1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8 #define pr_fmt(fmt) "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
49
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
bcmgenet_writel(u32 value,void __iomem * offset)71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80 }
81
bcmgenet_readl(void __iomem * offset)82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88 }
89
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92 {
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99 {
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118 }
119
dmadesc_get_addr(struct bcmgenet_priv * priv,void __iomem * d)120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 void __iomem *d)
122 {
123 dma_addr_t addr;
124
125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127 /* Register writes to GISB bus can take couple hundred nanoseconds
128 * and are done for each packet, save these expensive writes unless
129 * the platform is explicitly configured for 64-bits/LPAE.
130 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 if (priv->hw_params->flags & GENET_HAS_40BITS)
133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 return addr;
136 }
137
138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 NETIF_MSG_LINK)
142
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 if (GENET_IS_V1(priv))
146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 else
148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 if (GENET_IS_V1(priv))
154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 else
156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160 * between GENET1.1 and GENET2. Only those currently being used
161 * by driver are defined.
162 */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 if (GENET_IS_V1(priv))
184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 else
186 return bcmgenet_readl(priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 if (GENET_IS_V1(priv))
193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 else
195 bcmgenet_writel(val, priv->base +
196 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 DMA_RING_CFG = 0,
202 DMA_CTRL,
203 DMA_STATUS,
204 DMA_SCB_BURST_SIZE,
205 DMA_ARB_CTRL,
206 DMA_PRIORITY_0,
207 DMA_PRIORITY_1,
208 DMA_PRIORITY_2,
209 DMA_INDEX2RING_0,
210 DMA_INDEX2RING_1,
211 DMA_INDEX2RING_2,
212 DMA_INDEX2RING_3,
213 DMA_INDEX2RING_4,
214 DMA_INDEX2RING_5,
215 DMA_INDEX2RING_6,
216 DMA_INDEX2RING_7,
217 DMA_RING0_TIMEOUT,
218 DMA_RING1_TIMEOUT,
219 DMA_RING2_TIMEOUT,
220 DMA_RING3_TIMEOUT,
221 DMA_RING4_TIMEOUT,
222 DMA_RING5_TIMEOUT,
223 DMA_RING6_TIMEOUT,
224 DMA_RING7_TIMEOUT,
225 DMA_RING8_TIMEOUT,
226 DMA_RING9_TIMEOUT,
227 DMA_RING10_TIMEOUT,
228 DMA_RING11_TIMEOUT,
229 DMA_RING12_TIMEOUT,
230 DMA_RING13_TIMEOUT,
231 DMA_RING14_TIMEOUT,
232 DMA_RING15_TIMEOUT,
233 DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 [DMA_RING_CFG] = 0x00,
238 [DMA_CTRL] = 0x04,
239 [DMA_STATUS] = 0x08,
240 [DMA_SCB_BURST_SIZE] = 0x0C,
241 [DMA_ARB_CTRL] = 0x2C,
242 [DMA_PRIORITY_0] = 0x30,
243 [DMA_PRIORITY_1] = 0x34,
244 [DMA_PRIORITY_2] = 0x38,
245 [DMA_RING0_TIMEOUT] = 0x2C,
246 [DMA_RING1_TIMEOUT] = 0x30,
247 [DMA_RING2_TIMEOUT] = 0x34,
248 [DMA_RING3_TIMEOUT] = 0x38,
249 [DMA_RING4_TIMEOUT] = 0x3c,
250 [DMA_RING5_TIMEOUT] = 0x40,
251 [DMA_RING6_TIMEOUT] = 0x44,
252 [DMA_RING7_TIMEOUT] = 0x48,
253 [DMA_RING8_TIMEOUT] = 0x4c,
254 [DMA_RING9_TIMEOUT] = 0x50,
255 [DMA_RING10_TIMEOUT] = 0x54,
256 [DMA_RING11_TIMEOUT] = 0x58,
257 [DMA_RING12_TIMEOUT] = 0x5c,
258 [DMA_RING13_TIMEOUT] = 0x60,
259 [DMA_RING14_TIMEOUT] = 0x64,
260 [DMA_RING15_TIMEOUT] = 0x68,
261 [DMA_RING16_TIMEOUT] = 0x6C,
262 [DMA_INDEX2RING_0] = 0x70,
263 [DMA_INDEX2RING_1] = 0x74,
264 [DMA_INDEX2RING_2] = 0x78,
265 [DMA_INDEX2RING_3] = 0x7C,
266 [DMA_INDEX2RING_4] = 0x80,
267 [DMA_INDEX2RING_5] = 0x84,
268 [DMA_INDEX2RING_6] = 0x88,
269 [DMA_INDEX2RING_7] = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 [DMA_RING_CFG] = 0x00,
274 [DMA_CTRL] = 0x04,
275 [DMA_STATUS] = 0x08,
276 [DMA_SCB_BURST_SIZE] = 0x0C,
277 [DMA_ARB_CTRL] = 0x30,
278 [DMA_PRIORITY_0] = 0x34,
279 [DMA_PRIORITY_1] = 0x38,
280 [DMA_PRIORITY_2] = 0x3C,
281 [DMA_RING0_TIMEOUT] = 0x2C,
282 [DMA_RING1_TIMEOUT] = 0x30,
283 [DMA_RING2_TIMEOUT] = 0x34,
284 [DMA_RING3_TIMEOUT] = 0x38,
285 [DMA_RING4_TIMEOUT] = 0x3c,
286 [DMA_RING5_TIMEOUT] = 0x40,
287 [DMA_RING6_TIMEOUT] = 0x44,
288 [DMA_RING7_TIMEOUT] = 0x48,
289 [DMA_RING8_TIMEOUT] = 0x4c,
290 [DMA_RING9_TIMEOUT] = 0x50,
291 [DMA_RING10_TIMEOUT] = 0x54,
292 [DMA_RING11_TIMEOUT] = 0x58,
293 [DMA_RING12_TIMEOUT] = 0x5c,
294 [DMA_RING13_TIMEOUT] = 0x60,
295 [DMA_RING14_TIMEOUT] = 0x64,
296 [DMA_RING15_TIMEOUT] = 0x68,
297 [DMA_RING16_TIMEOUT] = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 [DMA_CTRL] = 0x00,
302 [DMA_STATUS] = 0x04,
303 [DMA_SCB_BURST_SIZE] = 0x0C,
304 [DMA_ARB_CTRL] = 0x30,
305 [DMA_PRIORITY_0] = 0x34,
306 [DMA_PRIORITY_1] = 0x38,
307 [DMA_PRIORITY_2] = 0x3C,
308 [DMA_RING0_TIMEOUT] = 0x2C,
309 [DMA_RING1_TIMEOUT] = 0x30,
310 [DMA_RING2_TIMEOUT] = 0x34,
311 [DMA_RING3_TIMEOUT] = 0x38,
312 [DMA_RING4_TIMEOUT] = 0x3c,
313 [DMA_RING5_TIMEOUT] = 0x40,
314 [DMA_RING6_TIMEOUT] = 0x44,
315 [DMA_RING7_TIMEOUT] = 0x48,
316 [DMA_RING8_TIMEOUT] = 0x4c,
317 [DMA_RING9_TIMEOUT] = 0x50,
318 [DMA_RING10_TIMEOUT] = 0x54,
319 [DMA_RING11_TIMEOUT] = 0x58,
320 [DMA_RING12_TIMEOUT] = 0x5c,
321 [DMA_RING13_TIMEOUT] = 0x60,
322 [DMA_RING14_TIMEOUT] = 0x64,
323 [DMA_RING15_TIMEOUT] = 0x68,
324 [DMA_RING16_TIMEOUT] = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
dev_to_priv(struct device * dev)330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 return netdev_priv(dev_get_drvdata(dev));
333 }
334
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 enum dma_reg r)
337 {
338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 u32 val, enum dma_reg r)
344 {
345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 enum dma_reg r)
351 {
352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 u32 val, enum dma_reg r)
358 {
359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364 * we merge the common fields and just prefix with T/D the registers
365 * having different meaning depending on the direction
366 */
367 enum dma_ring_reg {
368 TDMA_READ_PTR = 0,
369 RDMA_WRITE_PTR = TDMA_READ_PTR,
370 TDMA_READ_PTR_HI,
371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 TDMA_CONS_INDEX,
373 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 TDMA_PROD_INDEX,
375 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 DMA_RING_BUF_SIZE,
377 DMA_START_ADDR,
378 DMA_START_ADDR_HI,
379 DMA_END_ADDR,
380 DMA_END_ADDR_HI,
381 DMA_MBUF_DONE_THRESH,
382 TDMA_FLOW_PERIOD,
383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 TDMA_WRITE_PTR,
385 RDMA_READ_PTR = TDMA_WRITE_PTR,
386 TDMA_WRITE_PTR_HI,
387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391 * for obvious reasons the LO and HI word parts
392 * are contiguous, but this offsets the other
393 * registers.
394 */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 [TDMA_READ_PTR] = 0x00,
397 [TDMA_READ_PTR_HI] = 0x04,
398 [TDMA_CONS_INDEX] = 0x08,
399 [TDMA_PROD_INDEX] = 0x0C,
400 [DMA_RING_BUF_SIZE] = 0x10,
401 [DMA_START_ADDR] = 0x14,
402 [DMA_START_ADDR_HI] = 0x18,
403 [DMA_END_ADDR] = 0x1C,
404 [DMA_END_ADDR_HI] = 0x20,
405 [DMA_MBUF_DONE_THRESH] = 0x24,
406 [TDMA_FLOW_PERIOD] = 0x28,
407 [TDMA_WRITE_PTR] = 0x2C,
408 [TDMA_WRITE_PTR_HI] = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412 [TDMA_READ_PTR] = 0x00,
413 [TDMA_CONS_INDEX] = 0x04,
414 [TDMA_PROD_INDEX] = 0x08,
415 [DMA_RING_BUF_SIZE] = 0x0C,
416 [DMA_START_ADDR] = 0x10,
417 [DMA_END_ADDR] = 0x14,
418 [DMA_MBUF_DONE_THRESH] = 0x18,
419 [TDMA_FLOW_PERIOD] = 0x1C,
420 [TDMA_WRITE_PTR] = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429 {
430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438 {
439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 unsigned int ring,
446 enum dma_ring_reg r)
447 {
448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 unsigned int ring, u32 val,
455 enum dma_ring_reg r)
456 {
457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 (DMA_RING_SIZE * ring) +
459 genet_dma_ring_regs[r]);
460 }
461
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 u32 offset;
465 u32 reg;
466
467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 reg = bcmgenet_hfb_reg_readl(priv, offset);
469 reg |= (1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 reg |= RBUF_HFB_EN;
473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
bcmgenet_hfb_disable_filter(struct bcmgenet_priv * priv,u32 f_index)476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 u32 offset, reg, reg1;
479
480 offset = HFB_FLT_ENABLE_V3PLUS;
481 reg = bcmgenet_hfb_reg_readl(priv, offset);
482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 if (f_index < 32) {
484 reg1 &= ~(1 << (f_index % 32));
485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 } else {
487 reg &= ~(1 << (f_index % 32));
488 bcmgenet_hfb_reg_writel(priv, reg, offset);
489 }
490 if (!reg && !reg1) {
491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 reg &= ~RBUF_HFB_EN;
493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 }
495 }
496
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 u32 f_index, u32 rx_queue)
499 {
500 u32 offset;
501 u32 reg;
502
503 offset = f_index / 8;
504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 reg &= ~(0xF << (4 * (f_index % 8)));
506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 u32 f_index, u32 f_length)
512 {
513 u32 offset;
514 u32 reg;
515
516 offset = HFB_FLT_LEN_V3PLUS +
517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 sizeof(u32);
519 reg = bcmgenet_hfb_reg_readl(priv, offset);
520 reg &= ~(0xFF << (8 * (f_index % 4)));
521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
bcmgenet_hfb_validate_mask(void * mask,size_t size)525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 while (size) {
528 switch (*(unsigned char *)mask++) {
529 case 0x00:
530 case 0x0f:
531 case 0xf0:
532 case 0xff:
533 size--;
534 continue;
535 default:
536 return -EINVAL;
537 }
538 }
539
540 return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
bcmgenet_hfb_insert_data(struct bcmgenet_priv * priv,u32 f_index,u32 offset,void * val,void * mask,size_t size)546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 u32 offset, void *val, void *mask,
548 size_t size)
549 {
550 u32 index, tmp;
551
552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555 while (size--) {
556 if (offset++ & 1) {
557 tmp &= ~0x300FF;
558 tmp |= (*(unsigned char *)val++);
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0x30000;
562 break;
563 case 0xF0:
564 tmp |= 0x20000;
565 break;
566 case 0x0F:
567 tmp |= 0x10000;
568 break;
569 }
570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 if (size)
572 tmp = bcmgenet_hfb_readl(priv,
573 index * sizeof(u32));
574 } else {
575 tmp &= ~0xCFF00;
576 tmp |= (*(unsigned char *)val++) << 8;
577 switch ((*(unsigned char *)mask++)) {
578 case 0xFF:
579 tmp |= 0xC0000;
580 break;
581 case 0xF0:
582 tmp |= 0x80000;
583 break;
584 case 0x0F:
585 tmp |= 0x40000;
586 break;
587 }
588 if (!size)
589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590 }
591 }
592
593 return 0;
594 }
595
bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv * priv,struct bcmgenet_rxnfc_rule * rule)596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 struct bcmgenet_rxnfc_rule *rule)
598 {
599 struct ethtool_rx_flow_spec *fs = &rule->fs;
600 u32 offset = 0, f_length = 0, f;
601 u8 val_8, mask_8;
602 __be16 val_16;
603 u16 mask_16;
604 size_t size;
605
606 f = fs->location;
607 if (fs->flow_type & FLOW_MAC_EXT) {
608 bcmgenet_hfb_insert_data(priv, f, 0,
609 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 sizeof(fs->h_ext.h_dest));
611 }
612
613 if (fs->flow_type & FLOW_EXT) {
614 if (fs->m_ext.vlan_etype ||
615 fs->m_ext.vlan_tci) {
616 bcmgenet_hfb_insert_data(priv, f, 12,
617 &fs->h_ext.vlan_etype,
618 &fs->m_ext.vlan_etype,
619 sizeof(fs->h_ext.vlan_etype));
620 bcmgenet_hfb_insert_data(priv, f, 14,
621 &fs->h_ext.vlan_tci,
622 &fs->m_ext.vlan_tci,
623 sizeof(fs->h_ext.vlan_tci));
624 offset += VLAN_HLEN;
625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626 }
627 }
628
629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 case ETHER_FLOW:
631 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 bcmgenet_hfb_insert_data(priv, f, 0,
633 &fs->h_u.ether_spec.h_dest,
634 &fs->m_u.ether_spec.h_dest,
635 sizeof(fs->h_u.ether_spec.h_dest));
636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 &fs->h_u.ether_spec.h_source,
638 &fs->m_u.ether_spec.h_source,
639 sizeof(fs->h_u.ether_spec.h_source));
640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 &fs->h_u.ether_spec.h_proto,
642 &fs->m_u.ether_spec.h_proto,
643 sizeof(fs->h_u.ether_spec.h_proto));
644 break;
645 case IP_USER_FLOW:
646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 /* Specify IP Ether Type */
648 val_16 = htons(ETH_P_IP);
649 mask_16 = 0xFFFF;
650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 &val_16, &mask_16, sizeof(val_16));
652 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 &fs->h_u.usr_ip4_spec.tos,
654 &fs->m_u.usr_ip4_spec.tos,
655 sizeof(fs->h_u.usr_ip4_spec.tos));
656 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 &fs->h_u.usr_ip4_spec.proto,
658 &fs->m_u.usr_ip4_spec.proto,
659 sizeof(fs->h_u.usr_ip4_spec.proto));
660 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 &fs->h_u.usr_ip4_spec.ip4src,
662 &fs->m_u.usr_ip4_spec.ip4src,
663 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 &fs->h_u.usr_ip4_spec.ip4dst,
666 &fs->m_u.usr_ip4_spec.ip4dst,
667 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 break;
670
671 /* Only supports 20 byte IPv4 header */
672 val_8 = 0x45;
673 mask_8 = 0xFF;
674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 &val_8, &mask_8,
676 sizeof(val_8));
677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 bcmgenet_hfb_insert_data(priv, f,
679 ETH_HLEN + 20 + offset,
680 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 size);
683 f_length += DIV_ROUND_UP(size, 2);
684 break;
685 }
686
687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 /* Ring 0 flows can be handled by the default Descriptor Ring
690 * We'll map them to ring 0, but don't enable the filter
691 */
692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 } else {
695 /* Other Rx rings are direct mapped here */
696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 fs->ring_cookie);
698 bcmgenet_hfb_enable_filter(priv, f);
699 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700 }
701 }
702
703 /* bcmgenet_hfb_clear
704 *
705 * Clear Hardware Filter Block and disable all filtering.
706 */
bcmgenet_hfb_clear_filter(struct bcmgenet_priv * priv,u32 f_index)707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709 u32 base, i;
710
711 base = f_index * priv->hw_params->hfb_filter_size;
712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718 u32 i;
719
720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 return;
722
723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 bcmgenet_rdma_writel(priv, 0x0, i);
729
730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 bcmgenet_hfb_reg_writel(priv, 0x0,
732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
bcmgenet_hfb_init(struct bcmgenet_priv * priv)738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740 int i;
741
742 INIT_LIST_HEAD(&priv->rxnfc_list);
743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 return;
745
746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749 }
750
751 bcmgenet_hfb_clear(priv);
752 }
753
bcmgenet_begin(struct net_device * dev)754 static int bcmgenet_begin(struct net_device *dev)
755 {
756 struct bcmgenet_priv *priv = netdev_priv(dev);
757
758 /* Turn on the clock */
759 return clk_prepare_enable(priv->clk);
760 }
761
bcmgenet_complete(struct net_device * dev)762 static void bcmgenet_complete(struct net_device *dev)
763 {
764 struct bcmgenet_priv *priv = netdev_priv(dev);
765
766 /* Turn off the clock */
767 clk_disable_unprepare(priv->clk);
768 }
769
bcmgenet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 struct ethtool_link_ksettings *cmd)
772 {
773 if (!netif_running(dev))
774 return -EINVAL;
775
776 if (!dev->phydev)
777 return -ENODEV;
778
779 phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781 return 0;
782 }
783
bcmgenet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 const struct ethtool_link_ksettings *cmd)
786 {
787 if (!netif_running(dev))
788 return -EINVAL;
789
790 if (!dev->phydev)
791 return -ENODEV;
792
793 return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)796 static int bcmgenet_set_features(struct net_device *dev,
797 netdev_features_t features)
798 {
799 struct bcmgenet_priv *priv = netdev_priv(dev);
800 u32 reg;
801 int ret;
802
803 ret = clk_prepare_enable(priv->clk);
804 if (ret)
805 return ret;
806
807 /* Make sure we reflect the value of CRC_CMD_FWD */
808 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811 clk_disable_unprepare(priv->clk);
812
813 return ret;
814 }
815
bcmgenet_get_msglevel(struct net_device * dev)816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818 struct bcmgenet_priv *priv = netdev_priv(dev);
819
820 return priv->msg_enable;
821 }
822
bcmgenet_set_msglevel(struct net_device * dev,u32 level)823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825 struct bcmgenet_priv *priv = netdev_priv(dev);
826
827 priv->msg_enable = level;
828 }
829
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 struct ethtool_coalesce *ec,
832 struct kernel_ethtool_coalesce *kernel_coal,
833 struct netlink_ext_ack *extack)
834 {
835 struct bcmgenet_priv *priv = netdev_priv(dev);
836 struct bcmgenet_rx_ring *ring;
837 unsigned int i;
838
839 ec->tx_max_coalesced_frames =
840 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841 DMA_MBUF_DONE_THRESH);
842 ec->rx_max_coalesced_frames =
843 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844 DMA_MBUF_DONE_THRESH);
845 ec->rx_coalesce_usecs =
846 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847
848 for (i = 0; i < priv->hw_params->rx_queues; i++) {
849 ring = &priv->rx_rings[i];
850 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851 }
852 ring = &priv->rx_rings[DESC_INDEX];
853 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854
855 return 0;
856 }
857
bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring * ring,u32 usecs,u32 pkts)858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859 u32 usecs, u32 pkts)
860 {
861 struct bcmgenet_priv *priv = ring->priv;
862 unsigned int i = ring->index;
863 u32 reg;
864
865 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866
867 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868 reg &= ~DMA_TIMEOUT_MASK;
869 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872
bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring * ring,struct ethtool_coalesce * ec)873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874 struct ethtool_coalesce *ec)
875 {
876 struct dim_cq_moder moder;
877 u32 usecs, pkts;
878
879 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881 usecs = ring->rx_coalesce_usecs;
882 pkts = ring->rx_max_coalesced_frames;
883
884 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886 usecs = moder.usec;
887 pkts = moder.pkts;
888 }
889
890 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)894 static int bcmgenet_set_coalesce(struct net_device *dev,
895 struct ethtool_coalesce *ec,
896 struct kernel_ethtool_coalesce *kernel_coal,
897 struct netlink_ext_ack *extack)
898 {
899 struct bcmgenet_priv *priv = netdev_priv(dev);
900 unsigned int i;
901
902 /* Base system clock is 125Mhz, DMA timeout is this reference clock
903 * divided by 1024, which yields roughly 8.192us, our maximum value
904 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905 */
906 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907 ec->tx_max_coalesced_frames == 0 ||
908 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910 return -EINVAL;
911
912 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913 return -EINVAL;
914
915 /* GENET TDMA hardware does not support a configurable timeout, but will
916 * always generate an interrupt either after MBDONE packets have been
917 * transmitted, or when the ring is empty.
918 */
919
920 /* Program all TX queues with the same values, as there is no
921 * ethtool knob to do coalescing on a per-queue basis
922 */
923 for (i = 0; i < priv->hw_params->tx_queues; i++)
924 bcmgenet_tdma_ring_writel(priv, i,
925 ec->tx_max_coalesced_frames,
926 DMA_MBUF_DONE_THRESH);
927 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928 ec->tx_max_coalesced_frames,
929 DMA_MBUF_DONE_THRESH);
930
931 for (i = 0; i < priv->hw_params->rx_queues; i++)
932 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934
935 return 0;
936 }
937
938 /* standard ethtool support functions. */
939 enum bcmgenet_stat_type {
940 BCMGENET_STAT_NETDEV = -1,
941 BCMGENET_STAT_MIB_RX,
942 BCMGENET_STAT_MIB_TX,
943 BCMGENET_STAT_RUNT,
944 BCMGENET_STAT_MISC,
945 BCMGENET_STAT_SOFT,
946 };
947
948 struct bcmgenet_stats {
949 char stat_string[ETH_GSTRING_LEN];
950 int stat_sizeof;
951 int stat_offset;
952 enum bcmgenet_stat_type type;
953 /* reg offset from UMAC base for misc counters */
954 u16 reg_offset;
955 };
956
957 #define STAT_NETDEV(m) { \
958 .stat_string = __stringify(m), \
959 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
960 .stat_offset = offsetof(struct net_device_stats, m), \
961 .type = BCMGENET_STAT_NETDEV, \
962 }
963
964 #define STAT_GENET_MIB(str, m, _type) { \
965 .stat_string = str, \
966 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
967 .stat_offset = offsetof(struct bcmgenet_priv, m), \
968 .type = _type, \
969 }
970
971 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
972 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
973 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
974 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
975
976 #define STAT_GENET_MISC(str, m, offset) { \
977 .stat_string = str, \
978 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
979 .stat_offset = offsetof(struct bcmgenet_priv, m), \
980 .type = BCMGENET_STAT_MISC, \
981 .reg_offset = offset, \
982 }
983
984 #define STAT_GENET_Q(num) \
985 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
986 tx_rings[num].packets), \
987 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
988 tx_rings[num].bytes), \
989 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
990 rx_rings[num].bytes), \
991 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
992 rx_rings[num].packets), \
993 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
994 rx_rings[num].errors), \
995 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
996 rx_rings[num].dropped)
997
998 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
999 * between the end of TX stats and the beginning of the RX RUNT
1000 */
1001 #define BCMGENET_STAT_OFFSET 0xc
1002
1003 /* Hardware counters must be kept in sync because the order/offset
1004 * is important here (order in structure declaration = order in hardware)
1005 */
1006 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1007 /* general stats */
1008 STAT_NETDEV(rx_packets),
1009 STAT_NETDEV(tx_packets),
1010 STAT_NETDEV(rx_bytes),
1011 STAT_NETDEV(tx_bytes),
1012 STAT_NETDEV(rx_errors),
1013 STAT_NETDEV(tx_errors),
1014 STAT_NETDEV(rx_dropped),
1015 STAT_NETDEV(tx_dropped),
1016 STAT_NETDEV(multicast),
1017 /* UniMAC RSV counters */
1018 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1019 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1020 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1021 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1022 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1023 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1024 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1025 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1026 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1027 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1028 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1029 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1030 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1031 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1032 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1033 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1034 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1035 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1036 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1037 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1038 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1039 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1040 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1041 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1042 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1043 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1044 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1045 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1046 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1047 /* UniMAC TSV counters */
1048 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1049 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1050 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1051 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1052 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1053 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1054 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1055 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1056 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1057 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1058 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1059 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1060 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1061 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1062 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1063 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1064 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1065 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1066 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1067 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1068 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1069 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1070 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1071 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1072 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1073 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1074 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1075 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1076 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1077 /* UniMAC RUNT counters */
1078 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1079 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1080 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1081 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1082 /* Misc UniMAC counters */
1083 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1084 UMAC_RBUF_OVFL_CNT_V1),
1085 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1086 UMAC_RBUF_ERR_CNT_V1),
1087 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1088 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1089 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1090 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1091 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1092 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1093 mib.tx_realloc_tsb_failed),
1094 /* Per TX queues */
1095 STAT_GENET_Q(0),
1096 STAT_GENET_Q(1),
1097 STAT_GENET_Q(2),
1098 STAT_GENET_Q(3),
1099 STAT_GENET_Q(16),
1100 };
1101
1102 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1103
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1104 static void bcmgenet_get_drvinfo(struct net_device *dev,
1105 struct ethtool_drvinfo *info)
1106 {
1107 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1108 }
1109
bcmgenet_get_sset_count(struct net_device * dev,int string_set)1110 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1111 {
1112 switch (string_set) {
1113 case ETH_SS_STATS:
1114 return BCMGENET_STATS_LEN;
1115 default:
1116 return -EOPNOTSUPP;
1117 }
1118 }
1119
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)1120 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1121 u8 *data)
1122 {
1123 int i;
1124
1125 switch (stringset) {
1126 case ETH_SS_STATS:
1127 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1128 memcpy(data + i * ETH_GSTRING_LEN,
1129 bcmgenet_gstrings_stats[i].stat_string,
1130 ETH_GSTRING_LEN);
1131 }
1132 break;
1133 }
1134 }
1135
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)1136 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1137 {
1138 u16 new_offset;
1139 u32 val;
1140
1141 switch (offset) {
1142 case UMAC_RBUF_OVFL_CNT_V1:
1143 if (GENET_IS_V2(priv))
1144 new_offset = RBUF_OVFL_CNT_V2;
1145 else
1146 new_offset = RBUF_OVFL_CNT_V3PLUS;
1147
1148 val = bcmgenet_rbuf_readl(priv, new_offset);
1149 /* clear if overflowed */
1150 if (val == ~0)
1151 bcmgenet_rbuf_writel(priv, 0, new_offset);
1152 break;
1153 case UMAC_RBUF_ERR_CNT_V1:
1154 if (GENET_IS_V2(priv))
1155 new_offset = RBUF_ERR_CNT_V2;
1156 else
1157 new_offset = RBUF_ERR_CNT_V3PLUS;
1158
1159 val = bcmgenet_rbuf_readl(priv, new_offset);
1160 /* clear if overflowed */
1161 if (val == ~0)
1162 bcmgenet_rbuf_writel(priv, 0, new_offset);
1163 break;
1164 default:
1165 val = bcmgenet_umac_readl(priv, offset);
1166 /* clear if overflowed */
1167 if (val == ~0)
1168 bcmgenet_umac_writel(priv, 0, offset);
1169 break;
1170 }
1171
1172 return val;
1173 }
1174
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)1175 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1176 {
1177 int i, j = 0;
1178
1179 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1180 const struct bcmgenet_stats *s;
1181 u8 offset = 0;
1182 u32 val = 0;
1183 char *p;
1184
1185 s = &bcmgenet_gstrings_stats[i];
1186 switch (s->type) {
1187 case BCMGENET_STAT_NETDEV:
1188 case BCMGENET_STAT_SOFT:
1189 continue;
1190 case BCMGENET_STAT_RUNT:
1191 offset += BCMGENET_STAT_OFFSET;
1192 fallthrough;
1193 case BCMGENET_STAT_MIB_TX:
1194 offset += BCMGENET_STAT_OFFSET;
1195 fallthrough;
1196 case BCMGENET_STAT_MIB_RX:
1197 val = bcmgenet_umac_readl(priv,
1198 UMAC_MIB_START + j + offset);
1199 offset = 0; /* Reset Offset */
1200 break;
1201 case BCMGENET_STAT_MISC:
1202 if (GENET_IS_V1(priv)) {
1203 val = bcmgenet_umac_readl(priv, s->reg_offset);
1204 /* clear if overflowed */
1205 if (val == ~0)
1206 bcmgenet_umac_writel(priv, 0,
1207 s->reg_offset);
1208 } else {
1209 val = bcmgenet_update_stat_misc(priv,
1210 s->reg_offset);
1211 }
1212 break;
1213 }
1214
1215 j += s->stat_sizeof;
1216 p = (char *)priv + s->stat_offset;
1217 *(u32 *)p = val;
1218 }
1219 }
1220
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1221 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1222 struct ethtool_stats *stats,
1223 u64 *data)
1224 {
1225 struct bcmgenet_priv *priv = netdev_priv(dev);
1226 int i;
1227
1228 if (netif_running(dev))
1229 bcmgenet_update_mib_counters(priv);
1230
1231 dev->netdev_ops->ndo_get_stats(dev);
1232
1233 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1234 const struct bcmgenet_stats *s;
1235 char *p;
1236
1237 s = &bcmgenet_gstrings_stats[i];
1238 if (s->type == BCMGENET_STAT_NETDEV)
1239 p = (char *)&dev->stats;
1240 else
1241 p = (char *)priv;
1242 p += s->stat_offset;
1243 if (sizeof(unsigned long) != sizeof(u32) &&
1244 s->stat_sizeof == sizeof(unsigned long))
1245 data[i] = *(unsigned long *)p;
1246 else
1247 data[i] = *(u32 *)p;
1248 }
1249 }
1250
bcmgenet_eee_enable_set(struct net_device * dev,bool enable,bool tx_lpi_enabled)1251 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1252 bool tx_lpi_enabled)
1253 {
1254 struct bcmgenet_priv *priv = netdev_priv(dev);
1255 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1256 u32 reg;
1257
1258 if (enable && !priv->clk_eee_enabled) {
1259 clk_prepare_enable(priv->clk_eee);
1260 priv->clk_eee_enabled = true;
1261 }
1262
1263 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1264 if (enable)
1265 reg |= EEE_EN;
1266 else
1267 reg &= ~EEE_EN;
1268 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1269
1270 /* Enable EEE and switch to a 27Mhz clock automatically */
1271 reg = bcmgenet_readl(priv->base + off);
1272 if (tx_lpi_enabled)
1273 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1274 else
1275 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1276 bcmgenet_writel(reg, priv->base + off);
1277
1278 /* Do the same for thing for RBUF */
1279 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1280 if (enable)
1281 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1282 else
1283 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1284 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1285
1286 if (!enable && priv->clk_eee_enabled) {
1287 clk_disable_unprepare(priv->clk_eee);
1288 priv->clk_eee_enabled = false;
1289 }
1290
1291 priv->eee.eee_enabled = enable;
1292 priv->eee.eee_active = enable;
1293 priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1294 }
1295
bcmgenet_get_eee(struct net_device * dev,struct ethtool_eee * e)1296 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1297 {
1298 struct bcmgenet_priv *priv = netdev_priv(dev);
1299 struct ethtool_eee *p = &priv->eee;
1300
1301 if (GENET_IS_V1(priv))
1302 return -EOPNOTSUPP;
1303
1304 if (!dev->phydev)
1305 return -ENODEV;
1306
1307 e->eee_enabled = p->eee_enabled;
1308 e->eee_active = p->eee_active;
1309 e->tx_lpi_enabled = p->tx_lpi_enabled;
1310 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1311
1312 return phy_ethtool_get_eee(dev->phydev, e);
1313 }
1314
bcmgenet_set_eee(struct net_device * dev,struct ethtool_eee * e)1315 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1316 {
1317 struct bcmgenet_priv *priv = netdev_priv(dev);
1318 struct ethtool_eee *p = &priv->eee;
1319
1320 if (GENET_IS_V1(priv))
1321 return -EOPNOTSUPP;
1322
1323 if (!dev->phydev)
1324 return -ENODEV;
1325
1326 p->eee_enabled = e->eee_enabled;
1327
1328 if (!p->eee_enabled) {
1329 bcmgenet_eee_enable_set(dev, false, false);
1330 } else {
1331 p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1332 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1333 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1334 }
1335
1336 return phy_ethtool_set_eee(dev->phydev, e);
1337 }
1338
bcmgenet_validate_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1339 static int bcmgenet_validate_flow(struct net_device *dev,
1340 struct ethtool_rxnfc *cmd)
1341 {
1342 struct ethtool_usrip4_spec *l4_mask;
1343 struct ethhdr *eth_mask;
1344
1345 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1346 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1347 cmd->fs.location);
1348 return -EINVAL;
1349 }
1350
1351 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1352 case IP_USER_FLOW:
1353 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1354 /* don't allow mask which isn't valid */
1355 if (VALIDATE_MASK(l4_mask->ip4src) ||
1356 VALIDATE_MASK(l4_mask->ip4dst) ||
1357 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1358 VALIDATE_MASK(l4_mask->proto) ||
1359 VALIDATE_MASK(l4_mask->ip_ver) ||
1360 VALIDATE_MASK(l4_mask->tos)) {
1361 netdev_err(dev, "rxnfc: Unsupported mask\n");
1362 return -EINVAL;
1363 }
1364 break;
1365 case ETHER_FLOW:
1366 eth_mask = &cmd->fs.m_u.ether_spec;
1367 /* don't allow mask which isn't valid */
1368 if (VALIDATE_MASK(eth_mask->h_dest) ||
1369 VALIDATE_MASK(eth_mask->h_source) ||
1370 VALIDATE_MASK(eth_mask->h_proto)) {
1371 netdev_err(dev, "rxnfc: Unsupported mask\n");
1372 return -EINVAL;
1373 }
1374 break;
1375 default:
1376 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1377 cmd->fs.flow_type);
1378 return -EINVAL;
1379 }
1380
1381 if ((cmd->fs.flow_type & FLOW_EXT)) {
1382 /* don't allow mask which isn't valid */
1383 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1384 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1385 netdev_err(dev, "rxnfc: Unsupported mask\n");
1386 return -EINVAL;
1387 }
1388 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1389 netdev_err(dev, "rxnfc: user-def not supported\n");
1390 return -EINVAL;
1391 }
1392 }
1393
1394 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1395 /* don't allow mask which isn't valid */
1396 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1397 netdev_err(dev, "rxnfc: Unsupported mask\n");
1398 return -EINVAL;
1399 }
1400 }
1401
1402 return 0;
1403 }
1404
bcmgenet_insert_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1405 static int bcmgenet_insert_flow(struct net_device *dev,
1406 struct ethtool_rxnfc *cmd)
1407 {
1408 struct bcmgenet_priv *priv = netdev_priv(dev);
1409 struct bcmgenet_rxnfc_rule *loc_rule;
1410 int err;
1411
1412 if (priv->hw_params->hfb_filter_size < 128) {
1413 netdev_err(dev, "rxnfc: Not supported by this device\n");
1414 return -EINVAL;
1415 }
1416
1417 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1418 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1419 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1420 cmd->fs.ring_cookie);
1421 return -EINVAL;
1422 }
1423
1424 err = bcmgenet_validate_flow(dev, cmd);
1425 if (err)
1426 return err;
1427
1428 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1429 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1430 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1431 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1432 list_del(&loc_rule->list);
1433 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1434 }
1435 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1436 memcpy(&loc_rule->fs, &cmd->fs,
1437 sizeof(struct ethtool_rx_flow_spec));
1438
1439 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1440
1441 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1442
1443 return 0;
1444 }
1445
bcmgenet_delete_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1446 static int bcmgenet_delete_flow(struct net_device *dev,
1447 struct ethtool_rxnfc *cmd)
1448 {
1449 struct bcmgenet_priv *priv = netdev_priv(dev);
1450 struct bcmgenet_rxnfc_rule *rule;
1451 int err = 0;
1452
1453 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1454 return -EINVAL;
1455
1456 rule = &priv->rxnfc_rules[cmd->fs.location];
1457 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1458 err = -ENOENT;
1459 goto out;
1460 }
1461
1462 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1463 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1464 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1465 list_del(&rule->list);
1466 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1467 }
1468 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1469 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1470
1471 out:
1472 return err;
1473 }
1474
bcmgenet_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)1475 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1476 {
1477 struct bcmgenet_priv *priv = netdev_priv(dev);
1478 int err = 0;
1479
1480 switch (cmd->cmd) {
1481 case ETHTOOL_SRXCLSRLINS:
1482 err = bcmgenet_insert_flow(dev, cmd);
1483 break;
1484 case ETHTOOL_SRXCLSRLDEL:
1485 err = bcmgenet_delete_flow(dev, cmd);
1486 break;
1487 default:
1488 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1489 cmd->cmd);
1490 return -EINVAL;
1491 }
1492
1493 return err;
1494 }
1495
bcmgenet_get_flow(struct net_device * dev,struct ethtool_rxnfc * cmd,int loc)1496 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1497 int loc)
1498 {
1499 struct bcmgenet_priv *priv = netdev_priv(dev);
1500 struct bcmgenet_rxnfc_rule *rule;
1501 int err = 0;
1502
1503 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1504 return -EINVAL;
1505
1506 rule = &priv->rxnfc_rules[loc];
1507 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1508 err = -ENOENT;
1509 else
1510 memcpy(&cmd->fs, &rule->fs,
1511 sizeof(struct ethtool_rx_flow_spec));
1512
1513 return err;
1514 }
1515
bcmgenet_get_num_flows(struct bcmgenet_priv * priv)1516 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1517 {
1518 struct list_head *pos;
1519 int res = 0;
1520
1521 list_for_each(pos, &priv->rxnfc_list)
1522 res++;
1523
1524 return res;
1525 }
1526
bcmgenet_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1527 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1528 u32 *rule_locs)
1529 {
1530 struct bcmgenet_priv *priv = netdev_priv(dev);
1531 struct bcmgenet_rxnfc_rule *rule;
1532 int err = 0;
1533 int i = 0;
1534
1535 switch (cmd->cmd) {
1536 case ETHTOOL_GRXRINGS:
1537 cmd->data = priv->hw_params->rx_queues ?: 1;
1538 break;
1539 case ETHTOOL_GRXCLSRLCNT:
1540 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1541 cmd->data = MAX_NUM_OF_FS_RULES;
1542 break;
1543 case ETHTOOL_GRXCLSRULE:
1544 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1545 break;
1546 case ETHTOOL_GRXCLSRLALL:
1547 list_for_each_entry(rule, &priv->rxnfc_list, list)
1548 if (i < cmd->rule_cnt)
1549 rule_locs[i++] = rule->fs.location;
1550 cmd->rule_cnt = i;
1551 cmd->data = MAX_NUM_OF_FS_RULES;
1552 break;
1553 default:
1554 err = -EOPNOTSUPP;
1555 break;
1556 }
1557
1558 return err;
1559 }
1560
1561 /* standard ethtool support functions. */
1562 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1563 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1564 ETHTOOL_COALESCE_MAX_FRAMES |
1565 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1566 .begin = bcmgenet_begin,
1567 .complete = bcmgenet_complete,
1568 .get_strings = bcmgenet_get_strings,
1569 .get_sset_count = bcmgenet_get_sset_count,
1570 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1571 .get_drvinfo = bcmgenet_get_drvinfo,
1572 .get_link = ethtool_op_get_link,
1573 .get_msglevel = bcmgenet_get_msglevel,
1574 .set_msglevel = bcmgenet_set_msglevel,
1575 .get_wol = bcmgenet_get_wol,
1576 .set_wol = bcmgenet_set_wol,
1577 .get_eee = bcmgenet_get_eee,
1578 .set_eee = bcmgenet_set_eee,
1579 .nway_reset = phy_ethtool_nway_reset,
1580 .get_coalesce = bcmgenet_get_coalesce,
1581 .set_coalesce = bcmgenet_set_coalesce,
1582 .get_link_ksettings = bcmgenet_get_link_ksettings,
1583 .set_link_ksettings = bcmgenet_set_link_ksettings,
1584 .get_ts_info = ethtool_op_get_ts_info,
1585 .get_rxnfc = bcmgenet_get_rxnfc,
1586 .set_rxnfc = bcmgenet_set_rxnfc,
1587 };
1588
1589 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1590 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1591 enum bcmgenet_power_mode mode)
1592 {
1593 int ret = 0;
1594 u32 reg;
1595
1596 switch (mode) {
1597 case GENET_POWER_CABLE_SENSE:
1598 phy_detach(priv->dev->phydev);
1599 break;
1600
1601 case GENET_POWER_WOL_MAGIC:
1602 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1603 break;
1604
1605 case GENET_POWER_PASSIVE:
1606 /* Power down LED */
1607 if (priv->hw_params->flags & GENET_HAS_EXT) {
1608 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1609 if (GENET_IS_V5(priv))
1610 reg |= EXT_PWR_DOWN_PHY_EN |
1611 EXT_PWR_DOWN_PHY_RD |
1612 EXT_PWR_DOWN_PHY_SD |
1613 EXT_PWR_DOWN_PHY_RX |
1614 EXT_PWR_DOWN_PHY_TX |
1615 EXT_IDDQ_GLBL_PWR;
1616 else
1617 reg |= EXT_PWR_DOWN_PHY;
1618
1619 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1620 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1621
1622 bcmgenet_phy_power_set(priv->dev, false);
1623 }
1624 break;
1625 default:
1626 break;
1627 }
1628
1629 return ret;
1630 }
1631
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1632 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1633 enum bcmgenet_power_mode mode)
1634 {
1635 u32 reg;
1636
1637 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1638 return;
1639
1640 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1641
1642 switch (mode) {
1643 case GENET_POWER_PASSIVE:
1644 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1645 EXT_ENERGY_DET_MASK);
1646 if (GENET_IS_V5(priv)) {
1647 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1648 EXT_PWR_DOWN_PHY_RD |
1649 EXT_PWR_DOWN_PHY_SD |
1650 EXT_PWR_DOWN_PHY_RX |
1651 EXT_PWR_DOWN_PHY_TX |
1652 EXT_IDDQ_GLBL_PWR);
1653 reg |= EXT_PHY_RESET;
1654 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1655 mdelay(1);
1656
1657 reg &= ~EXT_PHY_RESET;
1658 } else {
1659 reg &= ~EXT_PWR_DOWN_PHY;
1660 reg |= EXT_PWR_DN_EN_LD;
1661 }
1662 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1663 bcmgenet_phy_power_set(priv->dev, true);
1664 break;
1665
1666 case GENET_POWER_CABLE_SENSE:
1667 /* enable APD */
1668 if (!GENET_IS_V5(priv)) {
1669 reg |= EXT_PWR_DN_EN_LD;
1670 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1671 }
1672 break;
1673 case GENET_POWER_WOL_MAGIC:
1674 bcmgenet_wol_power_up_cfg(priv, mode);
1675 return;
1676 default:
1677 break;
1678 }
1679 }
1680
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1681 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1682 struct bcmgenet_tx_ring *ring)
1683 {
1684 struct enet_cb *tx_cb_ptr;
1685
1686 tx_cb_ptr = ring->cbs;
1687 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1688
1689 /* Advancing local write pointer */
1690 if (ring->write_ptr == ring->end_ptr)
1691 ring->write_ptr = ring->cb_ptr;
1692 else
1693 ring->write_ptr++;
1694
1695 return tx_cb_ptr;
1696 }
1697
bcmgenet_put_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1698 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1699 struct bcmgenet_tx_ring *ring)
1700 {
1701 struct enet_cb *tx_cb_ptr;
1702
1703 tx_cb_ptr = ring->cbs;
1704 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1705
1706 /* Rewinding local write pointer */
1707 if (ring->write_ptr == ring->cb_ptr)
1708 ring->write_ptr = ring->end_ptr;
1709 else
1710 ring->write_ptr--;
1711
1712 return tx_cb_ptr;
1713 }
1714
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1715 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1716 {
1717 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1718 INTRL2_CPU_MASK_SET);
1719 }
1720
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1721 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1722 {
1723 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1724 INTRL2_CPU_MASK_CLEAR);
1725 }
1726
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1727 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1728 {
1729 bcmgenet_intrl2_1_writel(ring->priv,
1730 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1731 INTRL2_CPU_MASK_SET);
1732 }
1733
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1734 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1735 {
1736 bcmgenet_intrl2_1_writel(ring->priv,
1737 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1738 INTRL2_CPU_MASK_CLEAR);
1739 }
1740
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1741 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1742 {
1743 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1744 INTRL2_CPU_MASK_SET);
1745 }
1746
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1747 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1748 {
1749 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1750 INTRL2_CPU_MASK_CLEAR);
1751 }
1752
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1753 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1754 {
1755 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1756 INTRL2_CPU_MASK_CLEAR);
1757 }
1758
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1759 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1760 {
1761 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1762 INTRL2_CPU_MASK_SET);
1763 }
1764
1765 /* Simple helper to free a transmit control block's resources
1766 * Returns an skb when the last transmit control block associated with the
1767 * skb is freed. The skb should be freed by the caller if necessary.
1768 */
bcmgenet_free_tx_cb(struct device * dev,struct enet_cb * cb)1769 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1770 struct enet_cb *cb)
1771 {
1772 struct sk_buff *skb;
1773
1774 skb = cb->skb;
1775
1776 if (skb) {
1777 cb->skb = NULL;
1778 if (cb == GENET_CB(skb)->first_cb)
1779 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1780 dma_unmap_len(cb, dma_len),
1781 DMA_TO_DEVICE);
1782 else
1783 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1784 dma_unmap_len(cb, dma_len),
1785 DMA_TO_DEVICE);
1786 dma_unmap_addr_set(cb, dma_addr, 0);
1787
1788 if (cb == GENET_CB(skb)->last_cb)
1789 return skb;
1790
1791 } else if (dma_unmap_addr(cb, dma_addr)) {
1792 dma_unmap_page(dev,
1793 dma_unmap_addr(cb, dma_addr),
1794 dma_unmap_len(cb, dma_len),
1795 DMA_TO_DEVICE);
1796 dma_unmap_addr_set(cb, dma_addr, 0);
1797 }
1798
1799 return NULL;
1800 }
1801
1802 /* Simple helper to free a receive control block's resources */
bcmgenet_free_rx_cb(struct device * dev,struct enet_cb * cb)1803 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1804 struct enet_cb *cb)
1805 {
1806 struct sk_buff *skb;
1807
1808 skb = cb->skb;
1809 cb->skb = NULL;
1810
1811 if (dma_unmap_addr(cb, dma_addr)) {
1812 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1813 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1814 dma_unmap_addr_set(cb, dma_addr, 0);
1815 }
1816
1817 return skb;
1818 }
1819
1820 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1821 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1822 struct bcmgenet_tx_ring *ring)
1823 {
1824 struct bcmgenet_priv *priv = netdev_priv(dev);
1825 unsigned int txbds_processed = 0;
1826 unsigned int bytes_compl = 0;
1827 unsigned int pkts_compl = 0;
1828 unsigned int txbds_ready;
1829 unsigned int c_index;
1830 struct sk_buff *skb;
1831
1832 /* Clear status before servicing to reduce spurious interrupts */
1833 if (ring->index == DESC_INDEX)
1834 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1835 INTRL2_CPU_CLEAR);
1836 else
1837 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1838 INTRL2_CPU_CLEAR);
1839
1840 /* Compute how many buffers are transmitted since last xmit call */
1841 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1842 & DMA_C_INDEX_MASK;
1843 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1844
1845 netif_dbg(priv, tx_done, dev,
1846 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1847 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1848
1849 /* Reclaim transmitted buffers */
1850 while (txbds_processed < txbds_ready) {
1851 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1852 &priv->tx_cbs[ring->clean_ptr]);
1853 if (skb) {
1854 pkts_compl++;
1855 bytes_compl += GENET_CB(skb)->bytes_sent;
1856 dev_consume_skb_any(skb);
1857 }
1858
1859 txbds_processed++;
1860 if (likely(ring->clean_ptr < ring->end_ptr))
1861 ring->clean_ptr++;
1862 else
1863 ring->clean_ptr = ring->cb_ptr;
1864 }
1865
1866 ring->free_bds += txbds_processed;
1867 ring->c_index = c_index;
1868
1869 ring->packets += pkts_compl;
1870 ring->bytes += bytes_compl;
1871
1872 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1873 pkts_compl, bytes_compl);
1874
1875 return txbds_processed;
1876 }
1877
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1878 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1879 struct bcmgenet_tx_ring *ring)
1880 {
1881 unsigned int released;
1882
1883 spin_lock_bh(&ring->lock);
1884 released = __bcmgenet_tx_reclaim(dev, ring);
1885 spin_unlock_bh(&ring->lock);
1886
1887 return released;
1888 }
1889
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1890 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1891 {
1892 struct bcmgenet_tx_ring *ring =
1893 container_of(napi, struct bcmgenet_tx_ring, napi);
1894 unsigned int work_done = 0;
1895 struct netdev_queue *txq;
1896
1897 spin_lock(&ring->lock);
1898 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1899 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1900 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1901 netif_tx_wake_queue(txq);
1902 }
1903 spin_unlock(&ring->lock);
1904
1905 if (work_done == 0) {
1906 napi_complete(napi);
1907 ring->int_enable(ring);
1908
1909 return 0;
1910 }
1911
1912 return budget;
1913 }
1914
bcmgenet_tx_reclaim_all(struct net_device * dev)1915 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1916 {
1917 struct bcmgenet_priv *priv = netdev_priv(dev);
1918 int i;
1919
1920 if (netif_is_multiqueue(dev)) {
1921 for (i = 0; i < priv->hw_params->tx_queues; i++)
1922 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1923 }
1924
1925 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1926 }
1927
1928 /* Reallocate the SKB to put enough headroom in front of it and insert
1929 * the transmit checksum offsets in the descriptors
1930 */
bcmgenet_add_tsb(struct net_device * dev,struct sk_buff * skb)1931 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1932 struct sk_buff *skb)
1933 {
1934 struct bcmgenet_priv *priv = netdev_priv(dev);
1935 struct status_64 *status = NULL;
1936 struct sk_buff *new_skb;
1937 u16 offset;
1938 u8 ip_proto;
1939 __be16 ip_ver;
1940 u32 tx_csum_info;
1941
1942 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1943 /* If 64 byte status block enabled, must make sure skb has
1944 * enough headroom for us to insert 64B status block.
1945 */
1946 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1947 if (!new_skb) {
1948 dev_kfree_skb_any(skb);
1949 priv->mib.tx_realloc_tsb_failed++;
1950 dev->stats.tx_dropped++;
1951 return NULL;
1952 }
1953 dev_consume_skb_any(skb);
1954 skb = new_skb;
1955 priv->mib.tx_realloc_tsb++;
1956 }
1957
1958 skb_push(skb, sizeof(*status));
1959 status = (struct status_64 *)skb->data;
1960
1961 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1962 ip_ver = skb->protocol;
1963 switch (ip_ver) {
1964 case htons(ETH_P_IP):
1965 ip_proto = ip_hdr(skb)->protocol;
1966 break;
1967 case htons(ETH_P_IPV6):
1968 ip_proto = ipv6_hdr(skb)->nexthdr;
1969 break;
1970 default:
1971 /* don't use UDP flag */
1972 ip_proto = 0;
1973 break;
1974 }
1975
1976 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1977 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1978 (offset + skb->csum_offset) |
1979 STATUS_TX_CSUM_LV;
1980
1981 /* Set the special UDP flag for UDP */
1982 if (ip_proto == IPPROTO_UDP)
1983 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1984
1985 status->tx_csum_info = tx_csum_info;
1986 }
1987
1988 return skb;
1989 }
1990
bcmgenet_hide_tsb(struct sk_buff * skb)1991 static void bcmgenet_hide_tsb(struct sk_buff *skb)
1992 {
1993 __skb_pull(skb, sizeof(struct status_64));
1994 }
1995
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)1996 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1997 {
1998 struct bcmgenet_priv *priv = netdev_priv(dev);
1999 struct device *kdev = &priv->pdev->dev;
2000 struct bcmgenet_tx_ring *ring = NULL;
2001 struct enet_cb *tx_cb_ptr;
2002 struct netdev_queue *txq;
2003 int nr_frags, index;
2004 dma_addr_t mapping;
2005 unsigned int size;
2006 skb_frag_t *frag;
2007 u32 len_stat;
2008 int ret;
2009 int i;
2010
2011 index = skb_get_queue_mapping(skb);
2012 /* Mapping strategy:
2013 * queue_mapping = 0, unclassified, packet xmited through ring16
2014 * queue_mapping = 1, goes to ring 0. (highest priority queue
2015 * queue_mapping = 2, goes to ring 1.
2016 * queue_mapping = 3, goes to ring 2.
2017 * queue_mapping = 4, goes to ring 3.
2018 */
2019 if (index == 0)
2020 index = DESC_INDEX;
2021 else
2022 index -= 1;
2023
2024 ring = &priv->tx_rings[index];
2025 txq = netdev_get_tx_queue(dev, ring->queue);
2026
2027 nr_frags = skb_shinfo(skb)->nr_frags;
2028
2029 spin_lock(&ring->lock);
2030 if (ring->free_bds <= (nr_frags + 1)) {
2031 if (!netif_tx_queue_stopped(txq)) {
2032 netif_tx_stop_queue(txq);
2033 netdev_err(dev,
2034 "%s: tx ring %d full when queue %d awake\n",
2035 __func__, index, ring->queue);
2036 }
2037 ret = NETDEV_TX_BUSY;
2038 goto out;
2039 }
2040
2041 /* Retain how many bytes will be sent on the wire, without TSB inserted
2042 * by transmit checksum offload
2043 */
2044 GENET_CB(skb)->bytes_sent = skb->len;
2045
2046 /* add the Transmit Status Block */
2047 skb = bcmgenet_add_tsb(dev, skb);
2048 if (!skb) {
2049 ret = NETDEV_TX_OK;
2050 goto out;
2051 }
2052
2053 for (i = 0; i <= nr_frags; i++) {
2054 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2055
2056 BUG_ON(!tx_cb_ptr);
2057
2058 if (!i) {
2059 /* Transmit single SKB or head of fragment list */
2060 GENET_CB(skb)->first_cb = tx_cb_ptr;
2061 size = skb_headlen(skb);
2062 mapping = dma_map_single(kdev, skb->data, size,
2063 DMA_TO_DEVICE);
2064 } else {
2065 /* xmit fragment */
2066 frag = &skb_shinfo(skb)->frags[i - 1];
2067 size = skb_frag_size(frag);
2068 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2069 DMA_TO_DEVICE);
2070 }
2071
2072 ret = dma_mapping_error(kdev, mapping);
2073 if (ret) {
2074 priv->mib.tx_dma_failed++;
2075 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2076 ret = NETDEV_TX_OK;
2077 goto out_unmap_frags;
2078 }
2079 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2080 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2081
2082 tx_cb_ptr->skb = skb;
2083
2084 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2085 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2086
2087 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2088 * will need to restore software padding of "runt" packets
2089 */
2090 len_stat |= DMA_TX_APPEND_CRC;
2091
2092 if (!i) {
2093 len_stat |= DMA_SOP;
2094 if (skb->ip_summed == CHECKSUM_PARTIAL)
2095 len_stat |= DMA_TX_DO_CSUM;
2096 }
2097 if (i == nr_frags)
2098 len_stat |= DMA_EOP;
2099
2100 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2101 }
2102
2103 GENET_CB(skb)->last_cb = tx_cb_ptr;
2104
2105 bcmgenet_hide_tsb(skb);
2106 skb_tx_timestamp(skb);
2107
2108 /* Decrement total BD count and advance our write pointer */
2109 ring->free_bds -= nr_frags + 1;
2110 ring->prod_index += nr_frags + 1;
2111 ring->prod_index &= DMA_P_INDEX_MASK;
2112
2113 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2114
2115 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2116 netif_tx_stop_queue(txq);
2117
2118 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2119 /* Packets are ready, update producer index */
2120 bcmgenet_tdma_ring_writel(priv, ring->index,
2121 ring->prod_index, TDMA_PROD_INDEX);
2122 out:
2123 spin_unlock(&ring->lock);
2124
2125 return ret;
2126
2127 out_unmap_frags:
2128 /* Back up for failed control block mapping */
2129 bcmgenet_put_txcb(priv, ring);
2130
2131 /* Unmap successfully mapped control blocks */
2132 while (i-- > 0) {
2133 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2134 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2135 }
2136
2137 dev_kfree_skb(skb);
2138 goto out;
2139 }
2140
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)2141 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2142 struct enet_cb *cb)
2143 {
2144 struct device *kdev = &priv->pdev->dev;
2145 struct sk_buff *skb;
2146 struct sk_buff *rx_skb;
2147 dma_addr_t mapping;
2148
2149 /* Allocate a new Rx skb */
2150 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2151 GFP_ATOMIC | __GFP_NOWARN);
2152 if (!skb) {
2153 priv->mib.alloc_rx_buff_failed++;
2154 netif_err(priv, rx_err, priv->dev,
2155 "%s: Rx skb allocation failed\n", __func__);
2156 return NULL;
2157 }
2158
2159 /* DMA-map the new Rx skb */
2160 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2161 DMA_FROM_DEVICE);
2162 if (dma_mapping_error(kdev, mapping)) {
2163 priv->mib.rx_dma_failed++;
2164 dev_kfree_skb_any(skb);
2165 netif_err(priv, rx_err, priv->dev,
2166 "%s: Rx skb DMA mapping failed\n", __func__);
2167 return NULL;
2168 }
2169
2170 /* Grab the current Rx skb from the ring and DMA-unmap it */
2171 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2172
2173 /* Put the new Rx skb on the ring */
2174 cb->skb = skb;
2175 dma_unmap_addr_set(cb, dma_addr, mapping);
2176 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2177 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2178
2179 /* Return the current Rx skb to caller */
2180 return rx_skb;
2181 }
2182
2183 /* bcmgenet_desc_rx - descriptor based rx process.
2184 * this could be called from bottom half, or from NAPI polling method.
2185 */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)2186 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2187 unsigned int budget)
2188 {
2189 struct bcmgenet_priv *priv = ring->priv;
2190 struct net_device *dev = priv->dev;
2191 struct enet_cb *cb;
2192 struct sk_buff *skb;
2193 u32 dma_length_status;
2194 unsigned long dma_flag;
2195 int len;
2196 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2197 unsigned int bytes_processed = 0;
2198 unsigned int p_index, mask;
2199 unsigned int discards;
2200
2201 /* Clear status before servicing to reduce spurious interrupts */
2202 if (ring->index == DESC_INDEX) {
2203 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2204 INTRL2_CPU_CLEAR);
2205 } else {
2206 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2207 bcmgenet_intrl2_1_writel(priv,
2208 mask,
2209 INTRL2_CPU_CLEAR);
2210 }
2211
2212 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2213
2214 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2215 DMA_P_INDEX_DISCARD_CNT_MASK;
2216 if (discards > ring->old_discards) {
2217 discards = discards - ring->old_discards;
2218 ring->errors += discards;
2219 ring->old_discards += discards;
2220
2221 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2222 if (ring->old_discards >= 0xC000) {
2223 ring->old_discards = 0;
2224 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2225 RDMA_PROD_INDEX);
2226 }
2227 }
2228
2229 p_index &= DMA_P_INDEX_MASK;
2230 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2231
2232 netif_dbg(priv, rx_status, dev,
2233 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2234
2235 while ((rxpktprocessed < rxpkttoprocess) &&
2236 (rxpktprocessed < budget)) {
2237 struct status_64 *status;
2238 __be16 rx_csum;
2239
2240 cb = &priv->rx_cbs[ring->read_ptr];
2241 skb = bcmgenet_rx_refill(priv, cb);
2242
2243 if (unlikely(!skb)) {
2244 ring->dropped++;
2245 goto next;
2246 }
2247
2248 status = (struct status_64 *)skb->data;
2249 dma_length_status = status->length_status;
2250 if (dev->features & NETIF_F_RXCSUM) {
2251 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2252 if (rx_csum) {
2253 skb->csum = (__force __wsum)ntohs(rx_csum);
2254 skb->ip_summed = CHECKSUM_COMPLETE;
2255 }
2256 }
2257
2258 /* DMA flags and length are still valid no matter how
2259 * we got the Receive Status Vector (64B RSB or register)
2260 */
2261 dma_flag = dma_length_status & 0xffff;
2262 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2263
2264 netif_dbg(priv, rx_status, dev,
2265 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2266 __func__, p_index, ring->c_index,
2267 ring->read_ptr, dma_length_status);
2268
2269 if (unlikely(len > RX_BUF_LENGTH)) {
2270 netif_err(priv, rx_status, dev, "oversized packet\n");
2271 dev->stats.rx_length_errors++;
2272 dev->stats.rx_errors++;
2273 dev_kfree_skb_any(skb);
2274 goto next;
2275 }
2276
2277 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2278 netif_err(priv, rx_status, dev,
2279 "dropping fragmented packet!\n");
2280 ring->errors++;
2281 dev_kfree_skb_any(skb);
2282 goto next;
2283 }
2284
2285 /* report errors */
2286 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2287 DMA_RX_OV |
2288 DMA_RX_NO |
2289 DMA_RX_LG |
2290 DMA_RX_RXER))) {
2291 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2292 (unsigned int)dma_flag);
2293 if (dma_flag & DMA_RX_CRC_ERROR)
2294 dev->stats.rx_crc_errors++;
2295 if (dma_flag & DMA_RX_OV)
2296 dev->stats.rx_over_errors++;
2297 if (dma_flag & DMA_RX_NO)
2298 dev->stats.rx_frame_errors++;
2299 if (dma_flag & DMA_RX_LG)
2300 dev->stats.rx_length_errors++;
2301 dev->stats.rx_errors++;
2302 dev_kfree_skb_any(skb);
2303 goto next;
2304 } /* error packet */
2305
2306 skb_put(skb, len);
2307
2308 /* remove RSB and hardware 2bytes added for IP alignment */
2309 skb_pull(skb, 66);
2310 len -= 66;
2311
2312 if (priv->crc_fwd_en) {
2313 skb_trim(skb, len - ETH_FCS_LEN);
2314 len -= ETH_FCS_LEN;
2315 }
2316
2317 bytes_processed += len;
2318
2319 /*Finish setting up the received SKB and send it to the kernel*/
2320 skb->protocol = eth_type_trans(skb, priv->dev);
2321 ring->packets++;
2322 ring->bytes += len;
2323 if (dma_flag & DMA_RX_MULT)
2324 dev->stats.multicast++;
2325
2326 /* Notify kernel */
2327 napi_gro_receive(&ring->napi, skb);
2328 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2329
2330 next:
2331 rxpktprocessed++;
2332 if (likely(ring->read_ptr < ring->end_ptr))
2333 ring->read_ptr++;
2334 else
2335 ring->read_ptr = ring->cb_ptr;
2336
2337 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2338 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2339 }
2340
2341 ring->dim.bytes = bytes_processed;
2342 ring->dim.packets = rxpktprocessed;
2343
2344 return rxpktprocessed;
2345 }
2346
2347 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)2348 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2349 {
2350 struct bcmgenet_rx_ring *ring = container_of(napi,
2351 struct bcmgenet_rx_ring, napi);
2352 struct dim_sample dim_sample = {};
2353 unsigned int work_done;
2354
2355 work_done = bcmgenet_desc_rx(ring, budget);
2356
2357 if (work_done < budget) {
2358 napi_complete_done(napi, work_done);
2359 ring->int_enable(ring);
2360 }
2361
2362 if (ring->dim.use_dim) {
2363 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2364 ring->dim.bytes, &dim_sample);
2365 net_dim(&ring->dim.dim, dim_sample);
2366 }
2367
2368 return work_done;
2369 }
2370
bcmgenet_dim_work(struct work_struct * work)2371 static void bcmgenet_dim_work(struct work_struct *work)
2372 {
2373 struct dim *dim = container_of(work, struct dim, work);
2374 struct bcmgenet_net_dim *ndim =
2375 container_of(dim, struct bcmgenet_net_dim, dim);
2376 struct bcmgenet_rx_ring *ring =
2377 container_of(ndim, struct bcmgenet_rx_ring, dim);
2378 struct dim_cq_moder cur_profile =
2379 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2380
2381 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2382 dim->state = DIM_START_MEASURE;
2383 }
2384
2385 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)2386 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2387 struct bcmgenet_rx_ring *ring)
2388 {
2389 struct enet_cb *cb;
2390 struct sk_buff *skb;
2391 int i;
2392
2393 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2394
2395 /* loop here for each buffer needing assign */
2396 for (i = 0; i < ring->size; i++) {
2397 cb = ring->cbs + i;
2398 skb = bcmgenet_rx_refill(priv, cb);
2399 if (skb)
2400 dev_consume_skb_any(skb);
2401 if (!cb->skb)
2402 return -ENOMEM;
2403 }
2404
2405 return 0;
2406 }
2407
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)2408 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2409 {
2410 struct sk_buff *skb;
2411 struct enet_cb *cb;
2412 int i;
2413
2414 for (i = 0; i < priv->num_rx_bds; i++) {
2415 cb = &priv->rx_cbs[i];
2416
2417 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2418 if (skb)
2419 dev_consume_skb_any(skb);
2420 }
2421 }
2422
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)2423 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2424 {
2425 u32 reg;
2426
2427 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2428 if (reg & CMD_SW_RESET)
2429 return;
2430 if (enable)
2431 reg |= mask;
2432 else
2433 reg &= ~mask;
2434 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2435
2436 /* UniMAC stops on a packet boundary, wait for a full-size packet
2437 * to be processed
2438 */
2439 if (enable == 0)
2440 usleep_range(1000, 2000);
2441 }
2442
reset_umac(struct bcmgenet_priv * priv)2443 static void reset_umac(struct bcmgenet_priv *priv)
2444 {
2445 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2446 bcmgenet_rbuf_ctrl_set(priv, 0);
2447 udelay(10);
2448
2449 /* issue soft reset and disable MAC while updating its registers */
2450 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2451 udelay(2);
2452 }
2453
bcmgenet_intr_disable(struct bcmgenet_priv * priv)2454 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2455 {
2456 /* Mask all interrupts.*/
2457 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2458 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2459 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2460 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2461 }
2462
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)2463 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2464 {
2465 u32 int0_enable = 0;
2466
2467 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2468 * and MoCA PHY
2469 */
2470 if (priv->internal_phy) {
2471 int0_enable |= UMAC_IRQ_LINK_EVENT;
2472 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2473 int0_enable |= UMAC_IRQ_PHY_DET_R;
2474 } else if (priv->ext_phy) {
2475 int0_enable |= UMAC_IRQ_LINK_EVENT;
2476 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2477 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2478 int0_enable |= UMAC_IRQ_LINK_EVENT;
2479 }
2480 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2481 }
2482
init_umac(struct bcmgenet_priv * priv)2483 static void init_umac(struct bcmgenet_priv *priv)
2484 {
2485 struct device *kdev = &priv->pdev->dev;
2486 u32 reg;
2487 u32 int0_enable = 0;
2488
2489 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2490
2491 reset_umac(priv);
2492
2493 /* clear tx/rx counter */
2494 bcmgenet_umac_writel(priv,
2495 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2496 UMAC_MIB_CTRL);
2497 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2498
2499 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2500
2501 /* init tx registers, enable TSB */
2502 reg = bcmgenet_tbuf_ctrl_get(priv);
2503 reg |= TBUF_64B_EN;
2504 bcmgenet_tbuf_ctrl_set(priv, reg);
2505
2506 /* init rx registers, enable ip header optimization and RSB */
2507 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2508 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2509 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2510
2511 /* enable rx checksumming */
2512 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2513 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2514 /* If UniMAC forwards CRC, we need to skip over it to get
2515 * a valid CHK bit to be set in the per-packet status word
2516 */
2517 if (priv->crc_fwd_en)
2518 reg |= RBUF_SKIP_FCS;
2519 else
2520 reg &= ~RBUF_SKIP_FCS;
2521 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2522
2523 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2524 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2525
2526 bcmgenet_intr_disable(priv);
2527
2528 /* Configure backpressure vectors for MoCA */
2529 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2530 reg = bcmgenet_bp_mc_get(priv);
2531 reg |= BIT(priv->hw_params->bp_in_en_shift);
2532
2533 /* bp_mask: back pressure mask */
2534 if (netif_is_multiqueue(priv->dev))
2535 reg |= priv->hw_params->bp_in_mask;
2536 else
2537 reg &= ~priv->hw_params->bp_in_mask;
2538 bcmgenet_bp_mc_set(priv, reg);
2539 }
2540
2541 /* Enable MDIO interrupts on GENET v3+ */
2542 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2543 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2544
2545 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2546
2547 dev_dbg(kdev, "done init umac\n");
2548 }
2549
bcmgenet_init_dim(struct bcmgenet_rx_ring * ring,void (* cb)(struct work_struct * work))2550 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2551 void (*cb)(struct work_struct *work))
2552 {
2553 struct bcmgenet_net_dim *dim = &ring->dim;
2554
2555 INIT_WORK(&dim->dim.work, cb);
2556 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2557 dim->event_ctr = 0;
2558 dim->packets = 0;
2559 dim->bytes = 0;
2560 }
2561
bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring * ring)2562 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2563 {
2564 struct bcmgenet_net_dim *dim = &ring->dim;
2565 struct dim_cq_moder moder;
2566 u32 usecs, pkts;
2567
2568 usecs = ring->rx_coalesce_usecs;
2569 pkts = ring->rx_max_coalesced_frames;
2570
2571 /* If DIM was enabled, re-apply default parameters */
2572 if (dim->use_dim) {
2573 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2574 usecs = moder.usec;
2575 pkts = moder.pkts;
2576 }
2577
2578 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2579 }
2580
2581 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2582 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2583 unsigned int index, unsigned int size,
2584 unsigned int start_ptr, unsigned int end_ptr)
2585 {
2586 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2587 u32 words_per_bd = WORDS_PER_BD(priv);
2588 u32 flow_period_val = 0;
2589
2590 spin_lock_init(&ring->lock);
2591 ring->priv = priv;
2592 ring->index = index;
2593 if (index == DESC_INDEX) {
2594 ring->queue = 0;
2595 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2596 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2597 } else {
2598 ring->queue = index + 1;
2599 ring->int_enable = bcmgenet_tx_ring_int_enable;
2600 ring->int_disable = bcmgenet_tx_ring_int_disable;
2601 }
2602 ring->cbs = priv->tx_cbs + start_ptr;
2603 ring->size = size;
2604 ring->clean_ptr = start_ptr;
2605 ring->c_index = 0;
2606 ring->free_bds = size;
2607 ring->write_ptr = start_ptr;
2608 ring->cb_ptr = start_ptr;
2609 ring->end_ptr = end_ptr - 1;
2610 ring->prod_index = 0;
2611
2612 /* Set flow period for ring != 16 */
2613 if (index != DESC_INDEX)
2614 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2615
2616 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2617 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2618 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2619 /* Disable rate control for now */
2620 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2621 TDMA_FLOW_PERIOD);
2622 bcmgenet_tdma_ring_writel(priv, index,
2623 ((size << DMA_RING_SIZE_SHIFT) |
2624 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2625
2626 /* Set start and end address, read and write pointers */
2627 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2628 DMA_START_ADDR);
2629 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2630 TDMA_READ_PTR);
2631 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2632 TDMA_WRITE_PTR);
2633 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2634 DMA_END_ADDR);
2635
2636 /* Initialize Tx NAPI */
2637 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2638 NAPI_POLL_WEIGHT);
2639 }
2640
2641 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2642 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2643 unsigned int index, unsigned int size,
2644 unsigned int start_ptr, unsigned int end_ptr)
2645 {
2646 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2647 u32 words_per_bd = WORDS_PER_BD(priv);
2648 int ret;
2649
2650 ring->priv = priv;
2651 ring->index = index;
2652 if (index == DESC_INDEX) {
2653 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2654 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2655 } else {
2656 ring->int_enable = bcmgenet_rx_ring_int_enable;
2657 ring->int_disable = bcmgenet_rx_ring_int_disable;
2658 }
2659 ring->cbs = priv->rx_cbs + start_ptr;
2660 ring->size = size;
2661 ring->c_index = 0;
2662 ring->read_ptr = start_ptr;
2663 ring->cb_ptr = start_ptr;
2664 ring->end_ptr = end_ptr - 1;
2665
2666 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2667 if (ret)
2668 return ret;
2669
2670 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2671 bcmgenet_init_rx_coalesce(ring);
2672
2673 /* Initialize Rx NAPI */
2674 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2675 NAPI_POLL_WEIGHT);
2676
2677 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2678 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2679 bcmgenet_rdma_ring_writel(priv, index,
2680 ((size << DMA_RING_SIZE_SHIFT) |
2681 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2682 bcmgenet_rdma_ring_writel(priv, index,
2683 (DMA_FC_THRESH_LO <<
2684 DMA_XOFF_THRESHOLD_SHIFT) |
2685 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2686
2687 /* Set start and end address, read and write pointers */
2688 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2689 DMA_START_ADDR);
2690 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2691 RDMA_READ_PTR);
2692 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2693 RDMA_WRITE_PTR);
2694 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2695 DMA_END_ADDR);
2696
2697 return ret;
2698 }
2699
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2700 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2701 {
2702 unsigned int i;
2703 struct bcmgenet_tx_ring *ring;
2704
2705 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2706 ring = &priv->tx_rings[i];
2707 napi_enable(&ring->napi);
2708 ring->int_enable(ring);
2709 }
2710
2711 ring = &priv->tx_rings[DESC_INDEX];
2712 napi_enable(&ring->napi);
2713 ring->int_enable(ring);
2714 }
2715
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2716 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2717 {
2718 unsigned int i;
2719 struct bcmgenet_tx_ring *ring;
2720
2721 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2722 ring = &priv->tx_rings[i];
2723 napi_disable(&ring->napi);
2724 }
2725
2726 ring = &priv->tx_rings[DESC_INDEX];
2727 napi_disable(&ring->napi);
2728 }
2729
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2730 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2731 {
2732 unsigned int i;
2733 struct bcmgenet_tx_ring *ring;
2734
2735 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2736 ring = &priv->tx_rings[i];
2737 netif_napi_del(&ring->napi);
2738 }
2739
2740 ring = &priv->tx_rings[DESC_INDEX];
2741 netif_napi_del(&ring->napi);
2742 }
2743
2744 /* Initialize Tx queues
2745 *
2746 * Queues 0-3 are priority-based, each one has 32 descriptors,
2747 * with queue 0 being the highest priority queue.
2748 *
2749 * Queue 16 is the default Tx queue with
2750 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2751 *
2752 * The transmit control block pool is then partitioned as follows:
2753 * - Tx queue 0 uses tx_cbs[0..31]
2754 * - Tx queue 1 uses tx_cbs[32..63]
2755 * - Tx queue 2 uses tx_cbs[64..95]
2756 * - Tx queue 3 uses tx_cbs[96..127]
2757 * - Tx queue 16 uses tx_cbs[128..255]
2758 */
bcmgenet_init_tx_queues(struct net_device * dev)2759 static void bcmgenet_init_tx_queues(struct net_device *dev)
2760 {
2761 struct bcmgenet_priv *priv = netdev_priv(dev);
2762 u32 i, dma_enable;
2763 u32 dma_ctrl, ring_cfg;
2764 u32 dma_priority[3] = {0, 0, 0};
2765
2766 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2767 dma_enable = dma_ctrl & DMA_EN;
2768 dma_ctrl &= ~DMA_EN;
2769 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2770
2771 dma_ctrl = 0;
2772 ring_cfg = 0;
2773
2774 /* Enable strict priority arbiter mode */
2775 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2776
2777 /* Initialize Tx priority queues */
2778 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2779 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2780 i * priv->hw_params->tx_bds_per_q,
2781 (i + 1) * priv->hw_params->tx_bds_per_q);
2782 ring_cfg |= (1 << i);
2783 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2784 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2785 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2786 }
2787
2788 /* Initialize Tx default queue 16 */
2789 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2790 priv->hw_params->tx_queues *
2791 priv->hw_params->tx_bds_per_q,
2792 TOTAL_DESC);
2793 ring_cfg |= (1 << DESC_INDEX);
2794 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2795 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2796 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2797 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2798
2799 /* Set Tx queue priorities */
2800 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2801 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2802 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2803
2804 /* Enable Tx queues */
2805 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2806
2807 /* Enable Tx DMA */
2808 if (dma_enable)
2809 dma_ctrl |= DMA_EN;
2810 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2811 }
2812
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2813 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2814 {
2815 unsigned int i;
2816 struct bcmgenet_rx_ring *ring;
2817
2818 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2819 ring = &priv->rx_rings[i];
2820 napi_enable(&ring->napi);
2821 ring->int_enable(ring);
2822 }
2823
2824 ring = &priv->rx_rings[DESC_INDEX];
2825 napi_enable(&ring->napi);
2826 ring->int_enable(ring);
2827 }
2828
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2829 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2830 {
2831 unsigned int i;
2832 struct bcmgenet_rx_ring *ring;
2833
2834 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2835 ring = &priv->rx_rings[i];
2836 napi_disable(&ring->napi);
2837 cancel_work_sync(&ring->dim.dim.work);
2838 }
2839
2840 ring = &priv->rx_rings[DESC_INDEX];
2841 napi_disable(&ring->napi);
2842 cancel_work_sync(&ring->dim.dim.work);
2843 }
2844
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2845 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2846 {
2847 unsigned int i;
2848 struct bcmgenet_rx_ring *ring;
2849
2850 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2851 ring = &priv->rx_rings[i];
2852 netif_napi_del(&ring->napi);
2853 }
2854
2855 ring = &priv->rx_rings[DESC_INDEX];
2856 netif_napi_del(&ring->napi);
2857 }
2858
2859 /* Initialize Rx queues
2860 *
2861 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2862 * used to direct traffic to these queues.
2863 *
2864 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2865 */
bcmgenet_init_rx_queues(struct net_device * dev)2866 static int bcmgenet_init_rx_queues(struct net_device *dev)
2867 {
2868 struct bcmgenet_priv *priv = netdev_priv(dev);
2869 u32 i;
2870 u32 dma_enable;
2871 u32 dma_ctrl;
2872 u32 ring_cfg;
2873 int ret;
2874
2875 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2876 dma_enable = dma_ctrl & DMA_EN;
2877 dma_ctrl &= ~DMA_EN;
2878 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2879
2880 dma_ctrl = 0;
2881 ring_cfg = 0;
2882
2883 /* Initialize Rx priority queues */
2884 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2885 ret = bcmgenet_init_rx_ring(priv, i,
2886 priv->hw_params->rx_bds_per_q,
2887 i * priv->hw_params->rx_bds_per_q,
2888 (i + 1) *
2889 priv->hw_params->rx_bds_per_q);
2890 if (ret)
2891 return ret;
2892
2893 ring_cfg |= (1 << i);
2894 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2895 }
2896
2897 /* Initialize Rx default queue 16 */
2898 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2899 priv->hw_params->rx_queues *
2900 priv->hw_params->rx_bds_per_q,
2901 TOTAL_DESC);
2902 if (ret)
2903 return ret;
2904
2905 ring_cfg |= (1 << DESC_INDEX);
2906 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2907
2908 /* Enable rings */
2909 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2910
2911 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2912 if (dma_enable)
2913 dma_ctrl |= DMA_EN;
2914 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2915
2916 return 0;
2917 }
2918
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2919 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2920 {
2921 int ret = 0;
2922 int timeout = 0;
2923 u32 reg;
2924 u32 dma_ctrl;
2925 int i;
2926
2927 /* Disable TDMA to stop add more frames in TX DMA */
2928 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2929 reg &= ~DMA_EN;
2930 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2931
2932 /* Check TDMA status register to confirm TDMA is disabled */
2933 while (timeout++ < DMA_TIMEOUT_VAL) {
2934 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2935 if (reg & DMA_DISABLED)
2936 break;
2937
2938 udelay(1);
2939 }
2940
2941 if (timeout == DMA_TIMEOUT_VAL) {
2942 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2943 ret = -ETIMEDOUT;
2944 }
2945
2946 /* Wait 10ms for packet drain in both tx and rx dma */
2947 usleep_range(10000, 20000);
2948
2949 /* Disable RDMA */
2950 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2951 reg &= ~DMA_EN;
2952 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2953
2954 timeout = 0;
2955 /* Check RDMA status register to confirm RDMA is disabled */
2956 while (timeout++ < DMA_TIMEOUT_VAL) {
2957 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2958 if (reg & DMA_DISABLED)
2959 break;
2960
2961 udelay(1);
2962 }
2963
2964 if (timeout == DMA_TIMEOUT_VAL) {
2965 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2966 ret = -ETIMEDOUT;
2967 }
2968
2969 dma_ctrl = 0;
2970 for (i = 0; i < priv->hw_params->rx_queues; i++)
2971 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2972 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2973 reg &= ~dma_ctrl;
2974 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2975
2976 dma_ctrl = 0;
2977 for (i = 0; i < priv->hw_params->tx_queues; i++)
2978 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2979 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2980 reg &= ~dma_ctrl;
2981 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2982
2983 return ret;
2984 }
2985
bcmgenet_fini_dma(struct bcmgenet_priv * priv)2986 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2987 {
2988 struct netdev_queue *txq;
2989 int i;
2990
2991 bcmgenet_fini_rx_napi(priv);
2992 bcmgenet_fini_tx_napi(priv);
2993
2994 for (i = 0; i < priv->num_tx_bds; i++)
2995 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2996 priv->tx_cbs + i));
2997
2998 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2999 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3000 netdev_tx_reset_queue(txq);
3001 }
3002
3003 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3004 netdev_tx_reset_queue(txq);
3005
3006 bcmgenet_free_rx_buffers(priv);
3007 kfree(priv->rx_cbs);
3008 kfree(priv->tx_cbs);
3009 }
3010
3011 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)3012 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3013 {
3014 int ret;
3015 unsigned int i;
3016 struct enet_cb *cb;
3017
3018 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3019
3020 /* Initialize common Rx ring structures */
3021 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3022 priv->num_rx_bds = TOTAL_DESC;
3023 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3024 GFP_KERNEL);
3025 if (!priv->rx_cbs)
3026 return -ENOMEM;
3027
3028 for (i = 0; i < priv->num_rx_bds; i++) {
3029 cb = priv->rx_cbs + i;
3030 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3031 }
3032
3033 /* Initialize common TX ring structures */
3034 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3035 priv->num_tx_bds = TOTAL_DESC;
3036 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3037 GFP_KERNEL);
3038 if (!priv->tx_cbs) {
3039 kfree(priv->rx_cbs);
3040 return -ENOMEM;
3041 }
3042
3043 for (i = 0; i < priv->num_tx_bds; i++) {
3044 cb = priv->tx_cbs + i;
3045 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3046 }
3047
3048 /* Init rDma */
3049 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3050 DMA_SCB_BURST_SIZE);
3051
3052 /* Initialize Rx queues */
3053 ret = bcmgenet_init_rx_queues(priv->dev);
3054 if (ret) {
3055 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3056 bcmgenet_free_rx_buffers(priv);
3057 kfree(priv->rx_cbs);
3058 kfree(priv->tx_cbs);
3059 return ret;
3060 }
3061
3062 /* Init tDma */
3063 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3064 DMA_SCB_BURST_SIZE);
3065
3066 /* Initialize Tx queues */
3067 bcmgenet_init_tx_queues(priv->dev);
3068
3069 return 0;
3070 }
3071
3072 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)3073 static void bcmgenet_irq_task(struct work_struct *work)
3074 {
3075 unsigned int status;
3076 struct bcmgenet_priv *priv = container_of(
3077 work, struct bcmgenet_priv, bcmgenet_irq_work);
3078
3079 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3080
3081 spin_lock_irq(&priv->lock);
3082 status = priv->irq0_stat;
3083 priv->irq0_stat = 0;
3084 spin_unlock_irq(&priv->lock);
3085
3086 if (status & UMAC_IRQ_PHY_DET_R &&
3087 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3088 phy_init_hw(priv->dev->phydev);
3089 genphy_config_aneg(priv->dev->phydev);
3090 }
3091
3092 /* Link UP/DOWN event */
3093 if (status & UMAC_IRQ_LINK_EVENT)
3094 phy_mac_interrupt(priv->dev->phydev);
3095
3096 }
3097
3098 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)3099 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3100 {
3101 struct bcmgenet_priv *priv = dev_id;
3102 struct bcmgenet_rx_ring *rx_ring;
3103 struct bcmgenet_tx_ring *tx_ring;
3104 unsigned int index, status;
3105
3106 /* Read irq status */
3107 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3108 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3109
3110 /* clear interrupts */
3111 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3112
3113 netif_dbg(priv, intr, priv->dev,
3114 "%s: IRQ=0x%x\n", __func__, status);
3115
3116 /* Check Rx priority queue interrupts */
3117 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3118 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3119 continue;
3120
3121 rx_ring = &priv->rx_rings[index];
3122 rx_ring->dim.event_ctr++;
3123
3124 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3125 rx_ring->int_disable(rx_ring);
3126 __napi_schedule_irqoff(&rx_ring->napi);
3127 }
3128 }
3129
3130 /* Check Tx priority queue interrupts */
3131 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3132 if (!(status & BIT(index)))
3133 continue;
3134
3135 tx_ring = &priv->tx_rings[index];
3136
3137 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3138 tx_ring->int_disable(tx_ring);
3139 __napi_schedule_irqoff(&tx_ring->napi);
3140 }
3141 }
3142
3143 return IRQ_HANDLED;
3144 }
3145
3146 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)3147 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3148 {
3149 struct bcmgenet_priv *priv = dev_id;
3150 struct bcmgenet_rx_ring *rx_ring;
3151 struct bcmgenet_tx_ring *tx_ring;
3152 unsigned int status;
3153 unsigned long flags;
3154
3155 /* Read irq status */
3156 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3157 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3158
3159 /* clear interrupts */
3160 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3161
3162 netif_dbg(priv, intr, priv->dev,
3163 "IRQ=0x%x\n", status);
3164
3165 if (status & UMAC_IRQ_RXDMA_DONE) {
3166 rx_ring = &priv->rx_rings[DESC_INDEX];
3167 rx_ring->dim.event_ctr++;
3168
3169 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3170 rx_ring->int_disable(rx_ring);
3171 __napi_schedule_irqoff(&rx_ring->napi);
3172 }
3173 }
3174
3175 if (status & UMAC_IRQ_TXDMA_DONE) {
3176 tx_ring = &priv->tx_rings[DESC_INDEX];
3177
3178 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3179 tx_ring->int_disable(tx_ring);
3180 __napi_schedule_irqoff(&tx_ring->napi);
3181 }
3182 }
3183
3184 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3185 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3186 wake_up(&priv->wq);
3187 }
3188
3189 /* all other interested interrupts handled in bottom half */
3190 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3191 if (status) {
3192 /* Save irq status for bottom-half processing. */
3193 spin_lock_irqsave(&priv->lock, flags);
3194 priv->irq0_stat |= status;
3195 spin_unlock_irqrestore(&priv->lock, flags);
3196
3197 schedule_work(&priv->bcmgenet_irq_work);
3198 }
3199
3200 return IRQ_HANDLED;
3201 }
3202
bcmgenet_wol_isr(int irq,void * dev_id)3203 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3204 {
3205 /* Acknowledge the interrupt */
3206 return IRQ_HANDLED;
3207 }
3208
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
bcmgenet_poll_controller(struct net_device * dev)3210 static void bcmgenet_poll_controller(struct net_device *dev)
3211 {
3212 struct bcmgenet_priv *priv = netdev_priv(dev);
3213
3214 /* Invoke the main RX/TX interrupt handler */
3215 disable_irq(priv->irq0);
3216 bcmgenet_isr0(priv->irq0, priv);
3217 enable_irq(priv->irq0);
3218
3219 /* And the interrupt handler for RX/TX priority queues */
3220 disable_irq(priv->irq1);
3221 bcmgenet_isr1(priv->irq1, priv);
3222 enable_irq(priv->irq1);
3223 }
3224 #endif
3225
bcmgenet_umac_reset(struct bcmgenet_priv * priv)3226 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3227 {
3228 u32 reg;
3229
3230 reg = bcmgenet_rbuf_ctrl_get(priv);
3231 reg |= BIT(1);
3232 bcmgenet_rbuf_ctrl_set(priv, reg);
3233 udelay(10);
3234
3235 reg &= ~BIT(1);
3236 bcmgenet_rbuf_ctrl_set(priv, reg);
3237 udelay(10);
3238 }
3239
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,const unsigned char * addr)3240 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3241 const unsigned char *addr)
3242 {
3243 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3244 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3245 }
3246
bcmgenet_get_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3247 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3248 unsigned char *addr)
3249 {
3250 u32 addr_tmp;
3251
3252 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3253 put_unaligned_be32(addr_tmp, &addr[0]);
3254 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3255 put_unaligned_be16(addr_tmp, &addr[4]);
3256 }
3257
3258 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv)3259 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3260 {
3261 unsigned int i;
3262 u32 reg;
3263 u32 dma_ctrl;
3264
3265 /* disable DMA */
3266 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3267 for (i = 0; i < priv->hw_params->tx_queues; i++)
3268 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3269 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3270 reg &= ~dma_ctrl;
3271 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3272
3273 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3274 for (i = 0; i < priv->hw_params->rx_queues; i++)
3275 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3276 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3277 reg &= ~dma_ctrl;
3278 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3279
3280 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3281 udelay(10);
3282 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3283
3284 return dma_ctrl;
3285 }
3286
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)3287 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3288 {
3289 u32 reg;
3290
3291 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3292 reg |= dma_ctrl;
3293 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3294
3295 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3296 reg |= dma_ctrl;
3297 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3298 }
3299
bcmgenet_netif_start(struct net_device * dev)3300 static void bcmgenet_netif_start(struct net_device *dev)
3301 {
3302 struct bcmgenet_priv *priv = netdev_priv(dev);
3303
3304 /* Start the network engine */
3305 bcmgenet_set_rx_mode(dev);
3306 bcmgenet_enable_rx_napi(priv);
3307
3308 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3309
3310 bcmgenet_enable_tx_napi(priv);
3311
3312 /* Monitor link interrupts now */
3313 bcmgenet_link_intr_enable(priv);
3314
3315 phy_start(dev->phydev);
3316 }
3317
bcmgenet_open(struct net_device * dev)3318 static int bcmgenet_open(struct net_device *dev)
3319 {
3320 struct bcmgenet_priv *priv = netdev_priv(dev);
3321 unsigned long dma_ctrl;
3322 int ret;
3323
3324 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3325
3326 /* Turn on the clock */
3327 clk_prepare_enable(priv->clk);
3328
3329 /* If this is an internal GPHY, power it back on now, before UniMAC is
3330 * brought out of reset as absolutely no UniMAC activity is allowed
3331 */
3332 if (priv->internal_phy)
3333 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3334
3335 /* take MAC out of reset */
3336 bcmgenet_umac_reset(priv);
3337
3338 init_umac(priv);
3339
3340 /* Apply features again in case we changed them while interface was
3341 * down
3342 */
3343 bcmgenet_set_features(dev, dev->features);
3344
3345 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3346
3347 /* Disable RX/TX DMA and flush TX queues */
3348 dma_ctrl = bcmgenet_dma_disable(priv);
3349
3350 /* Reinitialize TDMA and RDMA and SW housekeeping */
3351 ret = bcmgenet_init_dma(priv);
3352 if (ret) {
3353 netdev_err(dev, "failed to initialize DMA\n");
3354 goto err_clk_disable;
3355 }
3356
3357 /* Always enable ring 16 - descriptor ring */
3358 bcmgenet_enable_dma(priv, dma_ctrl);
3359
3360 /* HFB init */
3361 bcmgenet_hfb_init(priv);
3362
3363 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3364 dev->name, priv);
3365 if (ret < 0) {
3366 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3367 goto err_fini_dma;
3368 }
3369
3370 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3371 dev->name, priv);
3372 if (ret < 0) {
3373 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3374 goto err_irq0;
3375 }
3376
3377 ret = bcmgenet_mii_probe(dev);
3378 if (ret) {
3379 netdev_err(dev, "failed to connect to PHY\n");
3380 goto err_irq1;
3381 }
3382
3383 bcmgenet_netif_start(dev);
3384
3385 netif_tx_start_all_queues(dev);
3386
3387 return 0;
3388
3389 err_irq1:
3390 free_irq(priv->irq1, priv);
3391 err_irq0:
3392 free_irq(priv->irq0, priv);
3393 err_fini_dma:
3394 bcmgenet_dma_teardown(priv);
3395 bcmgenet_fini_dma(priv);
3396 err_clk_disable:
3397 if (priv->internal_phy)
3398 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3399 clk_disable_unprepare(priv->clk);
3400 return ret;
3401 }
3402
bcmgenet_netif_stop(struct net_device * dev,bool stop_phy)3403 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3404 {
3405 struct bcmgenet_priv *priv = netdev_priv(dev);
3406
3407 bcmgenet_disable_tx_napi(priv);
3408 netif_tx_disable(dev);
3409
3410 /* Disable MAC receive */
3411 umac_enable_set(priv, CMD_RX_EN, false);
3412
3413 bcmgenet_dma_teardown(priv);
3414
3415 /* Disable MAC transmit. TX DMA disabled must be done before this */
3416 umac_enable_set(priv, CMD_TX_EN, false);
3417
3418 if (stop_phy)
3419 phy_stop(dev->phydev);
3420 bcmgenet_disable_rx_napi(priv);
3421 bcmgenet_intr_disable(priv);
3422
3423 /* Wait for pending work items to complete. Since interrupts are
3424 * disabled no new work will be scheduled.
3425 */
3426 cancel_work_sync(&priv->bcmgenet_irq_work);
3427
3428 priv->old_link = -1;
3429 priv->old_speed = -1;
3430 priv->old_duplex = -1;
3431 priv->old_pause = -1;
3432
3433 /* tx reclaim */
3434 bcmgenet_tx_reclaim_all(dev);
3435 bcmgenet_fini_dma(priv);
3436 }
3437
bcmgenet_close(struct net_device * dev)3438 static int bcmgenet_close(struct net_device *dev)
3439 {
3440 struct bcmgenet_priv *priv = netdev_priv(dev);
3441 int ret = 0;
3442
3443 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3444
3445 bcmgenet_netif_stop(dev, false);
3446
3447 /* Really kill the PHY state machine and disconnect from it */
3448 phy_disconnect(dev->phydev);
3449
3450 free_irq(priv->irq0, priv);
3451 free_irq(priv->irq1, priv);
3452
3453 if (priv->internal_phy)
3454 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3455
3456 clk_disable_unprepare(priv->clk);
3457
3458 return ret;
3459 }
3460
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3461 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3462 {
3463 struct bcmgenet_priv *priv = ring->priv;
3464 u32 p_index, c_index, intsts, intmsk;
3465 struct netdev_queue *txq;
3466 unsigned int free_bds;
3467 bool txq_stopped;
3468
3469 if (!netif_msg_tx_err(priv))
3470 return;
3471
3472 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3473
3474 spin_lock(&ring->lock);
3475 if (ring->index == DESC_INDEX) {
3476 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3477 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3478 } else {
3479 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3480 intmsk = 1 << ring->index;
3481 }
3482 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3483 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3484 txq_stopped = netif_tx_queue_stopped(txq);
3485 free_bds = ring->free_bds;
3486 spin_unlock(&ring->lock);
3487
3488 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3489 "TX queue status: %s, interrupts: %s\n"
3490 "(sw)free_bds: %d (sw)size: %d\n"
3491 "(sw)p_index: %d (hw)p_index: %d\n"
3492 "(sw)c_index: %d (hw)c_index: %d\n"
3493 "(sw)clean_p: %d (sw)write_p: %d\n"
3494 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3495 ring->index, ring->queue,
3496 txq_stopped ? "stopped" : "active",
3497 intsts & intmsk ? "enabled" : "disabled",
3498 free_bds, ring->size,
3499 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3500 ring->c_index, c_index & DMA_C_INDEX_MASK,
3501 ring->clean_ptr, ring->write_ptr,
3502 ring->cb_ptr, ring->end_ptr);
3503 }
3504
bcmgenet_timeout(struct net_device * dev,unsigned int txqueue)3505 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3506 {
3507 struct bcmgenet_priv *priv = netdev_priv(dev);
3508 u32 int0_enable = 0;
3509 u32 int1_enable = 0;
3510 unsigned int q;
3511
3512 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3513
3514 for (q = 0; q < priv->hw_params->tx_queues; q++)
3515 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3516 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3517
3518 bcmgenet_tx_reclaim_all(dev);
3519
3520 for (q = 0; q < priv->hw_params->tx_queues; q++)
3521 int1_enable |= (1 << q);
3522
3523 int0_enable = UMAC_IRQ_TXDMA_DONE;
3524
3525 /* Re-enable TX interrupts if disabled */
3526 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3527 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3528
3529 netif_trans_update(dev);
3530
3531 dev->stats.tx_errors++;
3532
3533 netif_tx_wake_all_queues(dev);
3534 }
3535
3536 #define MAX_MDF_FILTER 17
3537
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,const unsigned char * addr,int * i)3538 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3539 const unsigned char *addr,
3540 int *i)
3541 {
3542 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3543 UMAC_MDF_ADDR + (*i * 4));
3544 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3545 addr[4] << 8 | addr[5],
3546 UMAC_MDF_ADDR + ((*i + 1) * 4));
3547 *i += 2;
3548 }
3549
bcmgenet_set_rx_mode(struct net_device * dev)3550 static void bcmgenet_set_rx_mode(struct net_device *dev)
3551 {
3552 struct bcmgenet_priv *priv = netdev_priv(dev);
3553 struct netdev_hw_addr *ha;
3554 int i, nfilter;
3555 u32 reg;
3556
3557 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3558
3559 /* Number of filters needed */
3560 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3561
3562 /*
3563 * Turn on promicuous mode for three scenarios
3564 * 1. IFF_PROMISC flag is set
3565 * 2. IFF_ALLMULTI flag is set
3566 * 3. The number of filters needed exceeds the number filters
3567 * supported by the hardware.
3568 */
3569 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3570 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3571 (nfilter > MAX_MDF_FILTER)) {
3572 reg |= CMD_PROMISC;
3573 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3574 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3575 return;
3576 } else {
3577 reg &= ~CMD_PROMISC;
3578 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3579 }
3580
3581 /* update MDF filter */
3582 i = 0;
3583 /* Broadcast */
3584 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3585 /* my own address.*/
3586 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3587
3588 /* Unicast */
3589 netdev_for_each_uc_addr(ha, dev)
3590 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3591
3592 /* Multicast */
3593 netdev_for_each_mc_addr(ha, dev)
3594 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3595
3596 /* Enable filters */
3597 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3598 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3599 }
3600
3601 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3602 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3603 {
3604 struct sockaddr *addr = p;
3605
3606 /* Setting the MAC address at the hardware level is not possible
3607 * without disabling the UniMAC RX/TX enable bits.
3608 */
3609 if (netif_running(dev))
3610 return -EBUSY;
3611
3612 eth_hw_addr_set(dev, addr->sa_data);
3613
3614 return 0;
3615 }
3616
bcmgenet_get_stats(struct net_device * dev)3617 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3618 {
3619 struct bcmgenet_priv *priv = netdev_priv(dev);
3620 unsigned long tx_bytes = 0, tx_packets = 0;
3621 unsigned long rx_bytes = 0, rx_packets = 0;
3622 unsigned long rx_errors = 0, rx_dropped = 0;
3623 struct bcmgenet_tx_ring *tx_ring;
3624 struct bcmgenet_rx_ring *rx_ring;
3625 unsigned int q;
3626
3627 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3628 tx_ring = &priv->tx_rings[q];
3629 tx_bytes += tx_ring->bytes;
3630 tx_packets += tx_ring->packets;
3631 }
3632 tx_ring = &priv->tx_rings[DESC_INDEX];
3633 tx_bytes += tx_ring->bytes;
3634 tx_packets += tx_ring->packets;
3635
3636 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3637 rx_ring = &priv->rx_rings[q];
3638
3639 rx_bytes += rx_ring->bytes;
3640 rx_packets += rx_ring->packets;
3641 rx_errors += rx_ring->errors;
3642 rx_dropped += rx_ring->dropped;
3643 }
3644 rx_ring = &priv->rx_rings[DESC_INDEX];
3645 rx_bytes += rx_ring->bytes;
3646 rx_packets += rx_ring->packets;
3647 rx_errors += rx_ring->errors;
3648 rx_dropped += rx_ring->dropped;
3649
3650 dev->stats.tx_bytes = tx_bytes;
3651 dev->stats.tx_packets = tx_packets;
3652 dev->stats.rx_bytes = rx_bytes;
3653 dev->stats.rx_packets = rx_packets;
3654 dev->stats.rx_errors = rx_errors;
3655 dev->stats.rx_missed_errors = rx_errors;
3656 dev->stats.rx_dropped = rx_dropped;
3657 return &dev->stats;
3658 }
3659
bcmgenet_change_carrier(struct net_device * dev,bool new_carrier)3660 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3661 {
3662 struct bcmgenet_priv *priv = netdev_priv(dev);
3663
3664 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3665 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3666 return -EOPNOTSUPP;
3667
3668 if (new_carrier)
3669 netif_carrier_on(dev);
3670 else
3671 netif_carrier_off(dev);
3672
3673 return 0;
3674 }
3675
3676 static const struct net_device_ops bcmgenet_netdev_ops = {
3677 .ndo_open = bcmgenet_open,
3678 .ndo_stop = bcmgenet_close,
3679 .ndo_start_xmit = bcmgenet_xmit,
3680 .ndo_tx_timeout = bcmgenet_timeout,
3681 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3682 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3683 .ndo_eth_ioctl = phy_do_ioctl_running,
3684 .ndo_set_features = bcmgenet_set_features,
3685 #ifdef CONFIG_NET_POLL_CONTROLLER
3686 .ndo_poll_controller = bcmgenet_poll_controller,
3687 #endif
3688 .ndo_get_stats = bcmgenet_get_stats,
3689 .ndo_change_carrier = bcmgenet_change_carrier,
3690 };
3691
3692 /* Array of GENET hardware parameters/characteristics */
3693 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3694 [GENET_V1] = {
3695 .tx_queues = 0,
3696 .tx_bds_per_q = 0,
3697 .rx_queues = 0,
3698 .rx_bds_per_q = 0,
3699 .bp_in_en_shift = 16,
3700 .bp_in_mask = 0xffff,
3701 .hfb_filter_cnt = 16,
3702 .qtag_mask = 0x1F,
3703 .hfb_offset = 0x1000,
3704 .rdma_offset = 0x2000,
3705 .tdma_offset = 0x3000,
3706 .words_per_bd = 2,
3707 },
3708 [GENET_V2] = {
3709 .tx_queues = 4,
3710 .tx_bds_per_q = 32,
3711 .rx_queues = 0,
3712 .rx_bds_per_q = 0,
3713 .bp_in_en_shift = 16,
3714 .bp_in_mask = 0xffff,
3715 .hfb_filter_cnt = 16,
3716 .qtag_mask = 0x1F,
3717 .tbuf_offset = 0x0600,
3718 .hfb_offset = 0x1000,
3719 .hfb_reg_offset = 0x2000,
3720 .rdma_offset = 0x3000,
3721 .tdma_offset = 0x4000,
3722 .words_per_bd = 2,
3723 .flags = GENET_HAS_EXT,
3724 },
3725 [GENET_V3] = {
3726 .tx_queues = 4,
3727 .tx_bds_per_q = 32,
3728 .rx_queues = 0,
3729 .rx_bds_per_q = 0,
3730 .bp_in_en_shift = 17,
3731 .bp_in_mask = 0x1ffff,
3732 .hfb_filter_cnt = 48,
3733 .hfb_filter_size = 128,
3734 .qtag_mask = 0x3F,
3735 .tbuf_offset = 0x0600,
3736 .hfb_offset = 0x8000,
3737 .hfb_reg_offset = 0xfc00,
3738 .rdma_offset = 0x10000,
3739 .tdma_offset = 0x11000,
3740 .words_per_bd = 2,
3741 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3742 GENET_HAS_MOCA_LINK_DET,
3743 },
3744 [GENET_V4] = {
3745 .tx_queues = 4,
3746 .tx_bds_per_q = 32,
3747 .rx_queues = 0,
3748 .rx_bds_per_q = 0,
3749 .bp_in_en_shift = 17,
3750 .bp_in_mask = 0x1ffff,
3751 .hfb_filter_cnt = 48,
3752 .hfb_filter_size = 128,
3753 .qtag_mask = 0x3F,
3754 .tbuf_offset = 0x0600,
3755 .hfb_offset = 0x8000,
3756 .hfb_reg_offset = 0xfc00,
3757 .rdma_offset = 0x2000,
3758 .tdma_offset = 0x4000,
3759 .words_per_bd = 3,
3760 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3761 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3762 },
3763 [GENET_V5] = {
3764 .tx_queues = 4,
3765 .tx_bds_per_q = 32,
3766 .rx_queues = 0,
3767 .rx_bds_per_q = 0,
3768 .bp_in_en_shift = 17,
3769 .bp_in_mask = 0x1ffff,
3770 .hfb_filter_cnt = 48,
3771 .hfb_filter_size = 128,
3772 .qtag_mask = 0x3F,
3773 .tbuf_offset = 0x0600,
3774 .hfb_offset = 0x8000,
3775 .hfb_reg_offset = 0xfc00,
3776 .rdma_offset = 0x2000,
3777 .tdma_offset = 0x4000,
3778 .words_per_bd = 3,
3779 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3780 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3781 },
3782 };
3783
3784 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3785 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3786 {
3787 struct bcmgenet_hw_params *params;
3788 u32 reg;
3789 u8 major;
3790 u16 gphy_rev;
3791
3792 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3793 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3794 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3795 } else if (GENET_IS_V3(priv)) {
3796 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3797 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3798 } else if (GENET_IS_V2(priv)) {
3799 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3800 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3801 } else if (GENET_IS_V1(priv)) {
3802 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3803 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3804 }
3805
3806 /* enum genet_version starts at 1 */
3807 priv->hw_params = &bcmgenet_hw_params[priv->version];
3808 params = priv->hw_params;
3809
3810 /* Read GENET HW version */
3811 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3812 major = (reg >> 24 & 0x0f);
3813 if (major == 6)
3814 major = 5;
3815 else if (major == 5)
3816 major = 4;
3817 else if (major == 0)
3818 major = 1;
3819 if (major != priv->version) {
3820 dev_err(&priv->pdev->dev,
3821 "GENET version mismatch, got: %d, configured for: %d\n",
3822 major, priv->version);
3823 }
3824
3825 /* Print the GENET core version */
3826 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3827 major, (reg >> 16) & 0x0f, reg & 0xffff);
3828
3829 /* Store the integrated PHY revision for the MDIO probing function
3830 * to pass this information to the PHY driver. The PHY driver expects
3831 * to find the PHY major revision in bits 15:8 while the GENET register
3832 * stores that information in bits 7:0, account for that.
3833 *
3834 * On newer chips, starting with PHY revision G0, a new scheme is
3835 * deployed similar to the Starfighter 2 switch with GPHY major
3836 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3837 * is reserved as well as special value 0x01ff, we have a small
3838 * heuristic to check for the new GPHY revision and re-arrange things
3839 * so the GPHY driver is happy.
3840 */
3841 gphy_rev = reg & 0xffff;
3842
3843 if (GENET_IS_V5(priv)) {
3844 /* The EPHY revision should come from the MDIO registers of
3845 * the PHY not from GENET.
3846 */
3847 if (gphy_rev != 0) {
3848 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3849 gphy_rev);
3850 }
3851 /* This is reserved so should require special treatment */
3852 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3853 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3854 return;
3855 /* This is the good old scheme, just GPHY major, no minor nor patch */
3856 } else if ((gphy_rev & 0xf0) != 0) {
3857 priv->gphy_rev = gphy_rev << 8;
3858 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3859 } else if ((gphy_rev & 0xff00) != 0) {
3860 priv->gphy_rev = gphy_rev;
3861 }
3862
3863 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3864 if (!(params->flags & GENET_HAS_40BITS))
3865 pr_warn("GENET does not support 40-bits PA\n");
3866 #endif
3867
3868 pr_debug("Configuration for version: %d\n"
3869 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3870 "BP << en: %2d, BP msk: 0x%05x\n"
3871 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3872 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3873 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3874 "Words/BD: %d\n",
3875 priv->version,
3876 params->tx_queues, params->tx_bds_per_q,
3877 params->rx_queues, params->rx_bds_per_q,
3878 params->bp_in_en_shift, params->bp_in_mask,
3879 params->hfb_filter_cnt, params->qtag_mask,
3880 params->tbuf_offset, params->hfb_offset,
3881 params->hfb_reg_offset,
3882 params->rdma_offset, params->tdma_offset,
3883 params->words_per_bd);
3884 }
3885
3886 struct bcmgenet_plat_data {
3887 enum bcmgenet_version version;
3888 u32 dma_max_burst_length;
3889 };
3890
3891 static const struct bcmgenet_plat_data v1_plat_data = {
3892 .version = GENET_V1,
3893 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3894 };
3895
3896 static const struct bcmgenet_plat_data v2_plat_data = {
3897 .version = GENET_V2,
3898 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3899 };
3900
3901 static const struct bcmgenet_plat_data v3_plat_data = {
3902 .version = GENET_V3,
3903 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3904 };
3905
3906 static const struct bcmgenet_plat_data v4_plat_data = {
3907 .version = GENET_V4,
3908 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3909 };
3910
3911 static const struct bcmgenet_plat_data v5_plat_data = {
3912 .version = GENET_V5,
3913 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3914 };
3915
3916 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3917 .version = GENET_V5,
3918 .dma_max_burst_length = 0x08,
3919 };
3920
3921 static const struct of_device_id bcmgenet_match[] = {
3922 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3923 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3924 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3925 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3926 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3927 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3928 { },
3929 };
3930 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3931
bcmgenet_probe(struct platform_device * pdev)3932 static int bcmgenet_probe(struct platform_device *pdev)
3933 {
3934 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3935 const struct bcmgenet_plat_data *pdata;
3936 struct bcmgenet_priv *priv;
3937 struct net_device *dev;
3938 unsigned int i;
3939 int err = -EIO;
3940
3941 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3942 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3943 GENET_MAX_MQ_CNT + 1);
3944 if (!dev) {
3945 dev_err(&pdev->dev, "can't allocate net device\n");
3946 return -ENOMEM;
3947 }
3948
3949 priv = netdev_priv(dev);
3950 priv->irq0 = platform_get_irq(pdev, 0);
3951 if (priv->irq0 < 0) {
3952 err = priv->irq0;
3953 goto err;
3954 }
3955 priv->irq1 = platform_get_irq(pdev, 1);
3956 if (priv->irq1 < 0) {
3957 err = priv->irq1;
3958 goto err;
3959 }
3960 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3961 if (priv->wol_irq == -EPROBE_DEFER) {
3962 err = priv->wol_irq;
3963 goto err;
3964 }
3965
3966 priv->base = devm_platform_ioremap_resource(pdev, 0);
3967 if (IS_ERR(priv->base)) {
3968 err = PTR_ERR(priv->base);
3969 goto err;
3970 }
3971
3972 spin_lock_init(&priv->lock);
3973
3974 SET_NETDEV_DEV(dev, &pdev->dev);
3975 dev_set_drvdata(&pdev->dev, dev);
3976 dev->watchdog_timeo = 2 * HZ;
3977 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3978 dev->netdev_ops = &bcmgenet_netdev_ops;
3979
3980 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3981
3982 /* Set default features */
3983 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3984 NETIF_F_RXCSUM;
3985 dev->hw_features |= dev->features;
3986 dev->vlan_features |= dev->features;
3987
3988 /* Request the WOL interrupt and advertise suspend if available */
3989 priv->wol_irq_disabled = true;
3990 if (priv->wol_irq > 0) {
3991 err = devm_request_irq(&pdev->dev, priv->wol_irq,
3992 bcmgenet_wol_isr, 0, dev->name, priv);
3993 if (!err)
3994 device_set_wakeup_capable(&pdev->dev, 1);
3995 }
3996
3997 /* Set the needed headroom to account for any possible
3998 * features enabling/disabling at runtime
3999 */
4000 dev->needed_headroom += 64;
4001
4002 priv->dev = dev;
4003 priv->pdev = pdev;
4004
4005 pdata = device_get_match_data(&pdev->dev);
4006 if (pdata) {
4007 priv->version = pdata->version;
4008 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4009 } else {
4010 priv->version = pd->genet_version;
4011 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4012 }
4013
4014 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4015 if (IS_ERR(priv->clk)) {
4016 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4017 err = PTR_ERR(priv->clk);
4018 goto err;
4019 }
4020
4021 err = clk_prepare_enable(priv->clk);
4022 if (err)
4023 goto err;
4024
4025 bcmgenet_set_hw_params(priv);
4026
4027 err = -EIO;
4028 if (priv->hw_params->flags & GENET_HAS_40BITS)
4029 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4030 if (err)
4031 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4032 if (err)
4033 goto err_clk_disable;
4034
4035 /* Mii wait queue */
4036 init_waitqueue_head(&priv->wq);
4037 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4038 priv->rx_buf_len = RX_BUF_LENGTH;
4039 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4040
4041 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4042 if (IS_ERR(priv->clk_wol)) {
4043 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4044 err = PTR_ERR(priv->clk_wol);
4045 goto err_clk_disable;
4046 }
4047
4048 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4049 if (IS_ERR(priv->clk_eee)) {
4050 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4051 err = PTR_ERR(priv->clk_eee);
4052 goto err_clk_disable;
4053 }
4054
4055 /* If this is an internal GPHY, power it on now, before UniMAC is
4056 * brought out of reset as absolutely no UniMAC activity is allowed
4057 */
4058 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4059 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4060
4061 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4062 eth_hw_addr_set(dev, pd->mac_address);
4063 else
4064 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4065 if (has_acpi_companion(&pdev->dev))
4066 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4067
4068 if (!is_valid_ether_addr(dev->dev_addr)) {
4069 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4070 eth_hw_addr_random(dev);
4071 }
4072
4073 reset_umac(priv);
4074
4075 err = bcmgenet_mii_init(dev);
4076 if (err)
4077 goto err_clk_disable;
4078
4079 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4080 * just the ring 16 descriptor based TX
4081 */
4082 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4083 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4084
4085 /* Set default coalescing parameters */
4086 for (i = 0; i < priv->hw_params->rx_queues; i++)
4087 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4088 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4089
4090 /* libphy will determine the link state */
4091 netif_carrier_off(dev);
4092
4093 /* Turn off the main clock, WOL clock is handled separately */
4094 clk_disable_unprepare(priv->clk);
4095
4096 err = register_netdev(dev);
4097 if (err) {
4098 bcmgenet_mii_exit(dev);
4099 goto err;
4100 }
4101
4102 return err;
4103
4104 err_clk_disable:
4105 clk_disable_unprepare(priv->clk);
4106 err:
4107 free_netdev(dev);
4108 return err;
4109 }
4110
bcmgenet_remove(struct platform_device * pdev)4111 static int bcmgenet_remove(struct platform_device *pdev)
4112 {
4113 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4114
4115 dev_set_drvdata(&pdev->dev, NULL);
4116 unregister_netdev(priv->dev);
4117 bcmgenet_mii_exit(priv->dev);
4118 free_netdev(priv->dev);
4119
4120 return 0;
4121 }
4122
bcmgenet_shutdown(struct platform_device * pdev)4123 static void bcmgenet_shutdown(struct platform_device *pdev)
4124 {
4125 bcmgenet_remove(pdev);
4126 }
4127
4128 #ifdef CONFIG_PM_SLEEP
bcmgenet_resume_noirq(struct device * d)4129 static int bcmgenet_resume_noirq(struct device *d)
4130 {
4131 struct net_device *dev = dev_get_drvdata(d);
4132 struct bcmgenet_priv *priv = netdev_priv(dev);
4133 int ret;
4134 u32 reg;
4135
4136 if (!netif_running(dev))
4137 return 0;
4138
4139 /* Turn on the clock */
4140 ret = clk_prepare_enable(priv->clk);
4141 if (ret)
4142 return ret;
4143
4144 if (device_may_wakeup(d) && priv->wolopts) {
4145 /* Account for Wake-on-LAN events and clear those events
4146 * (Some devices need more time between enabling the clocks
4147 * and the interrupt register reflecting the wake event so
4148 * read the register twice)
4149 */
4150 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4151 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4152 if (reg & UMAC_IRQ_WAKE_EVENT)
4153 pm_wakeup_event(&priv->pdev->dev, 0);
4154 }
4155
4156 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4157
4158 return 0;
4159 }
4160
bcmgenet_resume(struct device * d)4161 static int bcmgenet_resume(struct device *d)
4162 {
4163 struct net_device *dev = dev_get_drvdata(d);
4164 struct bcmgenet_priv *priv = netdev_priv(dev);
4165 struct bcmgenet_rxnfc_rule *rule;
4166 unsigned long dma_ctrl;
4167 int ret;
4168
4169 if (!netif_running(dev))
4170 return 0;
4171
4172 /* From WOL-enabled suspend, switch to regular clock */
4173 if (device_may_wakeup(d) && priv->wolopts)
4174 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4175
4176 /* If this is an internal GPHY, power it back on now, before UniMAC is
4177 * brought out of reset as absolutely no UniMAC activity is allowed
4178 */
4179 if (priv->internal_phy)
4180 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4181
4182 bcmgenet_umac_reset(priv);
4183
4184 init_umac(priv);
4185
4186 phy_init_hw(dev->phydev);
4187
4188 /* Speed settings must be restored */
4189 genphy_config_aneg(dev->phydev);
4190 bcmgenet_mii_config(priv->dev, false);
4191
4192 /* Restore enabled features */
4193 bcmgenet_set_features(dev, dev->features);
4194
4195 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4196
4197 /* Restore hardware filters */
4198 bcmgenet_hfb_clear(priv);
4199 list_for_each_entry(rule, &priv->rxnfc_list, list)
4200 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4201 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4202
4203 /* Disable RX/TX DMA and flush TX queues */
4204 dma_ctrl = bcmgenet_dma_disable(priv);
4205
4206 /* Reinitialize TDMA and RDMA and SW housekeeping */
4207 ret = bcmgenet_init_dma(priv);
4208 if (ret) {
4209 netdev_err(dev, "failed to initialize DMA\n");
4210 goto out_clk_disable;
4211 }
4212
4213 /* Always enable ring 16 - descriptor ring */
4214 bcmgenet_enable_dma(priv, dma_ctrl);
4215
4216 if (!device_may_wakeup(d))
4217 phy_resume(dev->phydev);
4218
4219 bcmgenet_netif_start(dev);
4220
4221 netif_device_attach(dev);
4222
4223 return 0;
4224
4225 out_clk_disable:
4226 if (priv->internal_phy)
4227 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4228 clk_disable_unprepare(priv->clk);
4229 return ret;
4230 }
4231
bcmgenet_suspend(struct device * d)4232 static int bcmgenet_suspend(struct device *d)
4233 {
4234 struct net_device *dev = dev_get_drvdata(d);
4235 struct bcmgenet_priv *priv = netdev_priv(dev);
4236
4237 if (!netif_running(dev))
4238 return 0;
4239
4240 netif_device_detach(dev);
4241
4242 bcmgenet_netif_stop(dev, true);
4243
4244 if (!device_may_wakeup(d))
4245 phy_suspend(dev->phydev);
4246
4247 /* Disable filtering */
4248 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4249
4250 return 0;
4251 }
4252
bcmgenet_suspend_noirq(struct device * d)4253 static int bcmgenet_suspend_noirq(struct device *d)
4254 {
4255 struct net_device *dev = dev_get_drvdata(d);
4256 struct bcmgenet_priv *priv = netdev_priv(dev);
4257 int ret = 0;
4258
4259 if (!netif_running(dev))
4260 return 0;
4261
4262 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4263 if (device_may_wakeup(d) && priv->wolopts)
4264 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4265 else if (priv->internal_phy)
4266 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4267
4268 /* Let the framework handle resumption and leave the clocks on */
4269 if (ret)
4270 return ret;
4271
4272 /* Turn off the clocks */
4273 clk_disable_unprepare(priv->clk);
4274
4275 return 0;
4276 }
4277 #else
4278 #define bcmgenet_suspend NULL
4279 #define bcmgenet_suspend_noirq NULL
4280 #define bcmgenet_resume NULL
4281 #define bcmgenet_resume_noirq NULL
4282 #endif /* CONFIG_PM_SLEEP */
4283
4284 static const struct dev_pm_ops bcmgenet_pm_ops = {
4285 .suspend = bcmgenet_suspend,
4286 .suspend_noirq = bcmgenet_suspend_noirq,
4287 .resume = bcmgenet_resume,
4288 .resume_noirq = bcmgenet_resume_noirq,
4289 };
4290
4291 static const struct acpi_device_id genet_acpi_match[] = {
4292 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4293 { },
4294 };
4295 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4296
4297 static struct platform_driver bcmgenet_driver = {
4298 .probe = bcmgenet_probe,
4299 .remove = bcmgenet_remove,
4300 .shutdown = bcmgenet_shutdown,
4301 .driver = {
4302 .name = "bcmgenet",
4303 .of_match_table = bcmgenet_match,
4304 .pm = &bcmgenet_pm_ops,
4305 .acpi_match_table = genet_acpi_match,
4306 },
4307 };
4308 module_platform_driver(bcmgenet_driver);
4309
4310 MODULE_AUTHOR("Broadcom Corporation");
4311 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4312 MODULE_ALIAS("platform:bcmgenet");
4313 MODULE_LICENSE("GPL");
4314 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4315