• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-direction.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22 
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26 
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29 
30 #include <asm/unaligned.h>
31 
32 
33 /* NOTES:
34  *
35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
36  *   controller, although some of them do have hardware support for
37  *   SPI protocol.  The main reason for such configs would be mmc-ish
38  *   cards like DataFlash, which don't support that "native" protocol.
39  *
40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41  *   switch between driver stacks, and in any case if "native" mode
42  *   is available, it will be faster and hence preferable.
43  *
44  * - MMC depends on a different chipselect management policy than the
45  *   SPI interface currently supports for shared bus segments:  it needs
46  *   to issue multiple spi_message requests with the chipselect active,
47  *   using the results of one message to decide the next one to issue.
48  *
49  *   Pending updates to the programming interface, this driver expects
50  *   that it not share the bus with other drivers (precluding conflicts).
51  *
52  * - We tell the controller to keep the chipselect active from the
53  *   beginning of an mmc_host_ops.request until the end.  So beware
54  *   of SPI controller drivers that mis-handle the cs_change flag!
55  *
56  *   However, many cards seem OK with chipselect flapping up/down
57  *   during that time ... at least on unshared bus segments.
58  */
59 
60 
61 /*
62  * Local protocol constants, internal to data block protocols.
63  */
64 
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70 
71 /* Read and write blocks start with these tokens and end with crc;
72  * on error, read tokens act like a subset of R2_SPI_* values.
73  */
74 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77 
78 #define MMC_SPI_BLOCKSIZE	512
79 
80 #define MMC_SPI_R1B_TIMEOUT_MS	3000
81 #define MMC_SPI_INIT_TIMEOUT_MS	3000
82 
83 /* One of the critical speed parameters is the amount of data which may
84  * be transferred in one command. If this value is too low, the SD card
85  * controller has to do multiple partial block writes (argggh!). With
86  * today (2008) SD cards there is little speed gain if we transfer more
87  * than 64 KBytes at a time. So use this value until there is any indication
88  * that we should do more here.
89  */
90 #define MMC_SPI_BLOCKSATONCE	128
91 
92 /****************************************************************************/
93 
94 /*
95  * Local Data Structures
96  */
97 
98 /* "scratch" is per-{command,block} data exchanged with the card */
99 struct scratch {
100 	u8			status[29];
101 	u8			data_token;
102 	__be16			crc_val;
103 };
104 
105 struct mmc_spi_host {
106 	struct mmc_host		*mmc;
107 	struct spi_device	*spi;
108 
109 	unsigned char		power_mode;
110 	u16			powerup_msecs;
111 
112 	struct mmc_spi_platform_data	*pdata;
113 
114 	/* for bulk data transfers */
115 	struct spi_transfer	token, t, crc, early_status;
116 	struct spi_message	m;
117 
118 	/* for status readback */
119 	struct spi_transfer	status;
120 	struct spi_message	readback;
121 
122 	/* buffer used for commands and for message "overhead" */
123 	struct scratch		*data;
124 
125 	/* Specs say to write ones most of the time, even when the card
126 	 * has no need to read its input data; and many cards won't care.
127 	 * This is our source of those ones.
128 	 */
129 	void			*ones;
130 };
131 
132 
133 /****************************************************************************/
134 
135 /*
136  * MMC-over-SPI protocol glue, used by the MMC stack interface
137  */
138 
mmc_cs_off(struct mmc_spi_host * host)139 static inline int mmc_cs_off(struct mmc_spi_host *host)
140 {
141 	/* chipselect will always be inactive after setup() */
142 	return spi_setup(host->spi);
143 }
144 
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned int len)145 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146 {
147 	if (len > sizeof(*host->data)) {
148 		WARN_ON(1);
149 		return -EIO;
150 	}
151 
152 	host->status.len = len;
153 
154 	return spi_sync_locked(host->spi, &host->readback);
155 }
156 
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)157 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158 			unsigned n, u8 byte)
159 {
160 	u8 *cp = host->data->status;
161 	unsigned long start = jiffies;
162 
163 	do {
164 		int		status;
165 		unsigned	i;
166 
167 		status = mmc_spi_readbytes(host, n);
168 		if (status < 0)
169 			return status;
170 
171 		for (i = 0; i < n; i++) {
172 			if (cp[i] != byte)
173 				return cp[i];
174 		}
175 
176 		/* If we need long timeouts, we may release the CPU */
177 		cond_resched();
178 	} while (time_is_after_jiffies(start + timeout));
179 	return -ETIMEDOUT;
180 }
181 
182 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)183 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
184 {
185 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
186 }
187 
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)188 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
189 {
190 	return mmc_spi_skip(host, timeout, 1, 0xff);
191 }
192 
193 
194 /*
195  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
196  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
197  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198  *
199  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
200  * newer cards R7 (IF_COND).
201  */
202 
maptype(struct mmc_command * cmd)203 static char *maptype(struct mmc_command *cmd)
204 {
205 	switch (mmc_spi_resp_type(cmd)) {
206 	case MMC_RSP_SPI_R1:	return "R1";
207 	case MMC_RSP_SPI_R1B:	return "R1B";
208 	case MMC_RSP_SPI_R2:	return "R2/R5";
209 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
210 	default:		return "?";
211 	}
212 }
213 
214 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)215 static int mmc_spi_response_get(struct mmc_spi_host *host,
216 		struct mmc_command *cmd, int cs_on)
217 {
218 	unsigned long timeout_ms;
219 	u8	*cp = host->data->status;
220 	u8	*end = cp + host->t.len;
221 	int	value = 0;
222 	int	bitshift;
223 	u8 	leftover = 0;
224 	unsigned short rotator;
225 	int 	i;
226 	char	tag[32];
227 
228 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
229 		cmd->opcode, maptype(cmd));
230 
231 	/* Except for data block reads, the whole response will already
232 	 * be stored in the scratch buffer.  It's somewhere after the
233 	 * command and the first byte we read after it.  We ignore that
234 	 * first byte.  After STOP_TRANSMISSION command it may include
235 	 * two data bits, but otherwise it's all ones.
236 	 */
237 	cp += 8;
238 	while (cp < end && *cp == 0xff)
239 		cp++;
240 
241 	/* Data block reads (R1 response types) may need more data... */
242 	if (cp == end) {
243 		cp = host->data->status;
244 		end = cp+1;
245 
246 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
247 		 * status byte ... and we already scanned 2 bytes.
248 		 *
249 		 * REVISIT block read paths use nasty byte-at-a-time I/O
250 		 * so it can always DMA directly into the target buffer.
251 		 * It'd probably be better to memcpy() the first chunk and
252 		 * avoid extra i/o calls...
253 		 *
254 		 * Note we check for more than 8 bytes, because in practice,
255 		 * some SD cards are slow...
256 		 */
257 		for (i = 2; i < 16; i++) {
258 			value = mmc_spi_readbytes(host, 1);
259 			if (value < 0)
260 				goto done;
261 			if (*cp != 0xff)
262 				goto checkstatus;
263 		}
264 		value = -ETIMEDOUT;
265 		goto done;
266 	}
267 
268 checkstatus:
269 	bitshift = 0;
270 	if (*cp & 0x80)	{
271 		/* Houston, we have an ugly card with a bit-shifted response */
272 		rotator = *cp++ << 8;
273 		/* read the next byte */
274 		if (cp == end) {
275 			value = mmc_spi_readbytes(host, 1);
276 			if (value < 0)
277 				goto done;
278 			cp = host->data->status;
279 			end = cp+1;
280 		}
281 		rotator |= *cp++;
282 		while (rotator & 0x8000) {
283 			bitshift++;
284 			rotator <<= 1;
285 		}
286 		cmd->resp[0] = rotator >> 8;
287 		leftover = rotator;
288 	} else {
289 		cmd->resp[0] = *cp++;
290 	}
291 	cmd->error = 0;
292 
293 	/* Status byte: the entire seven-bit R1 response.  */
294 	if (cmd->resp[0] != 0) {
295 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
296 				& cmd->resp[0])
297 			value = -EFAULT; /* Bad address */
298 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
299 			value = -ENOSYS; /* Function not implemented */
300 		else if (R1_SPI_COM_CRC & cmd->resp[0])
301 			value = -EILSEQ; /* Illegal byte sequence */
302 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
303 				& cmd->resp[0])
304 			value = -EIO;    /* I/O error */
305 		/* else R1_SPI_IDLE, "it's resetting" */
306 	}
307 
308 	switch (mmc_spi_resp_type(cmd)) {
309 
310 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
311 	 * and less-common stuff like various erase operations.
312 	 */
313 	case MMC_RSP_SPI_R1B:
314 		/* maybe we read all the busy tokens already */
315 		while (cp < end && *cp == 0)
316 			cp++;
317 		if (cp == end) {
318 			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
319 				MMC_SPI_R1B_TIMEOUT_MS;
320 			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
321 		}
322 		break;
323 
324 	/* SPI R2 == R1 + second status byte; SEND_STATUS
325 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
326 	 */
327 	case MMC_RSP_SPI_R2:
328 		/* read the next byte */
329 		if (cp == end) {
330 			value = mmc_spi_readbytes(host, 1);
331 			if (value < 0)
332 				goto done;
333 			cp = host->data->status;
334 			end = cp+1;
335 		}
336 		if (bitshift) {
337 			rotator = leftover << 8;
338 			rotator |= *cp << bitshift;
339 			cmd->resp[0] |= (rotator & 0xFF00);
340 		} else {
341 			cmd->resp[0] |= *cp << 8;
342 		}
343 		break;
344 
345 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
346 	case MMC_RSP_SPI_R3:
347 		rotator = leftover << 8;
348 		cmd->resp[1] = 0;
349 		for (i = 0; i < 4; i++) {
350 			cmd->resp[1] <<= 8;
351 			/* read the next byte */
352 			if (cp == end) {
353 				value = mmc_spi_readbytes(host, 1);
354 				if (value < 0)
355 					goto done;
356 				cp = host->data->status;
357 				end = cp+1;
358 			}
359 			if (bitshift) {
360 				rotator |= *cp++ << bitshift;
361 				cmd->resp[1] |= (rotator >> 8);
362 				rotator <<= 8;
363 			} else {
364 				cmd->resp[1] |= *cp++;
365 			}
366 		}
367 		break;
368 
369 	/* SPI R1 == just one status byte */
370 	case MMC_RSP_SPI_R1:
371 		break;
372 
373 	default:
374 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
375 			mmc_spi_resp_type(cmd));
376 		if (value >= 0)
377 			value = -EINVAL;
378 		goto done;
379 	}
380 
381 	if (value < 0)
382 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
383 			tag, cmd->resp[0], cmd->resp[1]);
384 
385 	/* disable chipselect on errors and some success cases */
386 	if (value >= 0 && cs_on)
387 		return value;
388 done:
389 	if (value < 0)
390 		cmd->error = value;
391 	mmc_cs_off(host);
392 	return value;
393 }
394 
395 /* Issue command and read its response.
396  * Returns zero on success, negative for error.
397  *
398  * On error, caller must cope with mmc core retry mechanism.  That
399  * means immediate low-level resubmit, which affects the bus lock...
400  */
401 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)402 mmc_spi_command_send(struct mmc_spi_host *host,
403 		struct mmc_request *mrq,
404 		struct mmc_command *cmd, int cs_on)
405 {
406 	struct scratch		*data = host->data;
407 	u8			*cp = data->status;
408 	int			status;
409 	struct spi_transfer	*t;
410 
411 	/* We can handle most commands (except block reads) in one full
412 	 * duplex I/O operation before either starting the next transfer
413 	 * (data block or command) or else deselecting the card.
414 	 *
415 	 * First, write 7 bytes:
416 	 *  - an all-ones byte to ensure the card is ready
417 	 *  - opcode byte (plus start and transmission bits)
418 	 *  - four bytes of big-endian argument
419 	 *  - crc7 (plus end bit) ... always computed, it's cheap
420 	 *
421 	 * We init the whole buffer to all-ones, which is what we need
422 	 * to write while we're reading (later) response data.
423 	 */
424 	memset(cp, 0xff, sizeof(data->status));
425 
426 	cp[1] = 0x40 | cmd->opcode;
427 	put_unaligned_be32(cmd->arg, cp + 2);
428 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
429 	cp += 7;
430 
431 	/* Then, read up to 13 bytes (while writing all-ones):
432 	 *  - N(CR) (== 1..8) bytes of all-ones
433 	 *  - status byte (for all response types)
434 	 *  - the rest of the response, either:
435 	 *      + nothing, for R1 or R1B responses
436 	 *	+ second status byte, for R2 responses
437 	 *	+ four data bytes, for R3 and R7 responses
438 	 *
439 	 * Finally, read some more bytes ... in the nice cases we know in
440 	 * advance how many, and reading 1 more is always OK:
441 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
442 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
443 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
444 	 *
445 	 * So in those cases one full duplex I/O of at most 21 bytes will
446 	 * handle the whole command, leaving the card ready to receive a
447 	 * data block or new command.  We do that whenever we can, shaving
448 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
449 	 *
450 	 * There are two other cases, where it's not generally practical
451 	 * to rely on a single I/O:
452 	 *
453 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
454 	 *
455 	 *    In this case we can *try* to fit it into one I/O, then
456 	 *    maybe read more data later.
457 	 *
458 	 *  - Data block reads are more troublesome, since a variable
459 	 *    number of padding bytes precede the token and data.
460 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
461 	 *      + N(AC) (== 1..many) bytes of all-ones
462 	 *
463 	 *    In this case we currently only have minimal speedups here:
464 	 *    when N(CR) == 1 we can avoid I/O in response_get().
465 	 */
466 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
467 		cp += 2;	/* min(N(CR)) + status */
468 		/* R1 */
469 	} else {
470 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
471 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
472 			cp++;
473 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
474 			cp += 4;
475 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
476 			cp = data->status + sizeof(data->status);
477 		/* else:  R1 (most commands) */
478 	}
479 
480 	dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
481 		cmd->opcode, maptype(cmd));
482 
483 	/* send command, leaving chipselect active */
484 	spi_message_init(&host->m);
485 
486 	t = &host->t;
487 	memset(t, 0, sizeof(*t));
488 	t->tx_buf = t->rx_buf = data->status;
489 	t->len = cp - data->status;
490 	t->cs_change = 1;
491 	spi_message_add_tail(t, &host->m);
492 
493 	status = spi_sync_locked(host->spi, &host->m);
494 	if (status < 0) {
495 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
496 		cmd->error = status;
497 		return status;
498 	}
499 
500 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
501 	return mmc_spi_response_get(host, cmd, cs_on);
502 }
503 
504 /* Build data message with up to four separate transfers.  For TX, we
505  * start by writing the data token.  And in most cases, we finish with
506  * a status transfer.
507  *
508  * We always provide TX data for data and CRC.  The MMC/SD protocol
509  * requires us to write ones; but Linux defaults to writing zeroes;
510  * so we explicitly initialize it to all ones on RX paths.
511  */
512 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,int multiple,enum dma_data_direction direction)513 mmc_spi_setup_data_message(
514 	struct mmc_spi_host	*host,
515 	int			multiple,
516 	enum dma_data_direction	direction)
517 {
518 	struct spi_transfer	*t;
519 	struct scratch		*scratch = host->data;
520 
521 	spi_message_init(&host->m);
522 
523 	/* for reads, readblock() skips 0xff bytes before finding
524 	 * the token; for writes, this transfer issues that token.
525 	 */
526 	if (direction == DMA_TO_DEVICE) {
527 		t = &host->token;
528 		memset(t, 0, sizeof(*t));
529 		t->len = 1;
530 		if (multiple)
531 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
532 		else
533 			scratch->data_token = SPI_TOKEN_SINGLE;
534 		t->tx_buf = &scratch->data_token;
535 		spi_message_add_tail(t, &host->m);
536 	}
537 
538 	/* Body of transfer is buffer, then CRC ...
539 	 * either TX-only, or RX with TX-ones.
540 	 */
541 	t = &host->t;
542 	memset(t, 0, sizeof(*t));
543 	t->tx_buf = host->ones;
544 	/* length and actual buffer info are written later */
545 	spi_message_add_tail(t, &host->m);
546 
547 	t = &host->crc;
548 	memset(t, 0, sizeof(*t));
549 	t->len = 2;
550 	if (direction == DMA_TO_DEVICE) {
551 		/* the actual CRC may get written later */
552 		t->tx_buf = &scratch->crc_val;
553 	} else {
554 		t->tx_buf = host->ones;
555 		t->rx_buf = &scratch->crc_val;
556 	}
557 	spi_message_add_tail(t, &host->m);
558 
559 	/*
560 	 * A single block read is followed by N(EC) [0+] all-ones bytes
561 	 * before deselect ... don't bother.
562 	 *
563 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
564 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
565 	 * collect that single byte, so readblock() doesn't need to.
566 	 *
567 	 * For a write, the one-byte data response follows immediately, then
568 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
569 	 * Then single block reads may deselect, and multiblock ones issue
570 	 * the next token (next data block, or STOP_TRAN).  We can try to
571 	 * minimize I/O ops by using a single read to collect end-of-busy.
572 	 */
573 	if (multiple || direction == DMA_TO_DEVICE) {
574 		t = &host->early_status;
575 		memset(t, 0, sizeof(*t));
576 		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
577 		t->tx_buf = host->ones;
578 		t->rx_buf = scratch->status;
579 		t->cs_change = 1;
580 		spi_message_add_tail(t, &host->m);
581 	}
582 }
583 
584 /*
585  * Write one block:
586  *  - caller handled preceding N(WR) [1+] all-ones bytes
587  *  - data block
588  *	+ token
589  *	+ data bytes
590  *	+ crc16
591  *  - an all-ones byte ... card writes a data-response byte
592  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
593  *
594  * Return negative errno, else success.
595  */
596 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)597 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
598 	unsigned long timeout)
599 {
600 	struct spi_device	*spi = host->spi;
601 	int			status, i;
602 	struct scratch		*scratch = host->data;
603 	u32			pattern;
604 
605 	if (host->mmc->use_spi_crc)
606 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
607 
608 	status = spi_sync_locked(spi, &host->m);
609 	if (status != 0) {
610 		dev_dbg(&spi->dev, "write error (%d)\n", status);
611 		return status;
612 	}
613 
614 	/*
615 	 * Get the transmission data-response reply.  It must follow
616 	 * immediately after the data block we transferred.  This reply
617 	 * doesn't necessarily tell whether the write operation succeeded;
618 	 * it just says if the transmission was ok and whether *earlier*
619 	 * writes succeeded; see the standard.
620 	 *
621 	 * In practice, there are (even modern SDHC-)cards which are late
622 	 * in sending the response, and miss the time frame by a few bits,
623 	 * so we have to cope with this situation and check the response
624 	 * bit-by-bit. Arggh!!!
625 	 */
626 	pattern = get_unaligned_be32(scratch->status);
627 
628 	/* First 3 bit of pattern are undefined */
629 	pattern |= 0xE0000000;
630 
631 	/* left-adjust to leading 0 bit */
632 	while (pattern & 0x80000000)
633 		pattern <<= 1;
634 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
635 	pattern >>= 27;
636 
637 	switch (pattern) {
638 	case SPI_RESPONSE_ACCEPTED:
639 		status = 0;
640 		break;
641 	case SPI_RESPONSE_CRC_ERR:
642 		/* host shall then issue MMC_STOP_TRANSMISSION */
643 		status = -EILSEQ;
644 		break;
645 	case SPI_RESPONSE_WRITE_ERR:
646 		/* host shall then issue MMC_STOP_TRANSMISSION,
647 		 * and should MMC_SEND_STATUS to sort it out
648 		 */
649 		status = -EIO;
650 		break;
651 	default:
652 		status = -EPROTO;
653 		break;
654 	}
655 	if (status != 0) {
656 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
657 			scratch->status[0], status);
658 		return status;
659 	}
660 
661 	t->tx_buf += t->len;
662 
663 	/* Return when not busy.  If we didn't collect that status yet,
664 	 * we'll need some more I/O.
665 	 */
666 	for (i = 4; i < sizeof(scratch->status); i++) {
667 		/* card is non-busy if the most recent bit is 1 */
668 		if (scratch->status[i] & 0x01)
669 			return 0;
670 	}
671 	return mmc_spi_wait_unbusy(host, timeout);
672 }
673 
674 /*
675  * Read one block:
676  *  - skip leading all-ones bytes ... either
677  *      + N(AC) [1..f(clock,CSD)] usually, else
678  *      + N(CX) [0..8] when reading CSD or CID
679  *  - data block
680  *	+ token ... if error token, no data or crc
681  *	+ data bytes
682  *	+ crc16
683  *
684  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
685  * before dropping chipselect.
686  *
687  * For multiblock reads, caller either reads the next block or issues a
688  * STOP_TRANSMISSION command.
689  */
690 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)691 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
692 	unsigned long timeout)
693 {
694 	struct spi_device	*spi = host->spi;
695 	int			status;
696 	struct scratch		*scratch = host->data;
697 	unsigned int 		bitshift;
698 	u8			leftover;
699 
700 	/* At least one SD card sends an all-zeroes byte when N(CX)
701 	 * applies, before the all-ones bytes ... just cope with that.
702 	 */
703 	status = mmc_spi_readbytes(host, 1);
704 	if (status < 0)
705 		return status;
706 	status = scratch->status[0];
707 	if (status == 0xff || status == 0)
708 		status = mmc_spi_readtoken(host, timeout);
709 
710 	if (status < 0) {
711 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
712 		return status;
713 	}
714 
715 	/* The token may be bit-shifted...
716 	 * the first 0-bit precedes the data stream.
717 	 */
718 	bitshift = 7;
719 	while (status & 0x80) {
720 		status <<= 1;
721 		bitshift--;
722 	}
723 	leftover = status << 1;
724 
725 	status = spi_sync_locked(spi, &host->m);
726 	if (status < 0) {
727 		dev_dbg(&spi->dev, "read error %d\n", status);
728 		return status;
729 	}
730 
731 	if (bitshift) {
732 		/* Walk through the data and the crc and do
733 		 * all the magic to get byte-aligned data.
734 		 */
735 		u8 *cp = t->rx_buf;
736 		unsigned int len;
737 		unsigned int bitright = 8 - bitshift;
738 		u8 temp;
739 		for (len = t->len; len; len--) {
740 			temp = *cp;
741 			*cp++ = leftover | (temp >> bitshift);
742 			leftover = temp << bitright;
743 		}
744 		cp = (u8 *) &scratch->crc_val;
745 		temp = *cp;
746 		*cp++ = leftover | (temp >> bitshift);
747 		leftover = temp << bitright;
748 		temp = *cp;
749 		*cp = leftover | (temp >> bitshift);
750 	}
751 
752 	if (host->mmc->use_spi_crc) {
753 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
754 
755 		be16_to_cpus(&scratch->crc_val);
756 		if (scratch->crc_val != crc) {
757 			dev_dbg(&spi->dev,
758 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
759 				scratch->crc_val, crc, t->len);
760 			return -EILSEQ;
761 		}
762 	}
763 
764 	t->rx_buf += t->len;
765 
766 	return 0;
767 }
768 
769 /*
770  * An MMC/SD data stage includes one or more blocks, optional CRCs,
771  * and inline handshaking.  That handhaking makes it unlike most
772  * other SPI protocol stacks.
773  */
774 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)775 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
776 		struct mmc_data *data, u32 blk_size)
777 {
778 	struct spi_device	*spi = host->spi;
779 	struct spi_transfer	*t;
780 	enum dma_data_direction	direction;
781 	struct scatterlist	*sg;
782 	unsigned		n_sg;
783 	int			multiple = (data->blocks > 1);
784 	u32			clock_rate;
785 	unsigned long		timeout;
786 
787 	direction = mmc_get_dma_dir(data);
788 	mmc_spi_setup_data_message(host, multiple, direction);
789 	t = &host->t;
790 
791 	if (t->speed_hz)
792 		clock_rate = t->speed_hz;
793 	else
794 		clock_rate = spi->max_speed_hz;
795 
796 	timeout = data->timeout_ns / 1000 +
797 		  data->timeout_clks * 1000000 / clock_rate;
798 	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
799 
800 	/* Handle scatterlist segments one at a time, with synch for
801 	 * each 512-byte block
802 	 */
803 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
804 		int			status = 0;
805 		void			*kmap_addr;
806 		unsigned		length = sg->length;
807 
808 		/* allow pio too; we don't allow highmem */
809 		kmap_addr = kmap(sg_page(sg));
810 		if (direction == DMA_TO_DEVICE)
811 			t->tx_buf = kmap_addr + sg->offset;
812 		else
813 			t->rx_buf = kmap_addr + sg->offset;
814 
815 		/* transfer each block, and update request status */
816 		while (length) {
817 			t->len = min(length, blk_size);
818 
819 			dev_dbg(&host->spi->dev, "    %s block, %d bytes\n",
820 				(direction == DMA_TO_DEVICE) ? "write" : "read",
821 				t->len);
822 
823 			if (direction == DMA_TO_DEVICE)
824 				status = mmc_spi_writeblock(host, t, timeout);
825 			else
826 				status = mmc_spi_readblock(host, t, timeout);
827 			if (status < 0)
828 				break;
829 
830 			data->bytes_xfered += t->len;
831 			length -= t->len;
832 
833 			if (!multiple)
834 				break;
835 		}
836 
837 		/* discard mappings */
838 		if (direction == DMA_FROM_DEVICE)
839 			flush_dcache_page(sg_page(sg));
840 		kunmap(sg_page(sg));
841 
842 		if (status < 0) {
843 			data->error = status;
844 			dev_dbg(&spi->dev, "%s status %d\n",
845 				(direction == DMA_TO_DEVICE) ? "write" : "read",
846 				status);
847 			break;
848 		}
849 	}
850 
851 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
852 	 * can be issued before multiblock writes.  Unlike its more widely
853 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
854 	 * that can affect the STOP_TRAN logic.   Complete (and current)
855 	 * MMC specs should sort that out before Linux starts using CMD23.
856 	 */
857 	if (direction == DMA_TO_DEVICE && multiple) {
858 		struct scratch	*scratch = host->data;
859 		int		tmp;
860 		const unsigned	statlen = sizeof(scratch->status);
861 
862 		dev_dbg(&spi->dev, "    STOP_TRAN\n");
863 
864 		/* Tweak the per-block message we set up earlier by morphing
865 		 * it to hold single buffer with the token followed by some
866 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
867 		 * "not busy any longer" status, and leave chip selected.
868 		 */
869 		INIT_LIST_HEAD(&host->m.transfers);
870 		list_add(&host->early_status.transfer_list,
871 				&host->m.transfers);
872 
873 		memset(scratch->status, 0xff, statlen);
874 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
875 
876 		host->early_status.tx_buf = host->early_status.rx_buf;
877 		host->early_status.len = statlen;
878 
879 		tmp = spi_sync_locked(spi, &host->m);
880 		if (tmp < 0) {
881 			if (!data->error)
882 				data->error = tmp;
883 			return;
884 		}
885 
886 		/* Ideally we collected "not busy" status with one I/O,
887 		 * avoiding wasteful byte-at-a-time scanning... but more
888 		 * I/O is often needed.
889 		 */
890 		for (tmp = 2; tmp < statlen; tmp++) {
891 			if (scratch->status[tmp] != 0)
892 				return;
893 		}
894 		tmp = mmc_spi_wait_unbusy(host, timeout);
895 		if (tmp < 0 && !data->error)
896 			data->error = tmp;
897 	}
898 }
899 
900 /****************************************************************************/
901 
902 /*
903  * MMC driver implementation -- the interface to the MMC stack
904  */
905 
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)906 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
907 {
908 	struct mmc_spi_host	*host = mmc_priv(mmc);
909 	int			status = -EINVAL;
910 	int			crc_retry = 5;
911 	struct mmc_command	stop;
912 
913 #ifdef DEBUG
914 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
915 	{
916 		struct mmc_command	*cmd;
917 		int			invalid = 0;
918 
919 		cmd = mrq->cmd;
920 		if (!mmc_spi_resp_type(cmd)) {
921 			dev_dbg(&host->spi->dev, "bogus command\n");
922 			cmd->error = -EINVAL;
923 			invalid = 1;
924 		}
925 
926 		cmd = mrq->stop;
927 		if (cmd && !mmc_spi_resp_type(cmd)) {
928 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
929 			cmd->error = -EINVAL;
930 			invalid = 1;
931 		}
932 
933 		if (invalid) {
934 			dump_stack();
935 			mmc_request_done(host->mmc, mrq);
936 			return;
937 		}
938 	}
939 #endif
940 
941 	/* request exclusive bus access */
942 	spi_bus_lock(host->spi->master);
943 
944 crc_recover:
945 	/* issue command; then optionally data and stop */
946 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
947 	if (status == 0 && mrq->data) {
948 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
949 
950 		/*
951 		 * The SPI bus is not always reliable for large data transfers.
952 		 * If an occasional crc error is reported by the SD device with
953 		 * data read/write over SPI, it may be recovered by repeating
954 		 * the last SD command again. The retry count is set to 5 to
955 		 * ensure the driver passes stress tests.
956 		 */
957 		if (mrq->data->error == -EILSEQ && crc_retry) {
958 			stop.opcode = MMC_STOP_TRANSMISSION;
959 			stop.arg = 0;
960 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
961 			status = mmc_spi_command_send(host, mrq, &stop, 0);
962 			crc_retry--;
963 			mrq->data->error = 0;
964 			goto crc_recover;
965 		}
966 
967 		if (mrq->stop)
968 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
969 		else
970 			mmc_cs_off(host);
971 	}
972 
973 	/* release the bus */
974 	spi_bus_unlock(host->spi->master);
975 
976 	mmc_request_done(host->mmc, mrq);
977 }
978 
979 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
980  *
981  * NOTE that here we can't know that the card has just been powered up;
982  * not all MMC/SD sockets support power switching.
983  *
984  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
985  * this doesn't seem to do the right thing at all...
986  */
mmc_spi_initsequence(struct mmc_spi_host * host)987 static void mmc_spi_initsequence(struct mmc_spi_host *host)
988 {
989 	/* Try to be very sure any previous command has completed;
990 	 * wait till not-busy, skip debris from any old commands.
991 	 */
992 	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
993 	mmc_spi_readbytes(host, 10);
994 
995 	/*
996 	 * Do a burst with chipselect active-high.  We need to do this to
997 	 * meet the requirement of 74 clock cycles with both chipselect
998 	 * and CMD (MOSI) high before CMD0 ... after the card has been
999 	 * powered up to Vdd(min), and so is ready to take commands.
1000 	 *
1001 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1002 	 * while most others don't seem to care.
1003 	 *
1004 	 * Note that this is one of the places MMC/SD plays games with the
1005 	 * SPI protocol.  Another is that when chipselect is released while
1006 	 * the card returns BUSY status, the clock must issue several cycles
1007 	 * with chipselect high before the card will stop driving its output.
1008 	 *
1009 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1010 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1011 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1012 	 * we should toggle the default with an XOR as we do here.
1013 	 */
1014 	host->spi->mode ^= SPI_CS_HIGH;
1015 	if (spi_setup(host->spi) != 0) {
1016 		/* Just warn; most cards work without it. */
1017 		dev_warn(&host->spi->dev,
1018 				"can't change chip-select polarity\n");
1019 		host->spi->mode ^= SPI_CS_HIGH;
1020 	} else {
1021 		mmc_spi_readbytes(host, 18);
1022 
1023 		host->spi->mode ^= SPI_CS_HIGH;
1024 		if (spi_setup(host->spi) != 0) {
1025 			/* Wot, we can't get the same setup we had before? */
1026 			dev_err(&host->spi->dev,
1027 					"can't restore chip-select polarity\n");
1028 		}
1029 	}
1030 }
1031 
mmc_powerstring(u8 power_mode)1032 static char *mmc_powerstring(u8 power_mode)
1033 {
1034 	switch (power_mode) {
1035 	case MMC_POWER_OFF: return "off";
1036 	case MMC_POWER_UP:  return "up";
1037 	case MMC_POWER_ON:  return "on";
1038 	}
1039 	return "?";
1040 }
1041 
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1042 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1043 {
1044 	struct mmc_spi_host *host = mmc_priv(mmc);
1045 
1046 	if (host->power_mode != ios->power_mode) {
1047 		int		canpower;
1048 
1049 		canpower = host->pdata && host->pdata->setpower;
1050 
1051 		dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1052 				mmc_powerstring(ios->power_mode),
1053 				ios->vdd,
1054 				canpower ? ", can switch" : "");
1055 
1056 		/* switch power on/off if possible, accounting for
1057 		 * max 250msec powerup time if needed.
1058 		 */
1059 		if (canpower) {
1060 			switch (ios->power_mode) {
1061 			case MMC_POWER_OFF:
1062 			case MMC_POWER_UP:
1063 				host->pdata->setpower(&host->spi->dev,
1064 						ios->vdd);
1065 				if (ios->power_mode == MMC_POWER_UP)
1066 					msleep(host->powerup_msecs);
1067 			}
1068 		}
1069 
1070 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1071 		if (ios->power_mode == MMC_POWER_ON)
1072 			mmc_spi_initsequence(host);
1073 
1074 		/* If powering down, ground all card inputs to avoid power
1075 		 * delivery from data lines!  On a shared SPI bus, this
1076 		 * will probably be temporary; 6.4.2 of the simplified SD
1077 		 * spec says this must last at least 1msec.
1078 		 *
1079 		 *   - Clock low means CPOL 0, e.g. mode 0
1080 		 *   - MOSI low comes from writing zero
1081 		 *   - Chipselect is usually active low...
1082 		 */
1083 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1084 			int mres;
1085 			u8 nullbyte = 0;
1086 
1087 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1088 			mres = spi_setup(host->spi);
1089 			if (mres < 0)
1090 				dev_dbg(&host->spi->dev,
1091 					"switch to SPI mode 0 failed\n");
1092 
1093 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1094 				dev_dbg(&host->spi->dev,
1095 					"put spi signals to low failed\n");
1096 
1097 			/*
1098 			 * Now clock should be low due to spi mode 0;
1099 			 * MOSI should be low because of written 0x00;
1100 			 * chipselect should be low (it is active low)
1101 			 * power supply is off, so now MMC is off too!
1102 			 *
1103 			 * FIXME no, chipselect can be high since the
1104 			 * device is inactive and SPI_CS_HIGH is clear...
1105 			 */
1106 			msleep(10);
1107 			if (mres == 0) {
1108 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1109 				mres = spi_setup(host->spi);
1110 				if (mres < 0)
1111 					dev_dbg(&host->spi->dev,
1112 						"switch back to SPI mode 3 failed\n");
1113 			}
1114 		}
1115 
1116 		host->power_mode = ios->power_mode;
1117 	}
1118 
1119 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1120 		int		status;
1121 
1122 		host->spi->max_speed_hz = ios->clock;
1123 		status = spi_setup(host->spi);
1124 		dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
1125 			host->spi->max_speed_hz, status);
1126 	}
1127 }
1128 
1129 static const struct mmc_host_ops mmc_spi_ops = {
1130 	.request	= mmc_spi_request,
1131 	.set_ios	= mmc_spi_set_ios,
1132 	.get_ro		= mmc_gpio_get_ro,
1133 	.get_cd		= mmc_gpio_get_cd,
1134 };
1135 
1136 
1137 /****************************************************************************/
1138 
1139 /*
1140  * SPI driver implementation
1141  */
1142 
1143 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1144 mmc_spi_detect_irq(int irq, void *mmc)
1145 {
1146 	struct mmc_spi_host *host = mmc_priv(mmc);
1147 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1148 
1149 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1150 	return IRQ_HANDLED;
1151 }
1152 
mmc_spi_probe(struct spi_device * spi)1153 static int mmc_spi_probe(struct spi_device *spi)
1154 {
1155 	void			*ones;
1156 	struct mmc_host		*mmc;
1157 	struct mmc_spi_host	*host;
1158 	int			status;
1159 	bool			has_ro = false;
1160 
1161 	/* We rely on full duplex transfers, mostly to reduce
1162 	 * per-transfer overheads (by making fewer transfers).
1163 	 */
1164 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1165 		return -EINVAL;
1166 
1167 	/* MMC and SD specs only seem to care that sampling is on the
1168 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1169 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1170 	 * which is appropriate for hotplugging, unless the platform data
1171 	 * specify mode 3 (if hardware is not compatible to mode 0).
1172 	 */
1173 	if (spi->mode != SPI_MODE_3)
1174 		spi->mode = SPI_MODE_0;
1175 	spi->bits_per_word = 8;
1176 
1177 	status = spi_setup(spi);
1178 	if (status < 0) {
1179 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1180 				spi->mode, spi->max_speed_hz / 1000,
1181 				status);
1182 		return status;
1183 	}
1184 
1185 	/* We need a supply of ones to transmit.  This is the only time
1186 	 * the CPU touches these, so cache coherency isn't a concern.
1187 	 *
1188 	 * NOTE if many systems use more than one MMC-over-SPI connector
1189 	 * it'd save some memory to share this.  That's evidently rare.
1190 	 */
1191 	status = -ENOMEM;
1192 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1193 	if (!ones)
1194 		goto nomem;
1195 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1196 
1197 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1198 	if (!mmc)
1199 		goto nomem;
1200 
1201 	mmc->ops = &mmc_spi_ops;
1202 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1203 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1204 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1205 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1206 
1207 	mmc->caps = MMC_CAP_SPI;
1208 
1209 	/* SPI doesn't need the lowspeed device identification thing for
1210 	 * MMC or SD cards, since it never comes up in open drain mode.
1211 	 * That's good; some SPI masters can't handle very low speeds!
1212 	 *
1213 	 * However, low speed SDIO cards need not handle over 400 KHz;
1214 	 * that's the only reason not to use a few MHz for f_min (until
1215 	 * the upper layer reads the target frequency from the CSD).
1216 	 */
1217 	mmc->f_min = 400000;
1218 	mmc->f_max = spi->max_speed_hz;
1219 
1220 	host = mmc_priv(mmc);
1221 	host->mmc = mmc;
1222 	host->spi = spi;
1223 
1224 	host->ones = ones;
1225 
1226 	dev_set_drvdata(&spi->dev, mmc);
1227 
1228 	/* Platform data is used to hook up things like card sensing
1229 	 * and power switching gpios.
1230 	 */
1231 	host->pdata = mmc_spi_get_pdata(spi);
1232 	if (host->pdata)
1233 		mmc->ocr_avail = host->pdata->ocr_mask;
1234 	if (!mmc->ocr_avail) {
1235 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1236 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1237 	}
1238 	if (host->pdata && host->pdata->setpower) {
1239 		host->powerup_msecs = host->pdata->powerup_msecs;
1240 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1241 			host->powerup_msecs = 250;
1242 	}
1243 
1244 	/* Preallocate buffers */
1245 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1246 	if (!host->data)
1247 		goto fail_nobuf1;
1248 
1249 	/* setup message for status/busy readback */
1250 	spi_message_init(&host->readback);
1251 
1252 	spi_message_add_tail(&host->status, &host->readback);
1253 	host->status.tx_buf = host->ones;
1254 	host->status.rx_buf = &host->data->status;
1255 	host->status.cs_change = 1;
1256 
1257 	/* register card detect irq */
1258 	if (host->pdata && host->pdata->init) {
1259 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1260 		if (status != 0)
1261 			goto fail_glue_init;
1262 	}
1263 
1264 	/* pass platform capabilities, if any */
1265 	if (host->pdata) {
1266 		mmc->caps |= host->pdata->caps;
1267 		mmc->caps2 |= host->pdata->caps2;
1268 	}
1269 
1270 	status = mmc_add_host(mmc);
1271 	if (status != 0)
1272 		goto fail_glue_init;
1273 
1274 	/*
1275 	 * Index 0 is card detect
1276 	 * Old boardfiles were specifying 1 ms as debounce
1277 	 */
1278 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1279 	if (status == -EPROBE_DEFER)
1280 		goto fail_gpiod_request;
1281 	if (!status) {
1282 		/*
1283 		 * The platform has a CD GPIO signal that may support
1284 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1285 		 * if polling is needed or not.
1286 		 */
1287 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1288 		mmc_gpiod_request_cd_irq(mmc);
1289 	}
1290 	mmc_detect_change(mmc, 0);
1291 
1292 	/* Index 1 is write protect/read only */
1293 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1294 	if (status == -EPROBE_DEFER)
1295 		goto fail_gpiod_request;
1296 	if (!status)
1297 		has_ro = true;
1298 
1299 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1300 			dev_name(&mmc->class_dev),
1301 			has_ro ? "" : ", no WP",
1302 			(host->pdata && host->pdata->setpower)
1303 				? "" : ", no poweroff",
1304 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1305 				? ", cd polling" : "");
1306 	return 0;
1307 
1308 fail_gpiod_request:
1309 	mmc_remove_host(mmc);
1310 fail_glue_init:
1311 	kfree(host->data);
1312 fail_nobuf1:
1313 	mmc_spi_put_pdata(spi);
1314 	mmc_free_host(mmc);
1315 nomem:
1316 	kfree(ones);
1317 	return status;
1318 }
1319 
1320 
mmc_spi_remove(struct spi_device * spi)1321 static int mmc_spi_remove(struct spi_device *spi)
1322 {
1323 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1324 	struct mmc_spi_host	*host = mmc_priv(mmc);
1325 
1326 	/* prevent new mmc_detect_change() calls */
1327 	if (host->pdata && host->pdata->exit)
1328 		host->pdata->exit(&spi->dev, mmc);
1329 
1330 	mmc_remove_host(mmc);
1331 
1332 	kfree(host->data);
1333 	kfree(host->ones);
1334 
1335 	spi->max_speed_hz = mmc->f_max;
1336 	mmc_spi_put_pdata(spi);
1337 	mmc_free_host(mmc);
1338 	return 0;
1339 }
1340 
1341 static const struct spi_device_id mmc_spi_dev_ids[] = {
1342 	{ "mmc-spi-slot"},
1343 	{ },
1344 };
1345 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1346 
1347 static const struct of_device_id mmc_spi_of_match_table[] = {
1348 	{ .compatible = "mmc-spi-slot", },
1349 	{},
1350 };
1351 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1352 
1353 static struct spi_driver mmc_spi_driver = {
1354 	.driver = {
1355 		.name =		"mmc_spi",
1356 		.of_match_table = mmc_spi_of_match_table,
1357 	},
1358 	.id_table =	mmc_spi_dev_ids,
1359 	.probe =	mmc_spi_probe,
1360 	.remove =	mmc_spi_remove,
1361 };
1362 
1363 module_spi_driver(mmc_spi_driver);
1364 
1365 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1366 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1367 MODULE_LICENSE("GPL");
1368 MODULE_ALIAS("spi:mmc_spi");
1369