1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/posix-clock.h>
7
8 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
9 * the fundamental clock design. However, the clock operations are much simpler
10 * in the XL710 because the device supports a full 64 bits of nanoseconds.
11 * Because the field is so wide, we can forgo the cycle counter and just
12 * operate with the nanosecond field directly without fear of overflow.
13 *
14 * Much like the 82599, the update period is dependent upon the link speed:
15 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
16 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
17 * At 1Gb link, the period is multiplied by 20. (32ns)
18 * 1588 functionality is not supported at 100Mbps.
19 */
20 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL
21 #define I40E_PTP_10GB_INCVAL_MULT 2
22 #define I40E_PTP_5GB_INCVAL_MULT 2
23 #define I40E_PTP_1GB_INCVAL_MULT 20
24 #define I40E_ISGN 0x80000000
25
26 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
28 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
29 #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB
30 #define to_dev(obj) container_of(obj, struct device, kobj)
31
32 enum i40e_ptp_pin {
33 SDP3_2 = 0,
34 SDP3_3,
35 GPIO_4
36 };
37
38 enum i40e_can_set_pins_t {
39 CANT_DO_PINS = -1,
40 CAN_SET_PINS,
41 CAN_DO_PINS
42 };
43
44 static struct ptp_pin_desc sdp_desc[] = {
45 /* name idx func chan */
46 {"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
47 {"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
48 {"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
49 };
50
51 enum i40e_ptp_gpio_pin_state {
52 end = -2,
53 invalid,
54 off,
55 in_A,
56 in_B,
57 out_A,
58 out_B,
59 };
60
61 static const char * const i40e_ptp_gpio_pin_state2str[] = {
62 "off", "in_A", "in_B", "out_A", "out_B"
63 };
64
65 enum i40e_ptp_led_pin_state {
66 led_end = -2,
67 low = 0,
68 high,
69 };
70
71 struct i40e_ptp_pins_settings {
72 enum i40e_ptp_gpio_pin_state sdp3_2;
73 enum i40e_ptp_gpio_pin_state sdp3_3;
74 enum i40e_ptp_gpio_pin_state gpio_4;
75 enum i40e_ptp_led_pin_state led2_0;
76 enum i40e_ptp_led_pin_state led2_1;
77 enum i40e_ptp_led_pin_state led3_0;
78 enum i40e_ptp_led_pin_state led3_1;
79 };
80
81 static const struct i40e_ptp_pins_settings
82 i40e_ptp_pin_led_allowed_states[] = {
83 {off, off, off, high, high, high, high},
84 {off, in_A, off, high, high, high, low},
85 {off, out_A, off, high, low, high, high},
86 {off, in_B, off, high, high, high, low},
87 {off, out_B, off, high, low, high, high},
88 {in_A, off, off, high, high, high, low},
89 {in_A, in_B, off, high, high, high, low},
90 {in_A, out_B, off, high, low, high, high},
91 {out_A, off, off, high, low, high, high},
92 {out_A, in_B, off, high, low, high, high},
93 {in_B, off, off, high, high, high, low},
94 {in_B, in_A, off, high, high, high, low},
95 {in_B, out_A, off, high, low, high, high},
96 {out_B, off, off, high, low, high, high},
97 {out_B, in_A, off, high, low, high, high},
98 {off, off, in_A, high, high, low, high},
99 {off, out_A, in_A, high, low, low, high},
100 {off, in_B, in_A, high, high, low, low},
101 {off, out_B, in_A, high, low, low, high},
102 {out_A, off, in_A, high, low, low, high},
103 {out_A, in_B, in_A, high, low, low, high},
104 {in_B, off, in_A, high, high, low, low},
105 {in_B, out_A, in_A, high, low, low, high},
106 {out_B, off, in_A, high, low, low, high},
107 {off, off, out_A, low, high, high, high},
108 {off, in_A, out_A, low, high, high, low},
109 {off, in_B, out_A, low, high, high, low},
110 {off, out_B, out_A, low, low, high, high},
111 {in_A, off, out_A, low, high, high, low},
112 {in_A, in_B, out_A, low, high, high, low},
113 {in_A, out_B, out_A, low, low, high, high},
114 {in_B, off, out_A, low, high, high, low},
115 {in_B, in_A, out_A, low, high, high, low},
116 {out_B, off, out_A, low, low, high, high},
117 {out_B, in_A, out_A, low, low, high, high},
118 {off, off, in_B, high, high, low, high},
119 {off, in_A, in_B, high, high, low, low},
120 {off, out_A, in_B, high, low, low, high},
121 {off, out_B, in_B, high, low, low, high},
122 {in_A, off, in_B, high, high, low, low},
123 {in_A, out_B, in_B, high, low, low, high},
124 {out_A, off, in_B, high, low, low, high},
125 {out_B, off, in_B, high, low, low, high},
126 {out_B, in_A, in_B, high, low, low, high},
127 {off, off, out_B, low, high, high, high},
128 {off, in_A, out_B, low, high, high, low},
129 {off, out_A, out_B, low, low, high, high},
130 {off, in_B, out_B, low, high, high, low},
131 {in_A, off, out_B, low, high, high, low},
132 {in_A, in_B, out_B, low, high, high, low},
133 {out_A, off, out_B, low, low, high, high},
134 {out_A, in_B, out_B, low, low, high, high},
135 {in_B, off, out_B, low, high, high, low},
136 {in_B, in_A, out_B, low, high, high, low},
137 {in_B, out_A, out_B, low, low, high, high},
138 {end, end, end, led_end, led_end, led_end, led_end}
139 };
140
141 static int i40e_ptp_set_pins(struct i40e_pf *pf,
142 struct i40e_ptp_pins_settings *pins);
143
144 /**
145 * i40e_ptp_extts0_work - workqueue task function
146 * @work: workqueue task structure
147 *
148 * Service for PTP external clock event
149 **/
i40e_ptp_extts0_work(struct work_struct * work)150 static void i40e_ptp_extts0_work(struct work_struct *work)
151 {
152 struct i40e_pf *pf = container_of(work, struct i40e_pf,
153 ptp_extts0_work);
154 struct i40e_hw *hw = &pf->hw;
155 struct ptp_clock_event event;
156 u32 hi, lo;
157
158 /* Event time is captured by one of the two matched registers
159 * PRTTSYN_EVNT_L: 32 LSB of sampled time event
160 * PRTTSYN_EVNT_H: 32 MSB of sampled time event
161 * Event is defined in PRTTSYN_EVNT_0 register
162 */
163 lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
164 hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
165
166 event.timestamp = (((u64)hi) << 32) | lo;
167
168 event.type = PTP_CLOCK_EXTTS;
169 event.index = hw->pf_id;
170
171 /* fire event */
172 ptp_clock_event(pf->ptp_clock, &event);
173 }
174
175 /**
176 * i40e_is_ptp_pin_dev - check if device supports PTP pins
177 * @hw: pointer to the hardware structure
178 *
179 * Return true if device supports PTP pins, false otherwise.
180 **/
i40e_is_ptp_pin_dev(struct i40e_hw * hw)181 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
182 {
183 return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
184 hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
185 }
186
187 /**
188 * i40e_can_set_pins - check possibility of manipulating the pins
189 * @pf: board private structure
190 *
191 * Check if all conditions are satisfied to manipulate PTP pins.
192 * Return CAN_SET_PINS if pins can be set on a specific PF or
193 * return CAN_DO_PINS if pins can be manipulated within a NIC or
194 * return CANT_DO_PINS otherwise.
195 **/
i40e_can_set_pins(struct i40e_pf * pf)196 static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
197 {
198 if (!i40e_is_ptp_pin_dev(&pf->hw)) {
199 dev_warn(&pf->pdev->dev,
200 "PTP external clock not supported.\n");
201 return CANT_DO_PINS;
202 }
203
204 if (!pf->ptp_pins) {
205 dev_warn(&pf->pdev->dev,
206 "PTP PIN manipulation not allowed.\n");
207 return CANT_DO_PINS;
208 }
209
210 if (pf->hw.pf_id) {
211 dev_warn(&pf->pdev->dev,
212 "PTP PINs should be accessed via PF0.\n");
213 return CAN_DO_PINS;
214 }
215
216 return CAN_SET_PINS;
217 }
218
219 /**
220 * i40_ptp_reset_timing_events - Reset PTP timing events
221 * @pf: Board private structure
222 *
223 * This function resets timing events for pf.
224 **/
i40_ptp_reset_timing_events(struct i40e_pf * pf)225 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
226 {
227 u32 i;
228
229 spin_lock_bh(&pf->ptp_rx_lock);
230 for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
231 /* reading and automatically clearing timing events registers */
232 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
233 rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
234 pf->latch_events[i] = 0;
235 }
236 /* reading and automatically clearing timing events registers */
237 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
238 rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
239
240 pf->tx_hwtstamp_timeouts = 0;
241 pf->tx_hwtstamp_skipped = 0;
242 pf->rx_hwtstamp_cleared = 0;
243 pf->latch_event_flags = 0;
244 spin_unlock_bh(&pf->ptp_rx_lock);
245 }
246
247 /**
248 * i40e_ptp_verify - check pins
249 * @ptp: ptp clock
250 * @pin: pin index
251 * @func: assigned function
252 * @chan: channel
253 *
254 * Check pins consistency.
255 * Return 0 on success or error on failure.
256 **/
i40e_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)257 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
258 enum ptp_pin_function func, unsigned int chan)
259 {
260 switch (func) {
261 case PTP_PF_NONE:
262 case PTP_PF_EXTTS:
263 case PTP_PF_PEROUT:
264 break;
265 case PTP_PF_PHYSYNC:
266 return -EOPNOTSUPP;
267 }
268 return 0;
269 }
270
271 /**
272 * i40e_ptp_read - Read the PHC time from the device
273 * @pf: Board private structure
274 * @ts: timespec structure to hold the current time value
275 * @sts: structure to hold the system time before and after reading the PHC
276 *
277 * This function reads the PRTTSYN_TIME registers and stores them in a
278 * timespec. However, since the registers are 64 bits of nanoseconds, we must
279 * convert the result to a timespec before we can return.
280 **/
i40e_ptp_read(struct i40e_pf * pf,struct timespec64 * ts,struct ptp_system_timestamp * sts)281 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
282 struct ptp_system_timestamp *sts)
283 {
284 struct i40e_hw *hw = &pf->hw;
285 u32 hi, lo;
286 u64 ns;
287
288 /* The timer latches on the lowest register read. */
289 ptp_read_system_prets(sts);
290 lo = rd32(hw, I40E_PRTTSYN_TIME_L);
291 ptp_read_system_postts(sts);
292 hi = rd32(hw, I40E_PRTTSYN_TIME_H);
293
294 ns = (((u64)hi) << 32) | lo;
295
296 *ts = ns_to_timespec64(ns);
297 }
298
299 /**
300 * i40e_ptp_write - Write the PHC time to the device
301 * @pf: Board private structure
302 * @ts: timespec structure that holds the new time value
303 *
304 * This function writes the PRTTSYN_TIME registers with the user value. Since
305 * we receive a timespec from the stack, we must convert that timespec into
306 * nanoseconds before programming the registers.
307 **/
i40e_ptp_write(struct i40e_pf * pf,const struct timespec64 * ts)308 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
309 {
310 struct i40e_hw *hw = &pf->hw;
311 u64 ns = timespec64_to_ns(ts);
312
313 /* The timer will not update until the high register is written, so
314 * write the low register first.
315 */
316 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
317 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
318 }
319
320 /**
321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
322 * @hwtstamps: Timestamp structure to update
323 * @timestamp: Timestamp from the hardware
324 *
325 * We need to convert the NIC clock value into a hwtstamp which can be used by
326 * the upper level timestamping functions. Since the timestamp is simply a 64-
327 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
328 **/
i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps * hwtstamps,u64 timestamp)329 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
330 u64 timestamp)
331 {
332 memset(hwtstamps, 0, sizeof(*hwtstamps));
333
334 hwtstamps->hwtstamp = ns_to_ktime(timestamp);
335 }
336
337 /**
338 * i40e_ptp_adjfreq - Adjust the PHC frequency
339 * @ptp: The PTP clock structure
340 * @ppb: Parts per billion adjustment from the base
341 *
342 * Adjust the frequency of the PHC by the indicated parts per billion from the
343 * base frequency.
344 **/
i40e_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)345 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
346 {
347 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
348 struct i40e_hw *hw = &pf->hw;
349 u64 adj, freq, diff;
350 int neg_adj = 0;
351
352 if (ppb < 0) {
353 neg_adj = 1;
354 ppb = -ppb;
355 }
356
357 freq = I40E_PTP_40GB_INCVAL;
358 freq *= ppb;
359 diff = div_u64(freq, 1000000000ULL);
360
361 if (neg_adj)
362 adj = I40E_PTP_40GB_INCVAL - diff;
363 else
364 adj = I40E_PTP_40GB_INCVAL + diff;
365
366 /* At some link speeds, the base incval is so large that directly
367 * multiplying by ppb would result in arithmetic overflow even when
368 * using a u64. Avoid this by instead calculating the new incval
369 * always in terms of the 40GbE clock rate and then multiplying by the
370 * link speed factor afterwards. This does result in slightly lower
371 * precision at lower link speeds, but it is fairly minor.
372 */
373 smp_mb(); /* Force any pending update before accessing. */
374 adj *= READ_ONCE(pf->ptp_adj_mult);
375
376 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
377 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
378
379 return 0;
380 }
381
382 /**
383 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
384 * @pf: the PF private data structure
385 *
386 * Configure 1PPS signal used for PTP pins
387 **/
i40e_ptp_set_1pps_signal_hw(struct i40e_pf * pf)388 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
389 {
390 struct i40e_hw *hw = &pf->hw;
391 struct timespec64 now;
392 u64 ns;
393
394 wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
395 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
396 wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
397
398 i40e_ptp_read(pf, &now, NULL);
399 now.tv_sec += I40E_PTP_2_SEC_DELAY;
400 now.tv_nsec = 0;
401 ns = timespec64_to_ns(&now);
402
403 /* I40E_PRTTSYN_TGT_L(1) */
404 wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
405 /* I40E_PRTTSYN_TGT_H(1) */
406 wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
407 wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
408 wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
409 wr32(hw, I40E_PRTTSYN_AUX_0(1),
410 I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
411 }
412
413 /**
414 * i40e_ptp_adjtime - Adjust the PHC time
415 * @ptp: The PTP clock structure
416 * @delta: Offset in nanoseconds to adjust the PHC time by
417 *
418 * Adjust the current clock time by a delta specified in nanoseconds.
419 **/
i40e_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)420 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
421 {
422 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
423 struct i40e_hw *hw = &pf->hw;
424
425 mutex_lock(&pf->tmreg_lock);
426
427 if (delta > -999999900LL && delta < 999999900LL) {
428 int neg_adj = 0;
429 u32 timadj;
430 u64 tohw;
431
432 if (delta < 0) {
433 neg_adj = 1;
434 tohw = -delta;
435 } else {
436 tohw = delta;
437 }
438
439 timadj = tohw & 0x3FFFFFFF;
440 if (neg_adj)
441 timadj |= I40E_ISGN;
442 wr32(hw, I40E_PRTTSYN_ADJ, timadj);
443 } else {
444 struct timespec64 then, now;
445
446 then = ns_to_timespec64(delta);
447 i40e_ptp_read(pf, &now, NULL);
448 now = timespec64_add(now, then);
449 i40e_ptp_write(pf, (const struct timespec64 *)&now);
450 i40e_ptp_set_1pps_signal_hw(pf);
451 }
452
453 mutex_unlock(&pf->tmreg_lock);
454
455 return 0;
456 }
457
458 /**
459 * i40e_ptp_gettimex - Get the time of the PHC
460 * @ptp: The PTP clock structure
461 * @ts: timespec structure to hold the current time value
462 * @sts: structure to hold the system time before and after reading the PHC
463 *
464 * Read the device clock and return the correct value on ns, after converting it
465 * into a timespec struct.
466 **/
i40e_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)467 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
468 struct ptp_system_timestamp *sts)
469 {
470 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
471
472 mutex_lock(&pf->tmreg_lock);
473 i40e_ptp_read(pf, ts, sts);
474 mutex_unlock(&pf->tmreg_lock);
475
476 return 0;
477 }
478
479 /**
480 * i40e_ptp_settime - Set the time of the PHC
481 * @ptp: The PTP clock structure
482 * @ts: timespec64 structure that holds the new time value
483 *
484 * Set the device clock to the user input value. The conversion from timespec
485 * to ns happens in the write function.
486 **/
i40e_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)487 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
488 const struct timespec64 *ts)
489 {
490 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
491
492 mutex_lock(&pf->tmreg_lock);
493 i40e_ptp_write(pf, ts);
494 mutex_unlock(&pf->tmreg_lock);
495
496 return 0;
497 }
498
499 /**
500 * i40e_pps_configure - configure PPS events
501 * @ptp: ptp clock
502 * @rq: clock request
503 * @on: status
504 *
505 * Configure PPS events for external clock source.
506 * Return 0 on success or error on failure.
507 **/
i40e_pps_configure(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)508 static int i40e_pps_configure(struct ptp_clock_info *ptp,
509 struct ptp_clock_request *rq,
510 int on)
511 {
512 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
513
514 if (!!on)
515 i40e_ptp_set_1pps_signal_hw(pf);
516
517 return 0;
518 }
519
520 /**
521 * i40e_pin_state - determine PIN state
522 * @index: PIN index
523 * @func: function assigned to PIN
524 *
525 * Determine PIN state based on PIN index and function assigned.
526 * Return PIN state.
527 **/
i40e_pin_state(int index,int func)528 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
529 {
530 enum i40e_ptp_gpio_pin_state state = off;
531
532 if (index == 0 && func == PTP_PF_EXTTS)
533 state = in_A;
534 if (index == 1 && func == PTP_PF_EXTTS)
535 state = in_B;
536 if (index == 0 && func == PTP_PF_PEROUT)
537 state = out_A;
538 if (index == 1 && func == PTP_PF_PEROUT)
539 state = out_B;
540
541 return state;
542 }
543
544 /**
545 * i40e_ptp_enable_pin - enable PINs.
546 * @pf: private board structure
547 * @chan: channel
548 * @func: PIN function
549 * @on: state
550 *
551 * Enable PTP pins for external clock source.
552 * Return 0 on success or error code on failure.
553 **/
i40e_ptp_enable_pin(struct i40e_pf * pf,unsigned int chan,enum ptp_pin_function func,int on)554 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
555 enum ptp_pin_function func, int on)
556 {
557 enum i40e_ptp_gpio_pin_state *pin = NULL;
558 struct i40e_ptp_pins_settings pins;
559 int pin_index;
560
561 /* Use PF0 to set pins. Return success for user space tools */
562 if (pf->hw.pf_id)
563 return 0;
564
565 /* Preserve previous state of pins that we don't touch */
566 pins.sdp3_2 = pf->ptp_pins->sdp3_2;
567 pins.sdp3_3 = pf->ptp_pins->sdp3_3;
568 pins.gpio_4 = pf->ptp_pins->gpio_4;
569
570 /* To turn on the pin - find the corresponding one based on
571 * the given index. To to turn the function off - find
572 * which pin had it assigned. Don't use ptp_find_pin here
573 * because it tries to lock the pincfg_mux which is locked by
574 * ptp_pin_store() that calls here.
575 */
576 if (on) {
577 pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
578 if (pin_index < 0)
579 return -EBUSY;
580
581 switch (pin_index) {
582 case SDP3_2:
583 pin = &pins.sdp3_2;
584 break;
585 case SDP3_3:
586 pin = &pins.sdp3_3;
587 break;
588 case GPIO_4:
589 pin = &pins.gpio_4;
590 break;
591 default:
592 return -EINVAL;
593 }
594
595 *pin = i40e_pin_state(chan, func);
596 } else {
597 pins.sdp3_2 = off;
598 pins.sdp3_3 = off;
599 pins.gpio_4 = off;
600 }
601
602 return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
603 }
604
605 /**
606 * i40e_ptp_feature_enable - Enable external clock pins
607 * @ptp: The PTP clock structure
608 * @rq: The PTP clock request structure
609 * @on: To turn feature on/off
610 *
611 * Setting on/off PTP PPS feature for pin.
612 **/
i40e_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)613 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
614 struct ptp_clock_request *rq,
615 int on)
616 {
617 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
618
619 enum ptp_pin_function func;
620 unsigned int chan;
621
622 /* TODO: Implement flags handling for EXTTS and PEROUT */
623 switch (rq->type) {
624 case PTP_CLK_REQ_EXTTS:
625 func = PTP_PF_EXTTS;
626 chan = rq->extts.index;
627 break;
628 case PTP_CLK_REQ_PEROUT:
629 func = PTP_PF_PEROUT;
630 chan = rq->perout.index;
631 break;
632 case PTP_CLK_REQ_PPS:
633 return i40e_pps_configure(ptp, rq, on);
634 default:
635 return -EOPNOTSUPP;
636 }
637
638 return i40e_ptp_enable_pin(pf, chan, func, on);
639 }
640
641 /**
642 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
643 * @pf: the PF data structure
644 *
645 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
646 * for noticed latch events. This allows the driver to keep track of the first
647 * time a latch event was noticed which will be used to help clear out Rx
648 * timestamps for packets that got dropped or lost.
649 *
650 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
651 * expected to be called only while under the ptp_rx_lock.
652 **/
i40e_ptp_get_rx_events(struct i40e_pf * pf)653 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
654 {
655 struct i40e_hw *hw = &pf->hw;
656 u32 prttsyn_stat, new_latch_events;
657 int i;
658
659 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
660 new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
661
662 /* Update the jiffies time for any newly latched timestamp. This
663 * ensures that we store the time that we first discovered a timestamp
664 * was latched by the hardware. The service task will later determine
665 * if we should free the latch and drop that timestamp should too much
666 * time pass. This flow ensures that we only update jiffies for new
667 * events latched since the last time we checked, and not all events
668 * currently latched, so that the service task accounting remains
669 * accurate.
670 */
671 for (i = 0; i < 4; i++) {
672 if (new_latch_events & BIT(i))
673 pf->latch_events[i] = jiffies;
674 }
675
676 /* Finally, we store the current status of the Rx timestamp latches */
677 pf->latch_event_flags = prttsyn_stat;
678
679 return prttsyn_stat;
680 }
681
682 /**
683 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
684 * @pf: The PF private data structure
685 *
686 * This watchdog task is scheduled to detect error case where hardware has
687 * dropped an Rx packet that was timestamped when the ring is full. The
688 * particular error is rare but leaves the device in a state unable to timestamp
689 * any future packets.
690 **/
i40e_ptp_rx_hang(struct i40e_pf * pf)691 void i40e_ptp_rx_hang(struct i40e_pf *pf)
692 {
693 struct i40e_hw *hw = &pf->hw;
694 unsigned int i, cleared = 0;
695
696 /* Since we cannot turn off the Rx timestamp logic if the device is
697 * configured for Tx timestamping, we check if Rx timestamping is
698 * configured. We don't want to spuriously warn about Rx timestamp
699 * hangs if we don't care about the timestamps.
700 */
701 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
702 return;
703
704 spin_lock_bh(&pf->ptp_rx_lock);
705
706 /* Update current latch times for Rx events */
707 i40e_ptp_get_rx_events(pf);
708
709 /* Check all the currently latched Rx events and see whether they have
710 * been latched for over a second. It is assumed that any timestamp
711 * should have been cleared within this time, or else it was captured
712 * for a dropped frame that the driver never received. Thus, we will
713 * clear any timestamp that has been latched for over 1 second.
714 */
715 for (i = 0; i < 4; i++) {
716 if ((pf->latch_event_flags & BIT(i)) &&
717 time_is_before_jiffies(pf->latch_events[i] + HZ)) {
718 rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
719 pf->latch_event_flags &= ~BIT(i);
720 cleared++;
721 }
722 }
723
724 spin_unlock_bh(&pf->ptp_rx_lock);
725
726 /* Log a warning if more than 2 timestamps got dropped in the same
727 * check. We don't want to warn about all drops because it can occur
728 * in normal scenarios such as PTP frames on multicast addresses we
729 * aren't listening to. However, administrator should know if this is
730 * the reason packets aren't receiving timestamps.
731 */
732 if (cleared > 2)
733 dev_dbg(&pf->pdev->dev,
734 "Dropped %d missed RXTIME timestamp events\n",
735 cleared);
736
737 /* Finally, update the rx_hwtstamp_cleared counter */
738 pf->rx_hwtstamp_cleared += cleared;
739 }
740
741 /**
742 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
743 * @pf: The PF private data structure
744 *
745 * This watchdog task is run periodically to make sure that we clear the Tx
746 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
747 * time. It is unexpected in the normal case but if it occurs it results in
748 * permanently preventing timestamps of future packets.
749 **/
i40e_ptp_tx_hang(struct i40e_pf * pf)750 void i40e_ptp_tx_hang(struct i40e_pf *pf)
751 {
752 struct sk_buff *skb;
753
754 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
755 return;
756
757 /* Nothing to do if we're not already waiting for a timestamp */
758 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
759 return;
760
761 /* We already have a handler routine which is run when we are notified
762 * of a Tx timestamp in the hardware. If we don't get an interrupt
763 * within a second it is reasonable to assume that we never will.
764 */
765 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
766 skb = pf->ptp_tx_skb;
767 pf->ptp_tx_skb = NULL;
768 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
769
770 /* Free the skb after we clear the bitlock */
771 dev_kfree_skb_any(skb);
772 pf->tx_hwtstamp_timeouts++;
773 }
774 }
775
776 /**
777 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
778 * @pf: Board private structure
779 *
780 * Read the value of the Tx timestamp from the registers, convert it into a
781 * value consumable by the stack, and store that result into the shhwtstamps
782 * struct before returning it up the stack.
783 **/
i40e_ptp_tx_hwtstamp(struct i40e_pf * pf)784 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
785 {
786 struct skb_shared_hwtstamps shhwtstamps;
787 struct sk_buff *skb = pf->ptp_tx_skb;
788 struct i40e_hw *hw = &pf->hw;
789 u32 hi, lo;
790 u64 ns;
791
792 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
793 return;
794
795 /* don't attempt to timestamp if we don't have an skb */
796 if (!pf->ptp_tx_skb)
797 return;
798
799 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
800 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
801
802 ns = (((u64)hi) << 32) | lo;
803 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
804
805 /* Clear the bit lock as soon as possible after reading the register,
806 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
807 * applications might wake up and attempt to request another transmit
808 * timestamp prior to the bit lock being cleared.
809 */
810 pf->ptp_tx_skb = NULL;
811 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
812
813 /* Notify the stack and free the skb after we've unlocked */
814 skb_tstamp_tx(skb, &shhwtstamps);
815 dev_kfree_skb_any(skb);
816 }
817
818 /**
819 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
820 * @pf: Board private structure
821 * @skb: Particular skb to send timestamp with
822 * @index: Index into the receive timestamp registers for the timestamp
823 *
824 * The XL710 receives a notification in the receive descriptor with an offset
825 * into the set of RXTIME registers where the timestamp is for that skb. This
826 * function goes and fetches the receive timestamp from that offset, if a valid
827 * one exists. The RXTIME registers are in ns, so we must convert the result
828 * first.
829 **/
i40e_ptp_rx_hwtstamp(struct i40e_pf * pf,struct sk_buff * skb,u8 index)830 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
831 {
832 u32 prttsyn_stat, hi, lo;
833 struct i40e_hw *hw;
834 u64 ns;
835
836 /* Since we cannot turn off the Rx timestamp logic if the device is
837 * doing Tx timestamping, check if Rx timestamping is configured.
838 */
839 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
840 return;
841
842 hw = &pf->hw;
843
844 spin_lock_bh(&pf->ptp_rx_lock);
845
846 /* Get current Rx events and update latch times */
847 prttsyn_stat = i40e_ptp_get_rx_events(pf);
848
849 /* TODO: Should we warn about missing Rx timestamp event? */
850 if (!(prttsyn_stat & BIT(index))) {
851 spin_unlock_bh(&pf->ptp_rx_lock);
852 return;
853 }
854
855 /* Clear the latched event since we're about to read its register */
856 pf->latch_event_flags &= ~BIT(index);
857
858 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
859 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
860
861 spin_unlock_bh(&pf->ptp_rx_lock);
862
863 ns = (((u64)hi) << 32) | lo;
864
865 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
866 }
867
868 /**
869 * i40e_ptp_set_increment - Utility function to update clock increment rate
870 * @pf: Board private structure
871 *
872 * During a link change, the DMA frequency that drives the 1588 logic will
873 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
874 * we must update the increment value per clock tick.
875 **/
i40e_ptp_set_increment(struct i40e_pf * pf)876 void i40e_ptp_set_increment(struct i40e_pf *pf)
877 {
878 struct i40e_link_status *hw_link_info;
879 struct i40e_hw *hw = &pf->hw;
880 u64 incval;
881 u32 mult;
882
883 hw_link_info = &hw->phy.link_info;
884
885 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
886
887 switch (hw_link_info->link_speed) {
888 case I40E_LINK_SPEED_10GB:
889 mult = I40E_PTP_10GB_INCVAL_MULT;
890 break;
891 case I40E_LINK_SPEED_5GB:
892 mult = I40E_PTP_5GB_INCVAL_MULT;
893 break;
894 case I40E_LINK_SPEED_1GB:
895 mult = I40E_PTP_1GB_INCVAL_MULT;
896 break;
897 case I40E_LINK_SPEED_100MB:
898 {
899 static int warn_once;
900
901 if (!warn_once) {
902 dev_warn(&pf->pdev->dev,
903 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
904 warn_once++;
905 }
906 mult = 0;
907 break;
908 }
909 case I40E_LINK_SPEED_40GB:
910 default:
911 mult = 1;
912 break;
913 }
914
915 /* The increment value is calculated by taking the base 40GbE incvalue
916 * and multiplying it by a factor based on the link speed.
917 */
918 incval = I40E_PTP_40GB_INCVAL * mult;
919
920 /* Write the new increment value into the increment register. The
921 * hardware will not update the clock until both registers have been
922 * written.
923 */
924 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
925 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
926
927 /* Update the base adjustement value. */
928 WRITE_ONCE(pf->ptp_adj_mult, mult);
929 smp_mb(); /* Force the above update. */
930 }
931
932 /**
933 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
934 * @pf: Board private structure
935 * @ifr: ioctl data
936 *
937 * Obtain the current hardware timestamping settigs as requested. To do this,
938 * keep a shadow copy of the timestamp settings rather than attempting to
939 * deconstruct it from the registers.
940 **/
i40e_ptp_get_ts_config(struct i40e_pf * pf,struct ifreq * ifr)941 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
942 {
943 struct hwtstamp_config *config = &pf->tstamp_config;
944
945 if (!(pf->flags & I40E_FLAG_PTP))
946 return -EOPNOTSUPP;
947
948 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
949 -EFAULT : 0;
950 }
951
952 /**
953 * i40e_ptp_free_pins - free memory used by PTP pins
954 * @pf: Board private structure
955 *
956 * Release memory allocated for PTP pins.
957 **/
i40e_ptp_free_pins(struct i40e_pf * pf)958 static void i40e_ptp_free_pins(struct i40e_pf *pf)
959 {
960 if (i40e_is_ptp_pin_dev(&pf->hw)) {
961 kfree(pf->ptp_pins);
962 kfree(pf->ptp_caps.pin_config);
963 pf->ptp_pins = NULL;
964 }
965 }
966
967 /**
968 * i40e_ptp_set_pin_hw - Set HW GPIO pin
969 * @hw: pointer to the hardware structure
970 * @pin: pin index
971 * @state: pin state
972 *
973 * Set status of GPIO pin for external clock handling.
974 **/
i40e_ptp_set_pin_hw(struct i40e_hw * hw,unsigned int pin,enum i40e_ptp_gpio_pin_state state)975 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
976 unsigned int pin,
977 enum i40e_ptp_gpio_pin_state state)
978 {
979 switch (state) {
980 case off:
981 wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
982 break;
983 case in_A:
984 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
985 I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
986 break;
987 case in_B:
988 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
989 I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
990 break;
991 case out_A:
992 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
993 I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
994 break;
995 case out_B:
996 wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
997 I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
998 break;
999 default:
1000 break;
1001 }
1002 }
1003
1004 /**
1005 * i40e_ptp_set_led_hw - Set HW GPIO led
1006 * @hw: pointer to the hardware structure
1007 * @led: led index
1008 * @state: led state
1009 *
1010 * Set status of GPIO led for external clock handling.
1011 **/
i40e_ptp_set_led_hw(struct i40e_hw * hw,unsigned int led,enum i40e_ptp_led_pin_state state)1012 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
1013 unsigned int led,
1014 enum i40e_ptp_led_pin_state state)
1015 {
1016 switch (state) {
1017 case low:
1018 wr32(hw, I40E_GLGEN_GPIO_SET,
1019 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1020 break;
1021 case high:
1022 wr32(hw, I40E_GLGEN_GPIO_SET,
1023 I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1024 I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1025 break;
1026 default:
1027 break;
1028 }
1029 }
1030
1031 /**
1032 * i40e_ptp_init_leds_hw - init LEDs
1033 * @hw: pointer to a hardware structure
1034 *
1035 * Set initial state of LEDs
1036 **/
i40e_ptp_init_leds_hw(struct i40e_hw * hw)1037 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1038 {
1039 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1040 I40E_GLGEN_GPIO_CTL_LED_INIT);
1041 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1042 I40E_GLGEN_GPIO_CTL_LED_INIT);
1043 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1044 I40E_GLGEN_GPIO_CTL_LED_INIT);
1045 wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1046 I40E_GLGEN_GPIO_CTL_LED_INIT);
1047 }
1048
1049 /**
1050 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1051 * @pf: Board private structure
1052 *
1053 * This function sets GPIO pins for PTP
1054 **/
i40e_ptp_set_pins_hw(struct i40e_pf * pf)1055 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1056 {
1057 const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1058 struct i40e_hw *hw = &pf->hw;
1059
1060 /* pin must be disabled before it may be used */
1061 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1062 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1063 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1064
1065 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1066 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1067 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1068
1069 i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1070 i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1071 i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1072 i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1073
1074 dev_info(&pf->pdev->dev,
1075 "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
1076 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1077 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1078 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1079 }
1080
1081 /**
1082 * i40e_ptp_set_pins - set PTP pins in HW
1083 * @pf: Board private structure
1084 * @pins: PTP pins to be applied
1085 *
1086 * Validate and set PTP pins in HW for specific PF.
1087 * Return 0 on success or negative value on error.
1088 **/
i40e_ptp_set_pins(struct i40e_pf * pf,struct i40e_ptp_pins_settings * pins)1089 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1090 struct i40e_ptp_pins_settings *pins)
1091 {
1092 enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1093 int i = 0;
1094
1095 if (pin_caps == CANT_DO_PINS)
1096 return -EOPNOTSUPP;
1097 else if (pin_caps == CAN_DO_PINS)
1098 return 0;
1099
1100 if (pins->sdp3_2 == invalid)
1101 pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1102 if (pins->sdp3_3 == invalid)
1103 pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1104 if (pins->gpio_4 == invalid)
1105 pins->gpio_4 = pf->ptp_pins->gpio_4;
1106 while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1107 if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1108 pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1109 pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1110 pins->led2_0 =
1111 i40e_ptp_pin_led_allowed_states[i].led2_0;
1112 pins->led2_1 =
1113 i40e_ptp_pin_led_allowed_states[i].led2_1;
1114 pins->led3_0 =
1115 i40e_ptp_pin_led_allowed_states[i].led3_0;
1116 pins->led3_1 =
1117 i40e_ptp_pin_led_allowed_states[i].led3_1;
1118 break;
1119 }
1120 i++;
1121 }
1122 if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1123 dev_warn(&pf->pdev->dev,
1124 "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n",
1125 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1126 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1127 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1128
1129 return -EPERM;
1130 }
1131 memcpy(pf->ptp_pins, pins, sizeof(*pins));
1132 i40e_ptp_set_pins_hw(pf);
1133 i40_ptp_reset_timing_events(pf);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * i40e_ptp_alloc_pins - allocate PTP pins structure
1140 * @pf: Board private structure
1141 *
1142 * allocate PTP pins structure
1143 **/
i40e_ptp_alloc_pins(struct i40e_pf * pf)1144 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1145 {
1146 if (!i40e_is_ptp_pin_dev(&pf->hw))
1147 return 0;
1148
1149 pf->ptp_pins =
1150 kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1151
1152 if (!pf->ptp_pins) {
1153 dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1154 return -I40E_ERR_NO_MEMORY;
1155 }
1156
1157 pf->ptp_pins->sdp3_2 = off;
1158 pf->ptp_pins->sdp3_3 = off;
1159 pf->ptp_pins->gpio_4 = off;
1160 pf->ptp_pins->led2_0 = high;
1161 pf->ptp_pins->led2_1 = high;
1162 pf->ptp_pins->led3_0 = high;
1163 pf->ptp_pins->led3_1 = high;
1164
1165 /* Use PF0 to set pins in HW. Return success for user space tools */
1166 if (pf->hw.pf_id)
1167 return 0;
1168
1169 i40e_ptp_init_leds_hw(&pf->hw);
1170 i40e_ptp_set_pins_hw(pf);
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1177 * @pf: Board private structure
1178 * @config: hwtstamp settings requested or saved
1179 *
1180 * Control hardware registers to enter the specific mode requested by the
1181 * user. Also used during reset path to ensure that timestamp settings are
1182 * maintained.
1183 *
1184 * Note: modifies config in place, and may update the requested mode to be
1185 * more broad if the specific filter is not directly supported.
1186 **/
i40e_ptp_set_timestamp_mode(struct i40e_pf * pf,struct hwtstamp_config * config)1187 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1188 struct hwtstamp_config *config)
1189 {
1190 struct i40e_hw *hw = &pf->hw;
1191 u32 tsyntype, regval;
1192
1193 /* Selects external trigger to cause event */
1194 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1195 /* Bit 17:16 is EVNTLVL, 01B rising edge */
1196 regval &= 0;
1197 regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1198 /* regval: 0001 0000 0000 0000 0000 */
1199 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1200
1201 /* Enabel interrupts */
1202 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1203 regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1204 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1205
1206 INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1207
1208 /* Reserved for future extensions. */
1209 if (config->flags)
1210 return -EINVAL;
1211
1212 switch (config->tx_type) {
1213 case HWTSTAMP_TX_OFF:
1214 pf->ptp_tx = false;
1215 break;
1216 case HWTSTAMP_TX_ON:
1217 pf->ptp_tx = true;
1218 break;
1219 default:
1220 return -ERANGE;
1221 }
1222
1223 switch (config->rx_filter) {
1224 case HWTSTAMP_FILTER_NONE:
1225 pf->ptp_rx = false;
1226 /* We set the type to V1, but do not enable UDP packet
1227 * recognition. In this way, we should be as close to
1228 * disabling PTP Rx timestamps as possible since V1 packets
1229 * are always UDP, since L2 packets are a V2 feature.
1230 */
1231 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1232 break;
1233 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1234 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1235 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1236 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1237 return -ERANGE;
1238 pf->ptp_rx = true;
1239 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1240 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1241 I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1242 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1243 break;
1244 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1245 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1246 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1247 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1248 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1249 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1250 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1251 return -ERANGE;
1252 fallthrough;
1253 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1254 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1255 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1256 pf->ptp_rx = true;
1257 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1258 I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1259 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1260 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1261 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1262 } else {
1263 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1264 }
1265 break;
1266 case HWTSTAMP_FILTER_NTP_ALL:
1267 case HWTSTAMP_FILTER_ALL:
1268 default:
1269 return -ERANGE;
1270 }
1271
1272 /* Clear out all 1588-related registers to clear and unlatch them. */
1273 spin_lock_bh(&pf->ptp_rx_lock);
1274 rd32(hw, I40E_PRTTSYN_STAT_0);
1275 rd32(hw, I40E_PRTTSYN_TXTIME_H);
1276 rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1277 rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1278 rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1279 rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1280 pf->latch_event_flags = 0;
1281 spin_unlock_bh(&pf->ptp_rx_lock);
1282
1283 /* Enable/disable the Tx timestamp interrupt based on user input. */
1284 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1285 if (pf->ptp_tx)
1286 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1287 else
1288 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1289 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1290
1291 regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1292 if (pf->ptp_tx)
1293 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1294 else
1295 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1296 wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1297
1298 /* Although there is no simple on/off switch for Rx, we "disable" Rx
1299 * timestamps by setting to V1 only mode and clear the UDP
1300 * recognition. This ought to disable all PTP Rx timestamps as V1
1301 * packets are always over UDP. Note that software is configured to
1302 * ignore Rx timestamps via the pf->ptp_rx flag.
1303 */
1304 regval = rd32(hw, I40E_PRTTSYN_CTL1);
1305 /* clear everything but the enable bit */
1306 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1307 /* now enable bits for desired Rx timestamps */
1308 regval |= tsyntype;
1309 wr32(hw, I40E_PRTTSYN_CTL1, regval);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1316 * @pf: Board private structure
1317 * @ifr: ioctl data
1318 *
1319 * Respond to the user filter requests and make the appropriate hardware
1320 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1321 * logic, so keep track in software of whether to indicate these timestamps
1322 * or not.
1323 *
1324 * It is permissible to "upgrade" the user request to a broader filter, as long
1325 * as the user receives the timestamps they care about and the user is notified
1326 * the filter has been broadened.
1327 **/
i40e_ptp_set_ts_config(struct i40e_pf * pf,struct ifreq * ifr)1328 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1329 {
1330 struct hwtstamp_config config;
1331 int err;
1332
1333 if (!(pf->flags & I40E_FLAG_PTP))
1334 return -EOPNOTSUPP;
1335
1336 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1337 return -EFAULT;
1338
1339 err = i40e_ptp_set_timestamp_mode(pf, &config);
1340 if (err)
1341 return err;
1342
1343 /* save these settings for future reference */
1344 pf->tstamp_config = config;
1345
1346 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1347 -EFAULT : 0;
1348 }
1349
1350 /**
1351 * i40e_init_pin_config - initialize pins.
1352 * @pf: private board structure
1353 *
1354 * Initialize pins for external clock source.
1355 * Return 0 on success or error code on failure.
1356 **/
i40e_init_pin_config(struct i40e_pf * pf)1357 static int i40e_init_pin_config(struct i40e_pf *pf)
1358 {
1359 int i;
1360
1361 pf->ptp_caps.n_pins = 3;
1362 pf->ptp_caps.n_ext_ts = 2;
1363 pf->ptp_caps.pps = 1;
1364 pf->ptp_caps.n_per_out = 2;
1365
1366 pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1367 sizeof(*pf->ptp_caps.pin_config),
1368 GFP_KERNEL);
1369 if (!pf->ptp_caps.pin_config)
1370 return -ENOMEM;
1371
1372 for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1373 snprintf(pf->ptp_caps.pin_config[i].name,
1374 sizeof(pf->ptp_caps.pin_config[i].name),
1375 "%s", sdp_desc[i].name);
1376 pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1377 pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1378 pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1379 }
1380
1381 pf->ptp_caps.verify = i40e_ptp_verify;
1382 pf->ptp_caps.enable = i40e_ptp_feature_enable;
1383
1384 pf->ptp_caps.pps = 1;
1385
1386 return 0;
1387 }
1388
1389 /**
1390 * i40e_ptp_create_clock - Create PTP clock device for userspace
1391 * @pf: Board private structure
1392 *
1393 * This function creates a new PTP clock device. It only creates one if we
1394 * don't already have one, so it is safe to call. Will return error if it
1395 * can't create one, but success if we already have a device. Should be used
1396 * by i40e_ptp_init to create clock initially, and prevent global resets from
1397 * creating new clock devices.
1398 **/
i40e_ptp_create_clock(struct i40e_pf * pf)1399 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1400 {
1401 /* no need to create a clock device if we already have one */
1402 if (!IS_ERR_OR_NULL(pf->ptp_clock))
1403 return 0;
1404
1405 strlcpy(pf->ptp_caps.name, i40e_driver_name,
1406 sizeof(pf->ptp_caps.name) - 1);
1407 pf->ptp_caps.owner = THIS_MODULE;
1408 pf->ptp_caps.max_adj = 999999999;
1409 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
1410 pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1411 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1412 pf->ptp_caps.settime64 = i40e_ptp_settime;
1413 if (i40e_is_ptp_pin_dev(&pf->hw)) {
1414 int err = i40e_init_pin_config(pf);
1415
1416 if (err)
1417 return err;
1418 }
1419
1420 /* Attempt to register the clock before enabling the hardware. */
1421 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1422 if (IS_ERR(pf->ptp_clock))
1423 return PTR_ERR(pf->ptp_clock);
1424
1425 /* clear the hwtstamp settings here during clock create, instead of
1426 * during regular init, so that we can maintain settings across a
1427 * reset or suspend.
1428 */
1429 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1430 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1431
1432 /* Set the previous "reset" time to the current Kernel clock time */
1433 ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1434 pf->ptp_reset_start = ktime_get();
1435
1436 return 0;
1437 }
1438
1439 /**
1440 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1441 * @pf: Board private structure
1442 *
1443 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1444 * be called at the end of preparing to reset, just before hardware reset
1445 * occurs, in order to preserve the PTP time as close as possible across
1446 * resets.
1447 */
i40e_ptp_save_hw_time(struct i40e_pf * pf)1448 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1449 {
1450 /* don't try to access the PTP clock if it's not enabled */
1451 if (!(pf->flags & I40E_FLAG_PTP))
1452 return;
1453
1454 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1455 /* Get a monotonic starting time for this reset */
1456 pf->ptp_reset_start = ktime_get();
1457 }
1458
1459 /**
1460 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1461 * @pf: Board private structure
1462 *
1463 * Restore the PTP hardware clock registers. We previously cached the PTP
1464 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1465 * update this value based on the time delta since the time was saved, using
1466 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1467 *
1468 * This ensures that the hardware clock is restored to nearly what it should
1469 * have been if a reset had not occurred.
1470 */
i40e_ptp_restore_hw_time(struct i40e_pf * pf)1471 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1472 {
1473 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1474
1475 /* Update the previous HW time with the ktime delta */
1476 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1477
1478 /* Restore the hardware clock registers */
1479 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1480 }
1481
1482 /**
1483 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1484 * @pf: Board private structure
1485 *
1486 * This function sets device up for 1588 support. The first time it is run, it
1487 * will create a PHC clock device. It does not create a clock device if one
1488 * already exists. It also reconfigures the device after a reset.
1489 *
1490 * The first time a clock is created, i40e_ptp_create_clock will set
1491 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1492 * expected that this timespec will be set to the last known PTP clock time,
1493 * in order to preserve the clock time as close as possible across a reset.
1494 **/
i40e_ptp_init(struct i40e_pf * pf)1495 void i40e_ptp_init(struct i40e_pf *pf)
1496 {
1497 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1498 struct i40e_hw *hw = &pf->hw;
1499 u32 pf_id;
1500 long err;
1501
1502 /* Only one PF is assigned to control 1588 logic per port. Do not
1503 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1504 */
1505 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1506 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1507 if (hw->pf_id != pf_id) {
1508 pf->flags &= ~I40E_FLAG_PTP;
1509 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1510 __func__,
1511 netdev->name);
1512 return;
1513 }
1514
1515 mutex_init(&pf->tmreg_lock);
1516 spin_lock_init(&pf->ptp_rx_lock);
1517
1518 /* ensure we have a clock device */
1519 err = i40e_ptp_create_clock(pf);
1520 if (err) {
1521 pf->ptp_clock = NULL;
1522 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1523 __func__);
1524 } else if (pf->ptp_clock) {
1525 u32 regval;
1526
1527 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1528 dev_info(&pf->pdev->dev, "PHC enabled\n");
1529 pf->flags |= I40E_FLAG_PTP;
1530
1531 /* Ensure the clocks are running. */
1532 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1533 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1534 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1535 regval = rd32(hw, I40E_PRTTSYN_CTL1);
1536 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1537 wr32(hw, I40E_PRTTSYN_CTL1, regval);
1538
1539 /* Set the increment value per clock tick. */
1540 i40e_ptp_set_increment(pf);
1541
1542 /* reset timestamping mode */
1543 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1544
1545 /* Restore the clock time based on last known value */
1546 i40e_ptp_restore_hw_time(pf);
1547 }
1548
1549 i40e_ptp_set_1pps_signal_hw(pf);
1550 }
1551
1552 /**
1553 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1554 * @pf: Board private structure
1555 *
1556 * This function handles the cleanup work required from the initialization by
1557 * clearing out the important information and unregistering the PHC.
1558 **/
i40e_ptp_stop(struct i40e_pf * pf)1559 void i40e_ptp_stop(struct i40e_pf *pf)
1560 {
1561 struct i40e_hw *hw = &pf->hw;
1562 u32 regval;
1563
1564 pf->flags &= ~I40E_FLAG_PTP;
1565 pf->ptp_tx = false;
1566 pf->ptp_rx = false;
1567
1568 if (pf->ptp_tx_skb) {
1569 struct sk_buff *skb = pf->ptp_tx_skb;
1570
1571 pf->ptp_tx_skb = NULL;
1572 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1573 dev_kfree_skb_any(skb);
1574 }
1575
1576 if (pf->ptp_clock) {
1577 ptp_clock_unregister(pf->ptp_clock);
1578 pf->ptp_clock = NULL;
1579 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1580 pf->vsi[pf->lan_vsi]->netdev->name);
1581 }
1582
1583 if (i40e_is_ptp_pin_dev(&pf->hw)) {
1584 i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1585 i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1586 i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1587 }
1588
1589 regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1590 regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1591 wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1592
1593 /* Disable interrupts */
1594 regval = rd32(hw, I40E_PRTTSYN_CTL0);
1595 regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1596 wr32(hw, I40E_PRTTSYN_CTL0, regval);
1597
1598 i40e_ptp_free_pins(pf);
1599 }
1600