1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH FLCTL nand controller
4 *
5 * Copyright (c) 2008 Renesas Solutions Corp.
6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 *
8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
31
flctl_4secc_ooblayout_sp_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33 struct mtd_oob_region *oobregion)
34 {
35 struct nand_chip *chip = mtd_to_nand(mtd);
36
37 if (section)
38 return -ERANGE;
39
40 oobregion->offset = 0;
41 oobregion->length = chip->ecc.bytes;
42
43 return 0;
44 }
45
flctl_4secc_ooblayout_sp_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47 struct mtd_oob_region *oobregion)
48 {
49 if (section)
50 return -ERANGE;
51
52 oobregion->offset = 12;
53 oobregion->length = 4;
54
55 return 0;
56 }
57
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59 .ecc = flctl_4secc_ooblayout_sp_ecc,
60 .free = flctl_4secc_ooblayout_sp_free,
61 };
62
flctl_4secc_ooblayout_lp_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64 struct mtd_oob_region *oobregion)
65 {
66 struct nand_chip *chip = mtd_to_nand(mtd);
67
68 if (section >= chip->ecc.steps)
69 return -ERANGE;
70
71 oobregion->offset = (section * 16) + 6;
72 oobregion->length = chip->ecc.bytes;
73
74 return 0;
75 }
76
flctl_4secc_ooblayout_lp_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78 struct mtd_oob_region *oobregion)
79 {
80 struct nand_chip *chip = mtd_to_nand(mtd);
81
82 if (section >= chip->ecc.steps)
83 return -ERANGE;
84
85 oobregion->offset = section * 16;
86 oobregion->length = 6;
87
88 if (!section) {
89 oobregion->offset += 2;
90 oobregion->length -= 2;
91 }
92
93 return 0;
94 }
95
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97 .ecc = flctl_4secc_ooblayout_lp_ecc,
98 .free = flctl_4secc_ooblayout_lp_free,
99 };
100
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
102
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104 .offs = 11,
105 .len = 1,
106 .pattern = scan_ff_pattern,
107 };
108
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110 .offs = 0,
111 .len = 2,
112 .pattern = scan_ff_pattern,
113 };
114
empty_fifo(struct sh_flctl * flctl)115 static void empty_fifo(struct sh_flctl *flctl)
116 {
117 writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
119 }
120
start_translation(struct sh_flctl * flctl)121 static void start_translation(struct sh_flctl *flctl)
122 {
123 writeb(TRSTRT, FLTRCR(flctl));
124 }
125
timeout_error(struct sh_flctl * flctl,const char * str)126 static void timeout_error(struct sh_flctl *flctl, const char *str)
127 {
128 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
129 }
130
wait_completion(struct sh_flctl * flctl)131 static void wait_completion(struct sh_flctl *flctl)
132 {
133 uint32_t timeout = LOOP_TIMEOUT_MAX;
134
135 while (timeout--) {
136 if (readb(FLTRCR(flctl)) & TREND) {
137 writeb(0x0, FLTRCR(flctl));
138 return;
139 }
140 udelay(1);
141 }
142
143 timeout_error(flctl, __func__);
144 writeb(0x0, FLTRCR(flctl));
145 }
146
flctl_dma_complete(void * param)147 static void flctl_dma_complete(void *param)
148 {
149 struct sh_flctl *flctl = param;
150
151 complete(&flctl->dma_complete);
152 }
153
flctl_release_dma(struct sh_flctl * flctl)154 static void flctl_release_dma(struct sh_flctl *flctl)
155 {
156 if (flctl->chan_fifo0_rx) {
157 dma_release_channel(flctl->chan_fifo0_rx);
158 flctl->chan_fifo0_rx = NULL;
159 }
160 if (flctl->chan_fifo0_tx) {
161 dma_release_channel(flctl->chan_fifo0_tx);
162 flctl->chan_fifo0_tx = NULL;
163 }
164 }
165
flctl_setup_dma(struct sh_flctl * flctl)166 static void flctl_setup_dma(struct sh_flctl *flctl)
167 {
168 dma_cap_mask_t mask;
169 struct dma_slave_config cfg;
170 struct platform_device *pdev = flctl->pdev;
171 struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172 int ret;
173
174 if (!pdata)
175 return;
176
177 if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178 return;
179
180 /* We can only either use DMA for both Tx and Rx or not use it at all */
181 dma_cap_zero(mask);
182 dma_cap_set(DMA_SLAVE, mask);
183
184 flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186 dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187 flctl->chan_fifo0_tx);
188
189 if (!flctl->chan_fifo0_tx)
190 return;
191
192 memset(&cfg, 0, sizeof(cfg));
193 cfg.direction = DMA_MEM_TO_DEV;
194 cfg.dst_addr = flctl->fifo;
195 cfg.src_addr = 0;
196 ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197 if (ret < 0)
198 goto err;
199
200 flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202 dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203 flctl->chan_fifo0_rx);
204
205 if (!flctl->chan_fifo0_rx)
206 goto err;
207
208 cfg.direction = DMA_DEV_TO_MEM;
209 cfg.dst_addr = 0;
210 cfg.src_addr = flctl->fifo;
211 ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212 if (ret < 0)
213 goto err;
214
215 init_completion(&flctl->dma_complete);
216
217 return;
218
219 err:
220 flctl_release_dma(flctl);
221 }
222
set_addr(struct mtd_info * mtd,int column,int page_addr)223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
224 {
225 struct sh_flctl *flctl = mtd_to_flctl(mtd);
226 uint32_t addr = 0;
227
228 if (column == -1) {
229 addr = page_addr; /* ERASE1 */
230 } else if (page_addr != -1) {
231 /* SEQIN, READ0, etc.. */
232 if (flctl->chip.options & NAND_BUSWIDTH_16)
233 column >>= 1;
234 if (flctl->page_size) {
235 addr = column & 0x0FFF;
236 addr |= (page_addr & 0xff) << 16;
237 addr |= ((page_addr >> 8) & 0xff) << 24;
238 /* big than 128MB */
239 if (flctl->rw_ADRCNT == ADRCNT2_E) {
240 uint32_t addr2;
241 addr2 = (page_addr >> 16) & 0xff;
242 writel(addr2, FLADR2(flctl));
243 }
244 } else {
245 addr = column;
246 addr |= (page_addr & 0xff) << 8;
247 addr |= ((page_addr >> 8) & 0xff) << 16;
248 addr |= ((page_addr >> 16) & 0xff) << 24;
249 }
250 }
251 writel(addr, FLADR(flctl));
252 }
253
wait_rfifo_ready(struct sh_flctl * flctl)254 static void wait_rfifo_ready(struct sh_flctl *flctl)
255 {
256 uint32_t timeout = LOOP_TIMEOUT_MAX;
257
258 while (timeout--) {
259 uint32_t val;
260 /* check FIFO */
261 val = readl(FLDTCNTR(flctl)) >> 16;
262 if (val & 0xFF)
263 return;
264 udelay(1);
265 }
266 timeout_error(flctl, __func__);
267 }
268
wait_wfifo_ready(struct sh_flctl * flctl)269 static void wait_wfifo_ready(struct sh_flctl *flctl)
270 {
271 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
272
273 while (timeout--) {
274 /* check FIFO */
275 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276 if (len >= 4)
277 return;
278 udelay(1);
279 }
280 timeout_error(flctl, __func__);
281 }
282
wait_recfifo_ready(struct sh_flctl * flctl,int sector_number)283 static enum flctl_ecc_res_t wait_recfifo_ready
284 (struct sh_flctl *flctl, int sector_number)
285 {
286 uint32_t timeout = LOOP_TIMEOUT_MAX;
287 void __iomem *ecc_reg[4];
288 int i;
289 int state = FL_SUCCESS;
290 uint32_t data, size;
291
292 /*
293 * First this loops checks in FLDTCNTR if we are ready to read out the
294 * oob data. This is the case if either all went fine without errors or
295 * if the bottom part of the loop corrected the errors or marked them as
296 * uncorrectable and the controller is given time to push the data into
297 * the FIFO.
298 */
299 while (timeout--) {
300 /* check if all is ok and we can read out the OOB */
301 size = readl(FLDTCNTR(flctl)) >> 24;
302 if ((size & 0xFF) == 4)
303 return state;
304
305 /* check if a correction code has been calculated */
306 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
307 /*
308 * either we wait for the fifo to be filled or a
309 * correction pattern is being generated
310 */
311 udelay(1);
312 continue;
313 }
314
315 /* check for an uncorrectable error */
316 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317 /* check if we face a non-empty page */
318 for (i = 0; i < 512; i++) {
319 if (flctl->done_buff[i] != 0xff) {
320 state = FL_ERROR; /* can't correct */
321 break;
322 }
323 }
324
325 if (state == FL_SUCCESS)
326 dev_dbg(&flctl->pdev->dev,
327 "reading empty sector %d, ecc error ignored\n",
328 sector_number);
329
330 writel(0, FL4ECCCR(flctl));
331 continue;
332 }
333
334 /* start error correction */
335 ecc_reg[0] = FL4ECCRESULT0(flctl);
336 ecc_reg[1] = FL4ECCRESULT1(flctl);
337 ecc_reg[2] = FL4ECCRESULT2(flctl);
338 ecc_reg[3] = FL4ECCRESULT3(flctl);
339
340 for (i = 0; i < 3; i++) {
341 uint8_t org;
342 unsigned int index;
343
344 data = readl(ecc_reg[i]);
345
346 if (flctl->page_size)
347 index = (512 * sector_number) +
348 (data >> 16);
349 else
350 index = data >> 16;
351
352 org = flctl->done_buff[index];
353 flctl->done_buff[index] = org ^ (data & 0xFF);
354 }
355 state = FL_REPAIRABLE;
356 writel(0, FL4ECCCR(flctl));
357 }
358
359 timeout_error(flctl, __func__);
360 return FL_TIMEOUT; /* timeout */
361 }
362
wait_wecfifo_ready(struct sh_flctl * flctl)363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
364 {
365 uint32_t timeout = LOOP_TIMEOUT_MAX;
366 uint32_t len;
367
368 while (timeout--) {
369 /* check FLECFIFO */
370 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371 if (len >= 4)
372 return;
373 udelay(1);
374 }
375 timeout_error(flctl, __func__);
376 }
377
flctl_dma_fifo0_transfer(struct sh_flctl * flctl,unsigned long * buf,int len,enum dma_data_direction dir)378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379 int len, enum dma_data_direction dir)
380 {
381 struct dma_async_tx_descriptor *desc = NULL;
382 struct dma_chan *chan;
383 enum dma_transfer_direction tr_dir;
384 dma_addr_t dma_addr;
385 dma_cookie_t cookie;
386 uint32_t reg;
387 int ret = 0;
388 unsigned long time_left;
389
390 if (dir == DMA_FROM_DEVICE) {
391 chan = flctl->chan_fifo0_rx;
392 tr_dir = DMA_DEV_TO_MEM;
393 } else {
394 chan = flctl->chan_fifo0_tx;
395 tr_dir = DMA_MEM_TO_DEV;
396 }
397
398 dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
399
400 if (!dma_mapping_error(chan->device->dev, dma_addr))
401 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
402 tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
403
404 if (desc) {
405 reg = readl(FLINTDMACR(flctl));
406 reg |= DREQ0EN;
407 writel(reg, FLINTDMACR(flctl));
408
409 desc->callback = flctl_dma_complete;
410 desc->callback_param = flctl;
411 cookie = dmaengine_submit(desc);
412 if (dma_submit_error(cookie)) {
413 ret = dma_submit_error(cookie);
414 dev_warn(&flctl->pdev->dev,
415 "DMA submit failed, falling back to PIO\n");
416 goto out;
417 }
418
419 dma_async_issue_pending(chan);
420 } else {
421 /* DMA failed, fall back to PIO */
422 flctl_release_dma(flctl);
423 dev_warn(&flctl->pdev->dev,
424 "DMA failed, falling back to PIO\n");
425 ret = -EIO;
426 goto out;
427 }
428
429 time_left =
430 wait_for_completion_timeout(&flctl->dma_complete,
431 msecs_to_jiffies(3000));
432
433 if (time_left == 0) {
434 dmaengine_terminate_all(chan);
435 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
436 ret = -ETIMEDOUT;
437 }
438
439 out:
440 reg = readl(FLINTDMACR(flctl));
441 reg &= ~DREQ0EN;
442 writel(reg, FLINTDMACR(flctl));
443
444 dma_unmap_single(chan->device->dev, dma_addr, len, dir);
445
446 /* ret == 0 is success */
447 return ret;
448 }
449
read_datareg(struct sh_flctl * flctl,int offset)450 static void read_datareg(struct sh_flctl *flctl, int offset)
451 {
452 unsigned long data;
453 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
454
455 wait_completion(flctl);
456
457 data = readl(FLDATAR(flctl));
458 *buf = le32_to_cpu(data);
459 }
460
read_fiforeg(struct sh_flctl * flctl,int rlen,int offset)461 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
462 {
463 int i, len_4align;
464 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
465
466 len_4align = (rlen + 3) / 4;
467
468 /* initiate DMA transfer */
469 if (flctl->chan_fifo0_rx && rlen >= 32 &&
470 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
471 goto convert; /* DMA success */
472
473 /* do polling transfer */
474 for (i = 0; i < len_4align; i++) {
475 wait_rfifo_ready(flctl);
476 buf[i] = readl(FLDTFIFO(flctl));
477 }
478
479 convert:
480 for (i = 0; i < len_4align; i++)
481 buf[i] = be32_to_cpu(buf[i]);
482 }
483
read_ecfiforeg(struct sh_flctl * flctl,uint8_t * buff,int sector)484 static enum flctl_ecc_res_t read_ecfiforeg
485 (struct sh_flctl *flctl, uint8_t *buff, int sector)
486 {
487 int i;
488 enum flctl_ecc_res_t res;
489 unsigned long *ecc_buf = (unsigned long *)buff;
490
491 res = wait_recfifo_ready(flctl , sector);
492
493 if (res != FL_ERROR) {
494 for (i = 0; i < 4; i++) {
495 ecc_buf[i] = readl(FLECFIFO(flctl));
496 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
497 }
498 }
499
500 return res;
501 }
502
write_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)503 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
504 unsigned int offset)
505 {
506 int i, len_4align;
507 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
508
509 len_4align = (rlen + 3) / 4;
510 for (i = 0; i < len_4align; i++) {
511 wait_wfifo_ready(flctl);
512 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
513 }
514 }
515
write_ec_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)516 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
517 unsigned int offset)
518 {
519 int i, len_4align;
520 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521
522 len_4align = (rlen + 3) / 4;
523
524 for (i = 0; i < len_4align; i++)
525 buf[i] = cpu_to_be32(buf[i]);
526
527 /* initiate DMA transfer */
528 if (flctl->chan_fifo0_tx && rlen >= 32 &&
529 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
530 return; /* DMA success */
531
532 /* do polling transfer */
533 for (i = 0; i < len_4align; i++) {
534 wait_wecfifo_ready(flctl);
535 writel(buf[i], FLECFIFO(flctl));
536 }
537 }
538
set_cmd_regs(struct mtd_info * mtd,uint32_t cmd,uint32_t flcmcdr_val)539 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
540 {
541 struct sh_flctl *flctl = mtd_to_flctl(mtd);
542 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
543 uint32_t flcmdcr_val, addr_len_bytes = 0;
544
545 /* Set SNAND bit if page size is 2048byte */
546 if (flctl->page_size)
547 flcmncr_val |= SNAND_E;
548 else
549 flcmncr_val &= ~SNAND_E;
550
551 /* default FLCMDCR val */
552 flcmdcr_val = DOCMD1_E | DOADR_E;
553
554 /* Set for FLCMDCR */
555 switch (cmd) {
556 case NAND_CMD_ERASE1:
557 addr_len_bytes = flctl->erase_ADRCNT;
558 flcmdcr_val |= DOCMD2_E;
559 break;
560 case NAND_CMD_READ0:
561 case NAND_CMD_READOOB:
562 case NAND_CMD_RNDOUT:
563 addr_len_bytes = flctl->rw_ADRCNT;
564 flcmdcr_val |= CDSRC_E;
565 if (flctl->chip.options & NAND_BUSWIDTH_16)
566 flcmncr_val |= SEL_16BIT;
567 break;
568 case NAND_CMD_SEQIN:
569 /* This case is that cmd is READ0 or READ1 or READ00 */
570 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
571 break;
572 case NAND_CMD_PAGEPROG:
573 addr_len_bytes = flctl->rw_ADRCNT;
574 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
575 if (flctl->chip.options & NAND_BUSWIDTH_16)
576 flcmncr_val |= SEL_16BIT;
577 break;
578 case NAND_CMD_READID:
579 flcmncr_val &= ~SNAND_E;
580 flcmdcr_val |= CDSRC_E;
581 addr_len_bytes = ADRCNT_1;
582 break;
583 case NAND_CMD_STATUS:
584 case NAND_CMD_RESET:
585 flcmncr_val &= ~SNAND_E;
586 flcmdcr_val &= ~(DOADR_E | DOSR_E);
587 break;
588 default:
589 break;
590 }
591
592 /* Set address bytes parameter */
593 flcmdcr_val |= addr_len_bytes;
594
595 /* Now actually write */
596 writel(flcmncr_val, FLCMNCR(flctl));
597 writel(flcmdcr_val, FLCMDCR(flctl));
598 writel(flcmcdr_val, FLCMCDR(flctl));
599 }
600
flctl_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)601 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
602 int oob_required, int page)
603 {
604 struct mtd_info *mtd = nand_to_mtd(chip);
605
606 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
607 if (oob_required)
608 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
609 return 0;
610 }
611
flctl_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)612 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
613 int oob_required, int page)
614 {
615 struct mtd_info *mtd = nand_to_mtd(chip);
616
617 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
618 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
619 return nand_prog_page_end_op(chip);
620 }
621
execmd_read_page_sector(struct mtd_info * mtd,int page_addr)622 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
623 {
624 struct sh_flctl *flctl = mtd_to_flctl(mtd);
625 int sector, page_sectors;
626 enum flctl_ecc_res_t ecc_result;
627
628 page_sectors = flctl->page_size ? 4 : 1;
629
630 set_cmd_regs(mtd, NAND_CMD_READ0,
631 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
632
633 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
634 FLCMNCR(flctl));
635 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
636 writel(page_addr << 2, FLADR(flctl));
637
638 empty_fifo(flctl);
639 start_translation(flctl);
640
641 for (sector = 0; sector < page_sectors; sector++) {
642 read_fiforeg(flctl, 512, 512 * sector);
643
644 ecc_result = read_ecfiforeg(flctl,
645 &flctl->done_buff[mtd->writesize + 16 * sector],
646 sector);
647
648 switch (ecc_result) {
649 case FL_REPAIRABLE:
650 dev_info(&flctl->pdev->dev,
651 "applied ecc on page 0x%x", page_addr);
652 mtd->ecc_stats.corrected++;
653 break;
654 case FL_ERROR:
655 dev_warn(&flctl->pdev->dev,
656 "page 0x%x contains corrupted data\n",
657 page_addr);
658 mtd->ecc_stats.failed++;
659 break;
660 default:
661 ;
662 }
663 }
664
665 wait_completion(flctl);
666
667 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
668 FLCMNCR(flctl));
669 }
670
execmd_read_oob(struct mtd_info * mtd,int page_addr)671 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
672 {
673 struct sh_flctl *flctl = mtd_to_flctl(mtd);
674 int page_sectors = flctl->page_size ? 4 : 1;
675 int i;
676
677 set_cmd_regs(mtd, NAND_CMD_READ0,
678 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
679
680 empty_fifo(flctl);
681
682 for (i = 0; i < page_sectors; i++) {
683 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
684 writel(16, FLDTCNTR(flctl));
685
686 start_translation(flctl);
687 read_fiforeg(flctl, 16, 16 * i);
688 wait_completion(flctl);
689 }
690 }
691
execmd_write_page_sector(struct mtd_info * mtd)692 static void execmd_write_page_sector(struct mtd_info *mtd)
693 {
694 struct sh_flctl *flctl = mtd_to_flctl(mtd);
695 int page_addr = flctl->seqin_page_addr;
696 int sector, page_sectors;
697
698 page_sectors = flctl->page_size ? 4 : 1;
699
700 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
701 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
702
703 empty_fifo(flctl);
704 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
705 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
706 writel(page_addr << 2, FLADR(flctl));
707 start_translation(flctl);
708
709 for (sector = 0; sector < page_sectors; sector++) {
710 write_fiforeg(flctl, 512, 512 * sector);
711 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
712 }
713
714 wait_completion(flctl);
715 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
716 }
717
execmd_write_oob(struct mtd_info * mtd)718 static void execmd_write_oob(struct mtd_info *mtd)
719 {
720 struct sh_flctl *flctl = mtd_to_flctl(mtd);
721 int page_addr = flctl->seqin_page_addr;
722 int sector, page_sectors;
723
724 page_sectors = flctl->page_size ? 4 : 1;
725
726 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
727 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
728
729 for (sector = 0; sector < page_sectors; sector++) {
730 empty_fifo(flctl);
731 set_addr(mtd, sector * 528 + 512, page_addr);
732 writel(16, FLDTCNTR(flctl)); /* set read size */
733
734 start_translation(flctl);
735 write_fiforeg(flctl, 16, 16 * sector);
736 wait_completion(flctl);
737 }
738 }
739
flctl_cmdfunc(struct nand_chip * chip,unsigned int command,int column,int page_addr)740 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
741 int column, int page_addr)
742 {
743 struct mtd_info *mtd = nand_to_mtd(chip);
744 struct sh_flctl *flctl = mtd_to_flctl(mtd);
745 uint32_t read_cmd = 0;
746
747 pm_runtime_get_sync(&flctl->pdev->dev);
748
749 flctl->read_bytes = 0;
750 if (command != NAND_CMD_PAGEPROG)
751 flctl->index = 0;
752
753 switch (command) {
754 case NAND_CMD_READ1:
755 case NAND_CMD_READ0:
756 if (flctl->hwecc) {
757 /* read page with hwecc */
758 execmd_read_page_sector(mtd, page_addr);
759 break;
760 }
761 if (flctl->page_size)
762 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
763 | command);
764 else
765 set_cmd_regs(mtd, command, command);
766
767 set_addr(mtd, 0, page_addr);
768
769 flctl->read_bytes = mtd->writesize + mtd->oobsize;
770 if (flctl->chip.options & NAND_BUSWIDTH_16)
771 column >>= 1;
772 flctl->index += column;
773 goto read_normal_exit;
774
775 case NAND_CMD_READOOB:
776 if (flctl->hwecc) {
777 /* read page with hwecc */
778 execmd_read_oob(mtd, page_addr);
779 break;
780 }
781
782 if (flctl->page_size) {
783 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
784 | NAND_CMD_READ0);
785 set_addr(mtd, mtd->writesize, page_addr);
786 } else {
787 set_cmd_regs(mtd, command, command);
788 set_addr(mtd, 0, page_addr);
789 }
790 flctl->read_bytes = mtd->oobsize;
791 goto read_normal_exit;
792
793 case NAND_CMD_RNDOUT:
794 if (flctl->hwecc)
795 break;
796
797 if (flctl->page_size)
798 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
799 | command);
800 else
801 set_cmd_regs(mtd, command, command);
802
803 set_addr(mtd, column, 0);
804
805 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
806 goto read_normal_exit;
807
808 case NAND_CMD_READID:
809 set_cmd_regs(mtd, command, command);
810
811 /* READID is always performed using an 8-bit bus */
812 if (flctl->chip.options & NAND_BUSWIDTH_16)
813 column <<= 1;
814 set_addr(mtd, column, 0);
815
816 flctl->read_bytes = 8;
817 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
818 empty_fifo(flctl);
819 start_translation(flctl);
820 read_fiforeg(flctl, flctl->read_bytes, 0);
821 wait_completion(flctl);
822 break;
823
824 case NAND_CMD_ERASE1:
825 flctl->erase1_page_addr = page_addr;
826 break;
827
828 case NAND_CMD_ERASE2:
829 set_cmd_regs(mtd, NAND_CMD_ERASE1,
830 (command << 8) | NAND_CMD_ERASE1);
831 set_addr(mtd, -1, flctl->erase1_page_addr);
832 start_translation(flctl);
833 wait_completion(flctl);
834 break;
835
836 case NAND_CMD_SEQIN:
837 if (!flctl->page_size) {
838 /* output read command */
839 if (column >= mtd->writesize) {
840 column -= mtd->writesize;
841 read_cmd = NAND_CMD_READOOB;
842 } else if (column < 256) {
843 read_cmd = NAND_CMD_READ0;
844 } else {
845 column -= 256;
846 read_cmd = NAND_CMD_READ1;
847 }
848 }
849 flctl->seqin_column = column;
850 flctl->seqin_page_addr = page_addr;
851 flctl->seqin_read_cmd = read_cmd;
852 break;
853
854 case NAND_CMD_PAGEPROG:
855 empty_fifo(flctl);
856 if (!flctl->page_size) {
857 set_cmd_regs(mtd, NAND_CMD_SEQIN,
858 flctl->seqin_read_cmd);
859 set_addr(mtd, -1, -1);
860 writel(0, FLDTCNTR(flctl)); /* set 0 size */
861 start_translation(flctl);
862 wait_completion(flctl);
863 }
864 if (flctl->hwecc) {
865 /* write page with hwecc */
866 if (flctl->seqin_column == mtd->writesize)
867 execmd_write_oob(mtd);
868 else if (!flctl->seqin_column)
869 execmd_write_page_sector(mtd);
870 else
871 pr_err("Invalid address !?\n");
872 break;
873 }
874 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
875 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
876 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
877 start_translation(flctl);
878 write_fiforeg(flctl, flctl->index, 0);
879 wait_completion(flctl);
880 break;
881
882 case NAND_CMD_STATUS:
883 set_cmd_regs(mtd, command, command);
884 set_addr(mtd, -1, -1);
885
886 flctl->read_bytes = 1;
887 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
888 start_translation(flctl);
889 read_datareg(flctl, 0); /* read and end */
890 break;
891
892 case NAND_CMD_RESET:
893 set_cmd_regs(mtd, command, command);
894 set_addr(mtd, -1, -1);
895
896 writel(0, FLDTCNTR(flctl)); /* set 0 size */
897 start_translation(flctl);
898 wait_completion(flctl);
899 break;
900
901 default:
902 break;
903 }
904 goto runtime_exit;
905
906 read_normal_exit:
907 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
908 empty_fifo(flctl);
909 start_translation(flctl);
910 read_fiforeg(flctl, flctl->read_bytes, 0);
911 wait_completion(flctl);
912 runtime_exit:
913 pm_runtime_put_sync(&flctl->pdev->dev);
914 return;
915 }
916
flctl_select_chip(struct nand_chip * chip,int chipnr)917 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
918 {
919 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
920 int ret;
921
922 switch (chipnr) {
923 case -1:
924 flctl->flcmncr_base &= ~CE0_ENABLE;
925
926 pm_runtime_get_sync(&flctl->pdev->dev);
927 writel(flctl->flcmncr_base, FLCMNCR(flctl));
928
929 if (flctl->qos_request) {
930 dev_pm_qos_remove_request(&flctl->pm_qos);
931 flctl->qos_request = 0;
932 }
933
934 pm_runtime_put_sync(&flctl->pdev->dev);
935 break;
936 case 0:
937 flctl->flcmncr_base |= CE0_ENABLE;
938
939 if (!flctl->qos_request) {
940 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
941 &flctl->pm_qos,
942 DEV_PM_QOS_RESUME_LATENCY,
943 100);
944 if (ret < 0)
945 dev_err(&flctl->pdev->dev,
946 "PM QoS request failed: %d\n", ret);
947 flctl->qos_request = 1;
948 }
949
950 if (flctl->holden) {
951 pm_runtime_get_sync(&flctl->pdev->dev);
952 writel(HOLDEN, FLHOLDCR(flctl));
953 pm_runtime_put_sync(&flctl->pdev->dev);
954 }
955 break;
956 default:
957 BUG();
958 }
959 }
960
flctl_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)961 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
962 {
963 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
964
965 memcpy(&flctl->done_buff[flctl->index], buf, len);
966 flctl->index += len;
967 }
968
flctl_read_byte(struct nand_chip * chip)969 static uint8_t flctl_read_byte(struct nand_chip *chip)
970 {
971 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
972 uint8_t data;
973
974 data = flctl->done_buff[flctl->index];
975 flctl->index++;
976 return data;
977 }
978
flctl_read_buf(struct nand_chip * chip,uint8_t * buf,int len)979 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
980 {
981 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
982
983 memcpy(buf, &flctl->done_buff[flctl->index], len);
984 flctl->index += len;
985 }
986
flctl_chip_attach_chip(struct nand_chip * chip)987 static int flctl_chip_attach_chip(struct nand_chip *chip)
988 {
989 u64 targetsize = nanddev_target_size(&chip->base);
990 struct mtd_info *mtd = nand_to_mtd(chip);
991 struct sh_flctl *flctl = mtd_to_flctl(mtd);
992
993 /*
994 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
995 * Add the SEL_16BIT flag in flctl->flcmncr_base.
996 */
997 if (chip->options & NAND_BUSWIDTH_16)
998 flctl->flcmncr_base |= SEL_16BIT;
999
1000 if (mtd->writesize == 512) {
1001 flctl->page_size = 0;
1002 if (targetsize > (32 << 20)) {
1003 /* big than 32MB */
1004 flctl->rw_ADRCNT = ADRCNT_4;
1005 flctl->erase_ADRCNT = ADRCNT_3;
1006 } else if (targetsize > (2 << 16)) {
1007 /* big than 128KB */
1008 flctl->rw_ADRCNT = ADRCNT_3;
1009 flctl->erase_ADRCNT = ADRCNT_2;
1010 } else {
1011 flctl->rw_ADRCNT = ADRCNT_2;
1012 flctl->erase_ADRCNT = ADRCNT_1;
1013 }
1014 } else {
1015 flctl->page_size = 1;
1016 if (targetsize > (128 << 20)) {
1017 /* big than 128MB */
1018 flctl->rw_ADRCNT = ADRCNT2_E;
1019 flctl->erase_ADRCNT = ADRCNT_3;
1020 } else if (targetsize > (8 << 16)) {
1021 /* big than 512KB */
1022 flctl->rw_ADRCNT = ADRCNT_4;
1023 flctl->erase_ADRCNT = ADRCNT_2;
1024 } else {
1025 flctl->rw_ADRCNT = ADRCNT_3;
1026 flctl->erase_ADRCNT = ADRCNT_1;
1027 }
1028 }
1029
1030 if (flctl->hwecc) {
1031 if (mtd->writesize == 512) {
1032 mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1033 chip->badblock_pattern = &flctl_4secc_smallpage;
1034 } else {
1035 mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1036 chip->badblock_pattern = &flctl_4secc_largepage;
1037 }
1038
1039 chip->ecc.size = 512;
1040 chip->ecc.bytes = 10;
1041 chip->ecc.strength = 4;
1042 chip->ecc.read_page = flctl_read_page_hwecc;
1043 chip->ecc.write_page = flctl_write_page_hwecc;
1044 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1045
1046 /* 4 symbols ECC enabled */
1047 flctl->flcmncr_base |= _4ECCEN;
1048 } else {
1049 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1050 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1051 }
1052
1053 return 0;
1054 }
1055
1056 static const struct nand_controller_ops flctl_nand_controller_ops = {
1057 .attach_chip = flctl_chip_attach_chip,
1058 };
1059
flctl_handle_flste(int irq,void * dev_id)1060 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1061 {
1062 struct sh_flctl *flctl = dev_id;
1063
1064 dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1065 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1066
1067 return IRQ_HANDLED;
1068 }
1069
1070 struct flctl_soc_config {
1071 unsigned long flcmncr_val;
1072 unsigned has_hwecc:1;
1073 unsigned use_holden:1;
1074 };
1075
1076 static struct flctl_soc_config flctl_sh7372_config = {
1077 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1078 .has_hwecc = 1,
1079 .use_holden = 1,
1080 };
1081
1082 static const struct of_device_id of_flctl_match[] = {
1083 { .compatible = "renesas,shmobile-flctl-sh7372",
1084 .data = &flctl_sh7372_config },
1085 {},
1086 };
1087 MODULE_DEVICE_TABLE(of, of_flctl_match);
1088
flctl_parse_dt(struct device * dev)1089 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1090 {
1091 const struct flctl_soc_config *config;
1092 struct sh_flctl_platform_data *pdata;
1093
1094 config = of_device_get_match_data(dev);
1095 if (!config) {
1096 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1097 return NULL;
1098 }
1099
1100 pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1101 GFP_KERNEL);
1102 if (!pdata)
1103 return NULL;
1104
1105 /* set SoC specific options */
1106 pdata->flcmncr_val = config->flcmncr_val;
1107 pdata->has_hwecc = config->has_hwecc;
1108 pdata->use_holden = config->use_holden;
1109
1110 return pdata;
1111 }
1112
flctl_probe(struct platform_device * pdev)1113 static int flctl_probe(struct platform_device *pdev)
1114 {
1115 struct resource *res;
1116 struct sh_flctl *flctl;
1117 struct mtd_info *flctl_mtd;
1118 struct nand_chip *nand;
1119 struct sh_flctl_platform_data *pdata;
1120 int ret;
1121 int irq;
1122
1123 flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1124 if (!flctl)
1125 return -ENOMEM;
1126
1127 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1128 flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1129 if (IS_ERR(flctl->reg))
1130 return PTR_ERR(flctl->reg);
1131 flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1132
1133 irq = platform_get_irq(pdev, 0);
1134 if (irq < 0)
1135 return irq;
1136
1137 ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1138 "flste", flctl);
1139 if (ret) {
1140 dev_err(&pdev->dev, "request interrupt failed.\n");
1141 return ret;
1142 }
1143
1144 if (pdev->dev.of_node)
1145 pdata = flctl_parse_dt(&pdev->dev);
1146 else
1147 pdata = dev_get_platdata(&pdev->dev);
1148
1149 if (!pdata) {
1150 dev_err(&pdev->dev, "no setup data defined\n");
1151 return -EINVAL;
1152 }
1153
1154 platform_set_drvdata(pdev, flctl);
1155 nand = &flctl->chip;
1156 flctl_mtd = nand_to_mtd(nand);
1157 nand_set_flash_node(nand, pdev->dev.of_node);
1158 flctl_mtd->dev.parent = &pdev->dev;
1159 flctl->pdev = pdev;
1160 flctl->hwecc = pdata->has_hwecc;
1161 flctl->holden = pdata->use_holden;
1162 flctl->flcmncr_base = pdata->flcmncr_val;
1163 flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1164
1165 /* Set address of hardware control function */
1166 /* 20 us command delay time */
1167 nand->legacy.chip_delay = 20;
1168
1169 nand->legacy.read_byte = flctl_read_byte;
1170 nand->legacy.write_buf = flctl_write_buf;
1171 nand->legacy.read_buf = flctl_read_buf;
1172 nand->legacy.select_chip = flctl_select_chip;
1173 nand->legacy.cmdfunc = flctl_cmdfunc;
1174 nand->legacy.set_features = nand_get_set_features_notsupp;
1175 nand->legacy.get_features = nand_get_set_features_notsupp;
1176
1177 if (pdata->flcmncr_val & SEL_16BIT)
1178 nand->options |= NAND_BUSWIDTH_16;
1179
1180 nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1181
1182 pm_runtime_enable(&pdev->dev);
1183 pm_runtime_resume(&pdev->dev);
1184
1185 flctl_setup_dma(flctl);
1186
1187 nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1188 ret = nand_scan(nand, 1);
1189 if (ret)
1190 goto err_chip;
1191
1192 ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1193 if (ret)
1194 goto cleanup_nand;
1195
1196 return 0;
1197
1198 cleanup_nand:
1199 nand_cleanup(nand);
1200 err_chip:
1201 flctl_release_dma(flctl);
1202 pm_runtime_disable(&pdev->dev);
1203 return ret;
1204 }
1205
flctl_remove(struct platform_device * pdev)1206 static int flctl_remove(struct platform_device *pdev)
1207 {
1208 struct sh_flctl *flctl = platform_get_drvdata(pdev);
1209 struct nand_chip *chip = &flctl->chip;
1210 int ret;
1211
1212 flctl_release_dma(flctl);
1213 ret = mtd_device_unregister(nand_to_mtd(chip));
1214 WARN_ON(ret);
1215 nand_cleanup(chip);
1216 pm_runtime_disable(&pdev->dev);
1217
1218 return 0;
1219 }
1220
1221 static struct platform_driver flctl_driver = {
1222 .remove = flctl_remove,
1223 .driver = {
1224 .name = "sh_flctl",
1225 .of_match_table = of_match_ptr(of_flctl_match),
1226 },
1227 };
1228
1229 module_platform_driver_probe(flctl_driver, flctl_probe);
1230
1231 MODULE_LICENSE("GPL v2");
1232 MODULE_AUTHOR("Yoshihiro Shimoda");
1233 MODULE_DESCRIPTION("SuperH FLCTL driver");
1234 MODULE_ALIAS("platform:sh_flctl");
1235