• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/phy/phy.h>
25 
26 #include "m_can.h"
27 
28 /* registers definition */
29 enum m_can_reg {
30 	M_CAN_CREL	= 0x0,
31 	M_CAN_ENDN	= 0x4,
32 	M_CAN_CUST	= 0x8,
33 	M_CAN_DBTP	= 0xc,
34 	M_CAN_TEST	= 0x10,
35 	M_CAN_RWD	= 0x14,
36 	M_CAN_CCCR	= 0x18,
37 	M_CAN_NBTP	= 0x1c,
38 	M_CAN_TSCC	= 0x20,
39 	M_CAN_TSCV	= 0x24,
40 	M_CAN_TOCC	= 0x28,
41 	M_CAN_TOCV	= 0x2c,
42 	M_CAN_ECR	= 0x40,
43 	M_CAN_PSR	= 0x44,
44 	/* TDCR Register only available for version >=3.1.x */
45 	M_CAN_TDCR	= 0x48,
46 	M_CAN_IR	= 0x50,
47 	M_CAN_IE	= 0x54,
48 	M_CAN_ILS	= 0x58,
49 	M_CAN_ILE	= 0x5c,
50 	M_CAN_GFC	= 0x80,
51 	M_CAN_SIDFC	= 0x84,
52 	M_CAN_XIDFC	= 0x88,
53 	M_CAN_XIDAM	= 0x90,
54 	M_CAN_HPMS	= 0x94,
55 	M_CAN_NDAT1	= 0x98,
56 	M_CAN_NDAT2	= 0x9c,
57 	M_CAN_RXF0C	= 0xa0,
58 	M_CAN_RXF0S	= 0xa4,
59 	M_CAN_RXF0A	= 0xa8,
60 	M_CAN_RXBC	= 0xac,
61 	M_CAN_RXF1C	= 0xb0,
62 	M_CAN_RXF1S	= 0xb4,
63 	M_CAN_RXF1A	= 0xb8,
64 	M_CAN_RXESC	= 0xbc,
65 	M_CAN_TXBC	= 0xc0,
66 	M_CAN_TXFQS	= 0xc4,
67 	M_CAN_TXESC	= 0xc8,
68 	M_CAN_TXBRP	= 0xcc,
69 	M_CAN_TXBAR	= 0xd0,
70 	M_CAN_TXBCR	= 0xd4,
71 	M_CAN_TXBTO	= 0xd8,
72 	M_CAN_TXBCF	= 0xdc,
73 	M_CAN_TXBTIE	= 0xe0,
74 	M_CAN_TXBCIE	= 0xe4,
75 	M_CAN_TXEFC	= 0xf0,
76 	M_CAN_TXEFS	= 0xf4,
77 	M_CAN_TXEFA	= 0xf8,
78 };
79 
80 /* napi related */
81 #define M_CAN_NAPI_WEIGHT	64
82 
83 /* message ram configuration data length */
84 #define MRAM_CFG_LEN	8
85 
86 /* Core Release Register (CREL) */
87 #define CREL_REL_MASK		GENMASK(31, 28)
88 #define CREL_STEP_MASK		GENMASK(27, 24)
89 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
90 
91 /* Data Bit Timing & Prescaler Register (DBTP) */
92 #define DBTP_TDC		BIT(23)
93 #define DBTP_DBRP_MASK		GENMASK(20, 16)
94 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
95 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
96 #define DBTP_DSJW_MASK		GENMASK(3, 0)
97 
98 /* Transmitter Delay Compensation Register (TDCR) */
99 #define TDCR_TDCO_MASK		GENMASK(14, 8)
100 #define TDCR_TDCF_MASK		GENMASK(6, 0)
101 
102 /* Test Register (TEST) */
103 #define TEST_LBCK		BIT(4)
104 
105 /* CC Control Register (CCCR) */
106 #define CCCR_TXP		BIT(14)
107 #define CCCR_TEST		BIT(7)
108 #define CCCR_DAR		BIT(6)
109 #define CCCR_MON		BIT(5)
110 #define CCCR_CSR		BIT(4)
111 #define CCCR_CSA		BIT(3)
112 #define CCCR_ASM		BIT(2)
113 #define CCCR_CCE		BIT(1)
114 #define CCCR_INIT		BIT(0)
115 /* for version 3.0.x */
116 #define CCCR_CMR_MASK		GENMASK(11, 10)
117 #define CCCR_CMR_CANFD		0x1
118 #define CCCR_CMR_CANFD_BRS	0x2
119 #define CCCR_CMR_CAN		0x3
120 #define CCCR_CME_MASK		GENMASK(9, 8)
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 /* for version >=3.1.x */
125 #define CCCR_EFBI		BIT(13)
126 #define CCCR_PXHD		BIT(12)
127 #define CCCR_BRSE		BIT(9)
128 #define CCCR_FDOE		BIT(8)
129 /* for version >=3.2.x */
130 #define CCCR_NISO		BIT(15)
131 /* for version >=3.3.x */
132 #define CCCR_WMM		BIT(11)
133 #define CCCR_UTSU		BIT(10)
134 
135 /* Nominal Bit Timing & Prescaler Register (NBTP) */
136 #define NBTP_NSJW_MASK		GENMASK(31, 25)
137 #define NBTP_NBRP_MASK		GENMASK(24, 16)
138 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
139 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
140 
141 /* Timestamp Counter Configuration Register (TSCC) */
142 #define TSCC_TCP_MASK		GENMASK(19, 16)
143 #define TSCC_TSS_MASK		GENMASK(1, 0)
144 #define TSCC_TSS_DISABLE	0x0
145 #define TSCC_TSS_INTERNAL	0x1
146 #define TSCC_TSS_EXTERNAL	0x2
147 
148 /* Timestamp Counter Value Register (TSCV) */
149 #define TSCV_TSC_MASK		GENMASK(15, 0)
150 
151 /* Error Counter Register (ECR) */
152 #define ECR_RP			BIT(15)
153 #define ECR_REC_MASK		GENMASK(14, 8)
154 #define ECR_TEC_MASK		GENMASK(7, 0)
155 
156 /* Protocol Status Register (PSR) */
157 #define PSR_BO		BIT(7)
158 #define PSR_EW		BIT(6)
159 #define PSR_EP		BIT(5)
160 #define PSR_LEC_MASK	GENMASK(2, 0)
161 
162 /* Interrupt Register (IR) */
163 #define IR_ALL_INT	0xffffffff
164 
165 /* Renamed bits for versions > 3.1.x */
166 #define IR_ARA		BIT(29)
167 #define IR_PED		BIT(28)
168 #define IR_PEA		BIT(27)
169 
170 /* Bits for version 3.0.x */
171 #define IR_STE		BIT(31)
172 #define IR_FOE		BIT(30)
173 #define IR_ACKE		BIT(29)
174 #define IR_BE		BIT(28)
175 #define IR_CRCE		BIT(27)
176 #define IR_WDI		BIT(26)
177 #define IR_BO		BIT(25)
178 #define IR_EW		BIT(24)
179 #define IR_EP		BIT(23)
180 #define IR_ELO		BIT(22)
181 #define IR_BEU		BIT(21)
182 #define IR_BEC		BIT(20)
183 #define IR_DRX		BIT(19)
184 #define IR_TOO		BIT(18)
185 #define IR_MRAF		BIT(17)
186 #define IR_TSW		BIT(16)
187 #define IR_TEFL		BIT(15)
188 #define IR_TEFF		BIT(14)
189 #define IR_TEFW		BIT(13)
190 #define IR_TEFN		BIT(12)
191 #define IR_TFE		BIT(11)
192 #define IR_TCF		BIT(10)
193 #define IR_TC		BIT(9)
194 #define IR_HPM		BIT(8)
195 #define IR_RF1L		BIT(7)
196 #define IR_RF1F		BIT(6)
197 #define IR_RF1W		BIT(5)
198 #define IR_RF1N		BIT(4)
199 #define IR_RF0L		BIT(3)
200 #define IR_RF0F		BIT(2)
201 #define IR_RF0W		BIT(1)
202 #define IR_RF0N		BIT(0)
203 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
204 
205 /* Interrupts for version 3.0.x */
206 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
207 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
208 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
209 			 IR_RF0L)
210 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
211 
212 /* Interrupts for version >= 3.1.x */
213 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
214 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
215 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
216 			 IR_RF0L)
217 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
218 
219 /* Interrupt Line Select (ILS) */
220 #define ILS_ALL_INT0	0x0
221 #define ILS_ALL_INT1	0xFFFFFFFF
222 
223 /* Interrupt Line Enable (ILE) */
224 #define ILE_EINT1	BIT(1)
225 #define ILE_EINT0	BIT(0)
226 
227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
228 #define RXFC_FWM_MASK	GENMASK(30, 24)
229 #define RXFC_FS_MASK	GENMASK(22, 16)
230 
231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
232 #define RXFS_RFL	BIT(25)
233 #define RXFS_FF		BIT(24)
234 #define RXFS_FPI_MASK	GENMASK(21, 16)
235 #define RXFS_FGI_MASK	GENMASK(13, 8)
236 #define RXFS_FFL_MASK	GENMASK(6, 0)
237 
238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
239 #define RXESC_RBDS_MASK		GENMASK(10, 8)
240 #define RXESC_F1DS_MASK		GENMASK(6, 4)
241 #define RXESC_F0DS_MASK		GENMASK(2, 0)
242 #define RXESC_64B		0x7
243 
244 /* Tx Buffer Configuration (TXBC) */
245 #define TXBC_TFQS_MASK		GENMASK(29, 24)
246 #define TXBC_NDTB_MASK		GENMASK(21, 16)
247 
248 /* Tx FIFO/Queue Status (TXFQS) */
249 #define TXFQS_TFQF		BIT(21)
250 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
251 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
252 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
253 
254 /* Tx Buffer Element Size Configuration (TXESC) */
255 #define TXESC_TBDS_MASK		GENMASK(2, 0)
256 #define TXESC_TBDS_64B		0x7
257 
258 /* Tx Event FIFO Configuration (TXEFC) */
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
313  * and we can save a (potentially slow) bus round trip by combining
314  * reads and writes to them.
315  */
316 struct id_and_dlc {
317 	u32 id;
318 	u32 dlc;
319 };
320 
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)321 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
322 {
323 	return cdev->ops->read_reg(cdev, reg);
324 }
325 
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)326 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
327 			       u32 val)
328 {
329 	cdev->ops->write_reg(cdev, reg, val);
330 }
331 
332 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)333 m_can_fifo_read(struct m_can_classdev *cdev,
334 		u32 fgi, unsigned int offset, void *val, size_t val_count)
335 {
336 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
337 		offset;
338 
339 	if (val_count == 0)
340 		return 0;
341 
342 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
343 }
344 
345 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)346 m_can_fifo_write(struct m_can_classdev *cdev,
347 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
348 {
349 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
350 		offset;
351 
352 	if (val_count == 0)
353 		return 0;
354 
355 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
356 }
357 
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)358 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
359 					  u32 fpi, u32 val)
360 {
361 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
362 }
363 
364 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)365 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
366 {
367 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
368 		offset;
369 
370 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
371 }
372 
m_can_tx_fifo_full(struct m_can_classdev * cdev)373 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
374 {
375 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
376 }
377 
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)378 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
379 {
380 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
381 	u32 timeout = 10;
382 	u32 val = 0;
383 
384 	/* Clear the Clock stop request if it was set */
385 	if (cccr & CCCR_CSR)
386 		cccr &= ~CCCR_CSR;
387 
388 	if (enable) {
389 		/* enable m_can configuration */
390 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
391 		udelay(5);
392 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
393 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
394 	} else {
395 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
396 	}
397 
398 	/* there's a delay for module initialization */
399 	if (enable)
400 		val = CCCR_INIT | CCCR_CCE;
401 
402 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
403 		if (timeout == 0) {
404 			netdev_warn(cdev->net, "Failed to init module\n");
405 			return;
406 		}
407 		timeout--;
408 		udelay(1);
409 	}
410 }
411 
m_can_enable_all_interrupts(struct m_can_classdev * cdev)412 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
413 {
414 	/* Only interrupt line 0 is used in this driver */
415 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
416 }
417 
m_can_disable_all_interrupts(struct m_can_classdev * cdev)418 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
419 {
420 	m_can_write(cdev, M_CAN_ILE, 0x0);
421 }
422 
423 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
424  * width.
425  */
m_can_get_timestamp(struct m_can_classdev * cdev)426 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
427 {
428 	u32 tscv;
429 	u32 tsc;
430 
431 	tscv = m_can_read(cdev, M_CAN_TSCV);
432 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
433 
434 	return (tsc << 16);
435 }
436 
m_can_clean(struct net_device * net)437 static void m_can_clean(struct net_device *net)
438 {
439 	struct m_can_classdev *cdev = netdev_priv(net);
440 
441 	if (cdev->tx_skb) {
442 		int putidx = 0;
443 
444 		net->stats.tx_errors++;
445 		if (cdev->version > 30)
446 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
447 					   m_can_read(cdev, M_CAN_TXFQS));
448 
449 		can_free_echo_skb(cdev->net, putidx, NULL);
450 		cdev->tx_skb = NULL;
451 	}
452 }
453 
454 /* For peripherals, pass skb to rx-offload, which will push skb from
455  * napi. For non-peripherals, RX is done in napi already, so push
456  * directly. timestamp is used to ensure good skb ordering in
457  * rx-offload and is ignored for non-peripherals.
458  */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)459 static void m_can_receive_skb(struct m_can_classdev *cdev,
460 			      struct sk_buff *skb,
461 			      u32 timestamp)
462 {
463 	if (cdev->is_peripheral) {
464 		struct net_device_stats *stats = &cdev->net->stats;
465 		int err;
466 
467 		err = can_rx_offload_queue_sorted(&cdev->offload, skb,
468 						  timestamp);
469 		if (err)
470 			stats->rx_fifo_errors++;
471 	} else {
472 		netif_receive_skb(skb);
473 	}
474 }
475 
m_can_read_fifo(struct net_device * dev,u32 rxfs)476 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
477 {
478 	struct net_device_stats *stats = &dev->stats;
479 	struct m_can_classdev *cdev = netdev_priv(dev);
480 	struct canfd_frame *cf;
481 	struct sk_buff *skb;
482 	struct id_and_dlc fifo_header;
483 	u32 fgi;
484 	u32 timestamp = 0;
485 	int err;
486 
487 	/* calculate the fifo get index for where to read data */
488 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
489 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
490 	if (err)
491 		goto out_fail;
492 
493 	if (fifo_header.dlc & RX_BUF_FDF)
494 		skb = alloc_canfd_skb(dev, &cf);
495 	else
496 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
497 	if (!skb) {
498 		stats->rx_dropped++;
499 		return 0;
500 	}
501 
502 	if (fifo_header.dlc & RX_BUF_FDF)
503 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
504 	else
505 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
506 
507 	if (fifo_header.id & RX_BUF_XTD)
508 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
509 	else
510 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
511 
512 	if (fifo_header.id & RX_BUF_ESI) {
513 		cf->flags |= CANFD_ESI;
514 		netdev_dbg(dev, "ESI Error\n");
515 	}
516 
517 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
518 		cf->can_id |= CAN_RTR_FLAG;
519 	} else {
520 		if (fifo_header.dlc & RX_BUF_BRS)
521 			cf->flags |= CANFD_BRS;
522 
523 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
524 				      cf->data, DIV_ROUND_UP(cf->len, 4));
525 		if (err)
526 			goto out_free_skb;
527 	}
528 
529 	/* acknowledge rx fifo 0 */
530 	m_can_write(cdev, M_CAN_RXF0A, fgi);
531 
532 	stats->rx_packets++;
533 	stats->rx_bytes += cf->len;
534 
535 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
536 
537 	m_can_receive_skb(cdev, skb, timestamp);
538 
539 	return 0;
540 
541 out_free_skb:
542 	kfree_skb(skb);
543 out_fail:
544 	netdev_err(dev, "FIFO read returned %d\n", err);
545 	return err;
546 }
547 
m_can_do_rx_poll(struct net_device * dev,int quota)548 static int m_can_do_rx_poll(struct net_device *dev, int quota)
549 {
550 	struct m_can_classdev *cdev = netdev_priv(dev);
551 	u32 pkts = 0;
552 	u32 rxfs;
553 	int err;
554 
555 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
556 	if (!(rxfs & RXFS_FFL_MASK)) {
557 		netdev_dbg(dev, "no messages in fifo0\n");
558 		return 0;
559 	}
560 
561 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
562 		err = m_can_read_fifo(dev, rxfs);
563 		if (err)
564 			return err;
565 
566 		quota--;
567 		pkts++;
568 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
569 	}
570 
571 	if (pkts)
572 		can_led_event(dev, CAN_LED_EVENT_RX);
573 
574 	return pkts;
575 }
576 
m_can_handle_lost_msg(struct net_device * dev)577 static int m_can_handle_lost_msg(struct net_device *dev)
578 {
579 	struct m_can_classdev *cdev = netdev_priv(dev);
580 	struct net_device_stats *stats = &dev->stats;
581 	struct sk_buff *skb;
582 	struct can_frame *frame;
583 	u32 timestamp = 0;
584 
585 	netdev_err(dev, "msg lost in rxf0\n");
586 
587 	stats->rx_errors++;
588 	stats->rx_over_errors++;
589 
590 	skb = alloc_can_err_skb(dev, &frame);
591 	if (unlikely(!skb))
592 		return 0;
593 
594 	frame->can_id |= CAN_ERR_CRTL;
595 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
596 
597 	if (cdev->is_peripheral)
598 		timestamp = m_can_get_timestamp(cdev);
599 
600 	m_can_receive_skb(cdev, skb, timestamp);
601 
602 	return 1;
603 }
604 
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)605 static int m_can_handle_lec_err(struct net_device *dev,
606 				enum m_can_lec_type lec_type)
607 {
608 	struct m_can_classdev *cdev = netdev_priv(dev);
609 	struct net_device_stats *stats = &dev->stats;
610 	struct can_frame *cf;
611 	struct sk_buff *skb;
612 	u32 timestamp = 0;
613 
614 	cdev->can.can_stats.bus_error++;
615 	stats->rx_errors++;
616 
617 	/* propagate the error condition to the CAN stack */
618 	skb = alloc_can_err_skb(dev, &cf);
619 	if (unlikely(!skb))
620 		return 0;
621 
622 	/* check for 'last error code' which tells us the
623 	 * type of the last error to occur on the CAN bus
624 	 */
625 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
626 
627 	switch (lec_type) {
628 	case LEC_STUFF_ERROR:
629 		netdev_dbg(dev, "stuff error\n");
630 		cf->data[2] |= CAN_ERR_PROT_STUFF;
631 		break;
632 	case LEC_FORM_ERROR:
633 		netdev_dbg(dev, "form error\n");
634 		cf->data[2] |= CAN_ERR_PROT_FORM;
635 		break;
636 	case LEC_ACK_ERROR:
637 		netdev_dbg(dev, "ack error\n");
638 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
639 		break;
640 	case LEC_BIT1_ERROR:
641 		netdev_dbg(dev, "bit1 error\n");
642 		cf->data[2] |= CAN_ERR_PROT_BIT1;
643 		break;
644 	case LEC_BIT0_ERROR:
645 		netdev_dbg(dev, "bit0 error\n");
646 		cf->data[2] |= CAN_ERR_PROT_BIT0;
647 		break;
648 	case LEC_CRC_ERROR:
649 		netdev_dbg(dev, "CRC error\n");
650 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
651 		break;
652 	default:
653 		break;
654 	}
655 
656 	stats->rx_packets++;
657 	stats->rx_bytes += cf->len;
658 
659 	if (cdev->is_peripheral)
660 		timestamp = m_can_get_timestamp(cdev);
661 
662 	m_can_receive_skb(cdev, skb, timestamp);
663 
664 	return 1;
665 }
666 
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)667 static int __m_can_get_berr_counter(const struct net_device *dev,
668 				    struct can_berr_counter *bec)
669 {
670 	struct m_can_classdev *cdev = netdev_priv(dev);
671 	unsigned int ecr;
672 
673 	ecr = m_can_read(cdev, M_CAN_ECR);
674 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
675 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
676 
677 	return 0;
678 }
679 
m_can_clk_start(struct m_can_classdev * cdev)680 static int m_can_clk_start(struct m_can_classdev *cdev)
681 {
682 	if (cdev->pm_clock_support == 0)
683 		return 0;
684 
685 	return pm_runtime_resume_and_get(cdev->dev);
686 }
687 
m_can_clk_stop(struct m_can_classdev * cdev)688 static void m_can_clk_stop(struct m_can_classdev *cdev)
689 {
690 	if (cdev->pm_clock_support)
691 		pm_runtime_put_sync(cdev->dev);
692 }
693 
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)694 static int m_can_get_berr_counter(const struct net_device *dev,
695 				  struct can_berr_counter *bec)
696 {
697 	struct m_can_classdev *cdev = netdev_priv(dev);
698 	int err;
699 
700 	err = m_can_clk_start(cdev);
701 	if (err)
702 		return err;
703 
704 	__m_can_get_berr_counter(dev, bec);
705 
706 	m_can_clk_stop(cdev);
707 
708 	return 0;
709 }
710 
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)711 static int m_can_handle_state_change(struct net_device *dev,
712 				     enum can_state new_state)
713 {
714 	struct m_can_classdev *cdev = netdev_priv(dev);
715 	struct net_device_stats *stats = &dev->stats;
716 	struct can_frame *cf;
717 	struct sk_buff *skb;
718 	struct can_berr_counter bec;
719 	unsigned int ecr;
720 	u32 timestamp = 0;
721 
722 	switch (new_state) {
723 	case CAN_STATE_ERROR_WARNING:
724 		/* error warning state */
725 		cdev->can.can_stats.error_warning++;
726 		cdev->can.state = CAN_STATE_ERROR_WARNING;
727 		break;
728 	case CAN_STATE_ERROR_PASSIVE:
729 		/* error passive state */
730 		cdev->can.can_stats.error_passive++;
731 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
732 		break;
733 	case CAN_STATE_BUS_OFF:
734 		/* bus-off state */
735 		cdev->can.state = CAN_STATE_BUS_OFF;
736 		m_can_disable_all_interrupts(cdev);
737 		cdev->can.can_stats.bus_off++;
738 		can_bus_off(dev);
739 		break;
740 	default:
741 		break;
742 	}
743 
744 	/* propagate the error condition to the CAN stack */
745 	skb = alloc_can_err_skb(dev, &cf);
746 	if (unlikely(!skb))
747 		return 0;
748 
749 	__m_can_get_berr_counter(dev, &bec);
750 
751 	switch (new_state) {
752 	case CAN_STATE_ERROR_WARNING:
753 		/* error warning state */
754 		cf->can_id |= CAN_ERR_CRTL;
755 		cf->data[1] = (bec.txerr > bec.rxerr) ?
756 			CAN_ERR_CRTL_TX_WARNING :
757 			CAN_ERR_CRTL_RX_WARNING;
758 		cf->data[6] = bec.txerr;
759 		cf->data[7] = bec.rxerr;
760 		break;
761 	case CAN_STATE_ERROR_PASSIVE:
762 		/* error passive state */
763 		cf->can_id |= CAN_ERR_CRTL;
764 		ecr = m_can_read(cdev, M_CAN_ECR);
765 		if (ecr & ECR_RP)
766 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
767 		if (bec.txerr > 127)
768 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
769 		cf->data[6] = bec.txerr;
770 		cf->data[7] = bec.rxerr;
771 		break;
772 	case CAN_STATE_BUS_OFF:
773 		/* bus-off state */
774 		cf->can_id |= CAN_ERR_BUSOFF;
775 		break;
776 	default:
777 		break;
778 	}
779 
780 	stats->rx_packets++;
781 	stats->rx_bytes += cf->len;
782 
783 	if (cdev->is_peripheral)
784 		timestamp = m_can_get_timestamp(cdev);
785 
786 	m_can_receive_skb(cdev, skb, timestamp);
787 
788 	return 1;
789 }
790 
m_can_handle_state_errors(struct net_device * dev,u32 psr)791 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
792 {
793 	struct m_can_classdev *cdev = netdev_priv(dev);
794 	int work_done = 0;
795 
796 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
797 		netdev_dbg(dev, "entered error warning state\n");
798 		work_done += m_can_handle_state_change(dev,
799 						       CAN_STATE_ERROR_WARNING);
800 	}
801 
802 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
803 		netdev_dbg(dev, "entered error passive state\n");
804 		work_done += m_can_handle_state_change(dev,
805 						       CAN_STATE_ERROR_PASSIVE);
806 	}
807 
808 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
809 		netdev_dbg(dev, "entered error bus off state\n");
810 		work_done += m_can_handle_state_change(dev,
811 						       CAN_STATE_BUS_OFF);
812 	}
813 
814 	return work_done;
815 }
816 
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)817 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
818 {
819 	if (irqstatus & IR_WDI)
820 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
821 	if (irqstatus & IR_BEU)
822 		netdev_err(dev, "Bit Error Uncorrected\n");
823 	if (irqstatus & IR_BEC)
824 		netdev_err(dev, "Bit Error Corrected\n");
825 	if (irqstatus & IR_TOO)
826 		netdev_err(dev, "Timeout reached\n");
827 	if (irqstatus & IR_MRAF)
828 		netdev_err(dev, "Message RAM access failure occurred\n");
829 }
830 
is_lec_err(u32 psr)831 static inline bool is_lec_err(u32 psr)
832 {
833 	psr &= LEC_UNUSED;
834 
835 	return psr && (psr != LEC_UNUSED);
836 }
837 
m_can_is_protocol_err(u32 irqstatus)838 static inline bool m_can_is_protocol_err(u32 irqstatus)
839 {
840 	return irqstatus & IR_ERR_LEC_31X;
841 }
842 
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)843 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
844 {
845 	struct net_device_stats *stats = &dev->stats;
846 	struct m_can_classdev *cdev = netdev_priv(dev);
847 	struct can_frame *cf;
848 	struct sk_buff *skb;
849 	u32 timestamp = 0;
850 
851 	/* propagate the error condition to the CAN stack */
852 	skb = alloc_can_err_skb(dev, &cf);
853 
854 	/* update tx error stats since there is protocol error */
855 	stats->tx_errors++;
856 
857 	/* update arbitration lost status */
858 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
859 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
860 		cdev->can.can_stats.arbitration_lost++;
861 		if (skb) {
862 			cf->can_id |= CAN_ERR_LOSTARB;
863 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
864 		}
865 	}
866 
867 	if (unlikely(!skb)) {
868 		netdev_dbg(dev, "allocation of skb failed\n");
869 		return 0;
870 	}
871 
872 	if (cdev->is_peripheral)
873 		timestamp = m_can_get_timestamp(cdev);
874 
875 	m_can_receive_skb(cdev, skb, timestamp);
876 
877 	return 1;
878 }
879 
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)880 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
881 				   u32 psr)
882 {
883 	struct m_can_classdev *cdev = netdev_priv(dev);
884 	int work_done = 0;
885 
886 	if (irqstatus & IR_RF0L)
887 		work_done += m_can_handle_lost_msg(dev);
888 
889 	/* handle lec errors on the bus */
890 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
891 	    is_lec_err(psr))
892 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
893 
894 	/* handle protocol errors in arbitration phase */
895 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
896 	    m_can_is_protocol_err(irqstatus))
897 		work_done += m_can_handle_protocol_error(dev, irqstatus);
898 
899 	/* other unproccessed error interrupts */
900 	m_can_handle_other_err(dev, irqstatus);
901 
902 	return work_done;
903 }
904 
m_can_rx_handler(struct net_device * dev,int quota)905 static int m_can_rx_handler(struct net_device *dev, int quota)
906 {
907 	struct m_can_classdev *cdev = netdev_priv(dev);
908 	int rx_work_or_err;
909 	int work_done = 0;
910 	u32 irqstatus, psr;
911 
912 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
913 	if (!irqstatus)
914 		goto end;
915 
916 	/* Errata workaround for issue "Needless activation of MRAF irq"
917 	 * During frame reception while the MCAN is in Error Passive state
918 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
919 	 * it may happen that MCAN_IR.MRAF is set although there was no
920 	 * Message RAM access failure.
921 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
922 	 * The Message RAM Access Failure interrupt routine needs to check
923 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
924 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
925 	 */
926 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
927 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
928 		struct can_berr_counter bec;
929 
930 		__m_can_get_berr_counter(dev, &bec);
931 		if (bec.rxerr == 127) {
932 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
933 			irqstatus &= ~IR_MRAF;
934 		}
935 	}
936 
937 	psr = m_can_read(cdev, M_CAN_PSR);
938 
939 	if (irqstatus & IR_ERR_STATE)
940 		work_done += m_can_handle_state_errors(dev, psr);
941 
942 	if (irqstatus & IR_ERR_BUS_30X)
943 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
944 
945 	if (irqstatus & IR_RF0N) {
946 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
947 		if (rx_work_or_err < 0)
948 			return rx_work_or_err;
949 
950 		work_done += rx_work_or_err;
951 	}
952 end:
953 	return work_done;
954 }
955 
m_can_rx_peripheral(struct net_device * dev)956 static int m_can_rx_peripheral(struct net_device *dev)
957 {
958 	struct m_can_classdev *cdev = netdev_priv(dev);
959 	int work_done;
960 
961 	work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
962 
963 	/* Don't re-enable interrupts if the driver had a fatal error
964 	 * (e.g., FIFO read failure).
965 	 */
966 	if (work_done >= 0)
967 		m_can_enable_all_interrupts(cdev);
968 
969 	return work_done;
970 }
971 
m_can_poll(struct napi_struct * napi,int quota)972 static int m_can_poll(struct napi_struct *napi, int quota)
973 {
974 	struct net_device *dev = napi->dev;
975 	struct m_can_classdev *cdev = netdev_priv(dev);
976 	int work_done;
977 
978 	work_done = m_can_rx_handler(dev, quota);
979 
980 	/* Don't re-enable interrupts if the driver had a fatal error
981 	 * (e.g., FIFO read failure).
982 	 */
983 	if (work_done >= 0 && work_done < quota) {
984 		napi_complete_done(napi, work_done);
985 		m_can_enable_all_interrupts(cdev);
986 	}
987 
988 	return work_done;
989 }
990 
991 /* Echo tx skb and update net stats. Peripherals use rx-offload for
992  * echo. timestamp is used for peripherals to ensure correct ordering
993  * by rx-offload, and is ignored for non-peripherals.
994  */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)995 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
996 				  unsigned int msg_mark,
997 				  u32 timestamp)
998 {
999 	struct net_device *dev = cdev->net;
1000 	struct net_device_stats *stats = &dev->stats;
1001 
1002 	if (cdev->is_peripheral)
1003 		stats->tx_bytes +=
1004 			can_rx_offload_get_echo_skb(&cdev->offload,
1005 						    msg_mark,
1006 						    timestamp,
1007 						    NULL);
1008 	else
1009 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1010 
1011 	stats->tx_packets++;
1012 }
1013 
m_can_echo_tx_event(struct net_device * dev)1014 static int m_can_echo_tx_event(struct net_device *dev)
1015 {
1016 	u32 txe_count = 0;
1017 	u32 m_can_txefs;
1018 	u32 fgi = 0;
1019 	int i = 0;
1020 	unsigned int msg_mark;
1021 
1022 	struct m_can_classdev *cdev = netdev_priv(dev);
1023 
1024 	/* read tx event fifo status */
1025 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1026 
1027 	/* Get Tx Event fifo element count */
1028 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1029 
1030 	/* Get and process all sent elements */
1031 	for (i = 0; i < txe_count; i++) {
1032 		u32 txe, timestamp = 0;
1033 		int err;
1034 
1035 		/* retrieve get index */
1036 		fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1037 
1038 		/* get message marker, timestamp */
1039 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1040 		if (err) {
1041 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1042 			return err;
1043 		}
1044 
1045 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1046 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1047 
1048 		/* ack txe element */
1049 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1050 							  fgi));
1051 
1052 		/* update stats */
1053 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1054 	}
1055 
1056 	return 0;
1057 }
1058 
m_can_isr(int irq,void * dev_id)1059 static irqreturn_t m_can_isr(int irq, void *dev_id)
1060 {
1061 	struct net_device *dev = (struct net_device *)dev_id;
1062 	struct m_can_classdev *cdev = netdev_priv(dev);
1063 	u32 ir;
1064 
1065 	if (pm_runtime_suspended(cdev->dev))
1066 		return IRQ_NONE;
1067 	ir = m_can_read(cdev, M_CAN_IR);
1068 	if (!ir)
1069 		return IRQ_NONE;
1070 
1071 	/* ACK all irqs */
1072 	if (ir & IR_ALL_INT)
1073 		m_can_write(cdev, M_CAN_IR, ir);
1074 
1075 	if (cdev->ops->clear_interrupts)
1076 		cdev->ops->clear_interrupts(cdev);
1077 
1078 	/* schedule NAPI in case of
1079 	 * - rx IRQ
1080 	 * - state change IRQ
1081 	 * - bus error IRQ and bus error reporting
1082 	 */
1083 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1084 		cdev->irqstatus = ir;
1085 		m_can_disable_all_interrupts(cdev);
1086 		if (!cdev->is_peripheral)
1087 			napi_schedule(&cdev->napi);
1088 		else if (m_can_rx_peripheral(dev) < 0)
1089 			goto out_fail;
1090 	}
1091 
1092 	if (cdev->version == 30) {
1093 		if (ir & IR_TC) {
1094 			/* Transmission Complete Interrupt*/
1095 			u32 timestamp = 0;
1096 
1097 			if (cdev->is_peripheral)
1098 				timestamp = m_can_get_timestamp(cdev);
1099 			m_can_tx_update_stats(cdev, 0, timestamp);
1100 
1101 			can_led_event(dev, CAN_LED_EVENT_TX);
1102 			netif_wake_queue(dev);
1103 		}
1104 	} else  {
1105 		if (ir & IR_TEFN) {
1106 			/* New TX FIFO Element arrived */
1107 			if (m_can_echo_tx_event(dev) != 0)
1108 				goto out_fail;
1109 
1110 			can_led_event(dev, CAN_LED_EVENT_TX);
1111 			if (netif_queue_stopped(dev) &&
1112 			    !m_can_tx_fifo_full(cdev))
1113 				netif_wake_queue(dev);
1114 		}
1115 	}
1116 
1117 	if (cdev->is_peripheral)
1118 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1119 
1120 	return IRQ_HANDLED;
1121 
1122 out_fail:
1123 	m_can_disable_all_interrupts(cdev);
1124 	return IRQ_HANDLED;
1125 }
1126 
1127 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1128 	.name = KBUILD_MODNAME,
1129 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1130 	.tseg1_max = 64,
1131 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1132 	.tseg2_max = 16,
1133 	.sjw_max = 16,
1134 	.brp_min = 1,
1135 	.brp_max = 1024,
1136 	.brp_inc = 1,
1137 };
1138 
1139 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1140 	.name = KBUILD_MODNAME,
1141 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1142 	.tseg1_max = 16,
1143 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1144 	.tseg2_max = 8,
1145 	.sjw_max = 4,
1146 	.brp_min = 1,
1147 	.brp_max = 32,
1148 	.brp_inc = 1,
1149 };
1150 
1151 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1152 	.name = KBUILD_MODNAME,
1153 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1154 	.tseg1_max = 256,
1155 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1156 	.tseg2_max = 128,
1157 	.sjw_max = 128,
1158 	.brp_min = 1,
1159 	.brp_max = 512,
1160 	.brp_inc = 1,
1161 };
1162 
1163 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1164 	.name = KBUILD_MODNAME,
1165 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1166 	.tseg1_max = 32,
1167 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1168 	.tseg2_max = 16,
1169 	.sjw_max = 16,
1170 	.brp_min = 1,
1171 	.brp_max = 32,
1172 	.brp_inc = 1,
1173 };
1174 
m_can_set_bittiming(struct net_device * dev)1175 static int m_can_set_bittiming(struct net_device *dev)
1176 {
1177 	struct m_can_classdev *cdev = netdev_priv(dev);
1178 	const struct can_bittiming *bt = &cdev->can.bittiming;
1179 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1180 	u16 brp, sjw, tseg1, tseg2;
1181 	u32 reg_btp;
1182 
1183 	brp = bt->brp - 1;
1184 	sjw = bt->sjw - 1;
1185 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1186 	tseg2 = bt->phase_seg2 - 1;
1187 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1188 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1189 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1190 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1191 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1192 
1193 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1194 		reg_btp = 0;
1195 		brp = dbt->brp - 1;
1196 		sjw = dbt->sjw - 1;
1197 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1198 		tseg2 = dbt->phase_seg2 - 1;
1199 
1200 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1201 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1202 		 * paper presented at the International CAN Conference 2013
1203 		 */
1204 		if (dbt->bitrate > 2500000) {
1205 			u32 tdco, ssp;
1206 
1207 			/* Use the same value of secondary sampling point
1208 			 * as the data sampling point
1209 			 */
1210 			ssp = dbt->sample_point;
1211 
1212 			/* Equation based on Bosch's M_CAN User Manual's
1213 			 * Transmitter Delay Compensation Section
1214 			 */
1215 			tdco = (cdev->can.clock.freq / 1000) *
1216 				ssp / dbt->bitrate;
1217 
1218 			/* Max valid TDCO value is 127 */
1219 			if (tdco > 127) {
1220 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1221 					    tdco);
1222 				tdco = 127;
1223 			}
1224 
1225 			reg_btp |= DBTP_TDC;
1226 			m_can_write(cdev, M_CAN_TDCR,
1227 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1228 		}
1229 
1230 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1231 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1232 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1233 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1234 
1235 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /* Configure M_CAN chip:
1242  * - set rx buffer/fifo element size
1243  * - configure rx fifo
1244  * - accept non-matching frame into fifo 0
1245  * - configure tx buffer
1246  *		- >= v3.1.x: TX FIFO is used
1247  * - configure mode
1248  * - setup bittiming
1249  * - configure timestamp generation
1250  */
m_can_chip_config(struct net_device * dev)1251 static int m_can_chip_config(struct net_device *dev)
1252 {
1253 	struct m_can_classdev *cdev = netdev_priv(dev);
1254 	u32 cccr, test;
1255 	int err;
1256 
1257 	err = m_can_init_ram(cdev);
1258 	if (err) {
1259 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1260 		return err;
1261 	}
1262 
1263 	m_can_config_endisable(cdev, true);
1264 
1265 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1266 	m_can_write(cdev, M_CAN_RXESC,
1267 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1268 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1269 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1270 
1271 	/* Accept Non-matching Frames Into FIFO 0 */
1272 	m_can_write(cdev, M_CAN_GFC, 0x0);
1273 
1274 	if (cdev->version == 30) {
1275 		/* only support one Tx Buffer currently */
1276 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1277 			    cdev->mcfg[MRAM_TXB].off);
1278 	} else {
1279 		/* TX FIFO is used for newer IP Core versions */
1280 		m_can_write(cdev, M_CAN_TXBC,
1281 			    FIELD_PREP(TXBC_TFQS_MASK,
1282 				       cdev->mcfg[MRAM_TXB].num) |
1283 			    cdev->mcfg[MRAM_TXB].off);
1284 	}
1285 
1286 	/* support 64 bytes payload */
1287 	m_can_write(cdev, M_CAN_TXESC,
1288 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1289 
1290 	/* TX Event FIFO */
1291 	if (cdev->version == 30) {
1292 		m_can_write(cdev, M_CAN_TXEFC,
1293 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1294 			    cdev->mcfg[MRAM_TXE].off);
1295 	} else {
1296 		/* Full TX Event FIFO is used */
1297 		m_can_write(cdev, M_CAN_TXEFC,
1298 			    FIELD_PREP(TXEFC_EFS_MASK,
1299 				       cdev->mcfg[MRAM_TXE].num) |
1300 			    cdev->mcfg[MRAM_TXE].off);
1301 	}
1302 
1303 	/* rx fifo configuration, blocking mode, fifo size 1 */
1304 	m_can_write(cdev, M_CAN_RXF0C,
1305 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1306 		    cdev->mcfg[MRAM_RXF0].off);
1307 
1308 	m_can_write(cdev, M_CAN_RXF1C,
1309 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1310 		    cdev->mcfg[MRAM_RXF1].off);
1311 
1312 	cccr = m_can_read(cdev, M_CAN_CCCR);
1313 	test = m_can_read(cdev, M_CAN_TEST);
1314 	test &= ~TEST_LBCK;
1315 	if (cdev->version == 30) {
1316 		/* Version 3.0.x */
1317 
1318 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1319 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1320 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1321 
1322 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1323 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1324 
1325 	} else {
1326 		/* Version 3.1.x or 3.2.x */
1327 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1328 			  CCCR_NISO | CCCR_DAR);
1329 
1330 		/* Only 3.2.x has NISO Bit implemented */
1331 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1332 			cccr |= CCCR_NISO;
1333 
1334 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1335 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1336 	}
1337 
1338 	/* Loopback Mode */
1339 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1340 		cccr |= CCCR_TEST | CCCR_MON;
1341 		test |= TEST_LBCK;
1342 	}
1343 
1344 	/* Enable Monitoring (all versions) */
1345 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1346 		cccr |= CCCR_MON;
1347 
1348 	/* Disable Auto Retransmission (all versions) */
1349 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1350 		cccr |= CCCR_DAR;
1351 
1352 	/* Write config */
1353 	m_can_write(cdev, M_CAN_CCCR, cccr);
1354 	m_can_write(cdev, M_CAN_TEST, test);
1355 
1356 	/* Enable interrupts */
1357 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1358 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1359 		if (cdev->version == 30)
1360 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1361 				    ~(IR_ERR_LEC_30X));
1362 		else
1363 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1364 				    ~(IR_ERR_LEC_31X));
1365 	else
1366 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1367 
1368 	/* route all interrupts to INT0 */
1369 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1370 
1371 	/* set bittiming params */
1372 	m_can_set_bittiming(dev);
1373 
1374 	/* enable internal timestamp generation, with a prescalar of 16. The
1375 	 * prescalar is applied to the nominal bit timing
1376 	 */
1377 	m_can_write(cdev, M_CAN_TSCC,
1378 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1379 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1380 
1381 	m_can_config_endisable(cdev, false);
1382 
1383 	if (cdev->ops->init)
1384 		cdev->ops->init(cdev);
1385 
1386 	return 0;
1387 }
1388 
m_can_start(struct net_device * dev)1389 static int m_can_start(struct net_device *dev)
1390 {
1391 	struct m_can_classdev *cdev = netdev_priv(dev);
1392 	int ret;
1393 
1394 	/* basic m_can configuration */
1395 	ret = m_can_chip_config(dev);
1396 	if (ret)
1397 		return ret;
1398 
1399 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1400 
1401 	m_can_enable_all_interrupts(cdev);
1402 
1403 	return 0;
1404 }
1405 
m_can_set_mode(struct net_device * dev,enum can_mode mode)1406 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1407 {
1408 	switch (mode) {
1409 	case CAN_MODE_START:
1410 		m_can_clean(dev);
1411 		m_can_start(dev);
1412 		netif_wake_queue(dev);
1413 		break;
1414 	default:
1415 		return -EOPNOTSUPP;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 /* Checks core release number of M_CAN
1422  * returns 0 if an unsupported device is detected
1423  * else it returns the release and step coded as:
1424  * return value = 10 * <release> + 1 * <step>
1425  */
m_can_check_core_release(struct m_can_classdev * cdev)1426 static int m_can_check_core_release(struct m_can_classdev *cdev)
1427 {
1428 	u32 crel_reg;
1429 	u8 rel;
1430 	u8 step;
1431 	int res;
1432 
1433 	/* Read Core Release Version and split into version number
1434 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1435 	 */
1436 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1437 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1438 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1439 
1440 	if (rel == 3) {
1441 		/* M_CAN v3.x.y: create return value */
1442 		res = 30 + step;
1443 	} else {
1444 		/* Unsupported M_CAN version */
1445 		res = 0;
1446 	}
1447 
1448 	return res;
1449 }
1450 
1451 /* Selectable Non ISO support only in version 3.2.x
1452  * This function checks if the bit is writable.
1453  */
m_can_niso_supported(struct m_can_classdev * cdev)1454 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1455 {
1456 	u32 cccr_reg, cccr_poll = 0;
1457 	int niso_timeout = -ETIMEDOUT;
1458 	int i;
1459 
1460 	m_can_config_endisable(cdev, true);
1461 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1462 	cccr_reg |= CCCR_NISO;
1463 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1464 
1465 	for (i = 0; i <= 10; i++) {
1466 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1467 		if (cccr_poll == cccr_reg) {
1468 			niso_timeout = 0;
1469 			break;
1470 		}
1471 
1472 		usleep_range(1, 5);
1473 	}
1474 
1475 	/* Clear NISO */
1476 	cccr_reg &= ~(CCCR_NISO);
1477 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1478 
1479 	m_can_config_endisable(cdev, false);
1480 
1481 	/* return false if time out (-ETIMEDOUT), else return true */
1482 	return !niso_timeout;
1483 }
1484 
m_can_dev_setup(struct m_can_classdev * cdev)1485 static int m_can_dev_setup(struct m_can_classdev *cdev)
1486 {
1487 	struct net_device *dev = cdev->net;
1488 	int m_can_version;
1489 
1490 	m_can_version = m_can_check_core_release(cdev);
1491 	/* return if unsupported version */
1492 	if (!m_can_version) {
1493 		dev_err(cdev->dev, "Unsupported version number: %2d",
1494 			m_can_version);
1495 		return -EINVAL;
1496 	}
1497 
1498 	if (!cdev->is_peripheral)
1499 		netif_napi_add(dev, &cdev->napi,
1500 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1501 
1502 	/* Shared properties of all M_CAN versions */
1503 	cdev->version = m_can_version;
1504 	cdev->can.do_set_mode = m_can_set_mode;
1505 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1506 
1507 	/* Set M_CAN supported operations */
1508 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1509 		CAN_CTRLMODE_LISTENONLY |
1510 		CAN_CTRLMODE_BERR_REPORTING |
1511 		CAN_CTRLMODE_FD |
1512 		CAN_CTRLMODE_ONE_SHOT;
1513 
1514 	/* Set properties depending on M_CAN version */
1515 	switch (cdev->version) {
1516 	case 30:
1517 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1518 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1519 		cdev->can.bittiming_const = cdev->bit_timing ?
1520 			cdev->bit_timing : &m_can_bittiming_const_30X;
1521 
1522 		cdev->can.data_bittiming_const = cdev->data_timing ?
1523 			cdev->data_timing :
1524 			&m_can_data_bittiming_const_30X;
1525 		break;
1526 	case 31:
1527 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1528 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1529 		cdev->can.bittiming_const = cdev->bit_timing ?
1530 			cdev->bit_timing : &m_can_bittiming_const_31X;
1531 
1532 		cdev->can.data_bittiming_const = cdev->data_timing ?
1533 			cdev->data_timing :
1534 			&m_can_data_bittiming_const_31X;
1535 		break;
1536 	case 32:
1537 	case 33:
1538 		/* Support both MCAN version v3.2.x and v3.3.0 */
1539 		cdev->can.bittiming_const = cdev->bit_timing ?
1540 			cdev->bit_timing : &m_can_bittiming_const_31X;
1541 
1542 		cdev->can.data_bittiming_const = cdev->data_timing ?
1543 			cdev->data_timing :
1544 			&m_can_data_bittiming_const_31X;
1545 
1546 		cdev->can.ctrlmode_supported |=
1547 			(m_can_niso_supported(cdev) ?
1548 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1549 		break;
1550 	default:
1551 		dev_err(cdev->dev, "Unsupported version number: %2d",
1552 			cdev->version);
1553 		return -EINVAL;
1554 	}
1555 
1556 	if (cdev->ops->init)
1557 		cdev->ops->init(cdev);
1558 
1559 	return 0;
1560 }
1561 
m_can_stop(struct net_device * dev)1562 static void m_can_stop(struct net_device *dev)
1563 {
1564 	struct m_can_classdev *cdev = netdev_priv(dev);
1565 
1566 	/* disable all interrupts */
1567 	m_can_disable_all_interrupts(cdev);
1568 
1569 	/* Set init mode to disengage from the network */
1570 	m_can_config_endisable(cdev, true);
1571 
1572 	/* set the state as STOPPED */
1573 	cdev->can.state = CAN_STATE_STOPPED;
1574 }
1575 
m_can_close(struct net_device * dev)1576 static int m_can_close(struct net_device *dev)
1577 {
1578 	struct m_can_classdev *cdev = netdev_priv(dev);
1579 
1580 	netif_stop_queue(dev);
1581 
1582 	if (!cdev->is_peripheral)
1583 		napi_disable(&cdev->napi);
1584 
1585 	m_can_stop(dev);
1586 	m_can_clk_stop(cdev);
1587 	free_irq(dev->irq, dev);
1588 
1589 	if (cdev->is_peripheral) {
1590 		cdev->tx_skb = NULL;
1591 		destroy_workqueue(cdev->tx_wq);
1592 		cdev->tx_wq = NULL;
1593 	}
1594 
1595 	if (cdev->is_peripheral)
1596 		can_rx_offload_disable(&cdev->offload);
1597 
1598 	close_candev(dev);
1599 	can_led_event(dev, CAN_LED_EVENT_STOP);
1600 
1601 	phy_power_off(cdev->transceiver);
1602 
1603 	return 0;
1604 }
1605 
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1606 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1607 {
1608 	struct m_can_classdev *cdev = netdev_priv(dev);
1609 	/*get wrap around for loopback skb index */
1610 	unsigned int wrap = cdev->can.echo_skb_max;
1611 	int next_idx;
1612 
1613 	/* calculate next index */
1614 	next_idx = (++putidx >= wrap ? 0 : putidx);
1615 
1616 	/* check if occupied */
1617 	return !!cdev->can.echo_skb[next_idx];
1618 }
1619 
m_can_tx_handler(struct m_can_classdev * cdev)1620 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1621 {
1622 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1623 	struct net_device *dev = cdev->net;
1624 	struct sk_buff *skb = cdev->tx_skb;
1625 	struct id_and_dlc fifo_header;
1626 	u32 cccr, fdflags;
1627 	int err;
1628 	int putidx;
1629 
1630 	cdev->tx_skb = NULL;
1631 
1632 	/* Generate ID field for TX buffer Element */
1633 	/* Common to all supported M_CAN versions */
1634 	if (cf->can_id & CAN_EFF_FLAG) {
1635 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1636 		fifo_header.id |= TX_BUF_XTD;
1637 	} else {
1638 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1639 	}
1640 
1641 	if (cf->can_id & CAN_RTR_FLAG)
1642 		fifo_header.id |= TX_BUF_RTR;
1643 
1644 	if (cdev->version == 30) {
1645 		netif_stop_queue(dev);
1646 
1647 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1648 
1649 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1650 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1651 		if (err)
1652 			goto out_fail;
1653 
1654 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1655 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1656 		if (err)
1657 			goto out_fail;
1658 
1659 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1660 			cccr = m_can_read(cdev, M_CAN_CCCR);
1661 			cccr &= ~CCCR_CMR_MASK;
1662 			if (can_is_canfd_skb(skb)) {
1663 				if (cf->flags & CANFD_BRS)
1664 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1665 							   CCCR_CMR_CANFD_BRS);
1666 				else
1667 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1668 							   CCCR_CMR_CANFD);
1669 			} else {
1670 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1671 			}
1672 			m_can_write(cdev, M_CAN_CCCR, cccr);
1673 		}
1674 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1675 
1676 		can_put_echo_skb(skb, dev, 0, 0);
1677 
1678 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1679 		/* End of xmit function for version 3.0.x */
1680 	} else {
1681 		/* Transmit routine for version >= v3.1.x */
1682 
1683 		/* Check if FIFO full */
1684 		if (m_can_tx_fifo_full(cdev)) {
1685 			/* This shouldn't happen */
1686 			netif_stop_queue(dev);
1687 			netdev_warn(dev,
1688 				    "TX queue active although FIFO is full.");
1689 
1690 			if (cdev->is_peripheral) {
1691 				kfree_skb(skb);
1692 				dev->stats.tx_dropped++;
1693 				return NETDEV_TX_OK;
1694 			} else {
1695 				return NETDEV_TX_BUSY;
1696 			}
1697 		}
1698 
1699 		/* get put index for frame */
1700 		putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1701 				   m_can_read(cdev, M_CAN_TXFQS));
1702 
1703 		/* Construct DLC Field, with CAN-FD configuration.
1704 		 * Use the put index of the fifo as the message marker,
1705 		 * used in the TX interrupt for sending the correct echo frame.
1706 		 */
1707 
1708 		/* get CAN FD configuration of frame */
1709 		fdflags = 0;
1710 		if (can_is_canfd_skb(skb)) {
1711 			fdflags |= TX_BUF_FDF;
1712 			if (cf->flags & CANFD_BRS)
1713 				fdflags |= TX_BUF_BRS;
1714 		}
1715 
1716 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1717 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1718 			fdflags | TX_BUF_EFC;
1719 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1720 		if (err)
1721 			goto out_fail;
1722 
1723 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1724 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1725 		if (err)
1726 			goto out_fail;
1727 
1728 		/* Push loopback echo.
1729 		 * Will be looped back on TX interrupt based on message marker
1730 		 */
1731 		can_put_echo_skb(skb, dev, putidx, 0);
1732 
1733 		/* Enable TX FIFO element to start transfer  */
1734 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1735 
1736 		/* stop network queue if fifo full */
1737 		if (m_can_tx_fifo_full(cdev) ||
1738 		    m_can_next_echo_skb_occupied(dev, putidx))
1739 			netif_stop_queue(dev);
1740 	}
1741 
1742 	return NETDEV_TX_OK;
1743 
1744 out_fail:
1745 	netdev_err(dev, "FIFO write returned %d\n", err);
1746 	m_can_disable_all_interrupts(cdev);
1747 	return NETDEV_TX_BUSY;
1748 }
1749 
m_can_tx_work_queue(struct work_struct * ws)1750 static void m_can_tx_work_queue(struct work_struct *ws)
1751 {
1752 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1753 						   tx_work);
1754 
1755 	m_can_tx_handler(cdev);
1756 }
1757 
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1758 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1759 				    struct net_device *dev)
1760 {
1761 	struct m_can_classdev *cdev = netdev_priv(dev);
1762 
1763 	if (can_dropped_invalid_skb(dev, skb))
1764 		return NETDEV_TX_OK;
1765 
1766 	if (cdev->is_peripheral) {
1767 		if (cdev->tx_skb) {
1768 			netdev_err(dev, "hard_xmit called while tx busy\n");
1769 			return NETDEV_TX_BUSY;
1770 		}
1771 
1772 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1773 			m_can_clean(dev);
1774 		} else {
1775 			/* Need to stop the queue to avoid numerous requests
1776 			 * from being sent.  Suggested improvement is to create
1777 			 * a queueing mechanism that will queue the skbs and
1778 			 * process them in order.
1779 			 */
1780 			cdev->tx_skb = skb;
1781 			netif_stop_queue(cdev->net);
1782 			queue_work(cdev->tx_wq, &cdev->tx_work);
1783 		}
1784 	} else {
1785 		cdev->tx_skb = skb;
1786 		return m_can_tx_handler(cdev);
1787 	}
1788 
1789 	return NETDEV_TX_OK;
1790 }
1791 
m_can_open(struct net_device * dev)1792 static int m_can_open(struct net_device *dev)
1793 {
1794 	struct m_can_classdev *cdev = netdev_priv(dev);
1795 	int err;
1796 
1797 	err = phy_power_on(cdev->transceiver);
1798 	if (err)
1799 		return err;
1800 
1801 	err = m_can_clk_start(cdev);
1802 	if (err)
1803 		goto out_phy_power_off;
1804 
1805 	/* open the can device */
1806 	err = open_candev(dev);
1807 	if (err) {
1808 		netdev_err(dev, "failed to open can device\n");
1809 		goto exit_disable_clks;
1810 	}
1811 
1812 	if (cdev->is_peripheral)
1813 		can_rx_offload_enable(&cdev->offload);
1814 
1815 	/* register interrupt handler */
1816 	if (cdev->is_peripheral) {
1817 		cdev->tx_skb = NULL;
1818 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1819 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1820 		if (!cdev->tx_wq) {
1821 			err = -ENOMEM;
1822 			goto out_wq_fail;
1823 		}
1824 
1825 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1826 
1827 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1828 					   IRQF_ONESHOT,
1829 					   dev->name, dev);
1830 	} else {
1831 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1832 				  dev);
1833 	}
1834 
1835 	if (err < 0) {
1836 		netdev_err(dev, "failed to request interrupt\n");
1837 		goto exit_irq_fail;
1838 	}
1839 
1840 	/* start the m_can controller */
1841 	err = m_can_start(dev);
1842 	if (err)
1843 		goto exit_irq_fail;
1844 
1845 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1846 
1847 	if (!cdev->is_peripheral)
1848 		napi_enable(&cdev->napi);
1849 
1850 	netif_start_queue(dev);
1851 
1852 	return 0;
1853 
1854 exit_irq_fail:
1855 	if (cdev->is_peripheral)
1856 		destroy_workqueue(cdev->tx_wq);
1857 out_wq_fail:
1858 	if (cdev->is_peripheral)
1859 		can_rx_offload_disable(&cdev->offload);
1860 	close_candev(dev);
1861 exit_disable_clks:
1862 	m_can_clk_stop(cdev);
1863 out_phy_power_off:
1864 	phy_power_off(cdev->transceiver);
1865 	return err;
1866 }
1867 
1868 static const struct net_device_ops m_can_netdev_ops = {
1869 	.ndo_open = m_can_open,
1870 	.ndo_stop = m_can_close,
1871 	.ndo_start_xmit = m_can_start_xmit,
1872 	.ndo_change_mtu = can_change_mtu,
1873 };
1874 
register_m_can_dev(struct net_device * dev)1875 static int register_m_can_dev(struct net_device *dev)
1876 {
1877 	dev->flags |= IFF_ECHO;	/* we support local echo */
1878 	dev->netdev_ops = &m_can_netdev_ops;
1879 
1880 	return register_candev(dev);
1881 }
1882 
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1883 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1884 				const u32 *mram_config_vals)
1885 {
1886 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1887 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1888 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1889 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1890 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1891 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1892 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1893 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1894 		FIELD_MAX(RXFC_FS_MASK);
1895 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1896 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1897 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1898 		FIELD_MAX(RXFC_FS_MASK);
1899 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1900 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1901 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1902 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1903 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1904 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1905 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1906 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1907 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1908 		FIELD_MAX(TXBC_NDTB_MASK);
1909 
1910 	dev_dbg(cdev->dev,
1911 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1912 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1913 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1914 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1915 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1916 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1917 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1918 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1919 }
1920 
m_can_init_ram(struct m_can_classdev * cdev)1921 int m_can_init_ram(struct m_can_classdev *cdev)
1922 {
1923 	int end, i, start;
1924 	int err = 0;
1925 
1926 	/* initialize the entire Message RAM in use to avoid possible
1927 	 * ECC/parity checksum errors when reading an uninitialized buffer
1928 	 */
1929 	start = cdev->mcfg[MRAM_SIDF].off;
1930 	end = cdev->mcfg[MRAM_TXB].off +
1931 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1932 
1933 	for (i = start; i < end; i += 4) {
1934 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
1935 		if (err)
1936 			break;
1937 	}
1938 
1939 	return err;
1940 }
1941 EXPORT_SYMBOL_GPL(m_can_init_ram);
1942 
m_can_class_get_clocks(struct m_can_classdev * cdev)1943 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1944 {
1945 	int ret = 0;
1946 
1947 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1948 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1949 
1950 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
1951 		dev_err(cdev->dev, "no clock found\n");
1952 		ret = -ENODEV;
1953 	}
1954 
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1958 
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)1959 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1960 						int sizeof_priv)
1961 {
1962 	struct m_can_classdev *class_dev = NULL;
1963 	u32 mram_config_vals[MRAM_CFG_LEN];
1964 	struct net_device *net_dev;
1965 	u32 tx_fifo_size;
1966 	int ret;
1967 
1968 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1969 					     "bosch,mram-cfg",
1970 					     mram_config_vals,
1971 					     sizeof(mram_config_vals) / 4);
1972 	if (ret) {
1973 		dev_err(dev, "Could not get Message RAM configuration.");
1974 		goto out;
1975 	}
1976 
1977 	/* Get TX FIFO size
1978 	 * Defines the total amount of echo buffers for loopback
1979 	 */
1980 	tx_fifo_size = mram_config_vals[7];
1981 
1982 	/* allocate the m_can device */
1983 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1984 	if (!net_dev) {
1985 		dev_err(dev, "Failed to allocate CAN device");
1986 		goto out;
1987 	}
1988 
1989 	class_dev = netdev_priv(net_dev);
1990 	class_dev->net = net_dev;
1991 	class_dev->dev = dev;
1992 	SET_NETDEV_DEV(net_dev, dev);
1993 
1994 	m_can_of_parse_mram(class_dev, mram_config_vals);
1995 out:
1996 	return class_dev;
1997 }
1998 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1999 
m_can_class_free_dev(struct net_device * net)2000 void m_can_class_free_dev(struct net_device *net)
2001 {
2002 	free_candev(net);
2003 }
2004 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2005 
m_can_class_register(struct m_can_classdev * cdev)2006 int m_can_class_register(struct m_can_classdev *cdev)
2007 {
2008 	int ret;
2009 
2010 	if (cdev->pm_clock_support) {
2011 		ret = m_can_clk_start(cdev);
2012 		if (ret)
2013 			return ret;
2014 	}
2015 
2016 	if (cdev->is_peripheral) {
2017 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2018 						M_CAN_NAPI_WEIGHT);
2019 		if (ret)
2020 			goto clk_disable;
2021 	}
2022 
2023 	ret = m_can_dev_setup(cdev);
2024 	if (ret)
2025 		goto rx_offload_del;
2026 
2027 	ret = register_m_can_dev(cdev->net);
2028 	if (ret) {
2029 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2030 			cdev->net->name, ret);
2031 		goto rx_offload_del;
2032 	}
2033 
2034 	devm_can_led_init(cdev->net);
2035 
2036 	of_can_transceiver(cdev->net);
2037 
2038 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2039 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2040 
2041 	/* Probe finished
2042 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2043 	 */
2044 	m_can_clk_stop(cdev);
2045 
2046 	return 0;
2047 
2048 rx_offload_del:
2049 	if (cdev->is_peripheral)
2050 		can_rx_offload_del(&cdev->offload);
2051 clk_disable:
2052 	m_can_clk_stop(cdev);
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(m_can_class_register);
2057 
m_can_class_unregister(struct m_can_classdev * cdev)2058 void m_can_class_unregister(struct m_can_classdev *cdev)
2059 {
2060 	if (cdev->is_peripheral)
2061 		can_rx_offload_del(&cdev->offload);
2062 	unregister_candev(cdev->net);
2063 }
2064 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2065 
m_can_class_suspend(struct device * dev)2066 int m_can_class_suspend(struct device *dev)
2067 {
2068 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2069 	struct net_device *ndev = cdev->net;
2070 
2071 	if (netif_running(ndev)) {
2072 		netif_stop_queue(ndev);
2073 		netif_device_detach(ndev);
2074 		m_can_stop(ndev);
2075 		m_can_clk_stop(cdev);
2076 	}
2077 
2078 	pinctrl_pm_select_sleep_state(dev);
2079 
2080 	cdev->can.state = CAN_STATE_SLEEPING;
2081 
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2085 
m_can_class_resume(struct device * dev)2086 int m_can_class_resume(struct device *dev)
2087 {
2088 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2089 	struct net_device *ndev = cdev->net;
2090 
2091 	pinctrl_pm_select_default_state(dev);
2092 
2093 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2094 
2095 	if (netif_running(ndev)) {
2096 		int ret;
2097 
2098 		ret = m_can_clk_start(cdev);
2099 		if (ret)
2100 			return ret;
2101 		ret  = m_can_start(ndev);
2102 		if (ret) {
2103 			m_can_clk_stop(cdev);
2104 
2105 			return ret;
2106 		}
2107 
2108 		netif_device_attach(ndev);
2109 		netif_start_queue(ndev);
2110 	}
2111 
2112 	return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(m_can_class_resume);
2115 
2116 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2117 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2118 MODULE_LICENSE("GPL v2");
2119 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2120