• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
217 
218 /* Ethernet Switch Fetch DMA Port Control Register */
219 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
220 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
221 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
222 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 
229 /* Ethernet Switch Store DMA Port Control Register */
230 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
231 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
232 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
233 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
234 
235 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
236 #define GSWIP_TABLE_VLAN_MAPPING	0x02
237 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
238 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
239 
240 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
241 
242 struct gswip_hw_info {
243 	int max_ports;
244 	int cpu_port;
245 	const struct dsa_switch_ops *ops;
246 };
247 
248 struct xway_gphy_match_data {
249 	char *fe_firmware_name;
250 	char *ge_firmware_name;
251 };
252 
253 struct gswip_gphy_fw {
254 	struct clk *clk_gate;
255 	struct reset_control *reset;
256 	u32 fw_addr_offset;
257 	char *fw_name;
258 };
259 
260 struct gswip_vlan {
261 	struct net_device *bridge;
262 	u16 vid;
263 	u8 fid;
264 };
265 
266 struct gswip_priv {
267 	__iomem void *gswip;
268 	__iomem void *mdio;
269 	__iomem void *mii;
270 	const struct gswip_hw_info *hw_info;
271 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
272 	struct dsa_switch *ds;
273 	struct device *dev;
274 	struct regmap *rcu_regmap;
275 	struct gswip_vlan vlans[64];
276 	int num_gphy_fw;
277 	struct gswip_gphy_fw *gphy_fw;
278 	u32 port_vlan_filter;
279 };
280 
281 struct gswip_pce_table_entry {
282 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
283 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
284 	u16 key[8];
285 	u16 val[5];
286 	u16 mask;
287 	u8 gmap;
288 	bool type;
289 	bool valid;
290 	bool key_mode;
291 };
292 
293 struct gswip_rmon_cnt_desc {
294 	unsigned int size;
295 	unsigned int offset;
296 	const char *name;
297 };
298 
299 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
300 
301 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
302 	/** Receive Packet Count (only packets that are accepted and not discarded). */
303 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
304 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
305 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
306 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
307 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
308 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
309 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
310 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
311 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
312 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
313 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
314 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
315 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
316 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
317 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
318 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
319 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
320 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
321 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
322 	MIB_DESC(2, 0x24, "RxGoodBytes"),
323 	MIB_DESC(2, 0x26, "RxBadBytes"),
324 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
325 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
326 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
327 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
328 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
329 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
330 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
331 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
332 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
333 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
334 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
335 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
336 	MIB_DESC(1, 0x09, "TxMultCollCount"),
337 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
338 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
339 	MIB_DESC(1, 0x0D, "TxPauseCount"),
340 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
341 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
342 };
343 
gswip_switch_r(struct gswip_priv * priv,u32 offset)344 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
345 {
346 	return __raw_readl(priv->gswip + (offset * 4));
347 }
348 
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)349 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
350 {
351 	__raw_writel(val, priv->gswip + (offset * 4));
352 }
353 
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)354 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
355 			      u32 offset)
356 {
357 	u32 val = gswip_switch_r(priv, offset);
358 
359 	val &= ~(clear);
360 	val |= set;
361 	gswip_switch_w(priv, val, offset);
362 }
363 
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)364 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
365 				  u32 cleared)
366 {
367 	u32 val;
368 
369 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
370 				  (val & cleared) == 0, 20, 50000);
371 }
372 
gswip_mdio_r(struct gswip_priv * priv,u32 offset)373 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
374 {
375 	return __raw_readl(priv->mdio + (offset * 4));
376 }
377 
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)378 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
379 {
380 	__raw_writel(val, priv->mdio + (offset * 4));
381 }
382 
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)383 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
384 			    u32 offset)
385 {
386 	u32 val = gswip_mdio_r(priv, offset);
387 
388 	val &= ~(clear);
389 	val |= set;
390 	gswip_mdio_w(priv, val, offset);
391 }
392 
gswip_mii_r(struct gswip_priv * priv,u32 offset)393 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
394 {
395 	return __raw_readl(priv->mii + (offset * 4));
396 }
397 
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)398 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
399 {
400 	__raw_writel(val, priv->mii + (offset * 4));
401 }
402 
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)403 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
404 			   u32 offset)
405 {
406 	u32 val = gswip_mii_r(priv, offset);
407 
408 	val &= ~(clear);
409 	val |= set;
410 	gswip_mii_w(priv, val, offset);
411 }
412 
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)413 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
414 			       int port)
415 {
416 	/* There's no MII_CFG register for the CPU port */
417 	if (!dsa_is_cpu_port(priv->ds, port))
418 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
419 }
420 
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)421 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
422 				int port)
423 {
424 	switch (port) {
425 	case 0:
426 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
427 		break;
428 	case 1:
429 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
430 		break;
431 	case 5:
432 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
433 		break;
434 	}
435 }
436 
gswip_mdio_poll(struct gswip_priv * priv)437 static int gswip_mdio_poll(struct gswip_priv *priv)
438 {
439 	int cnt = 100;
440 
441 	while (likely(cnt--)) {
442 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
443 
444 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
445 			return 0;
446 		usleep_range(20, 40);
447 	}
448 
449 	return -ETIMEDOUT;
450 }
451 
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)452 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
453 {
454 	struct gswip_priv *priv = bus->priv;
455 	int err;
456 
457 	err = gswip_mdio_poll(priv);
458 	if (err) {
459 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
460 		return err;
461 	}
462 
463 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
464 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
465 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
466 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
467 		GSWIP_MDIO_CTRL);
468 
469 	return 0;
470 }
471 
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)472 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
473 {
474 	struct gswip_priv *priv = bus->priv;
475 	int err;
476 
477 	err = gswip_mdio_poll(priv);
478 	if (err) {
479 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
480 		return err;
481 	}
482 
483 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
484 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
485 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
486 		GSWIP_MDIO_CTRL);
487 
488 	err = gswip_mdio_poll(priv);
489 	if (err) {
490 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 		return err;
492 	}
493 
494 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
495 }
496 
gswip_mdio(struct gswip_priv * priv,struct device_node * mdio_np)497 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
498 {
499 	struct dsa_switch *ds = priv->ds;
500 	int err;
501 
502 	ds->slave_mii_bus = mdiobus_alloc();
503 	if (!ds->slave_mii_bus)
504 		return -ENOMEM;
505 
506 	ds->slave_mii_bus->priv = priv;
507 	ds->slave_mii_bus->read = gswip_mdio_rd;
508 	ds->slave_mii_bus->write = gswip_mdio_wr;
509 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
510 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
511 		 dev_name(priv->dev));
512 	ds->slave_mii_bus->parent = priv->dev;
513 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
514 
515 	err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
516 	if (err)
517 		mdiobus_free(ds->slave_mii_bus);
518 
519 	return err;
520 }
521 
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)522 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
523 				      struct gswip_pce_table_entry *tbl)
524 {
525 	int i;
526 	int err;
527 	u16 crtl;
528 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
529 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
530 
531 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
532 				     GSWIP_PCE_TBL_CTRL_BAS);
533 	if (err)
534 		return err;
535 
536 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
537 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
538 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
539 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
540 			  GSWIP_PCE_TBL_CTRL);
541 
542 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
543 				     GSWIP_PCE_TBL_CTRL_BAS);
544 	if (err)
545 		return err;
546 
547 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
548 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
549 
550 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
551 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
552 
553 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
554 
555 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
556 
557 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
558 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
559 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
560 
561 	return 0;
562 }
563 
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)564 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
565 				       struct gswip_pce_table_entry *tbl)
566 {
567 	int i;
568 	int err;
569 	u16 crtl;
570 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
571 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
572 
573 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
574 				     GSWIP_PCE_TBL_CTRL_BAS);
575 	if (err)
576 		return err;
577 
578 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
579 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
580 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
581 			  tbl->table | addr_mode,
582 			  GSWIP_PCE_TBL_CTRL);
583 
584 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
585 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
586 
587 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
588 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
589 
590 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
591 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
592 			  tbl->table | addr_mode,
593 			  GSWIP_PCE_TBL_CTRL);
594 
595 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
596 
597 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
598 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
599 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
600 	if (tbl->type)
601 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
602 	if (tbl->valid)
603 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
604 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
605 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
606 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
607 
608 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
609 				      GSWIP_PCE_TBL_CTRL_BAS);
610 }
611 
612 /* Add the LAN port into a bridge with the CPU port by
613  * default. This prevents automatic forwarding of
614  * packages between the LAN ports when no explicit
615  * bridge is configured.
616  */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)617 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
618 {
619 	struct gswip_pce_table_entry vlan_active = {0,};
620 	struct gswip_pce_table_entry vlan_mapping = {0,};
621 	unsigned int cpu_port = priv->hw_info->cpu_port;
622 	unsigned int max_ports = priv->hw_info->max_ports;
623 	int err;
624 
625 	if (port >= max_ports) {
626 		dev_err(priv->dev, "single port for %i supported\n", port);
627 		return -EIO;
628 	}
629 
630 	vlan_active.index = port + 1;
631 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
632 	vlan_active.key[0] = 0; /* vid */
633 	vlan_active.val[0] = port + 1 /* fid */;
634 	vlan_active.valid = add;
635 	err = gswip_pce_table_entry_write(priv, &vlan_active);
636 	if (err) {
637 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
638 		return err;
639 	}
640 
641 	if (!add)
642 		return 0;
643 
644 	vlan_mapping.index = port + 1;
645 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
646 	vlan_mapping.val[0] = 0 /* vid */;
647 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
648 	vlan_mapping.val[2] = 0;
649 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
650 	if (err) {
651 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
652 		return err;
653 	}
654 
655 	return 0;
656 }
657 
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)658 static int gswip_port_enable(struct dsa_switch *ds, int port,
659 			     struct phy_device *phydev)
660 {
661 	struct gswip_priv *priv = ds->priv;
662 	int err;
663 
664 	if (!dsa_is_user_port(ds, port))
665 		return 0;
666 
667 	if (!dsa_is_cpu_port(ds, port)) {
668 		err = gswip_add_single_port_br(priv, port, true);
669 		if (err)
670 			return err;
671 	}
672 
673 	/* RMON Counter Enable for port */
674 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
675 
676 	/* enable port fetch/store dma & VLAN Modification */
677 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
678 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
679 			 GSWIP_FDMA_PCTRLp(port));
680 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
681 			  GSWIP_SDMA_PCTRLp(port));
682 
683 	if (!dsa_is_cpu_port(ds, port)) {
684 		u32 mdio_phy = 0;
685 
686 		if (phydev)
687 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
688 
689 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
690 				GSWIP_MDIO_PHYp(port));
691 	}
692 
693 	return 0;
694 }
695 
gswip_port_disable(struct dsa_switch * ds,int port)696 static void gswip_port_disable(struct dsa_switch *ds, int port)
697 {
698 	struct gswip_priv *priv = ds->priv;
699 
700 	if (!dsa_is_user_port(ds, port))
701 		return;
702 
703 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
704 			  GSWIP_FDMA_PCTRLp(port));
705 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
706 			  GSWIP_SDMA_PCTRLp(port));
707 }
708 
gswip_pce_load_microcode(struct gswip_priv * priv)709 static int gswip_pce_load_microcode(struct gswip_priv *priv)
710 {
711 	int i;
712 	int err;
713 
714 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
715 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
716 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
717 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
718 
719 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
720 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
721 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
722 			       GSWIP_PCE_TBL_VAL(0));
723 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
724 			       GSWIP_PCE_TBL_VAL(1));
725 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
726 			       GSWIP_PCE_TBL_VAL(2));
727 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
728 			       GSWIP_PCE_TBL_VAL(3));
729 
730 		/* start the table access: */
731 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
732 				  GSWIP_PCE_TBL_CTRL);
733 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
734 					     GSWIP_PCE_TBL_CTRL_BAS);
735 		if (err)
736 			return err;
737 	}
738 
739 	/* tell the switch that the microcode is loaded */
740 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
741 			  GSWIP_PCE_GCTRL_0);
742 
743 	return 0;
744 }
745 
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)746 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
747 				     bool vlan_filtering,
748 				     struct netlink_ext_ack *extack)
749 {
750 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
751 	struct gswip_priv *priv = ds->priv;
752 
753 	/* Do not allow changing the VLAN filtering options while in bridge */
754 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
755 		NL_SET_ERR_MSG_MOD(extack,
756 				   "Dynamic toggling of vlan_filtering not supported");
757 		return -EIO;
758 	}
759 
760 	if (vlan_filtering) {
761 		/* Use port based VLAN tag */
762 		gswip_switch_mask(priv,
763 				  GSWIP_PCE_VCTRL_VSR,
764 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
765 				  GSWIP_PCE_VCTRL_VEMR,
766 				  GSWIP_PCE_VCTRL(port));
767 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
768 				  GSWIP_PCE_PCTRL_0p(port));
769 	} else {
770 		/* Use port based VLAN tag */
771 		gswip_switch_mask(priv,
772 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
773 				  GSWIP_PCE_VCTRL_VEMR,
774 				  GSWIP_PCE_VCTRL_VSR,
775 				  GSWIP_PCE_VCTRL(port));
776 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
777 				  GSWIP_PCE_PCTRL_0p(port));
778 	}
779 
780 	return 0;
781 }
782 
gswip_setup(struct dsa_switch * ds)783 static int gswip_setup(struct dsa_switch *ds)
784 {
785 	struct gswip_priv *priv = ds->priv;
786 	unsigned int cpu_port = priv->hw_info->cpu_port;
787 	int i;
788 	int err;
789 
790 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
791 	usleep_range(5000, 10000);
792 	gswip_switch_w(priv, 0, GSWIP_SWRES);
793 
794 	/* disable port fetch/store dma on all ports */
795 	for (i = 0; i < priv->hw_info->max_ports; i++) {
796 		gswip_port_disable(ds, i);
797 		gswip_port_vlan_filtering(ds, i, false, NULL);
798 	}
799 
800 	/* enable Switch */
801 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
802 
803 	err = gswip_pce_load_microcode(priv);
804 	if (err) {
805 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
806 		return err;
807 	}
808 
809 	/* Default unknown Broadcast/Multicast/Unicast port maps */
810 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
811 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
812 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
813 
814 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
815 	 * interoperability problem with this auto polling mechanism because
816 	 * their status registers think that the link is in a different state
817 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
818 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
819 	 * auto polling state machine consider the link being negotiated with
820 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
821 	 * to the switch port being completely dead (RX and TX are both not
822 	 * working).
823 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
824 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
825 	 * it would work fine for a few minutes to hours and then stop, on
826 	 * other device it would no traffic could be sent or received at all.
827 	 * Testing shows that when PHY auto polling is disabled these problems
828 	 * go away.
829 	 */
830 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
831 
832 	/* Configure the MDIO Clock 2.5 MHz */
833 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
834 
835 	/* Disable the xMII interface and clear it's isolation bit */
836 	for (i = 0; i < priv->hw_info->max_ports; i++)
837 		gswip_mii_mask_cfg(priv,
838 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
839 				   0, i);
840 
841 	/* enable special tag insertion on cpu port */
842 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
843 			  GSWIP_FDMA_PCTRLp(cpu_port));
844 
845 	/* accept special tag in ingress direction */
846 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
847 			  GSWIP_PCE_PCTRL_0p(cpu_port));
848 
849 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
850 			  GSWIP_MAC_CTRL_2p(cpu_port));
851 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
852 		       GSWIP_MAC_FLEN);
853 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
854 			  GSWIP_BM_QUEUE_GCTRL);
855 
856 	/* VLAN aware Switching */
857 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
858 
859 	/* Flush MAC Table */
860 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
861 
862 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
863 				     GSWIP_PCE_GCTRL_0_MTFL);
864 	if (err) {
865 		dev_err(priv->dev, "MAC flushing didn't finish\n");
866 		return err;
867 	}
868 
869 	gswip_port_enable(ds, cpu_port, NULL);
870 
871 	ds->configure_vlan_while_not_filtering = false;
872 
873 	return 0;
874 }
875 
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)876 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
877 						    int port,
878 						    enum dsa_tag_protocol mp)
879 {
880 	return DSA_TAG_PROTO_GSWIP;
881 }
882 
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)883 static int gswip_vlan_active_create(struct gswip_priv *priv,
884 				    struct net_device *bridge,
885 				    int fid, u16 vid)
886 {
887 	struct gswip_pce_table_entry vlan_active = {0,};
888 	unsigned int max_ports = priv->hw_info->max_ports;
889 	int idx = -1;
890 	int err;
891 	int i;
892 
893 	/* Look for a free slot */
894 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
895 		if (!priv->vlans[i].bridge) {
896 			idx = i;
897 			break;
898 		}
899 	}
900 
901 	if (idx == -1)
902 		return -ENOSPC;
903 
904 	if (fid == -1)
905 		fid = idx;
906 
907 	vlan_active.index = idx;
908 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
909 	vlan_active.key[0] = vid;
910 	vlan_active.val[0] = fid;
911 	vlan_active.valid = true;
912 
913 	err = gswip_pce_table_entry_write(priv, &vlan_active);
914 	if (err) {
915 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
916 		return err;
917 	}
918 
919 	priv->vlans[idx].bridge = bridge;
920 	priv->vlans[idx].vid = vid;
921 	priv->vlans[idx].fid = fid;
922 
923 	return idx;
924 }
925 
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)926 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
927 {
928 	struct gswip_pce_table_entry vlan_active = {0,};
929 	int err;
930 
931 	vlan_active.index = idx;
932 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
933 	vlan_active.valid = false;
934 	err = gswip_pce_table_entry_write(priv, &vlan_active);
935 	if (err)
936 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
937 	priv->vlans[idx].bridge = NULL;
938 
939 	return err;
940 }
941 
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)942 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
943 				  struct net_device *bridge, int port)
944 {
945 	struct gswip_pce_table_entry vlan_mapping = {0,};
946 	unsigned int max_ports = priv->hw_info->max_ports;
947 	unsigned int cpu_port = priv->hw_info->cpu_port;
948 	bool active_vlan_created = false;
949 	int idx = -1;
950 	int i;
951 	int err;
952 
953 	/* Check if there is already a page for this bridge */
954 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
955 		if (priv->vlans[i].bridge == bridge) {
956 			idx = i;
957 			break;
958 		}
959 	}
960 
961 	/* If this bridge is not programmed yet, add a Active VLAN table
962 	 * entry in a free slot and prepare the VLAN mapping table entry.
963 	 */
964 	if (idx == -1) {
965 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
966 		if (idx < 0)
967 			return idx;
968 		active_vlan_created = true;
969 
970 		vlan_mapping.index = idx;
971 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
972 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
973 		vlan_mapping.val[0] = 0;
974 	} else {
975 		/* Read the existing VLAN mapping entry from the switch */
976 		vlan_mapping.index = idx;
977 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
978 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
979 		if (err) {
980 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
981 				err);
982 			return err;
983 		}
984 	}
985 
986 	/* Update the VLAN mapping entry and write it to the switch */
987 	vlan_mapping.val[1] |= BIT(cpu_port);
988 	vlan_mapping.val[1] |= BIT(port);
989 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
990 	if (err) {
991 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
992 		/* In case an Active VLAN was creaetd delete it again */
993 		if (active_vlan_created)
994 			gswip_vlan_active_remove(priv, idx);
995 		return err;
996 	}
997 
998 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
999 	return 0;
1000 }
1001 
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1002 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1003 				struct net_device *bridge, int port,
1004 				u16 vid, bool untagged,
1005 				bool pvid)
1006 {
1007 	struct gswip_pce_table_entry vlan_mapping = {0,};
1008 	unsigned int max_ports = priv->hw_info->max_ports;
1009 	unsigned int cpu_port = priv->hw_info->cpu_port;
1010 	bool active_vlan_created = false;
1011 	int idx = -1;
1012 	int fid = -1;
1013 	int i;
1014 	int err;
1015 
1016 	/* Check if there is already a page for this bridge */
1017 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1018 		if (priv->vlans[i].bridge == bridge) {
1019 			if (fid != -1 && fid != priv->vlans[i].fid)
1020 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1021 			fid = priv->vlans[i].fid;
1022 			if (priv->vlans[i].vid == vid) {
1023 				idx = i;
1024 				break;
1025 			}
1026 		}
1027 	}
1028 
1029 	/* If this bridge is not programmed yet, add a Active VLAN table
1030 	 * entry in a free slot and prepare the VLAN mapping table entry.
1031 	 */
1032 	if (idx == -1) {
1033 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1034 		if (idx < 0)
1035 			return idx;
1036 		active_vlan_created = true;
1037 
1038 		vlan_mapping.index = idx;
1039 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1040 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1041 		vlan_mapping.val[0] = vid;
1042 	} else {
1043 		/* Read the existing VLAN mapping entry from the switch */
1044 		vlan_mapping.index = idx;
1045 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1046 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1047 		if (err) {
1048 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1049 				err);
1050 			return err;
1051 		}
1052 	}
1053 
1054 	vlan_mapping.val[0] = vid;
1055 	/* Update the VLAN mapping entry and write it to the switch */
1056 	vlan_mapping.val[1] |= BIT(cpu_port);
1057 	vlan_mapping.val[2] |= BIT(cpu_port);
1058 	vlan_mapping.val[1] |= BIT(port);
1059 	if (untagged)
1060 		vlan_mapping.val[2] &= ~BIT(port);
1061 	else
1062 		vlan_mapping.val[2] |= BIT(port);
1063 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1064 	if (err) {
1065 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1066 		/* In case an Active VLAN was creaetd delete it again */
1067 		if (active_vlan_created)
1068 			gswip_vlan_active_remove(priv, idx);
1069 		return err;
1070 	}
1071 
1072 	if (pvid)
1073 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1074 
1075 	return 0;
1076 }
1077 
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1078 static int gswip_vlan_remove(struct gswip_priv *priv,
1079 			     struct net_device *bridge, int port,
1080 			     u16 vid, bool pvid, bool vlan_aware)
1081 {
1082 	struct gswip_pce_table_entry vlan_mapping = {0,};
1083 	unsigned int max_ports = priv->hw_info->max_ports;
1084 	unsigned int cpu_port = priv->hw_info->cpu_port;
1085 	int idx = -1;
1086 	int i;
1087 	int err;
1088 
1089 	/* Check if there is already a page for this bridge */
1090 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1091 		if (priv->vlans[i].bridge == bridge &&
1092 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1093 			idx = i;
1094 			break;
1095 		}
1096 	}
1097 
1098 	if (idx == -1) {
1099 		dev_err(priv->dev, "bridge to leave does not exists\n");
1100 		return -ENOENT;
1101 	}
1102 
1103 	vlan_mapping.index = idx;
1104 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1105 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1106 	if (err) {
1107 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1108 		return err;
1109 	}
1110 
1111 	vlan_mapping.val[1] &= ~BIT(port);
1112 	vlan_mapping.val[2] &= ~BIT(port);
1113 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1114 	if (err) {
1115 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1116 		return err;
1117 	}
1118 
1119 	/* In case all ports are removed from the bridge, remove the VLAN */
1120 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1121 		err = gswip_vlan_active_remove(priv, idx);
1122 		if (err) {
1123 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1124 				err);
1125 			return err;
1126 		}
1127 	}
1128 
1129 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1130 	if (pvid)
1131 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1132 
1133 	return 0;
1134 }
1135 
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct net_device * bridge)1136 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1137 				  struct net_device *bridge)
1138 {
1139 	struct gswip_priv *priv = ds->priv;
1140 	int err;
1141 
1142 	/* When the bridge uses VLAN filtering we have to configure VLAN
1143 	 * specific bridges. No bridge is configured here.
1144 	 */
1145 	if (!br_vlan_enabled(bridge)) {
1146 		err = gswip_vlan_add_unaware(priv, bridge, port);
1147 		if (err)
1148 			return err;
1149 		priv->port_vlan_filter &= ~BIT(port);
1150 	} else {
1151 		priv->port_vlan_filter |= BIT(port);
1152 	}
1153 	return gswip_add_single_port_br(priv, port, false);
1154 }
1155 
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct net_device * bridge)1156 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1157 				    struct net_device *bridge)
1158 {
1159 	struct gswip_priv *priv = ds->priv;
1160 
1161 	gswip_add_single_port_br(priv, port, true);
1162 
1163 	/* When the bridge uses VLAN filtering we have to configure VLAN
1164 	 * specific bridges. No bridge is configured here.
1165 	 */
1166 	if (!br_vlan_enabled(bridge))
1167 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1168 }
1169 
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1170 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1171 				   const struct switchdev_obj_port_vlan *vlan,
1172 				   struct netlink_ext_ack *extack)
1173 {
1174 	struct gswip_priv *priv = ds->priv;
1175 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1176 	unsigned int max_ports = priv->hw_info->max_ports;
1177 	int pos = max_ports;
1178 	int i, idx = -1;
1179 
1180 	/* We only support VLAN filtering on bridges */
1181 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1182 		return -EOPNOTSUPP;
1183 
1184 	/* Check if there is already a page for this VLAN */
1185 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1186 		if (priv->vlans[i].bridge == bridge &&
1187 		    priv->vlans[i].vid == vlan->vid) {
1188 			idx = i;
1189 			break;
1190 		}
1191 	}
1192 
1193 	/* If this VLAN is not programmed yet, we have to reserve
1194 	 * one entry in the VLAN table. Make sure we start at the
1195 	 * next position round.
1196 	 */
1197 	if (idx == -1) {
1198 		/* Look for a free slot */
1199 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1200 			if (!priv->vlans[pos].bridge) {
1201 				idx = pos;
1202 				pos++;
1203 				break;
1204 			}
1205 		}
1206 
1207 		if (idx == -1) {
1208 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1209 			return -ENOSPC;
1210 		}
1211 	}
1212 
1213 	return 0;
1214 }
1215 
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1216 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1217 			       const struct switchdev_obj_port_vlan *vlan,
1218 			       struct netlink_ext_ack *extack)
1219 {
1220 	struct gswip_priv *priv = ds->priv;
1221 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1222 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1223 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1224 	int err;
1225 
1226 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1227 	if (err)
1228 		return err;
1229 
1230 	/* We have to receive all packets on the CPU port and should not
1231 	 * do any VLAN filtering here. This is also called with bridge
1232 	 * NULL and then we do not know for which bridge to configure
1233 	 * this.
1234 	 */
1235 	if (dsa_is_cpu_port(ds, port))
1236 		return 0;
1237 
1238 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1239 				    untagged, pvid);
1240 }
1241 
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1242 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1243 			       const struct switchdev_obj_port_vlan *vlan)
1244 {
1245 	struct gswip_priv *priv = ds->priv;
1246 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1247 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1248 
1249 	/* We have to receive all packets on the CPU port and should not
1250 	 * do any VLAN filtering here. This is also called with bridge
1251 	 * NULL and then we do not know for which bridge to configure
1252 	 * this.
1253 	 */
1254 	if (dsa_is_cpu_port(ds, port))
1255 		return 0;
1256 
1257 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1258 }
1259 
gswip_port_fast_age(struct dsa_switch * ds,int port)1260 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1261 {
1262 	struct gswip_priv *priv = ds->priv;
1263 	struct gswip_pce_table_entry mac_bridge = {0,};
1264 	int i;
1265 	int err;
1266 
1267 	for (i = 0; i < 2048; i++) {
1268 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1269 		mac_bridge.index = i;
1270 
1271 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1272 		if (err) {
1273 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1274 				err);
1275 			return;
1276 		}
1277 
1278 		if (!mac_bridge.valid)
1279 			continue;
1280 
1281 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1282 			continue;
1283 
1284 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1285 			continue;
1286 
1287 		mac_bridge.valid = false;
1288 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1289 		if (err) {
1290 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1291 				err);
1292 			return;
1293 		}
1294 	}
1295 }
1296 
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1297 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1298 {
1299 	struct gswip_priv *priv = ds->priv;
1300 	u32 stp_state;
1301 
1302 	switch (state) {
1303 	case BR_STATE_DISABLED:
1304 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1305 				  GSWIP_SDMA_PCTRLp(port));
1306 		return;
1307 	case BR_STATE_BLOCKING:
1308 	case BR_STATE_LISTENING:
1309 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1310 		break;
1311 	case BR_STATE_LEARNING:
1312 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1313 		break;
1314 	case BR_STATE_FORWARDING:
1315 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1316 		break;
1317 	default:
1318 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1319 		return;
1320 	}
1321 
1322 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1323 			  GSWIP_SDMA_PCTRLp(port));
1324 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1325 			  GSWIP_PCE_PCTRL_0p(port));
1326 }
1327 
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1328 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1329 			  const unsigned char *addr, u16 vid, bool add)
1330 {
1331 	struct gswip_priv *priv = ds->priv;
1332 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1333 	struct gswip_pce_table_entry mac_bridge = {0,};
1334 	unsigned int cpu_port = priv->hw_info->cpu_port;
1335 	int fid = -1;
1336 	int i;
1337 	int err;
1338 
1339 	if (!bridge)
1340 		return -EINVAL;
1341 
1342 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1343 		if (priv->vlans[i].bridge == bridge) {
1344 			fid = priv->vlans[i].fid;
1345 			break;
1346 		}
1347 	}
1348 
1349 	if (fid == -1) {
1350 		dev_err(priv->dev, "Port not part of a bridge\n");
1351 		return -EINVAL;
1352 	}
1353 
1354 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1355 	mac_bridge.key_mode = true;
1356 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1357 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1358 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1359 	mac_bridge.key[3] = fid;
1360 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1361 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1362 	mac_bridge.valid = add;
1363 
1364 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1365 	if (err)
1366 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1367 
1368 	return err;
1369 }
1370 
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1371 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1372 			      const unsigned char *addr, u16 vid)
1373 {
1374 	return gswip_port_fdb(ds, port, addr, vid, true);
1375 }
1376 
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1377 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1378 			      const unsigned char *addr, u16 vid)
1379 {
1380 	return gswip_port_fdb(ds, port, addr, vid, false);
1381 }
1382 
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1383 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1384 			       dsa_fdb_dump_cb_t *cb, void *data)
1385 {
1386 	struct gswip_priv *priv = ds->priv;
1387 	struct gswip_pce_table_entry mac_bridge = {0,};
1388 	unsigned char addr[6];
1389 	int i;
1390 	int err;
1391 
1392 	for (i = 0; i < 2048; i++) {
1393 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1394 		mac_bridge.index = i;
1395 
1396 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1397 		if (err) {
1398 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1399 				err);
1400 			return err;
1401 		}
1402 
1403 		if (!mac_bridge.valid)
1404 			continue;
1405 
1406 		addr[5] = mac_bridge.key[0] & 0xff;
1407 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1408 		addr[3] = mac_bridge.key[1] & 0xff;
1409 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1410 		addr[1] = mac_bridge.key[2] & 0xff;
1411 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1412 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1413 			if (mac_bridge.val[0] & BIT(port)) {
1414 				err = cb(addr, 0, true, data);
1415 				if (err)
1416 					return err;
1417 			}
1418 		} else {
1419 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1420 				err = cb(addr, 0, false, data);
1421 				if (err)
1422 					return err;
1423 			}
1424 		}
1425 	}
1426 	return 0;
1427 }
1428 
gswip_phylink_set_capab(unsigned long * supported,struct phylink_link_state * state)1429 static void gswip_phylink_set_capab(unsigned long *supported,
1430 				    struct phylink_link_state *state)
1431 {
1432 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1433 
1434 	/* Allow all the expected bits */
1435 	phylink_set(mask, Autoneg);
1436 	phylink_set_port_modes(mask);
1437 	phylink_set(mask, Pause);
1438 	phylink_set(mask, Asym_Pause);
1439 
1440 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1441 	 * support Gigabit, including Half duplex
1442 	 */
1443 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1444 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1445 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1446 		phylink_set(mask, 1000baseT_Full);
1447 		phylink_set(mask, 1000baseT_Half);
1448 	}
1449 
1450 	phylink_set(mask, 10baseT_Half);
1451 	phylink_set(mask, 10baseT_Full);
1452 	phylink_set(mask, 100baseT_Half);
1453 	phylink_set(mask, 100baseT_Full);
1454 
1455 	bitmap_and(supported, supported, mask,
1456 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1457 	bitmap_and(state->advertising, state->advertising, mask,
1458 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1459 }
1460 
gswip_xrx200_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1461 static void gswip_xrx200_phylink_validate(struct dsa_switch *ds, int port,
1462 					  unsigned long *supported,
1463 					  struct phylink_link_state *state)
1464 {
1465 	switch (port) {
1466 	case 0:
1467 	case 1:
1468 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1469 		    state->interface != PHY_INTERFACE_MODE_MII &&
1470 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1471 		    state->interface != PHY_INTERFACE_MODE_RMII)
1472 			goto unsupported;
1473 		break;
1474 	case 2:
1475 	case 3:
1476 	case 4:
1477 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1478 			goto unsupported;
1479 		break;
1480 	case 5:
1481 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1482 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1483 			goto unsupported;
1484 		break;
1485 	default:
1486 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1487 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1488 		return;
1489 	}
1490 
1491 	gswip_phylink_set_capab(supported, state);
1492 
1493 	return;
1494 
1495 unsupported:
1496 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1497 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1498 		phy_modes(state->interface), port);
1499 }
1500 
gswip_xrx300_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1501 static void gswip_xrx300_phylink_validate(struct dsa_switch *ds, int port,
1502 					  unsigned long *supported,
1503 					  struct phylink_link_state *state)
1504 {
1505 	switch (port) {
1506 	case 0:
1507 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1508 		    state->interface != PHY_INTERFACE_MODE_GMII &&
1509 		    state->interface != PHY_INTERFACE_MODE_RMII)
1510 			goto unsupported;
1511 		break;
1512 	case 1:
1513 	case 2:
1514 	case 3:
1515 	case 4:
1516 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1517 			goto unsupported;
1518 		break;
1519 	case 5:
1520 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1521 		    state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1522 		    state->interface != PHY_INTERFACE_MODE_RMII)
1523 			goto unsupported;
1524 		break;
1525 	default:
1526 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1527 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1528 		return;
1529 	}
1530 
1531 	gswip_phylink_set_capab(supported, state);
1532 
1533 	return;
1534 
1535 unsupported:
1536 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1537 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1538 		phy_modes(state->interface), port);
1539 }
1540 
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1541 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1542 {
1543 	u32 mdio_phy;
1544 
1545 	if (link)
1546 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1547 	else
1548 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1549 
1550 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1551 			GSWIP_MDIO_PHYp(port));
1552 }
1553 
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1554 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1555 				 phy_interface_t interface)
1556 {
1557 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1558 
1559 	switch (speed) {
1560 	case SPEED_10:
1561 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1562 
1563 		if (interface == PHY_INTERFACE_MODE_RMII)
1564 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1565 		else
1566 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1567 
1568 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1569 		break;
1570 
1571 	case SPEED_100:
1572 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1573 
1574 		if (interface == PHY_INTERFACE_MODE_RMII)
1575 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1576 		else
1577 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1578 
1579 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1580 		break;
1581 
1582 	case SPEED_1000:
1583 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1584 
1585 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1586 
1587 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1588 		break;
1589 	}
1590 
1591 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1592 			GSWIP_MDIO_PHYp(port));
1593 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1594 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1595 			  GSWIP_MAC_CTRL_0p(port));
1596 }
1597 
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1598 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1599 {
1600 	u32 mac_ctrl_0, mdio_phy;
1601 
1602 	if (duplex == DUPLEX_FULL) {
1603 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1604 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1605 	} else {
1606 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1607 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1608 	}
1609 
1610 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1611 			  GSWIP_MAC_CTRL_0p(port));
1612 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1613 			GSWIP_MDIO_PHYp(port));
1614 }
1615 
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1616 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1617 				 bool tx_pause, bool rx_pause)
1618 {
1619 	u32 mac_ctrl_0, mdio_phy;
1620 
1621 	if (tx_pause && rx_pause) {
1622 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1623 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1624 			   GSWIP_MDIO_PHY_FCONRX_EN;
1625 	} else if (tx_pause) {
1626 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1627 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1628 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1629 	} else if (rx_pause) {
1630 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1631 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1632 			   GSWIP_MDIO_PHY_FCONRX_EN;
1633 	} else {
1634 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1635 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1636 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1637 	}
1638 
1639 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1640 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1641 	gswip_mdio_mask(priv,
1642 			GSWIP_MDIO_PHY_FCONTX_MASK |
1643 			GSWIP_MDIO_PHY_FCONRX_MASK,
1644 			mdio_phy, GSWIP_MDIO_PHYp(port));
1645 }
1646 
gswip_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)1647 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1648 				     unsigned int mode,
1649 				     const struct phylink_link_state *state)
1650 {
1651 	struct gswip_priv *priv = ds->priv;
1652 	u32 miicfg = 0;
1653 
1654 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1655 
1656 	switch (state->interface) {
1657 	case PHY_INTERFACE_MODE_MII:
1658 	case PHY_INTERFACE_MODE_INTERNAL:
1659 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1660 		break;
1661 	case PHY_INTERFACE_MODE_REVMII:
1662 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1663 		break;
1664 	case PHY_INTERFACE_MODE_RMII:
1665 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1666 		break;
1667 	case PHY_INTERFACE_MODE_RGMII:
1668 	case PHY_INTERFACE_MODE_RGMII_ID:
1669 	case PHY_INTERFACE_MODE_RGMII_RXID:
1670 	case PHY_INTERFACE_MODE_RGMII_TXID:
1671 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1672 		break;
1673 	case PHY_INTERFACE_MODE_GMII:
1674 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1675 		break;
1676 	default:
1677 		dev_err(ds->dev,
1678 			"Unsupported interface: %d\n", state->interface);
1679 		return;
1680 	}
1681 
1682 	gswip_mii_mask_cfg(priv,
1683 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1684 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1685 			   miicfg, port);
1686 
1687 	switch (state->interface) {
1688 	case PHY_INTERFACE_MODE_RGMII_ID:
1689 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1690 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1691 		break;
1692 	case PHY_INTERFACE_MODE_RGMII_RXID:
1693 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1694 		break;
1695 	case PHY_INTERFACE_MODE_RGMII_TXID:
1696 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1697 		break;
1698 	default:
1699 		break;
1700 	}
1701 }
1702 
gswip_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)1703 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1704 					unsigned int mode,
1705 					phy_interface_t interface)
1706 {
1707 	struct gswip_priv *priv = ds->priv;
1708 
1709 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1710 
1711 	if (!dsa_is_cpu_port(ds, port))
1712 		gswip_port_set_link(priv, port, false);
1713 }
1714 
gswip_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1715 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1716 				      unsigned int mode,
1717 				      phy_interface_t interface,
1718 				      struct phy_device *phydev,
1719 				      int speed, int duplex,
1720 				      bool tx_pause, bool rx_pause)
1721 {
1722 	struct gswip_priv *priv = ds->priv;
1723 
1724 	if (!dsa_is_cpu_port(ds, port)) {
1725 		gswip_port_set_link(priv, port, true);
1726 		gswip_port_set_speed(priv, port, speed, interface);
1727 		gswip_port_set_duplex(priv, port, duplex);
1728 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1729 	}
1730 
1731 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1732 }
1733 
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1734 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1735 			      uint8_t *data)
1736 {
1737 	int i;
1738 
1739 	if (stringset != ETH_SS_STATS)
1740 		return;
1741 
1742 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1743 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1744 			ETH_GSTRING_LEN);
1745 }
1746 
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1747 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1748 				    u32 index)
1749 {
1750 	u32 result;
1751 	int err;
1752 
1753 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1754 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1755 				GSWIP_BM_RAM_CTRL_OPMOD,
1756 			      table | GSWIP_BM_RAM_CTRL_BAS,
1757 			      GSWIP_BM_RAM_CTRL);
1758 
1759 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1760 				     GSWIP_BM_RAM_CTRL_BAS);
1761 	if (err) {
1762 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1763 			table, index);
1764 		return 0;
1765 	}
1766 
1767 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1768 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1769 
1770 	return result;
1771 }
1772 
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1773 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1774 				    uint64_t *data)
1775 {
1776 	struct gswip_priv *priv = ds->priv;
1777 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1778 	int i;
1779 	u64 high;
1780 
1781 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1782 		rmon_cnt = &gswip_rmon_cnt[i];
1783 
1784 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1785 						   rmon_cnt->offset);
1786 		if (rmon_cnt->size == 2) {
1787 			high = gswip_bcm_ram_entry_read(priv, port,
1788 							rmon_cnt->offset + 1);
1789 			data[i] |= high << 32;
1790 		}
1791 	}
1792 }
1793 
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1794 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1795 {
1796 	if (sset != ETH_SS_STATS)
1797 		return 0;
1798 
1799 	return ARRAY_SIZE(gswip_rmon_cnt);
1800 }
1801 
1802 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1803 	.get_tag_protocol	= gswip_get_tag_protocol,
1804 	.setup			= gswip_setup,
1805 	.port_enable		= gswip_port_enable,
1806 	.port_disable		= gswip_port_disable,
1807 	.port_bridge_join	= gswip_port_bridge_join,
1808 	.port_bridge_leave	= gswip_port_bridge_leave,
1809 	.port_fast_age		= gswip_port_fast_age,
1810 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1811 	.port_vlan_add		= gswip_port_vlan_add,
1812 	.port_vlan_del		= gswip_port_vlan_del,
1813 	.port_stp_state_set	= gswip_port_stp_state_set,
1814 	.port_fdb_add		= gswip_port_fdb_add,
1815 	.port_fdb_del		= gswip_port_fdb_del,
1816 	.port_fdb_dump		= gswip_port_fdb_dump,
1817 	.phylink_validate	= gswip_xrx200_phylink_validate,
1818 	.phylink_mac_config	= gswip_phylink_mac_config,
1819 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1820 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1821 	.get_strings		= gswip_get_strings,
1822 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1823 	.get_sset_count		= gswip_get_sset_count,
1824 };
1825 
1826 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1827 	.get_tag_protocol	= gswip_get_tag_protocol,
1828 	.setup			= gswip_setup,
1829 	.port_enable		= gswip_port_enable,
1830 	.port_disable		= gswip_port_disable,
1831 	.port_bridge_join	= gswip_port_bridge_join,
1832 	.port_bridge_leave	= gswip_port_bridge_leave,
1833 	.port_fast_age		= gswip_port_fast_age,
1834 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1835 	.port_vlan_add		= gswip_port_vlan_add,
1836 	.port_vlan_del		= gswip_port_vlan_del,
1837 	.port_stp_state_set	= gswip_port_stp_state_set,
1838 	.port_fdb_add		= gswip_port_fdb_add,
1839 	.port_fdb_del		= gswip_port_fdb_del,
1840 	.port_fdb_dump		= gswip_port_fdb_dump,
1841 	.phylink_validate	= gswip_xrx300_phylink_validate,
1842 	.phylink_mac_config	= gswip_phylink_mac_config,
1843 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1844 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1845 	.get_strings		= gswip_get_strings,
1846 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1847 	.get_sset_count		= gswip_get_sset_count,
1848 };
1849 
1850 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1851 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1852 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1853 };
1854 
1855 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1856 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1857 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1858 };
1859 
1860 static const struct xway_gphy_match_data xrx300_gphy_data = {
1861 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1862 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1863 };
1864 
1865 static const struct of_device_id xway_gphy_match[] = {
1866 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1867 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1868 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1869 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1870 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1871 	{},
1872 };
1873 
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1874 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1875 {
1876 	struct device *dev = priv->dev;
1877 	const struct firmware *fw;
1878 	void *fw_addr;
1879 	dma_addr_t dma_addr;
1880 	dma_addr_t dev_addr;
1881 	size_t size;
1882 	int ret;
1883 
1884 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1885 	if (ret)
1886 		return ret;
1887 
1888 	reset_control_assert(gphy_fw->reset);
1889 
1890 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1891 	 * Without this some users are observing that the PHY is not coming up
1892 	 * on the MDIO bus.
1893 	 */
1894 	msleep(200);
1895 
1896 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1897 	if (ret) {
1898 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1899 			gphy_fw->fw_name, ret);
1900 		return ret;
1901 	}
1902 
1903 	/* GPHY cores need the firmware code in a persistent and contiguous
1904 	 * memory area with a 16 kB boundary aligned start address.
1905 	 */
1906 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1907 
1908 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1909 	if (fw_addr) {
1910 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1911 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1912 		memcpy(fw_addr, fw->data, fw->size);
1913 	} else {
1914 		dev_err(dev, "failed to alloc firmware memory\n");
1915 		release_firmware(fw);
1916 		return -ENOMEM;
1917 	}
1918 
1919 	release_firmware(fw);
1920 
1921 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1922 	if (ret)
1923 		return ret;
1924 
1925 	reset_control_deassert(gphy_fw->reset);
1926 
1927 	return ret;
1928 }
1929 
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1930 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1931 			       struct gswip_gphy_fw *gphy_fw,
1932 			       struct device_node *gphy_fw_np, int i)
1933 {
1934 	struct device *dev = priv->dev;
1935 	u32 gphy_mode;
1936 	int ret;
1937 	char gphyname[10];
1938 
1939 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1940 
1941 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1942 	if (IS_ERR(gphy_fw->clk_gate)) {
1943 		dev_err(dev, "Failed to lookup gate clock\n");
1944 		return PTR_ERR(gphy_fw->clk_gate);
1945 	}
1946 
1947 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1948 	if (ret)
1949 		return ret;
1950 
1951 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1952 	/* Default to GE mode */
1953 	if (ret)
1954 		gphy_mode = GPHY_MODE_GE;
1955 
1956 	switch (gphy_mode) {
1957 	case GPHY_MODE_FE:
1958 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1959 		break;
1960 	case GPHY_MODE_GE:
1961 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1962 		break;
1963 	default:
1964 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1965 		return -EINVAL;
1966 	}
1967 
1968 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1969 	if (IS_ERR(gphy_fw->reset)) {
1970 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1971 			dev_err(dev, "Failed to lookup gphy reset\n");
1972 		return PTR_ERR(gphy_fw->reset);
1973 	}
1974 
1975 	return gswip_gphy_fw_load(priv, gphy_fw);
1976 }
1977 
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1978 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1979 				 struct gswip_gphy_fw *gphy_fw)
1980 {
1981 	int ret;
1982 
1983 	/* check if the device was fully probed */
1984 	if (!gphy_fw->fw_name)
1985 		return;
1986 
1987 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1988 	if (ret)
1989 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1990 
1991 	clk_disable_unprepare(gphy_fw->clk_gate);
1992 
1993 	reset_control_put(gphy_fw->reset);
1994 }
1995 
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)1996 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1997 			      struct device_node *gphy_fw_list_np, u32 version)
1998 {
1999 	struct device *dev = priv->dev;
2000 	struct device_node *gphy_fw_np;
2001 	const struct of_device_id *match;
2002 	int err;
2003 	int i = 0;
2004 
2005 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2006 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2007 	 * needs a different GPHY firmware.
2008 	 */
2009 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2010 		switch (version) {
2011 		case GSWIP_VERSION_2_0:
2012 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2013 			break;
2014 		case GSWIP_VERSION_2_1:
2015 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2016 			break;
2017 		default:
2018 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2019 			return -ENOENT;
2020 		}
2021 	}
2022 
2023 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2024 	if (match && match->data)
2025 		priv->gphy_fw_name_cfg = match->data;
2026 
2027 	if (!priv->gphy_fw_name_cfg) {
2028 		dev_err(dev, "GPHY compatible type not supported");
2029 		return -ENOENT;
2030 	}
2031 
2032 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2033 	if (!priv->num_gphy_fw)
2034 		return -ENOENT;
2035 
2036 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2037 							   "lantiq,rcu");
2038 	if (IS_ERR(priv->rcu_regmap))
2039 		return PTR_ERR(priv->rcu_regmap);
2040 
2041 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2042 					   sizeof(*priv->gphy_fw),
2043 					   GFP_KERNEL | __GFP_ZERO);
2044 	if (!priv->gphy_fw)
2045 		return -ENOMEM;
2046 
2047 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2048 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2049 					  gphy_fw_np, i);
2050 		if (err) {
2051 			of_node_put(gphy_fw_np);
2052 			goto remove_gphy;
2053 		}
2054 		i++;
2055 	}
2056 
2057 	/* The standalone PHY11G requires 300ms to be fully
2058 	 * initialized and ready for any MDIO communication after being
2059 	 * taken out of reset. For the SoC-internal GPHY variant there
2060 	 * is no (known) documentation for the minimum time after a
2061 	 * reset. Use the same value as for the standalone variant as
2062 	 * some users have reported internal PHYs not being detected
2063 	 * without any delay.
2064 	 */
2065 	msleep(300);
2066 
2067 	return 0;
2068 
2069 remove_gphy:
2070 	for (i = 0; i < priv->num_gphy_fw; i++)
2071 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2072 	return err;
2073 }
2074 
gswip_probe(struct platform_device * pdev)2075 static int gswip_probe(struct platform_device *pdev)
2076 {
2077 	struct gswip_priv *priv;
2078 	struct device_node *np, *mdio_np, *gphy_fw_np;
2079 	struct device *dev = &pdev->dev;
2080 	int err;
2081 	int i;
2082 	u32 version;
2083 
2084 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2085 	if (!priv)
2086 		return -ENOMEM;
2087 
2088 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2089 	if (IS_ERR(priv->gswip))
2090 		return PTR_ERR(priv->gswip);
2091 
2092 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2093 	if (IS_ERR(priv->mdio))
2094 		return PTR_ERR(priv->mdio);
2095 
2096 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2097 	if (IS_ERR(priv->mii))
2098 		return PTR_ERR(priv->mii);
2099 
2100 	priv->hw_info = of_device_get_match_data(dev);
2101 	if (!priv->hw_info)
2102 		return -EINVAL;
2103 
2104 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2105 	if (!priv->ds)
2106 		return -ENOMEM;
2107 
2108 	priv->ds->dev = dev;
2109 	priv->ds->num_ports = priv->hw_info->max_ports;
2110 	priv->ds->priv = priv;
2111 	priv->ds->ops = priv->hw_info->ops;
2112 	priv->dev = dev;
2113 	version = gswip_switch_r(priv, GSWIP_VERSION);
2114 
2115 	np = dev->of_node;
2116 	switch (version) {
2117 	case GSWIP_VERSION_2_0:
2118 	case GSWIP_VERSION_2_1:
2119 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2120 			return -EINVAL;
2121 		break;
2122 	case GSWIP_VERSION_2_2:
2123 	case GSWIP_VERSION_2_2_ETC:
2124 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2125 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2126 			return -EINVAL;
2127 		break;
2128 	default:
2129 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2130 		return -ENOENT;
2131 	}
2132 
2133 	/* bring up the mdio bus */
2134 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2135 	if (gphy_fw_np) {
2136 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2137 		of_node_put(gphy_fw_np);
2138 		if (err) {
2139 			dev_err(dev, "gphy fw probe failed\n");
2140 			return err;
2141 		}
2142 	}
2143 
2144 	/* bring up the mdio bus */
2145 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2146 	if (mdio_np) {
2147 		err = gswip_mdio(priv, mdio_np);
2148 		if (err) {
2149 			dev_err(dev, "mdio probe failed\n");
2150 			goto put_mdio_node;
2151 		}
2152 	}
2153 
2154 	err = dsa_register_switch(priv->ds);
2155 	if (err) {
2156 		dev_err(dev, "dsa switch register failed: %i\n", err);
2157 		goto mdio_bus;
2158 	}
2159 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2160 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2161 			priv->hw_info->cpu_port);
2162 		err = -EINVAL;
2163 		goto disable_switch;
2164 	}
2165 
2166 	platform_set_drvdata(pdev, priv);
2167 
2168 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2169 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2170 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2171 	return 0;
2172 
2173 disable_switch:
2174 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2175 	dsa_unregister_switch(priv->ds);
2176 mdio_bus:
2177 	if (mdio_np) {
2178 		mdiobus_unregister(priv->ds->slave_mii_bus);
2179 		mdiobus_free(priv->ds->slave_mii_bus);
2180 	}
2181 put_mdio_node:
2182 	of_node_put(mdio_np);
2183 	for (i = 0; i < priv->num_gphy_fw; i++)
2184 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2185 	return err;
2186 }
2187 
gswip_remove(struct platform_device * pdev)2188 static int gswip_remove(struct platform_device *pdev)
2189 {
2190 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2191 	int i;
2192 
2193 	if (!priv)
2194 		return 0;
2195 
2196 	/* disable the switch */
2197 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2198 
2199 	dsa_unregister_switch(priv->ds);
2200 
2201 	if (priv->ds->slave_mii_bus) {
2202 		mdiobus_unregister(priv->ds->slave_mii_bus);
2203 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2204 		mdiobus_free(priv->ds->slave_mii_bus);
2205 	}
2206 
2207 	for (i = 0; i < priv->num_gphy_fw; i++)
2208 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2209 
2210 	platform_set_drvdata(pdev, NULL);
2211 
2212 	return 0;
2213 }
2214 
gswip_shutdown(struct platform_device * pdev)2215 static void gswip_shutdown(struct platform_device *pdev)
2216 {
2217 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2218 
2219 	if (!priv)
2220 		return;
2221 
2222 	dsa_switch_shutdown(priv->ds);
2223 
2224 	platform_set_drvdata(pdev, NULL);
2225 }
2226 
2227 static const struct gswip_hw_info gswip_xrx200 = {
2228 	.max_ports = 7,
2229 	.cpu_port = 6,
2230 	.ops = &gswip_xrx200_switch_ops,
2231 };
2232 
2233 static const struct gswip_hw_info gswip_xrx300 = {
2234 	.max_ports = 7,
2235 	.cpu_port = 6,
2236 	.ops = &gswip_xrx300_switch_ops,
2237 };
2238 
2239 static const struct of_device_id gswip_of_match[] = {
2240 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2241 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2242 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2243 	{},
2244 };
2245 MODULE_DEVICE_TABLE(of, gswip_of_match);
2246 
2247 static struct platform_driver gswip_driver = {
2248 	.probe = gswip_probe,
2249 	.remove = gswip_remove,
2250 	.shutdown = gswip_shutdown,
2251 	.driver = {
2252 		.name = "gswip",
2253 		.of_match_table = gswip_of_match,
2254 	},
2255 };
2256 
2257 module_platform_driver(gswip_driver);
2258 
2259 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2260 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2261 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2262 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2263 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2264 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2265 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2266 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2267 MODULE_LICENSE("GPL v2");
2268