1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 struct nand_device *nand = spinand_to_nand(spinand);
206
207 if (spinand->eccinfo.get_status)
208 return spinand->eccinfo.get_status(spinand, status);
209
210 switch (status & STATUS_ECC_MASK) {
211 case STATUS_ECC_NO_BITFLIPS:
212 return 0;
213
214 case STATUS_ECC_HAS_BITFLIPS:
215 /*
216 * We have no way to know exactly how many bitflips have been
217 * fixed, so let's return the maximum possible value so that
218 * wear-leveling layers move the data immediately.
219 */
220 return nanddev_get_ecc_conf(nand)->strength;
221
222 case STATUS_ECC_UNCOR_ERROR:
223 return -EBADMSG;
224
225 default:
226 break;
227 }
228
229 return -EINVAL;
230 }
231
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 struct mtd_oob_region *region)
234 {
235 return -ERANGE;
236 }
237
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 if (section)
242 return -ERANGE;
243
244 /* Reserve 2 bytes for the BBM. */
245 region->offset = 2;
246 region->length = 62;
247
248 return 0;
249 }
250
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 .ecc = spinand_noecc_ooblayout_ecc,
253 .free = spinand_noecc_ooblayout_free,
254 };
255
spinand_ondie_ecc_init_ctx(struct nand_device * nand)256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 struct spinand_device *spinand = nand_to_spinand(nand);
259 struct mtd_info *mtd = nanddev_to_mtd(nand);
260 struct spinand_ondie_ecc_conf *engine_conf;
261
262 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265
266 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 if (!engine_conf)
268 return -ENOMEM;
269
270 nand->ecc.ctx.priv = engine_conf;
271
272 if (spinand->eccinfo.ooblayout)
273 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 else
275 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276
277 return 0;
278 }
279
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 kfree(nand->ecc.ctx.priv);
283 }
284
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 struct nand_page_io_req *req)
287 {
288 struct spinand_device *spinand = nand_to_spinand(nand);
289 bool enable = (req->mode != MTD_OPS_RAW);
290
291 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
292
293 /* Only enable or disable the engine */
294 return spinand_ecc_enable(spinand, enable);
295 }
296
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)297 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
298 struct nand_page_io_req *req)
299 {
300 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
301 struct spinand_device *spinand = nand_to_spinand(nand);
302 struct mtd_info *mtd = spinand_to_mtd(spinand);
303 int ret;
304
305 if (req->mode == MTD_OPS_RAW)
306 return 0;
307
308 /* Nothing to do when finishing a page write */
309 if (req->type == NAND_PAGE_WRITE)
310 return 0;
311
312 /* Finish a page read: check the status, report errors/bitflips */
313 ret = spinand_check_ecc_status(spinand, engine_conf->status);
314 if (ret == -EBADMSG)
315 mtd->ecc_stats.failed++;
316 else if (ret > 0)
317 mtd->ecc_stats.corrected += ret;
318
319 return ret;
320 }
321
322 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
323 .init_ctx = spinand_ondie_ecc_init_ctx,
324 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
325 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
326 .finish_io_req = spinand_ondie_ecc_finish_io_req,
327 };
328
329 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
330 .ops = &spinand_ondie_ecc_engine_ops,
331 };
332
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)333 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
334 {
335 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
336
337 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
338 engine_conf)
339 engine_conf->status = status;
340 }
341
spinand_write_enable_op(struct spinand_device * spinand)342 static int spinand_write_enable_op(struct spinand_device *spinand)
343 {
344 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
345
346 return spi_mem_exec_op(spinand->spimem, &op);
347 }
348
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)349 static int spinand_load_page_op(struct spinand_device *spinand,
350 const struct nand_page_io_req *req)
351 {
352 struct nand_device *nand = spinand_to_nand(spinand);
353 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
354 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
355
356 return spi_mem_exec_op(spinand->spimem, &op);
357 }
358
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)359 static int spinand_read_from_cache_op(struct spinand_device *spinand,
360 const struct nand_page_io_req *req)
361 {
362 struct nand_device *nand = spinand_to_nand(spinand);
363 struct mtd_info *mtd = spinand_to_mtd(spinand);
364 struct spi_mem_dirmap_desc *rdesc;
365 unsigned int nbytes = 0;
366 void *buf = NULL;
367 u16 column = 0;
368 ssize_t ret;
369
370 if (req->datalen) {
371 buf = spinand->databuf;
372 nbytes = nanddev_page_size(nand);
373 column = 0;
374 }
375
376 if (req->ooblen) {
377 nbytes += nanddev_per_page_oobsize(nand);
378 if (!buf) {
379 buf = spinand->oobbuf;
380 column = nanddev_page_size(nand);
381 }
382 }
383
384 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
385
386 while (nbytes) {
387 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
388 if (ret < 0)
389 return ret;
390
391 if (!ret || ret > nbytes)
392 return -EIO;
393
394 nbytes -= ret;
395 column += ret;
396 buf += ret;
397 }
398
399 if (req->datalen)
400 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
401 req->datalen);
402
403 if (req->ooblen) {
404 if (req->mode == MTD_OPS_AUTO_OOB)
405 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
406 spinand->oobbuf,
407 req->ooboffs,
408 req->ooblen);
409 else
410 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
411 req->ooblen);
412 }
413
414 return 0;
415 }
416
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)417 static int spinand_write_to_cache_op(struct spinand_device *spinand,
418 const struct nand_page_io_req *req)
419 {
420 struct nand_device *nand = spinand_to_nand(spinand);
421 struct mtd_info *mtd = spinand_to_mtd(spinand);
422 struct spi_mem_dirmap_desc *wdesc;
423 unsigned int nbytes, column = 0;
424 void *buf = spinand->databuf;
425 ssize_t ret;
426
427 /*
428 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
429 * the cache content to 0xFF (depends on vendor implementation), so we
430 * must fill the page cache entirely even if we only want to program
431 * the data portion of the page, otherwise we might corrupt the BBM or
432 * user data previously programmed in OOB area.
433 *
434 * Only reset the data buffer manually, the OOB buffer is prepared by
435 * ECC engines ->prepare_io_req() callback.
436 */
437 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
438 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
439
440 if (req->datalen)
441 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
442 req->datalen);
443
444 if (req->ooblen) {
445 if (req->mode == MTD_OPS_AUTO_OOB)
446 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
447 spinand->oobbuf,
448 req->ooboffs,
449 req->ooblen);
450 else
451 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
452 req->ooblen);
453 }
454
455 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
456
457 while (nbytes) {
458 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
459 if (ret < 0)
460 return ret;
461
462 if (!ret || ret > nbytes)
463 return -EIO;
464
465 nbytes -= ret;
466 column += ret;
467 buf += ret;
468 }
469
470 return 0;
471 }
472
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)473 static int spinand_program_op(struct spinand_device *spinand,
474 const struct nand_page_io_req *req)
475 {
476 struct nand_device *nand = spinand_to_nand(spinand);
477 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
478 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
479
480 return spi_mem_exec_op(spinand->spimem, &op);
481 }
482
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)483 static int spinand_erase_op(struct spinand_device *spinand,
484 const struct nand_pos *pos)
485 {
486 struct nand_device *nand = spinand_to_nand(spinand);
487 unsigned int row = nanddev_pos_to_row(nand, pos);
488 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
489
490 return spi_mem_exec_op(spinand->spimem, &op);
491 }
492
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)493 static int spinand_wait(struct spinand_device *spinand,
494 unsigned long initial_delay_us,
495 unsigned long poll_delay_us,
496 u8 *s)
497 {
498 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
499 spinand->scratchbuf);
500 u8 status;
501 int ret;
502
503 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
504 initial_delay_us,
505 poll_delay_us,
506 SPINAND_WAITRDY_TIMEOUT_MS);
507 if (ret)
508 return ret;
509
510 status = *spinand->scratchbuf;
511 if (!(status & STATUS_BUSY))
512 goto out;
513
514 /*
515 * Extra read, just in case the STATUS_READY bit has changed
516 * since our last check
517 */
518 ret = spinand_read_status(spinand, &status);
519 if (ret)
520 return ret;
521
522 out:
523 if (s)
524 *s = status;
525
526 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
527 }
528
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)529 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
530 u8 ndummy, u8 *buf)
531 {
532 struct spi_mem_op op = SPINAND_READID_OP(
533 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
534 int ret;
535
536 ret = spi_mem_exec_op(spinand->spimem, &op);
537 if (!ret)
538 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
539
540 return ret;
541 }
542
spinand_reset_op(struct spinand_device * spinand)543 static int spinand_reset_op(struct spinand_device *spinand)
544 {
545 struct spi_mem_op op = SPINAND_RESET_OP;
546 int ret;
547
548 ret = spi_mem_exec_op(spinand->spimem, &op);
549 if (ret)
550 return ret;
551
552 return spinand_wait(spinand,
553 SPINAND_RESET_INITIAL_DELAY_US,
554 SPINAND_RESET_POLL_DELAY_US,
555 NULL);
556 }
557
spinand_lock_block(struct spinand_device * spinand,u8 lock)558 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
559 {
560 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
561 }
562
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)563 static int spinand_read_page(struct spinand_device *spinand,
564 const struct nand_page_io_req *req)
565 {
566 struct nand_device *nand = spinand_to_nand(spinand);
567 u8 status;
568 int ret;
569
570 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
571 if (ret)
572 return ret;
573
574 ret = spinand_load_page_op(spinand, req);
575 if (ret)
576 return ret;
577
578 ret = spinand_wait(spinand,
579 SPINAND_READ_INITIAL_DELAY_US,
580 SPINAND_READ_POLL_DELAY_US,
581 &status);
582 if (ret < 0)
583 return ret;
584
585 spinand_ondie_ecc_save_status(nand, status);
586
587 ret = spinand_read_from_cache_op(spinand, req);
588 if (ret)
589 return ret;
590
591 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
592 }
593
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)594 static int spinand_write_page(struct spinand_device *spinand,
595 const struct nand_page_io_req *req)
596 {
597 struct nand_device *nand = spinand_to_nand(spinand);
598 u8 status;
599 int ret;
600
601 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
602 if (ret)
603 return ret;
604
605 ret = spinand_write_enable_op(spinand);
606 if (ret)
607 return ret;
608
609 ret = spinand_write_to_cache_op(spinand, req);
610 if (ret)
611 return ret;
612
613 ret = spinand_program_op(spinand, req);
614 if (ret)
615 return ret;
616
617 ret = spinand_wait(spinand,
618 SPINAND_WRITE_INITIAL_DELAY_US,
619 SPINAND_WRITE_POLL_DELAY_US,
620 &status);
621 if (!ret && (status & STATUS_PROG_FAILED))
622 return -EIO;
623
624 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
625 }
626
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)627 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
628 struct mtd_oob_ops *ops)
629 {
630 struct spinand_device *spinand = mtd_to_spinand(mtd);
631 struct nand_device *nand = mtd_to_nanddev(mtd);
632 unsigned int max_bitflips = 0;
633 struct nand_io_iter iter;
634 bool disable_ecc = false;
635 bool ecc_failed = false;
636 int ret = 0;
637
638 if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
639 disable_ecc = true;
640
641 mutex_lock(&spinand->lock);
642
643 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
644 if (disable_ecc)
645 iter.req.mode = MTD_OPS_RAW;
646
647 ret = spinand_select_target(spinand, iter.req.pos.target);
648 if (ret)
649 break;
650
651 ret = spinand_read_page(spinand, &iter.req);
652 if (ret < 0 && ret != -EBADMSG)
653 break;
654
655 if (ret == -EBADMSG)
656 ecc_failed = true;
657 else
658 max_bitflips = max_t(unsigned int, max_bitflips, ret);
659
660 ret = 0;
661 ops->retlen += iter.req.datalen;
662 ops->oobretlen += iter.req.ooblen;
663 }
664
665 mutex_unlock(&spinand->lock);
666
667 if (ecc_failed && !ret)
668 ret = -EBADMSG;
669
670 return ret ? ret : max_bitflips;
671 }
672
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)673 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
674 struct mtd_oob_ops *ops)
675 {
676 struct spinand_device *spinand = mtd_to_spinand(mtd);
677 struct nand_device *nand = mtd_to_nanddev(mtd);
678 struct nand_io_iter iter;
679 bool disable_ecc = false;
680 int ret = 0;
681
682 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
683 disable_ecc = true;
684
685 mutex_lock(&spinand->lock);
686
687 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
688 if (disable_ecc)
689 iter.req.mode = MTD_OPS_RAW;
690
691 ret = spinand_select_target(spinand, iter.req.pos.target);
692 if (ret)
693 break;
694
695 ret = spinand_write_page(spinand, &iter.req);
696 if (ret)
697 break;
698
699 ops->retlen += iter.req.datalen;
700 ops->oobretlen += iter.req.ooblen;
701 }
702
703 mutex_unlock(&spinand->lock);
704
705 return ret;
706 }
707
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)708 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
709 {
710 struct spinand_device *spinand = nand_to_spinand(nand);
711 u8 marker[2] = { };
712 struct nand_page_io_req req = {
713 .pos = *pos,
714 .ooblen = sizeof(marker),
715 .ooboffs = 0,
716 .oobbuf.in = marker,
717 .mode = MTD_OPS_RAW,
718 };
719
720 spinand_select_target(spinand, pos->target);
721 spinand_read_page(spinand, &req);
722 if (marker[0] != 0xff || marker[1] != 0xff)
723 return true;
724
725 return false;
726 }
727
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)728 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
729 {
730 struct nand_device *nand = mtd_to_nanddev(mtd);
731 struct spinand_device *spinand = nand_to_spinand(nand);
732 struct nand_pos pos;
733 int ret;
734
735 nanddev_offs_to_pos(nand, offs, &pos);
736 mutex_lock(&spinand->lock);
737 ret = nanddev_isbad(nand, &pos);
738 mutex_unlock(&spinand->lock);
739
740 return ret;
741 }
742
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)743 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
744 {
745 struct spinand_device *spinand = nand_to_spinand(nand);
746 u8 marker[2] = { };
747 struct nand_page_io_req req = {
748 .pos = *pos,
749 .ooboffs = 0,
750 .ooblen = sizeof(marker),
751 .oobbuf.out = marker,
752 .mode = MTD_OPS_RAW,
753 };
754 int ret;
755
756 ret = spinand_select_target(spinand, pos->target);
757 if (ret)
758 return ret;
759
760 ret = spinand_write_enable_op(spinand);
761 if (ret)
762 return ret;
763
764 return spinand_write_page(spinand, &req);
765 }
766
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)767 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
768 {
769 struct nand_device *nand = mtd_to_nanddev(mtd);
770 struct spinand_device *spinand = nand_to_spinand(nand);
771 struct nand_pos pos;
772 int ret;
773
774 nanddev_offs_to_pos(nand, offs, &pos);
775 mutex_lock(&spinand->lock);
776 ret = nanddev_markbad(nand, &pos);
777 mutex_unlock(&spinand->lock);
778
779 return ret;
780 }
781
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)782 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
783 {
784 struct spinand_device *spinand = nand_to_spinand(nand);
785 u8 status;
786 int ret;
787
788 ret = spinand_select_target(spinand, pos->target);
789 if (ret)
790 return ret;
791
792 ret = spinand_write_enable_op(spinand);
793 if (ret)
794 return ret;
795
796 ret = spinand_erase_op(spinand, pos);
797 if (ret)
798 return ret;
799
800 ret = spinand_wait(spinand,
801 SPINAND_ERASE_INITIAL_DELAY_US,
802 SPINAND_ERASE_POLL_DELAY_US,
803 &status);
804
805 if (!ret && (status & STATUS_ERASE_FAILED))
806 ret = -EIO;
807
808 return ret;
809 }
810
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)811 static int spinand_mtd_erase(struct mtd_info *mtd,
812 struct erase_info *einfo)
813 {
814 struct spinand_device *spinand = mtd_to_spinand(mtd);
815 int ret;
816
817 mutex_lock(&spinand->lock);
818 ret = nanddev_mtd_erase(mtd, einfo);
819 mutex_unlock(&spinand->lock);
820
821 return ret;
822 }
823
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)824 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
825 {
826 struct spinand_device *spinand = mtd_to_spinand(mtd);
827 struct nand_device *nand = mtd_to_nanddev(mtd);
828 struct nand_pos pos;
829 int ret;
830
831 nanddev_offs_to_pos(nand, offs, &pos);
832 mutex_lock(&spinand->lock);
833 ret = nanddev_isreserved(nand, &pos);
834 mutex_unlock(&spinand->lock);
835
836 return ret;
837 }
838
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)839 static int spinand_create_dirmap(struct spinand_device *spinand,
840 unsigned int plane)
841 {
842 struct nand_device *nand = spinand_to_nand(spinand);
843 struct spi_mem_dirmap_info info = {
844 .length = nanddev_page_size(nand) +
845 nanddev_per_page_oobsize(nand),
846 };
847 struct spi_mem_dirmap_desc *desc;
848
849 /* The plane number is passed in MSB just above the column address */
850 info.offset = plane << fls(nand->memorg.pagesize);
851
852 info.op_tmpl = *spinand->op_templates.update_cache;
853 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
854 spinand->spimem, &info);
855 if (IS_ERR(desc))
856 return PTR_ERR(desc);
857
858 spinand->dirmaps[plane].wdesc = desc;
859
860 info.op_tmpl = *spinand->op_templates.read_cache;
861 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
862 spinand->spimem, &info);
863 if (IS_ERR(desc))
864 return PTR_ERR(desc);
865
866 spinand->dirmaps[plane].rdesc = desc;
867
868 return 0;
869 }
870
spinand_create_dirmaps(struct spinand_device * spinand)871 static int spinand_create_dirmaps(struct spinand_device *spinand)
872 {
873 struct nand_device *nand = spinand_to_nand(spinand);
874 int i, ret;
875
876 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
877 sizeof(*spinand->dirmaps) *
878 nand->memorg.planes_per_lun,
879 GFP_KERNEL);
880 if (!spinand->dirmaps)
881 return -ENOMEM;
882
883 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
884 ret = spinand_create_dirmap(spinand, i);
885 if (ret)
886 return ret;
887 }
888
889 return 0;
890 }
891
892 static const struct nand_ops spinand_ops = {
893 .erase = spinand_erase,
894 .markbad = spinand_markbad,
895 .isbad = spinand_isbad,
896 };
897
898 static const struct spinand_manufacturer *spinand_manufacturers[] = {
899 &gigadevice_spinand_manufacturer,
900 ¯onix_spinand_manufacturer,
901 µn_spinand_manufacturer,
902 ¶gon_spinand_manufacturer,
903 &toshiba_spinand_manufacturer,
904 &winbond_spinand_manufacturer,
905 };
906
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)907 static int spinand_manufacturer_match(struct spinand_device *spinand,
908 enum spinand_readid_method rdid_method)
909 {
910 u8 *id = spinand->id.data;
911 unsigned int i;
912 int ret;
913
914 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
915 const struct spinand_manufacturer *manufacturer =
916 spinand_manufacturers[i];
917
918 if (id[0] != manufacturer->id)
919 continue;
920
921 ret = spinand_match_and_init(spinand,
922 manufacturer->chips,
923 manufacturer->nchips,
924 rdid_method);
925 if (ret < 0)
926 continue;
927
928 spinand->manufacturer = manufacturer;
929 return 0;
930 }
931 return -ENOTSUPP;
932 }
933
spinand_id_detect(struct spinand_device * spinand)934 static int spinand_id_detect(struct spinand_device *spinand)
935 {
936 u8 *id = spinand->id.data;
937 int ret;
938
939 ret = spinand_read_id_op(spinand, 0, 0, id);
940 if (ret)
941 return ret;
942 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
943 if (!ret)
944 return 0;
945
946 ret = spinand_read_id_op(spinand, 1, 0, id);
947 if (ret)
948 return ret;
949 ret = spinand_manufacturer_match(spinand,
950 SPINAND_READID_METHOD_OPCODE_ADDR);
951 if (!ret)
952 return 0;
953
954 ret = spinand_read_id_op(spinand, 0, 1, id);
955 if (ret)
956 return ret;
957 ret = spinand_manufacturer_match(spinand,
958 SPINAND_READID_METHOD_OPCODE_DUMMY);
959
960 return ret;
961 }
962
spinand_manufacturer_init(struct spinand_device * spinand)963 static int spinand_manufacturer_init(struct spinand_device *spinand)
964 {
965 if (spinand->manufacturer->ops->init)
966 return spinand->manufacturer->ops->init(spinand);
967
968 return 0;
969 }
970
spinand_manufacturer_cleanup(struct spinand_device * spinand)971 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
972 {
973 /* Release manufacturer private data */
974 if (spinand->manufacturer->ops->cleanup)
975 return spinand->manufacturer->ops->cleanup(spinand);
976 }
977
978 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)979 spinand_select_op_variant(struct spinand_device *spinand,
980 const struct spinand_op_variants *variants)
981 {
982 struct nand_device *nand = spinand_to_nand(spinand);
983 unsigned int i;
984
985 for (i = 0; i < variants->nops; i++) {
986 struct spi_mem_op op = variants->ops[i];
987 unsigned int nbytes;
988 int ret;
989
990 nbytes = nanddev_per_page_oobsize(nand) +
991 nanddev_page_size(nand);
992
993 while (nbytes) {
994 op.data.nbytes = nbytes;
995 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
996 if (ret)
997 break;
998
999 if (!spi_mem_supports_op(spinand->spimem, &op))
1000 break;
1001
1002 nbytes -= op.data.nbytes;
1003 }
1004
1005 if (!nbytes)
1006 return &variants->ops[i];
1007 }
1008
1009 return NULL;
1010 }
1011
1012 /**
1013 * spinand_match_and_init() - Try to find a match between a device ID and an
1014 * entry in a spinand_info table
1015 * @spinand: SPI NAND object
1016 * @table: SPI NAND device description table
1017 * @table_size: size of the device description table
1018 * @rdid_method: read id method to match
1019 *
1020 * Match between a device ID retrieved through the READ_ID command and an
1021 * entry in the SPI NAND description table. If a match is found, the spinand
1022 * object will be initialized with information provided by the matching
1023 * spinand_info entry.
1024 *
1025 * Return: 0 on success, a negative error code otherwise.
1026 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1027 int spinand_match_and_init(struct spinand_device *spinand,
1028 const struct spinand_info *table,
1029 unsigned int table_size,
1030 enum spinand_readid_method rdid_method)
1031 {
1032 u8 *id = spinand->id.data;
1033 struct nand_device *nand = spinand_to_nand(spinand);
1034 unsigned int i;
1035
1036 for (i = 0; i < table_size; i++) {
1037 const struct spinand_info *info = &table[i];
1038 const struct spi_mem_op *op;
1039
1040 if (rdid_method != info->devid.method)
1041 continue;
1042
1043 if (memcmp(id + 1, info->devid.id, info->devid.len))
1044 continue;
1045
1046 nand->memorg = table[i].memorg;
1047 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1048 spinand->eccinfo = table[i].eccinfo;
1049 spinand->flags = table[i].flags;
1050 spinand->id.len = 1 + table[i].devid.len;
1051 spinand->select_target = table[i].select_target;
1052
1053 op = spinand_select_op_variant(spinand,
1054 info->op_variants.read_cache);
1055 if (!op)
1056 return -ENOTSUPP;
1057
1058 spinand->op_templates.read_cache = op;
1059
1060 op = spinand_select_op_variant(spinand,
1061 info->op_variants.write_cache);
1062 if (!op)
1063 return -ENOTSUPP;
1064
1065 spinand->op_templates.write_cache = op;
1066
1067 op = spinand_select_op_variant(spinand,
1068 info->op_variants.update_cache);
1069 spinand->op_templates.update_cache = op;
1070
1071 return 0;
1072 }
1073
1074 return -ENOTSUPP;
1075 }
1076
spinand_detect(struct spinand_device * spinand)1077 static int spinand_detect(struct spinand_device *spinand)
1078 {
1079 struct device *dev = &spinand->spimem->spi->dev;
1080 struct nand_device *nand = spinand_to_nand(spinand);
1081 int ret;
1082
1083 ret = spinand_reset_op(spinand);
1084 if (ret)
1085 return ret;
1086
1087 ret = spinand_id_detect(spinand);
1088 if (ret) {
1089 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1090 spinand->id.data);
1091 return ret;
1092 }
1093
1094 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1095 dev_err(dev,
1096 "SPI NANDs with more than one die must implement ->select_target()\n");
1097 return -EINVAL;
1098 }
1099
1100 dev_info(&spinand->spimem->spi->dev,
1101 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1102 dev_info(&spinand->spimem->spi->dev,
1103 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1104 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1105 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1106
1107 return 0;
1108 }
1109
spinand_init_flash(struct spinand_device * spinand)1110 static int spinand_init_flash(struct spinand_device *spinand)
1111 {
1112 struct device *dev = &spinand->spimem->spi->dev;
1113 struct nand_device *nand = spinand_to_nand(spinand);
1114 int ret, i;
1115
1116 ret = spinand_read_cfg(spinand);
1117 if (ret)
1118 return ret;
1119
1120 ret = spinand_init_quad_enable(spinand);
1121 if (ret)
1122 return ret;
1123
1124 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1125 if (ret)
1126 return ret;
1127
1128 ret = spinand_manufacturer_init(spinand);
1129 if (ret) {
1130 dev_err(dev,
1131 "Failed to initialize the SPI NAND chip (err = %d)\n",
1132 ret);
1133 return ret;
1134 }
1135
1136 /* After power up, all blocks are locked, so unlock them here. */
1137 for (i = 0; i < nand->memorg.ntargets; i++) {
1138 ret = spinand_select_target(spinand, i);
1139 if (ret)
1140 break;
1141
1142 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1143 if (ret)
1144 break;
1145 }
1146
1147 if (ret)
1148 spinand_manufacturer_cleanup(spinand);
1149
1150 return ret;
1151 }
1152
spinand_mtd_resume(struct mtd_info * mtd)1153 static void spinand_mtd_resume(struct mtd_info *mtd)
1154 {
1155 struct spinand_device *spinand = mtd_to_spinand(mtd);
1156 int ret;
1157
1158 ret = spinand_reset_op(spinand);
1159 if (ret)
1160 return;
1161
1162 ret = spinand_init_flash(spinand);
1163 if (ret)
1164 return;
1165
1166 spinand_ecc_enable(spinand, false);
1167 }
1168
spinand_init(struct spinand_device * spinand)1169 static int spinand_init(struct spinand_device *spinand)
1170 {
1171 struct device *dev = &spinand->spimem->spi->dev;
1172 struct mtd_info *mtd = spinand_to_mtd(spinand);
1173 struct nand_device *nand = mtd_to_nanddev(mtd);
1174 int ret;
1175
1176 /*
1177 * We need a scratch buffer because the spi_mem interface requires that
1178 * buf passed in spi_mem_op->data.buf be DMA-able.
1179 */
1180 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1181 if (!spinand->scratchbuf)
1182 return -ENOMEM;
1183
1184 ret = spinand_detect(spinand);
1185 if (ret)
1186 goto err_free_bufs;
1187
1188 /*
1189 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1190 * may use this buffer for DMA access.
1191 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1192 */
1193 spinand->databuf = kzalloc(nanddev_page_size(nand) +
1194 nanddev_per_page_oobsize(nand),
1195 GFP_KERNEL);
1196 if (!spinand->databuf) {
1197 ret = -ENOMEM;
1198 goto err_free_bufs;
1199 }
1200
1201 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1202
1203 ret = spinand_init_cfg_cache(spinand);
1204 if (ret)
1205 goto err_free_bufs;
1206
1207 ret = spinand_init_flash(spinand);
1208 if (ret)
1209 goto err_free_bufs;
1210
1211 ret = spinand_create_dirmaps(spinand);
1212 if (ret) {
1213 dev_err(dev,
1214 "Failed to create direct mappings for read/write operations (err = %d)\n",
1215 ret);
1216 goto err_manuf_cleanup;
1217 }
1218
1219 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1220 if (ret)
1221 goto err_manuf_cleanup;
1222
1223 /* SPI-NAND default ECC engine is on-die */
1224 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1225 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1226
1227 spinand_ecc_enable(spinand, false);
1228 ret = nanddev_ecc_engine_init(nand);
1229 if (ret)
1230 goto err_cleanup_nanddev;
1231
1232 mtd->_read_oob = spinand_mtd_read;
1233 mtd->_write_oob = spinand_mtd_write;
1234 mtd->_block_isbad = spinand_mtd_block_isbad;
1235 mtd->_block_markbad = spinand_mtd_block_markbad;
1236 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1237 mtd->_erase = spinand_mtd_erase;
1238 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1239 mtd->_resume = spinand_mtd_resume;
1240
1241 if (nand->ecc.engine) {
1242 ret = mtd_ooblayout_count_freebytes(mtd);
1243 if (ret < 0)
1244 goto err_cleanup_ecc_engine;
1245 }
1246
1247 mtd->oobavail = ret;
1248
1249 /* Propagate ECC information to mtd_info */
1250 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1251 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1252
1253 return 0;
1254
1255 err_cleanup_ecc_engine:
1256 nanddev_ecc_engine_cleanup(nand);
1257
1258 err_cleanup_nanddev:
1259 nanddev_cleanup(nand);
1260
1261 err_manuf_cleanup:
1262 spinand_manufacturer_cleanup(spinand);
1263
1264 err_free_bufs:
1265 kfree(spinand->databuf);
1266 kfree(spinand->scratchbuf);
1267 return ret;
1268 }
1269
spinand_cleanup(struct spinand_device * spinand)1270 static void spinand_cleanup(struct spinand_device *spinand)
1271 {
1272 struct nand_device *nand = spinand_to_nand(spinand);
1273
1274 nanddev_cleanup(nand);
1275 spinand_manufacturer_cleanup(spinand);
1276 kfree(spinand->databuf);
1277 kfree(spinand->scratchbuf);
1278 }
1279
spinand_probe(struct spi_mem * mem)1280 static int spinand_probe(struct spi_mem *mem)
1281 {
1282 struct spinand_device *spinand;
1283 struct mtd_info *mtd;
1284 int ret;
1285
1286 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1287 GFP_KERNEL);
1288 if (!spinand)
1289 return -ENOMEM;
1290
1291 spinand->spimem = mem;
1292 spi_mem_set_drvdata(mem, spinand);
1293 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1294 mutex_init(&spinand->lock);
1295 mtd = spinand_to_mtd(spinand);
1296 mtd->dev.parent = &mem->spi->dev;
1297
1298 ret = spinand_init(spinand);
1299 if (ret)
1300 return ret;
1301
1302 ret = mtd_device_register(mtd, NULL, 0);
1303 if (ret)
1304 goto err_spinand_cleanup;
1305
1306 return 0;
1307
1308 err_spinand_cleanup:
1309 spinand_cleanup(spinand);
1310
1311 return ret;
1312 }
1313
spinand_remove(struct spi_mem * mem)1314 static int spinand_remove(struct spi_mem *mem)
1315 {
1316 struct spinand_device *spinand;
1317 struct mtd_info *mtd;
1318 int ret;
1319
1320 spinand = spi_mem_get_drvdata(mem);
1321 mtd = spinand_to_mtd(spinand);
1322
1323 ret = mtd_device_unregister(mtd);
1324 if (ret)
1325 return ret;
1326
1327 spinand_cleanup(spinand);
1328
1329 return 0;
1330 }
1331
1332 static const struct spi_device_id spinand_ids[] = {
1333 { .name = "spi-nand" },
1334 { /* sentinel */ },
1335 };
1336 MODULE_DEVICE_TABLE(spi, spinand_ids);
1337
1338 #ifdef CONFIG_OF
1339 static const struct of_device_id spinand_of_ids[] = {
1340 { .compatible = "spi-nand" },
1341 { /* sentinel */ },
1342 };
1343 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1344 #endif
1345
1346 static struct spi_mem_driver spinand_drv = {
1347 .spidrv = {
1348 .id_table = spinand_ids,
1349 .driver = {
1350 .name = "spi-nand",
1351 .of_match_table = of_match_ptr(spinand_of_ids),
1352 },
1353 },
1354 .probe = spinand_probe,
1355 .remove = spinand_remove,
1356 };
1357 module_spi_mem_driver(spinand_drv);
1358
1359 MODULE_DESCRIPTION("SPI NAND framework");
1360 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1361 MODULE_LICENSE("GPL v2");
1362