747
1748 mmc_power_up(host, host->card->ocr);
1749 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1750 mmc_card_clr_suspended(host->card);
1751
1752 out:
1753 mmc_release_host(host);
1754 return err;
1755 }
1756
1757 /*
1758 * Callback for resume
1759 */
mmc_sd_resume(struct mmc_host * host)1760 static int mmc_sd_resume(struct mmc_host *host)
1761 {
1762 pm_runtime_enable(&host->card->dev);
1763 return 0;
1764 }
1765
1766 /*
1767 * Callback for runtime_suspend.
1768 */
mmc_sd_runtime_suspend(struct mmc_host * host)1769 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1770 {
1771 int err;
1772
1773 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1774 return 0;
1775
1776 err = _mmc_sd_suspend(host);
1777 if (err)
1778 pr_err("%s: error %d doing aggressive suspend\n",
1779 mmc_hostname(host), err);
1780
1781 return err;
1782 }
1783
1784 /*
1785 * Callback for runtime_resume.
1786 */
mmc_sd_runtime_resume(struct mmc_host * host)1787 static int mmc_sd_runtime_resume(struct mmc_host *host)
1788 {
1789 int err;
1790
1791 err = _mmc_sd_resume(host);
1792 if (err && err != -ENOMEDIUM)
1793 pr_err("%s: error %d doing runtime resume\n",
1794 mmc_hostname(host), err);
1795
1796 return 0;
1797 }
1798
mmc_sd_hw_reset(struct mmc_host * host)1799 static int mmc_sd_hw_reset(struct mmc_host *host)
1800 {
1801 mmc_power_cycle(host, host->card->ocr);
1802 return mmc_sd_init_card(host, host->card->ocr, host->card);
1803 }
1804
1805 static const struct mmc_bus_ops mmc_sd_ops = {
1806 .remove = mmc_sd_remove,
1807 .detect = mmc_sd_detect,
1808 .runtime_suspend = mmc_sd_runtime_suspend,
1809 .runtime_resume = mmc_sd_runtime_resume,
1810 .suspend = mmc_sd_suspend,
1811 .resume = mmc_sd_resume,
1812 .alive = mmc_sd_alive,
1813 .shutdown = mmc_sd_suspend,
1814 .hw_reset = mmc_sd_hw_reset,
1815 .cache_enabled = sd_cache_enabled,
1816 .flush_cache = sd_flush_cache,
1817 };
1818
1819 /*
1820 * Starting point for SD card init.
1821 */
mmc_attach_sd(struct mmc_host * host)1822 int mmc_attach_sd(struct mmc_host *host)
1823 {
1824 int err;
1825 u32 ocr, rocr;
1826
1827 WARN_ON(!host->claimed);
1828
1829 err = mmc_send_app_op_cond(host, 0, &ocr);
1830 if (err)
1831 return err;
1832
1833 mmc_attach_bus(host, &mmc_sd_ops);
1834 if (host->ocr_avail_sd)
1835 host->ocr_avail = host->ocr_avail_sd;
1836
1837 /*
1838 * We need to get OCR a different way for SPI.
1839 */
1840 if (mmc_host_is_spi(host)) {
1841 mmc_go_idle(host);
1842
1843 err = mmc_spi_read_ocr(host, 0, &ocr);
1844 if (err)
1845 goto err;
1846 }
1847
1848 /*
1849 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1850 * these bits as being in-valid and especially also bit7.
1851 */
1852 ocr &= ~0x7FFF;
1853
1854 rocr = mmc_select_voltage(host, ocr);
1855
1856 /*
1857 * Can we support the voltage(s) of the card(s)?
1858 */
1859 if (!rocr) {
1860 err = -EINVAL;
1861 goto err;
1862 }
1863
1864 /*
1865 * Detect and init the card.
1866 */
1867 err = mmc_sd_init_card(host, rocr, NULL);
1868 if (err)
1869 goto err;
1870
1871 mmc_release_host(host);
1872 err = mmc_add_card(host->card);
1873 if (err)
1874 goto remove_card;
1875
1876 mmc_claim_host(host);
1877 return 0;
1878
1879 remove_card:
1880 mmc_remove_card(host->card);
1881 host->card = NULL;
1882 mmc_claim_host(host);
1883 err:
1884 mmc_detach_bus(host);
1885
1886 pr_err("%s: error %d whilst initialising SD card\n",
1887 mmc_hostname(host), err);
1888
1889 trace_android_vh_mmc_attach_sd(host, ocr, err);
1890
1891 return err;
1892 }
1893