1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * EP93xx ethernet network device driver
4 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
5 * Dedicated to Marija Kulikova.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__
9
10 #include <linux/dma-mapping.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/mii.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/interrupt.h>
18 #include <linux/moduleparam.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23
24 #include <linux/platform_data/eth-ep93xx.h>
25
26 #define DRV_MODULE_NAME "ep93xx-eth"
27
28 #define RX_QUEUE_ENTRIES 64
29 #define TX_QUEUE_ENTRIES 8
30
31 #define MAX_PKT_SIZE 2044
32 #define PKT_BUF_SIZE 2048
33
34 #define REG_RXCTL 0x0000
35 #define REG_RXCTL_DEFAULT 0x00073800
36 #define REG_TXCTL 0x0004
37 #define REG_TXCTL_ENABLE 0x00000001
38 #define REG_MIICMD 0x0010
39 #define REG_MIICMD_READ 0x00008000
40 #define REG_MIICMD_WRITE 0x00004000
41 #define REG_MIIDATA 0x0014
42 #define REG_MIISTS 0x0018
43 #define REG_MIISTS_BUSY 0x00000001
44 #define REG_SELFCTL 0x0020
45 #define REG_SELFCTL_RESET 0x00000001
46 #define REG_INTEN 0x0024
47 #define REG_INTEN_TX 0x00000008
48 #define REG_INTEN_RX 0x00000007
49 #define REG_INTSTSP 0x0028
50 #define REG_INTSTS_TX 0x00000008
51 #define REG_INTSTS_RX 0x00000004
52 #define REG_INTSTSC 0x002c
53 #define REG_AFP 0x004c
54 #define REG_INDAD0 0x0050
55 #define REG_INDAD1 0x0051
56 #define REG_INDAD2 0x0052
57 #define REG_INDAD3 0x0053
58 #define REG_INDAD4 0x0054
59 #define REG_INDAD5 0x0055
60 #define REG_GIINTMSK 0x0064
61 #define REG_GIINTMSK_ENABLE 0x00008000
62 #define REG_BMCTL 0x0080
63 #define REG_BMCTL_ENABLE_TX 0x00000100
64 #define REG_BMCTL_ENABLE_RX 0x00000001
65 #define REG_BMSTS 0x0084
66 #define REG_BMSTS_RX_ACTIVE 0x00000008
67 #define REG_RXDQBADD 0x0090
68 #define REG_RXDQBLEN 0x0094
69 #define REG_RXDCURADD 0x0098
70 #define REG_RXDENQ 0x009c
71 #define REG_RXSTSQBADD 0x00a0
72 #define REG_RXSTSQBLEN 0x00a4
73 #define REG_RXSTSQCURADD 0x00a8
74 #define REG_RXSTSENQ 0x00ac
75 #define REG_TXDQBADD 0x00b0
76 #define REG_TXDQBLEN 0x00b4
77 #define REG_TXDQCURADD 0x00b8
78 #define REG_TXDENQ 0x00bc
79 #define REG_TXSTSQBADD 0x00c0
80 #define REG_TXSTSQBLEN 0x00c4
81 #define REG_TXSTSQCURADD 0x00c8
82 #define REG_MAXFRMLEN 0x00e8
83
84 struct ep93xx_rdesc
85 {
86 u32 buf_addr;
87 u32 rdesc1;
88 };
89
90 #define RDESC1_NSOF 0x80000000
91 #define RDESC1_BUFFER_INDEX 0x7fff0000
92 #define RDESC1_BUFFER_LENGTH 0x0000ffff
93
94 struct ep93xx_rstat
95 {
96 u32 rstat0;
97 u32 rstat1;
98 };
99
100 #define RSTAT0_RFP 0x80000000
101 #define RSTAT0_RWE 0x40000000
102 #define RSTAT0_EOF 0x20000000
103 #define RSTAT0_EOB 0x10000000
104 #define RSTAT0_AM 0x00c00000
105 #define RSTAT0_RX_ERR 0x00200000
106 #define RSTAT0_OE 0x00100000
107 #define RSTAT0_FE 0x00080000
108 #define RSTAT0_RUNT 0x00040000
109 #define RSTAT0_EDATA 0x00020000
110 #define RSTAT0_CRCE 0x00010000
111 #define RSTAT0_CRCI 0x00008000
112 #define RSTAT0_HTI 0x00003f00
113 #define RSTAT1_RFP 0x80000000
114 #define RSTAT1_BUFFER_INDEX 0x7fff0000
115 #define RSTAT1_FRAME_LENGTH 0x0000ffff
116
117 struct ep93xx_tdesc
118 {
119 u32 buf_addr;
120 u32 tdesc1;
121 };
122
123 #define TDESC1_EOF 0x80000000
124 #define TDESC1_BUFFER_INDEX 0x7fff0000
125 #define TDESC1_BUFFER_ABORT 0x00008000
126 #define TDESC1_BUFFER_LENGTH 0x00000fff
127
128 struct ep93xx_tstat
129 {
130 u32 tstat0;
131 };
132
133 #define TSTAT0_TXFP 0x80000000
134 #define TSTAT0_TXWE 0x40000000
135 #define TSTAT0_FA 0x20000000
136 #define TSTAT0_LCRS 0x10000000
137 #define TSTAT0_OW 0x04000000
138 #define TSTAT0_TXU 0x02000000
139 #define TSTAT0_ECOLL 0x01000000
140 #define TSTAT0_NCOLL 0x001f0000
141 #define TSTAT0_BUFFER_INDEX 0x00007fff
142
143 struct ep93xx_descs
144 {
145 struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES];
146 struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES];
147 struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES];
148 struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES];
149 };
150
151 struct ep93xx_priv
152 {
153 struct resource *res;
154 void __iomem *base_addr;
155 int irq;
156
157 struct ep93xx_descs *descs;
158 dma_addr_t descs_dma_addr;
159
160 void *rx_buf[RX_QUEUE_ENTRIES];
161 void *tx_buf[TX_QUEUE_ENTRIES];
162
163 spinlock_t rx_lock;
164 unsigned int rx_pointer;
165 unsigned int tx_clean_pointer;
166 unsigned int tx_pointer;
167 spinlock_t tx_pending_lock;
168 unsigned int tx_pending;
169
170 struct net_device *dev;
171 struct napi_struct napi;
172
173 struct mii_if_info mii;
174 u8 mdc_divisor;
175 };
176
177 #define rdb(ep, off) __raw_readb((ep)->base_addr + (off))
178 #define rdw(ep, off) __raw_readw((ep)->base_addr + (off))
179 #define rdl(ep, off) __raw_readl((ep)->base_addr + (off))
180 #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off))
181 #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off))
182 #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off))
183
ep93xx_mdio_read(struct net_device * dev,int phy_id,int reg)184 static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg)
185 {
186 struct ep93xx_priv *ep = netdev_priv(dev);
187 int data;
188 int i;
189
190 wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg);
191
192 for (i = 0; i < 10; i++) {
193 if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
194 break;
195 msleep(1);
196 }
197
198 if (i == 10) {
199 pr_info("mdio read timed out\n");
200 data = 0xffff;
201 } else {
202 data = rdl(ep, REG_MIIDATA);
203 }
204
205 return data;
206 }
207
ep93xx_mdio_write(struct net_device * dev,int phy_id,int reg,int data)208 static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data)
209 {
210 struct ep93xx_priv *ep = netdev_priv(dev);
211 int i;
212
213 wrl(ep, REG_MIIDATA, data);
214 wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg);
215
216 for (i = 0; i < 10; i++) {
217 if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
218 break;
219 msleep(1);
220 }
221
222 if (i == 10)
223 pr_info("mdio write timed out\n");
224 }
225
ep93xx_rx(struct net_device * dev,int budget)226 static int ep93xx_rx(struct net_device *dev, int budget)
227 {
228 struct ep93xx_priv *ep = netdev_priv(dev);
229 int processed = 0;
230
231 while (processed < budget) {
232 int entry;
233 struct ep93xx_rstat *rstat;
234 u32 rstat0;
235 u32 rstat1;
236 int length;
237 struct sk_buff *skb;
238
239 entry = ep->rx_pointer;
240 rstat = ep->descs->rstat + entry;
241
242 rstat0 = rstat->rstat0;
243 rstat1 = rstat->rstat1;
244 if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP))
245 break;
246
247 rstat->rstat0 = 0;
248 rstat->rstat1 = 0;
249
250 if (!(rstat0 & RSTAT0_EOF))
251 pr_crit("not end-of-frame %.8x %.8x\n", rstat0, rstat1);
252 if (!(rstat0 & RSTAT0_EOB))
253 pr_crit("not end-of-buffer %.8x %.8x\n", rstat0, rstat1);
254 if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry)
255 pr_crit("entry mismatch %.8x %.8x\n", rstat0, rstat1);
256
257 if (!(rstat0 & RSTAT0_RWE)) {
258 dev->stats.rx_errors++;
259 if (rstat0 & RSTAT0_OE)
260 dev->stats.rx_fifo_errors++;
261 if (rstat0 & RSTAT0_FE)
262 dev->stats.rx_frame_errors++;
263 if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA))
264 dev->stats.rx_length_errors++;
265 if (rstat0 & RSTAT0_CRCE)
266 dev->stats.rx_crc_errors++;
267 goto err;
268 }
269
270 length = rstat1 & RSTAT1_FRAME_LENGTH;
271 if (length > MAX_PKT_SIZE) {
272 pr_notice("invalid length %.8x %.8x\n", rstat0, rstat1);
273 goto err;
274 }
275
276 /* Strip FCS. */
277 if (rstat0 & RSTAT0_CRCI)
278 length -= 4;
279
280 skb = netdev_alloc_skb(dev, length + 2);
281 if (likely(skb != NULL)) {
282 struct ep93xx_rdesc *rxd = &ep->descs->rdesc[entry];
283 skb_reserve(skb, 2);
284 dma_sync_single_for_cpu(dev->dev.parent, rxd->buf_addr,
285 length, DMA_FROM_DEVICE);
286 skb_copy_to_linear_data(skb, ep->rx_buf[entry], length);
287 dma_sync_single_for_device(dev->dev.parent,
288 rxd->buf_addr, length,
289 DMA_FROM_DEVICE);
290 skb_put(skb, length);
291 skb->protocol = eth_type_trans(skb, dev);
292
293 napi_gro_receive(&ep->napi, skb);
294
295 dev->stats.rx_packets++;
296 dev->stats.rx_bytes += length;
297 } else {
298 dev->stats.rx_dropped++;
299 }
300
301 err:
302 ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1);
303 processed++;
304 }
305
306 return processed;
307 }
308
ep93xx_poll(struct napi_struct * napi,int budget)309 static int ep93xx_poll(struct napi_struct *napi, int budget)
310 {
311 struct ep93xx_priv *ep = container_of(napi, struct ep93xx_priv, napi);
312 struct net_device *dev = ep->dev;
313 int rx;
314
315 rx = ep93xx_rx(dev, budget);
316 if (rx < budget && napi_complete_done(napi, rx)) {
317 spin_lock_irq(&ep->rx_lock);
318 wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
319 spin_unlock_irq(&ep->rx_lock);
320 }
321
322 if (rx) {
323 wrw(ep, REG_RXDENQ, rx);
324 wrw(ep, REG_RXSTSENQ, rx);
325 }
326
327 return rx;
328 }
329
ep93xx_xmit(struct sk_buff * skb,struct net_device * dev)330 static netdev_tx_t ep93xx_xmit(struct sk_buff *skb, struct net_device *dev)
331 {
332 struct ep93xx_priv *ep = netdev_priv(dev);
333 struct ep93xx_tdesc *txd;
334 int entry;
335
336 if (unlikely(skb->len > MAX_PKT_SIZE)) {
337 dev->stats.tx_dropped++;
338 dev_kfree_skb(skb);
339 return NETDEV_TX_OK;
340 }
341
342 entry = ep->tx_pointer;
343 ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1);
344
345 txd = &ep->descs->tdesc[entry];
346
347 txd->tdesc1 = TDESC1_EOF | (entry << 16) | (skb->len & 0xfff);
348 dma_sync_single_for_cpu(dev->dev.parent, txd->buf_addr, skb->len,
349 DMA_TO_DEVICE);
350 skb_copy_and_csum_dev(skb, ep->tx_buf[entry]);
351 dma_sync_single_for_device(dev->dev.parent, txd->buf_addr, skb->len,
352 DMA_TO_DEVICE);
353 dev_kfree_skb(skb);
354
355 spin_lock_irq(&ep->tx_pending_lock);
356 ep->tx_pending++;
357 if (ep->tx_pending == TX_QUEUE_ENTRIES)
358 netif_stop_queue(dev);
359 spin_unlock_irq(&ep->tx_pending_lock);
360
361 wrl(ep, REG_TXDENQ, 1);
362
363 return NETDEV_TX_OK;
364 }
365
ep93xx_tx_complete(struct net_device * dev)366 static void ep93xx_tx_complete(struct net_device *dev)
367 {
368 struct ep93xx_priv *ep = netdev_priv(dev);
369 int wake;
370
371 wake = 0;
372
373 spin_lock(&ep->tx_pending_lock);
374 while (1) {
375 int entry;
376 struct ep93xx_tstat *tstat;
377 u32 tstat0;
378
379 entry = ep->tx_clean_pointer;
380 tstat = ep->descs->tstat + entry;
381
382 tstat0 = tstat->tstat0;
383 if (!(tstat0 & TSTAT0_TXFP))
384 break;
385
386 tstat->tstat0 = 0;
387
388 if (tstat0 & TSTAT0_FA)
389 pr_crit("frame aborted %.8x\n", tstat0);
390 if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry)
391 pr_crit("entry mismatch %.8x\n", tstat0);
392
393 if (tstat0 & TSTAT0_TXWE) {
394 int length = ep->descs->tdesc[entry].tdesc1 & 0xfff;
395
396 dev->stats.tx_packets++;
397 dev->stats.tx_bytes += length;
398 } else {
399 dev->stats.tx_errors++;
400 }
401
402 if (tstat0 & TSTAT0_OW)
403 dev->stats.tx_window_errors++;
404 if (tstat0 & TSTAT0_TXU)
405 dev->stats.tx_fifo_errors++;
406 dev->stats.collisions += (tstat0 >> 16) & 0x1f;
407
408 ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1);
409 if (ep->tx_pending == TX_QUEUE_ENTRIES)
410 wake = 1;
411 ep->tx_pending--;
412 }
413 spin_unlock(&ep->tx_pending_lock);
414
415 if (wake)
416 netif_wake_queue(dev);
417 }
418
ep93xx_irq(int irq,void * dev_id)419 static irqreturn_t ep93xx_irq(int irq, void *dev_id)
420 {
421 struct net_device *dev = dev_id;
422 struct ep93xx_priv *ep = netdev_priv(dev);
423 u32 status;
424
425 status = rdl(ep, REG_INTSTSC);
426 if (status == 0)
427 return IRQ_NONE;
428
429 if (status & REG_INTSTS_RX) {
430 spin_lock(&ep->rx_lock);
431 if (likely(napi_schedule_prep(&ep->napi))) {
432 wrl(ep, REG_INTEN, REG_INTEN_TX);
433 __napi_schedule(&ep->napi);
434 }
435 spin_unlock(&ep->rx_lock);
436 }
437
438 if (status & REG_INTSTS_TX)
439 ep93xx_tx_complete(dev);
440
441 return IRQ_HANDLED;
442 }
443
ep93xx_free_buffers(struct ep93xx_priv * ep)444 static void ep93xx_free_buffers(struct ep93xx_priv *ep)
445 {
446 struct device *dev = ep->dev->dev.parent;
447 int i;
448
449 if (!ep->descs)
450 return;
451
452 for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
453 dma_addr_t d;
454
455 d = ep->descs->rdesc[i].buf_addr;
456 if (d)
457 dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_FROM_DEVICE);
458
459 kfree(ep->rx_buf[i]);
460 }
461
462 for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
463 dma_addr_t d;
464
465 d = ep->descs->tdesc[i].buf_addr;
466 if (d)
467 dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_TO_DEVICE);
468
469 kfree(ep->tx_buf[i]);
470 }
471
472 dma_free_coherent(dev, sizeof(struct ep93xx_descs), ep->descs,
473 ep->descs_dma_addr);
474 ep->descs = NULL;
475 }
476
ep93xx_alloc_buffers(struct ep93xx_priv * ep)477 static int ep93xx_alloc_buffers(struct ep93xx_priv *ep)
478 {
479 struct device *dev = ep->dev->dev.parent;
480 int i;
481
482 ep->descs = dma_alloc_coherent(dev, sizeof(struct ep93xx_descs),
483 &ep->descs_dma_addr, GFP_KERNEL);
484 if (ep->descs == NULL)
485 return 1;
486
487 for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
488 void *buf;
489 dma_addr_t d;
490
491 buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
492 if (buf == NULL)
493 goto err;
494
495 d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_FROM_DEVICE);
496 if (dma_mapping_error(dev, d)) {
497 kfree(buf);
498 goto err;
499 }
500
501 ep->rx_buf[i] = buf;
502 ep->descs->rdesc[i].buf_addr = d;
503 ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE;
504 }
505
506 for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
507 void *buf;
508 dma_addr_t d;
509
510 buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL);
511 if (buf == NULL)
512 goto err;
513
514 d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_TO_DEVICE);
515 if (dma_mapping_error(dev, d)) {
516 kfree(buf);
517 goto err;
518 }
519
520 ep->tx_buf[i] = buf;
521 ep->descs->tdesc[i].buf_addr = d;
522 }
523
524 return 0;
525
526 err:
527 ep93xx_free_buffers(ep);
528 return 1;
529 }
530
ep93xx_start_hw(struct net_device * dev)531 static int ep93xx_start_hw(struct net_device *dev)
532 {
533 struct ep93xx_priv *ep = netdev_priv(dev);
534 unsigned long addr;
535 int i;
536
537 wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
538 for (i = 0; i < 10; i++) {
539 if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
540 break;
541 msleep(1);
542 }
543
544 if (i == 10) {
545 pr_crit("hw failed to reset\n");
546 return 1;
547 }
548
549 wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9));
550
551 /* Does the PHY support preamble suppress? */
552 if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0)
553 wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8));
554
555 /* Receive descriptor ring. */
556 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc);
557 wrl(ep, REG_RXDQBADD, addr);
558 wrl(ep, REG_RXDCURADD, addr);
559 wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc));
560
561 /* Receive status ring. */
562 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat);
563 wrl(ep, REG_RXSTSQBADD, addr);
564 wrl(ep, REG_RXSTSQCURADD, addr);
565 wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat));
566
567 /* Transmit descriptor ring. */
568 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc);
569 wrl(ep, REG_TXDQBADD, addr);
570 wrl(ep, REG_TXDQCURADD, addr);
571 wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc));
572
573 /* Transmit status ring. */
574 addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat);
575 wrl(ep, REG_TXSTSQBADD, addr);
576 wrl(ep, REG_TXSTSQCURADD, addr);
577 wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat));
578
579 wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX);
580 wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
581 wrl(ep, REG_GIINTMSK, 0);
582
583 for (i = 0; i < 10; i++) {
584 if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0)
585 break;
586 msleep(1);
587 }
588
589 if (i == 10) {
590 pr_crit("hw failed to start\n");
591 return 1;
592 }
593
594 wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES);
595 wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES);
596
597 wrb(ep, REG_INDAD0, dev->dev_addr[0]);
598 wrb(ep, REG_INDAD1, dev->dev_addr[1]);
599 wrb(ep, REG_INDAD2, dev->dev_addr[2]);
600 wrb(ep, REG_INDAD3, dev->dev_addr[3]);
601 wrb(ep, REG_INDAD4, dev->dev_addr[4]);
602 wrb(ep, REG_INDAD5, dev->dev_addr[5]);
603 wrl(ep, REG_AFP, 0);
604
605 wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE);
606
607 wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT);
608 wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE);
609
610 return 0;
611 }
612
ep93xx_stop_hw(struct net_device * dev)613 static void ep93xx_stop_hw(struct net_device *dev)
614 {
615 struct ep93xx_priv *ep = netdev_priv(dev);
616 int i;
617
618 wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
619 for (i = 0; i < 10; i++) {
620 if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
621 break;
622 msleep(1);
623 }
624
625 if (i == 10)
626 pr_crit("hw failed to reset\n");
627 }
628
ep93xx_open(struct net_device * dev)629 static int ep93xx_open(struct net_device *dev)
630 {
631 struct ep93xx_priv *ep = netdev_priv(dev);
632 int err;
633
634 if (ep93xx_alloc_buffers(ep))
635 return -ENOMEM;
636
637 napi_enable(&ep->napi);
638
639 if (ep93xx_start_hw(dev)) {
640 napi_disable(&ep->napi);
641 ep93xx_free_buffers(ep);
642 return -EIO;
643 }
644
645 spin_lock_init(&ep->rx_lock);
646 ep->rx_pointer = 0;
647 ep->tx_clean_pointer = 0;
648 ep->tx_pointer = 0;
649 spin_lock_init(&ep->tx_pending_lock);
650 ep->tx_pending = 0;
651
652 err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev);
653 if (err) {
654 napi_disable(&ep->napi);
655 ep93xx_stop_hw(dev);
656 ep93xx_free_buffers(ep);
657 return err;
658 }
659
660 wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE);
661
662 netif_start_queue(dev);
663
664 return 0;
665 }
666
ep93xx_close(struct net_device * dev)667 static int ep93xx_close(struct net_device *dev)
668 {
669 struct ep93xx_priv *ep = netdev_priv(dev);
670
671 napi_disable(&ep->napi);
672 netif_stop_queue(dev);
673
674 wrl(ep, REG_GIINTMSK, 0);
675 free_irq(ep->irq, dev);
676 ep93xx_stop_hw(dev);
677 ep93xx_free_buffers(ep);
678
679 return 0;
680 }
681
ep93xx_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)682 static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
683 {
684 struct ep93xx_priv *ep = netdev_priv(dev);
685 struct mii_ioctl_data *data = if_mii(ifr);
686
687 return generic_mii_ioctl(&ep->mii, data, cmd, NULL);
688 }
689
ep93xx_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)690 static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
691 {
692 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
693 }
694
ep93xx_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)695 static int ep93xx_get_link_ksettings(struct net_device *dev,
696 struct ethtool_link_ksettings *cmd)
697 {
698 struct ep93xx_priv *ep = netdev_priv(dev);
699
700 mii_ethtool_get_link_ksettings(&ep->mii, cmd);
701
702 return 0;
703 }
704
ep93xx_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)705 static int ep93xx_set_link_ksettings(struct net_device *dev,
706 const struct ethtool_link_ksettings *cmd)
707 {
708 struct ep93xx_priv *ep = netdev_priv(dev);
709 return mii_ethtool_set_link_ksettings(&ep->mii, cmd);
710 }
711
ep93xx_nway_reset(struct net_device * dev)712 static int ep93xx_nway_reset(struct net_device *dev)
713 {
714 struct ep93xx_priv *ep = netdev_priv(dev);
715 return mii_nway_restart(&ep->mii);
716 }
717
ep93xx_get_link(struct net_device * dev)718 static u32 ep93xx_get_link(struct net_device *dev)
719 {
720 struct ep93xx_priv *ep = netdev_priv(dev);
721 return mii_link_ok(&ep->mii);
722 }
723
724 static const struct ethtool_ops ep93xx_ethtool_ops = {
725 .get_drvinfo = ep93xx_get_drvinfo,
726 .nway_reset = ep93xx_nway_reset,
727 .get_link = ep93xx_get_link,
728 .get_link_ksettings = ep93xx_get_link_ksettings,
729 .set_link_ksettings = ep93xx_set_link_ksettings,
730 };
731
732 static const struct net_device_ops ep93xx_netdev_ops = {
733 .ndo_open = ep93xx_open,
734 .ndo_stop = ep93xx_close,
735 .ndo_start_xmit = ep93xx_xmit,
736 .ndo_eth_ioctl = ep93xx_ioctl,
737 .ndo_validate_addr = eth_validate_addr,
738 .ndo_set_mac_address = eth_mac_addr,
739 };
740
ep93xx_dev_alloc(struct ep93xx_eth_data * data)741 static struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data)
742 {
743 struct net_device *dev;
744
745 dev = alloc_etherdev(sizeof(struct ep93xx_priv));
746 if (dev == NULL)
747 return NULL;
748
749 memcpy(dev->dev_addr, data->dev_addr, ETH_ALEN);
750
751 dev->ethtool_ops = &ep93xx_ethtool_ops;
752 dev->netdev_ops = &ep93xx_netdev_ops;
753
754 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
755
756 return dev;
757 }
758
759
ep93xx_eth_remove(struct platform_device * pdev)760 static int ep93xx_eth_remove(struct platform_device *pdev)
761 {
762 struct net_device *dev;
763 struct ep93xx_priv *ep;
764 struct resource *mem;
765
766 dev = platform_get_drvdata(pdev);
767 if (dev == NULL)
768 return 0;
769
770 ep = netdev_priv(dev);
771
772 /* @@@ Force down. */
773 unregister_netdev(dev);
774 ep93xx_free_buffers(ep);
775
776 if (ep->base_addr != NULL)
777 iounmap(ep->base_addr);
778
779 if (ep->res != NULL) {
780 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
781 release_mem_region(mem->start, resource_size(mem));
782 }
783
784 free_netdev(dev);
785
786 return 0;
787 }
788
ep93xx_eth_probe(struct platform_device * pdev)789 static int ep93xx_eth_probe(struct platform_device *pdev)
790 {
791 struct ep93xx_eth_data *data;
792 struct net_device *dev;
793 struct ep93xx_priv *ep;
794 struct resource *mem;
795 int irq;
796 int err;
797
798 if (pdev == NULL)
799 return -ENODEV;
800 data = dev_get_platdata(&pdev->dev);
801
802 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
803 irq = platform_get_irq(pdev, 0);
804 if (!mem || irq < 0)
805 return -ENXIO;
806
807 dev = ep93xx_dev_alloc(data);
808 if (dev == NULL) {
809 err = -ENOMEM;
810 goto err_out;
811 }
812 ep = netdev_priv(dev);
813 ep->dev = dev;
814 SET_NETDEV_DEV(dev, &pdev->dev);
815 netif_napi_add(dev, &ep->napi, ep93xx_poll, 64);
816
817 platform_set_drvdata(pdev, dev);
818
819 ep->res = request_mem_region(mem->start, resource_size(mem),
820 dev_name(&pdev->dev));
821 if (ep->res == NULL) {
822 dev_err(&pdev->dev, "Could not reserve memory region\n");
823 err = -ENOMEM;
824 goto err_out;
825 }
826
827 ep->base_addr = ioremap(mem->start, resource_size(mem));
828 if (ep->base_addr == NULL) {
829 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
830 err = -EIO;
831 goto err_out;
832 }
833 ep->irq = irq;
834
835 ep->mii.phy_id = data->phy_id;
836 ep->mii.phy_id_mask = 0x1f;
837 ep->mii.reg_num_mask = 0x1f;
838 ep->mii.dev = dev;
839 ep->mii.mdio_read = ep93xx_mdio_read;
840 ep->mii.mdio_write = ep93xx_mdio_write;
841 ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */
842
843 if (is_zero_ether_addr(dev->dev_addr))
844 eth_hw_addr_random(dev);
845
846 err = register_netdev(dev);
847 if (err) {
848 dev_err(&pdev->dev, "Failed to register netdev\n");
849 goto err_out;
850 }
851
852 printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, %pM\n",
853 dev->name, ep->irq, dev->dev_addr);
854
855 return 0;
856
857 err_out:
858 ep93xx_eth_remove(pdev);
859 return err;
860 }
861
862
863 static struct platform_driver ep93xx_eth_driver = {
864 .probe = ep93xx_eth_probe,
865 .remove = ep93xx_eth_remove,
866 .driver = {
867 .name = "ep93xx-eth",
868 },
869 };
870
871 module_platform_driver(ep93xx_eth_driver);
872
873 MODULE_LICENSE("GPL");
874 MODULE_ALIAS("platform:ep93xx-eth");
875