1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47 [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->skb = skb;
1100 buffer->protocol = 0;
1101 buffer->bytecount = skb->len;
1102 buffer->gso_segs = 1;
1103 buffer->time_stamp = jiffies;
1104 dma_unmap_len_set(buffer, len, skb->len);
1105 dma_unmap_addr_set(buffer, dma, dma);
1106
1107 return 0;
1108 }
1109
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 struct sk_buff *skb,
1112 struct igc_tx_buffer *first)
1113 {
1114 union igc_adv_tx_desc *desc;
1115 u32 cmd_type, olinfo_status;
1116 int err;
1117
1118 if (!igc_desc_unused(ring))
1119 return -EBUSY;
1120
1121 err = igc_init_empty_frame(ring, first, skb);
1122 if (err)
1123 return err;
1124
1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 first->bytecount;
1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130 desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137 first->next_to_watch = desc;
1138
1139 ring->next_to_use++;
1140 if (ring->next_to_use == ring->count)
1141 ring->next_to_use = 0;
1142
1143 return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 __le32 launch_time, bool first_flag,
1150 u32 vlan_macip_lens, u32 type_tucmd,
1151 u32 mss_l4len_idx)
1152 {
1153 struct igc_adv_tx_context_desc *context_desc;
1154 u16 i = tx_ring->next_to_use;
1155
1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158 i++;
1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161 /* set bits to identify this as an advanced context descriptor */
1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164 /* For i225, context index must be unique per ring. */
1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168 if (first_flag)
1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1174 context_desc->launch_time = launch_time;
1175 }
1176
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 __le32 launch_time, bool first_flag)
1179 {
1180 struct sk_buff *skb = first->skb;
1181 u32 vlan_macip_lens = 0;
1182 u32 type_tucmd = 0;
1183
1184 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 !tx_ring->launchtime_enable)
1188 return;
1189 goto no_csum;
1190 }
1191
1192 switch (skb->csum_offset) {
1193 case offsetof(struct tcphdr, check):
1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 fallthrough;
1196 case offsetof(struct udphdr, check):
1197 break;
1198 case offsetof(struct sctphdr, checksum):
1199 /* validate that this is actually an SCTP request */
1200 if (skb_csum_is_sctp(skb)) {
1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 break;
1203 }
1204 fallthrough;
1205 default:
1206 skb_checksum_help(skb);
1207 goto csum_failed;
1208 }
1209
1210 /* update TX checksum flag */
1211 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 skb_network_offset(skb);
1214 no_csum:
1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 vlan_macip_lens, type_tucmd, 0);
1220 }
1221
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 struct net_device *netdev = tx_ring->netdev;
1225
1226 netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228 /* memory barriier comment */
1229 smp_mb();
1230
1231 /* We need to check again in a case another CPU has just
1232 * made room available.
1233 */
1234 if (igc_desc_unused(tx_ring) < size)
1235 return -EBUSY;
1236
1237 /* A reprieve! */
1238 netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240 u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 tx_ring->tx_stats.restart_queue2++;
1242 u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244 return 0;
1245 }
1246
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 if (igc_desc_unused(tx_ring) >= size)
1250 return 0;
1251 return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 (((_flag) <= (_result)) ? \
1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 /* set type for advanced descriptor with frame checksum insertion */
1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 IGC_ADVTXD_DCMD_DEXT |
1264 IGC_ADVTXD_DCMD_IFCS;
1265
1266 /* set HW vlan bit if vlan is present */
1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 IGC_ADVTXD_DCMD_VLE);
1269
1270 /* set segmentation bits for TSO */
1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 (IGC_ADVTXD_DCMD_TSE));
1273
1274 /* set timestamp bit if present */
1275 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1276 (IGC_ADVTXD_MAC_TSTAMP));
1277
1278 /* insert frame checksum */
1279 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1280
1281 return cmd_type;
1282 }
1283
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1284 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1285 union igc_adv_tx_desc *tx_desc,
1286 u32 tx_flags, unsigned int paylen)
1287 {
1288 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1289
1290 /* insert L4 checksum */
1291 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1292 ((IGC_TXD_POPTS_TXSM << 8) /
1293 IGC_TX_FLAGS_CSUM);
1294
1295 /* insert IPv4 checksum */
1296 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1297 (((IGC_TXD_POPTS_IXSM << 8)) /
1298 IGC_TX_FLAGS_IPV4);
1299
1300 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1301 }
1302
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1303 static int igc_tx_map(struct igc_ring *tx_ring,
1304 struct igc_tx_buffer *first,
1305 const u8 hdr_len)
1306 {
1307 struct sk_buff *skb = first->skb;
1308 struct igc_tx_buffer *tx_buffer;
1309 union igc_adv_tx_desc *tx_desc;
1310 u32 tx_flags = first->tx_flags;
1311 skb_frag_t *frag;
1312 u16 i = tx_ring->next_to_use;
1313 unsigned int data_len, size;
1314 dma_addr_t dma;
1315 u32 cmd_type;
1316
1317 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1318 tx_desc = IGC_TX_DESC(tx_ring, i);
1319
1320 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1321
1322 size = skb_headlen(skb);
1323 data_len = skb->data_len;
1324
1325 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1326
1327 tx_buffer = first;
1328
1329 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1330 if (dma_mapping_error(tx_ring->dev, dma))
1331 goto dma_error;
1332
1333 /* record length, and DMA address */
1334 dma_unmap_len_set(tx_buffer, len, size);
1335 dma_unmap_addr_set(tx_buffer, dma, dma);
1336
1337 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1338
1339 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1340 tx_desc->read.cmd_type_len =
1341 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1342
1343 i++;
1344 tx_desc++;
1345 if (i == tx_ring->count) {
1346 tx_desc = IGC_TX_DESC(tx_ring, 0);
1347 i = 0;
1348 }
1349 tx_desc->read.olinfo_status = 0;
1350
1351 dma += IGC_MAX_DATA_PER_TXD;
1352 size -= IGC_MAX_DATA_PER_TXD;
1353
1354 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1355 }
1356
1357 if (likely(!data_len))
1358 break;
1359
1360 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1361
1362 i++;
1363 tx_desc++;
1364 if (i == tx_ring->count) {
1365 tx_desc = IGC_TX_DESC(tx_ring, 0);
1366 i = 0;
1367 }
1368 tx_desc->read.olinfo_status = 0;
1369
1370 size = skb_frag_size(frag);
1371 data_len -= size;
1372
1373 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1374 size, DMA_TO_DEVICE);
1375
1376 tx_buffer = &tx_ring->tx_buffer_info[i];
1377 }
1378
1379 /* write last descriptor with RS and EOP bits */
1380 cmd_type |= size | IGC_TXD_DCMD;
1381 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1382
1383 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1384
1385 /* set the timestamp */
1386 first->time_stamp = jiffies;
1387
1388 skb_tx_timestamp(skb);
1389
1390 /* Force memory writes to complete before letting h/w know there
1391 * are new descriptors to fetch. (Only applicable for weak-ordered
1392 * memory model archs, such as IA-64).
1393 *
1394 * We also need this memory barrier to make certain all of the
1395 * status bits have been updated before next_to_watch is written.
1396 */
1397 wmb();
1398
1399 /* set next_to_watch value indicating a packet is present */
1400 first->next_to_watch = tx_desc;
1401
1402 i++;
1403 if (i == tx_ring->count)
1404 i = 0;
1405
1406 tx_ring->next_to_use = i;
1407
1408 /* Make sure there is space in the ring for the next send. */
1409 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1410
1411 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1412 writel(i, tx_ring->tail);
1413 }
1414
1415 return 0;
1416 dma_error:
1417 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1418 tx_buffer = &tx_ring->tx_buffer_info[i];
1419
1420 /* clear dma mappings for failed tx_buffer_info map */
1421 while (tx_buffer != first) {
1422 if (dma_unmap_len(tx_buffer, len))
1423 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1424
1425 if (i-- == 0)
1426 i += tx_ring->count;
1427 tx_buffer = &tx_ring->tx_buffer_info[i];
1428 }
1429
1430 if (dma_unmap_len(tx_buffer, len))
1431 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1432
1433 dev_kfree_skb_any(tx_buffer->skb);
1434 tx_buffer->skb = NULL;
1435
1436 tx_ring->next_to_use = i;
1437
1438 return -1;
1439 }
1440
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1441 static int igc_tso(struct igc_ring *tx_ring,
1442 struct igc_tx_buffer *first,
1443 __le32 launch_time, bool first_flag,
1444 u8 *hdr_len)
1445 {
1446 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1447 struct sk_buff *skb = first->skb;
1448 union {
1449 struct iphdr *v4;
1450 struct ipv6hdr *v6;
1451 unsigned char *hdr;
1452 } ip;
1453 union {
1454 struct tcphdr *tcp;
1455 struct udphdr *udp;
1456 unsigned char *hdr;
1457 } l4;
1458 u32 paylen, l4_offset;
1459 int err;
1460
1461 if (skb->ip_summed != CHECKSUM_PARTIAL)
1462 return 0;
1463
1464 if (!skb_is_gso(skb))
1465 return 0;
1466
1467 err = skb_cow_head(skb, 0);
1468 if (err < 0)
1469 return err;
1470
1471 ip.hdr = skb_network_header(skb);
1472 l4.hdr = skb_checksum_start(skb);
1473
1474 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1475 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1476
1477 /* initialize outer IP header fields */
1478 if (ip.v4->version == 4) {
1479 unsigned char *csum_start = skb_checksum_start(skb);
1480 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1481
1482 /* IP header will have to cancel out any data that
1483 * is not a part of the outer IP header
1484 */
1485 ip.v4->check = csum_fold(csum_partial(trans_start,
1486 csum_start - trans_start,
1487 0));
1488 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1489
1490 ip.v4->tot_len = 0;
1491 first->tx_flags |= IGC_TX_FLAGS_TSO |
1492 IGC_TX_FLAGS_CSUM |
1493 IGC_TX_FLAGS_IPV4;
1494 } else {
1495 ip.v6->payload_len = 0;
1496 first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 IGC_TX_FLAGS_CSUM;
1498 }
1499
1500 /* determine offset of inner transport header */
1501 l4_offset = l4.hdr - skb->data;
1502
1503 /* remove payload length from inner checksum */
1504 paylen = skb->len - l4_offset;
1505 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1506 /* compute length of segmentation header */
1507 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1508 csum_replace_by_diff(&l4.tcp->check,
1509 (__force __wsum)htonl(paylen));
1510 } else {
1511 /* compute length of segmentation header */
1512 *hdr_len = sizeof(*l4.udp) + l4_offset;
1513 csum_replace_by_diff(&l4.udp->check,
1514 (__force __wsum)htonl(paylen));
1515 }
1516
1517 /* update gso size and bytecount with header size */
1518 first->gso_segs = skb_shinfo(skb)->gso_segs;
1519 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1520
1521 /* MSS L4LEN IDX */
1522 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1523 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1524
1525 /* VLAN MACLEN IPLEN */
1526 vlan_macip_lens = l4.hdr - ip.hdr;
1527 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1528 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1529
1530 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1531 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1532
1533 return 1;
1534 }
1535
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1536 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1537 struct igc_ring *tx_ring)
1538 {
1539 bool first_flag = false, insert_empty = false;
1540 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1541 __be16 protocol = vlan_get_protocol(skb);
1542 struct igc_tx_buffer *first;
1543 __le32 launch_time = 0;
1544 u32 tx_flags = 0;
1545 unsigned short f;
1546 ktime_t txtime;
1547 u8 hdr_len = 0;
1548 int tso = 0;
1549
1550 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1551 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1552 * + 2 desc gap to keep tail from touching head,
1553 * + 1 desc for context descriptor,
1554 * otherwise try next time
1555 */
1556 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1557 count += TXD_USE_COUNT(skb_frag_size(
1558 &skb_shinfo(skb)->frags[f]));
1559
1560 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1561 /* this is a hard error */
1562 return NETDEV_TX_BUSY;
1563 }
1564
1565 if (!tx_ring->launchtime_enable)
1566 goto done;
1567
1568 txtime = skb->tstamp;
1569 skb->tstamp = ktime_set(0, 0);
1570 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1571
1572 if (insert_empty) {
1573 struct igc_tx_buffer *empty_info;
1574 struct sk_buff *empty;
1575 void *data;
1576
1577 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1578 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1579 if (!empty)
1580 goto done;
1581
1582 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1583 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1584
1585 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1586
1587 if (igc_init_tx_empty_descriptor(tx_ring,
1588 empty,
1589 empty_info) < 0)
1590 dev_kfree_skb_any(empty);
1591 }
1592
1593 done:
1594 /* record the location of the first descriptor for this packet */
1595 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1596 first->type = IGC_TX_BUFFER_TYPE_SKB;
1597 first->skb = skb;
1598 first->bytecount = skb->len;
1599 first->gso_segs = 1;
1600
1601 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1602 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1603
1604 /* FIXME: add support for retrieving timestamps from
1605 * the other timer registers before skipping the
1606 * timestamping request.
1607 */
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1611 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && !adapter->ptp_tx_skb) {
1612 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1613 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1614
1615 adapter->ptp_tx_skb = skb_get(skb);
1616 adapter->ptp_tx_start = jiffies;
1617 } else {
1618 adapter->tx_hwtstamp_skipped++;
1619 }
1620
1621 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1622 }
1623
1624 if (skb_vlan_tag_present(skb)) {
1625 tx_flags |= IGC_TX_FLAGS_VLAN;
1626 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1627 }
1628
1629 /* record initial flags and protocol */
1630 first->tx_flags = tx_flags;
1631 first->protocol = protocol;
1632
1633 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1634 if (tso < 0)
1635 goto out_drop;
1636 else if (!tso)
1637 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1638
1639 igc_tx_map(tx_ring, first, hdr_len);
1640
1641 return NETDEV_TX_OK;
1642
1643 out_drop:
1644 dev_kfree_skb_any(first->skb);
1645 first->skb = NULL;
1646
1647 return NETDEV_TX_OK;
1648 }
1649
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1650 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1651 struct sk_buff *skb)
1652 {
1653 unsigned int r_idx = skb->queue_mapping;
1654
1655 if (r_idx >= adapter->num_tx_queues)
1656 r_idx = r_idx % adapter->num_tx_queues;
1657
1658 return adapter->tx_ring[r_idx];
1659 }
1660
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1661 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1662 struct net_device *netdev)
1663 {
1664 struct igc_adapter *adapter = netdev_priv(netdev);
1665
1666 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1667 * in order to meet this minimum size requirement.
1668 */
1669 if (skb->len < 17) {
1670 if (skb_padto(skb, 17))
1671 return NETDEV_TX_OK;
1672 skb->len = 17;
1673 }
1674
1675 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1676 }
1677
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1678 static void igc_rx_checksum(struct igc_ring *ring,
1679 union igc_adv_rx_desc *rx_desc,
1680 struct sk_buff *skb)
1681 {
1682 skb_checksum_none_assert(skb);
1683
1684 /* Ignore Checksum bit is set */
1685 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1686 return;
1687
1688 /* Rx checksum disabled via ethtool */
1689 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1690 return;
1691
1692 /* TCP/UDP checksum error bit is set */
1693 if (igc_test_staterr(rx_desc,
1694 IGC_RXDEXT_STATERR_L4E |
1695 IGC_RXDEXT_STATERR_IPE)) {
1696 /* work around errata with sctp packets where the TCPE aka
1697 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1698 * packets (aka let the stack check the crc32c)
1699 */
1700 if (!(skb->len == 60 &&
1701 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1702 u64_stats_update_begin(&ring->rx_syncp);
1703 ring->rx_stats.csum_err++;
1704 u64_stats_update_end(&ring->rx_syncp);
1705 }
1706 /* let the stack verify checksum errors */
1707 return;
1708 }
1709 /* It must be a TCP or UDP packet with a valid checksum */
1710 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1711 IGC_RXD_STAT_UDPCS))
1712 skb->ip_summed = CHECKSUM_UNNECESSARY;
1713
1714 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1715 le32_to_cpu(rx_desc->wb.upper.status_error));
1716 }
1717
1718 /* Mapping HW RSS Type to enum pkt_hash_types */
1719 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1720 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1721 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1722 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1723 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1724 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1725 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1726 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1727 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1728 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1729 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1730 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1731 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1732 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1733 [13] = PKT_HASH_TYPE_NONE,
1734 [14] = PKT_HASH_TYPE_NONE,
1735 [15] = PKT_HASH_TYPE_NONE,
1736 };
1737
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1738 static inline void igc_rx_hash(struct igc_ring *ring,
1739 union igc_adv_rx_desc *rx_desc,
1740 struct sk_buff *skb)
1741 {
1742 if (ring->netdev->features & NETIF_F_RXHASH) {
1743 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1744 u32 rss_type = igc_rss_type(rx_desc);
1745
1746 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1747 }
1748 }
1749
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1750 static void igc_rx_vlan(struct igc_ring *rx_ring,
1751 union igc_adv_rx_desc *rx_desc,
1752 struct sk_buff *skb)
1753 {
1754 struct net_device *dev = rx_ring->netdev;
1755 u16 vid;
1756
1757 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1758 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1759 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1760 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1761 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1762 else
1763 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1764
1765 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1766 }
1767 }
1768
1769 /**
1770 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1771 * @rx_ring: rx descriptor ring packet is being transacted on
1772 * @rx_desc: pointer to the EOP Rx descriptor
1773 * @skb: pointer to current skb being populated
1774 *
1775 * This function checks the ring, descriptor, and packet information in order
1776 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1777 * skb.
1778 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1779 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1780 union igc_adv_rx_desc *rx_desc,
1781 struct sk_buff *skb)
1782 {
1783 igc_rx_hash(rx_ring, rx_desc, skb);
1784
1785 igc_rx_checksum(rx_ring, rx_desc, skb);
1786
1787 igc_rx_vlan(rx_ring, rx_desc, skb);
1788
1789 skb_record_rx_queue(skb, rx_ring->queue_index);
1790
1791 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1792 }
1793
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1794 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1795 {
1796 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1797 struct igc_adapter *adapter = netdev_priv(netdev);
1798 struct igc_hw *hw = &adapter->hw;
1799 u32 ctrl;
1800
1801 ctrl = rd32(IGC_CTRL);
1802
1803 if (enable) {
1804 /* enable VLAN tag insert/strip */
1805 ctrl |= IGC_CTRL_VME;
1806 } else {
1807 /* disable VLAN tag insert/strip */
1808 ctrl &= ~IGC_CTRL_VME;
1809 }
1810 wr32(IGC_CTRL, ctrl);
1811 }
1812
igc_restore_vlan(struct igc_adapter * adapter)1813 static void igc_restore_vlan(struct igc_adapter *adapter)
1814 {
1815 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1816 }
1817
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1818 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1819 const unsigned int size,
1820 int *rx_buffer_pgcnt)
1821 {
1822 struct igc_rx_buffer *rx_buffer;
1823
1824 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1825 *rx_buffer_pgcnt =
1826 #if (PAGE_SIZE < 8192)
1827 page_count(rx_buffer->page);
1828 #else
1829 0;
1830 #endif
1831 prefetchw(rx_buffer->page);
1832
1833 /* we are reusing so sync this buffer for CPU use */
1834 dma_sync_single_range_for_cpu(rx_ring->dev,
1835 rx_buffer->dma,
1836 rx_buffer->page_offset,
1837 size,
1838 DMA_FROM_DEVICE);
1839
1840 rx_buffer->pagecnt_bias--;
1841
1842 return rx_buffer;
1843 }
1844
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1845 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1846 unsigned int truesize)
1847 {
1848 #if (PAGE_SIZE < 8192)
1849 buffer->page_offset ^= truesize;
1850 #else
1851 buffer->page_offset += truesize;
1852 #endif
1853 }
1854
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1855 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1856 unsigned int size)
1857 {
1858 unsigned int truesize;
1859
1860 #if (PAGE_SIZE < 8192)
1861 truesize = igc_rx_pg_size(ring) / 2;
1862 #else
1863 truesize = ring_uses_build_skb(ring) ?
1864 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1865 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1866 SKB_DATA_ALIGN(size);
1867 #endif
1868 return truesize;
1869 }
1870
1871 /**
1872 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1873 * @rx_ring: rx descriptor ring to transact packets on
1874 * @rx_buffer: buffer containing page to add
1875 * @skb: sk_buff to place the data into
1876 * @size: size of buffer to be added
1877 *
1878 * This function will add the data contained in rx_buffer->page to the skb.
1879 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1880 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1881 struct igc_rx_buffer *rx_buffer,
1882 struct sk_buff *skb,
1883 unsigned int size)
1884 {
1885 unsigned int truesize;
1886
1887 #if (PAGE_SIZE < 8192)
1888 truesize = igc_rx_pg_size(rx_ring) / 2;
1889 #else
1890 truesize = ring_uses_build_skb(rx_ring) ?
1891 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1892 SKB_DATA_ALIGN(size);
1893 #endif
1894 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1895 rx_buffer->page_offset, size, truesize);
1896
1897 igc_rx_buffer_flip(rx_buffer, truesize);
1898 }
1899
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1900 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1901 struct igc_rx_buffer *rx_buffer,
1902 union igc_adv_rx_desc *rx_desc,
1903 unsigned int size)
1904 {
1905 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1906 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1907 struct sk_buff *skb;
1908
1909 /* prefetch first cache line of first page */
1910 net_prefetch(va);
1911
1912 /* build an skb around the page buffer */
1913 skb = build_skb(va - IGC_SKB_PAD, truesize);
1914 if (unlikely(!skb))
1915 return NULL;
1916
1917 /* update pointers within the skb to store the data */
1918 skb_reserve(skb, IGC_SKB_PAD);
1919 __skb_put(skb, size);
1920
1921 igc_rx_buffer_flip(rx_buffer, truesize);
1922 return skb;
1923 }
1924
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1925 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1926 struct igc_rx_buffer *rx_buffer,
1927 struct xdp_buff *xdp,
1928 ktime_t timestamp)
1929 {
1930 unsigned int size = xdp->data_end - xdp->data;
1931 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1932 void *va = xdp->data;
1933 unsigned int headlen;
1934 struct sk_buff *skb;
1935
1936 /* prefetch first cache line of first page */
1937 net_prefetch(va);
1938
1939 /* allocate a skb to store the frags */
1940 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1941 if (unlikely(!skb))
1942 return NULL;
1943
1944 if (timestamp)
1945 skb_hwtstamps(skb)->hwtstamp = timestamp;
1946
1947 /* Determine available headroom for copy */
1948 headlen = size;
1949 if (headlen > IGC_RX_HDR_LEN)
1950 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1951
1952 /* align pull length to size of long to optimize memcpy performance */
1953 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1954
1955 /* update all of the pointers */
1956 size -= headlen;
1957 if (size) {
1958 skb_add_rx_frag(skb, 0, rx_buffer->page,
1959 (va + headlen) - page_address(rx_buffer->page),
1960 size, truesize);
1961 igc_rx_buffer_flip(rx_buffer, truesize);
1962 } else {
1963 rx_buffer->pagecnt_bias++;
1964 }
1965
1966 return skb;
1967 }
1968
1969 /**
1970 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1971 * @rx_ring: rx descriptor ring to store buffers on
1972 * @old_buff: donor buffer to have page reused
1973 *
1974 * Synchronizes page for reuse by the adapter
1975 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1976 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1977 struct igc_rx_buffer *old_buff)
1978 {
1979 u16 nta = rx_ring->next_to_alloc;
1980 struct igc_rx_buffer *new_buff;
1981
1982 new_buff = &rx_ring->rx_buffer_info[nta];
1983
1984 /* update, and store next to alloc */
1985 nta++;
1986 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1987
1988 /* Transfer page from old buffer to new buffer.
1989 * Move each member individually to avoid possible store
1990 * forwarding stalls.
1991 */
1992 new_buff->dma = old_buff->dma;
1993 new_buff->page = old_buff->page;
1994 new_buff->page_offset = old_buff->page_offset;
1995 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1996 }
1997
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1998 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1999 int rx_buffer_pgcnt)
2000 {
2001 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2002 struct page *page = rx_buffer->page;
2003
2004 /* avoid re-using remote and pfmemalloc pages */
2005 if (!dev_page_is_reusable(page))
2006 return false;
2007
2008 #if (PAGE_SIZE < 8192)
2009 /* if we are only owner of page we can reuse it */
2010 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2011 return false;
2012 #else
2013 #define IGC_LAST_OFFSET \
2014 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2015
2016 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2017 return false;
2018 #endif
2019
2020 /* If we have drained the page fragment pool we need to update
2021 * the pagecnt_bias and page count so that we fully restock the
2022 * number of references the driver holds.
2023 */
2024 if (unlikely(pagecnt_bias == 1)) {
2025 page_ref_add(page, USHRT_MAX - 1);
2026 rx_buffer->pagecnt_bias = USHRT_MAX;
2027 }
2028
2029 return true;
2030 }
2031
2032 /**
2033 * igc_is_non_eop - process handling of non-EOP buffers
2034 * @rx_ring: Rx ring being processed
2035 * @rx_desc: Rx descriptor for current buffer
2036 *
2037 * This function updates next to clean. If the buffer is an EOP buffer
2038 * this function exits returning false, otherwise it will place the
2039 * sk_buff in the next buffer to be chained and return true indicating
2040 * that this is in fact a non-EOP buffer.
2041 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2042 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2043 union igc_adv_rx_desc *rx_desc)
2044 {
2045 u32 ntc = rx_ring->next_to_clean + 1;
2046
2047 /* fetch, update, and store next to clean */
2048 ntc = (ntc < rx_ring->count) ? ntc : 0;
2049 rx_ring->next_to_clean = ntc;
2050
2051 prefetch(IGC_RX_DESC(rx_ring, ntc));
2052
2053 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2054 return false;
2055
2056 return true;
2057 }
2058
2059 /**
2060 * igc_cleanup_headers - Correct corrupted or empty headers
2061 * @rx_ring: rx descriptor ring packet is being transacted on
2062 * @rx_desc: pointer to the EOP Rx descriptor
2063 * @skb: pointer to current skb being fixed
2064 *
2065 * Address the case where we are pulling data in on pages only
2066 * and as such no data is present in the skb header.
2067 *
2068 * In addition if skb is not at least 60 bytes we need to pad it so that
2069 * it is large enough to qualify as a valid Ethernet frame.
2070 *
2071 * Returns true if an error was encountered and skb was freed.
2072 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2073 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2074 union igc_adv_rx_desc *rx_desc,
2075 struct sk_buff *skb)
2076 {
2077 /* XDP packets use error pointer so abort at this point */
2078 if (IS_ERR(skb))
2079 return true;
2080
2081 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2082 struct net_device *netdev = rx_ring->netdev;
2083
2084 if (!(netdev->features & NETIF_F_RXALL)) {
2085 dev_kfree_skb_any(skb);
2086 return true;
2087 }
2088 }
2089
2090 /* if eth_skb_pad returns an error the skb was freed */
2091 if (eth_skb_pad(skb))
2092 return true;
2093
2094 return false;
2095 }
2096
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2097 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2098 struct igc_rx_buffer *rx_buffer,
2099 int rx_buffer_pgcnt)
2100 {
2101 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2102 /* hand second half of page back to the ring */
2103 igc_reuse_rx_page(rx_ring, rx_buffer);
2104 } else {
2105 /* We are not reusing the buffer so unmap it and free
2106 * any references we are holding to it
2107 */
2108 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2109 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2110 IGC_RX_DMA_ATTR);
2111 __page_frag_cache_drain(rx_buffer->page,
2112 rx_buffer->pagecnt_bias);
2113 }
2114
2115 /* clear contents of rx_buffer */
2116 rx_buffer->page = NULL;
2117 }
2118
igc_rx_offset(struct igc_ring * rx_ring)2119 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2120 {
2121 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2122
2123 if (ring_uses_build_skb(rx_ring))
2124 return IGC_SKB_PAD;
2125 if (igc_xdp_is_enabled(adapter))
2126 return XDP_PACKET_HEADROOM;
2127
2128 return 0;
2129 }
2130
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2131 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2132 struct igc_rx_buffer *bi)
2133 {
2134 struct page *page = bi->page;
2135 dma_addr_t dma;
2136
2137 /* since we are recycling buffers we should seldom need to alloc */
2138 if (likely(page))
2139 return true;
2140
2141 /* alloc new page for storage */
2142 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2143 if (unlikely(!page)) {
2144 rx_ring->rx_stats.alloc_failed++;
2145 return false;
2146 }
2147
2148 /* map page for use */
2149 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2150 igc_rx_pg_size(rx_ring),
2151 DMA_FROM_DEVICE,
2152 IGC_RX_DMA_ATTR);
2153
2154 /* if mapping failed free memory back to system since
2155 * there isn't much point in holding memory we can't use
2156 */
2157 if (dma_mapping_error(rx_ring->dev, dma)) {
2158 __free_page(page);
2159
2160 rx_ring->rx_stats.alloc_failed++;
2161 return false;
2162 }
2163
2164 bi->dma = dma;
2165 bi->page = page;
2166 bi->page_offset = igc_rx_offset(rx_ring);
2167 page_ref_add(page, USHRT_MAX - 1);
2168 bi->pagecnt_bias = USHRT_MAX;
2169
2170 return true;
2171 }
2172
2173 /**
2174 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2175 * @rx_ring: rx descriptor ring
2176 * @cleaned_count: number of buffers to clean
2177 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2178 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2179 {
2180 union igc_adv_rx_desc *rx_desc;
2181 u16 i = rx_ring->next_to_use;
2182 struct igc_rx_buffer *bi;
2183 u16 bufsz;
2184
2185 /* nothing to do */
2186 if (!cleaned_count)
2187 return;
2188
2189 rx_desc = IGC_RX_DESC(rx_ring, i);
2190 bi = &rx_ring->rx_buffer_info[i];
2191 i -= rx_ring->count;
2192
2193 bufsz = igc_rx_bufsz(rx_ring);
2194
2195 do {
2196 if (!igc_alloc_mapped_page(rx_ring, bi))
2197 break;
2198
2199 /* sync the buffer for use by the device */
2200 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2201 bi->page_offset, bufsz,
2202 DMA_FROM_DEVICE);
2203
2204 /* Refresh the desc even if buffer_addrs didn't change
2205 * because each write-back erases this info.
2206 */
2207 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2208
2209 rx_desc++;
2210 bi++;
2211 i++;
2212 if (unlikely(!i)) {
2213 rx_desc = IGC_RX_DESC(rx_ring, 0);
2214 bi = rx_ring->rx_buffer_info;
2215 i -= rx_ring->count;
2216 }
2217
2218 /* clear the length for the next_to_use descriptor */
2219 rx_desc->wb.upper.length = 0;
2220
2221 cleaned_count--;
2222 } while (cleaned_count);
2223
2224 i += rx_ring->count;
2225
2226 if (rx_ring->next_to_use != i) {
2227 /* record the next descriptor to use */
2228 rx_ring->next_to_use = i;
2229
2230 /* update next to alloc since we have filled the ring */
2231 rx_ring->next_to_alloc = i;
2232
2233 /* Force memory writes to complete before letting h/w
2234 * know there are new descriptors to fetch. (Only
2235 * applicable for weak-ordered memory model archs,
2236 * such as IA-64).
2237 */
2238 wmb();
2239 writel(i, rx_ring->tail);
2240 }
2241 }
2242
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2243 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2244 {
2245 union igc_adv_rx_desc *desc;
2246 u16 i = ring->next_to_use;
2247 struct igc_rx_buffer *bi;
2248 dma_addr_t dma;
2249 bool ok = true;
2250
2251 if (!count)
2252 return ok;
2253
2254 desc = IGC_RX_DESC(ring, i);
2255 bi = &ring->rx_buffer_info[i];
2256 i -= ring->count;
2257
2258 do {
2259 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2260 if (!bi->xdp) {
2261 ok = false;
2262 break;
2263 }
2264
2265 dma = xsk_buff_xdp_get_dma(bi->xdp);
2266 desc->read.pkt_addr = cpu_to_le64(dma);
2267
2268 desc++;
2269 bi++;
2270 i++;
2271 if (unlikely(!i)) {
2272 desc = IGC_RX_DESC(ring, 0);
2273 bi = ring->rx_buffer_info;
2274 i -= ring->count;
2275 }
2276
2277 /* Clear the length for the next_to_use descriptor. */
2278 desc->wb.upper.length = 0;
2279
2280 count--;
2281 } while (count);
2282
2283 i += ring->count;
2284
2285 if (ring->next_to_use != i) {
2286 ring->next_to_use = i;
2287
2288 /* Force memory writes to complete before letting h/w
2289 * know there are new descriptors to fetch. (Only
2290 * applicable for weak-ordered memory model archs,
2291 * such as IA-64).
2292 */
2293 wmb();
2294 writel(i, ring->tail);
2295 }
2296
2297 return ok;
2298 }
2299
igc_xdp_init_tx_buffer(struct igc_tx_buffer * buffer,struct xdp_frame * xdpf,struct igc_ring * ring)2300 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2301 struct xdp_frame *xdpf,
2302 struct igc_ring *ring)
2303 {
2304 dma_addr_t dma;
2305
2306 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2307 if (dma_mapping_error(ring->dev, dma)) {
2308 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2309 return -ENOMEM;
2310 }
2311
2312 buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2313 buffer->xdpf = xdpf;
2314 buffer->protocol = 0;
2315 buffer->bytecount = xdpf->len;
2316 buffer->gso_segs = 1;
2317 buffer->time_stamp = jiffies;
2318 dma_unmap_len_set(buffer, len, xdpf->len);
2319 dma_unmap_addr_set(buffer, dma, dma);
2320 return 0;
2321 }
2322
2323 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2324 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2325 struct xdp_frame *xdpf)
2326 {
2327 struct igc_tx_buffer *buffer;
2328 union igc_adv_tx_desc *desc;
2329 u32 cmd_type, olinfo_status;
2330 int err;
2331
2332 if (!igc_desc_unused(ring))
2333 return -EBUSY;
2334
2335 buffer = &ring->tx_buffer_info[ring->next_to_use];
2336 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2337 if (err)
2338 return err;
2339
2340 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2341 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2342 buffer->bytecount;
2343 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2344
2345 desc = IGC_TX_DESC(ring, ring->next_to_use);
2346 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2347 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2348 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2349
2350 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2351
2352 buffer->next_to_watch = desc;
2353
2354 ring->next_to_use++;
2355 if (ring->next_to_use == ring->count)
2356 ring->next_to_use = 0;
2357
2358 return 0;
2359 }
2360
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2361 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2362 int cpu)
2363 {
2364 int index = cpu;
2365
2366 if (unlikely(index < 0))
2367 index = 0;
2368
2369 while (index >= adapter->num_tx_queues)
2370 index -= adapter->num_tx_queues;
2371
2372 return adapter->tx_ring[index];
2373 }
2374
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2375 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2376 {
2377 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2378 int cpu = smp_processor_id();
2379 struct netdev_queue *nq;
2380 struct igc_ring *ring;
2381 int res;
2382
2383 if (unlikely(!xdpf))
2384 return -EFAULT;
2385
2386 ring = igc_xdp_get_tx_ring(adapter, cpu);
2387 nq = txring_txq(ring);
2388
2389 __netif_tx_lock(nq, cpu);
2390 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2391 __netif_tx_unlock(nq);
2392 return res;
2393 }
2394
2395 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2396 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2397 struct bpf_prog *prog,
2398 struct xdp_buff *xdp)
2399 {
2400 u32 act = bpf_prog_run_xdp(prog, xdp);
2401
2402 switch (act) {
2403 case XDP_PASS:
2404 return IGC_XDP_PASS;
2405 case XDP_TX:
2406 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2407 goto out_failure;
2408 return IGC_XDP_TX;
2409 case XDP_REDIRECT:
2410 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2411 goto out_failure;
2412 return IGC_XDP_REDIRECT;
2413 break;
2414 default:
2415 bpf_warn_invalid_xdp_action(act);
2416 fallthrough;
2417 case XDP_ABORTED:
2418 out_failure:
2419 trace_xdp_exception(adapter->netdev, prog, act);
2420 fallthrough;
2421 case XDP_DROP:
2422 return IGC_XDP_CONSUMED;
2423 }
2424 }
2425
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2426 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2427 struct xdp_buff *xdp)
2428 {
2429 struct bpf_prog *prog;
2430 int res;
2431
2432 prog = READ_ONCE(adapter->xdp_prog);
2433 if (!prog) {
2434 res = IGC_XDP_PASS;
2435 goto out;
2436 }
2437
2438 res = __igc_xdp_run_prog(adapter, prog, xdp);
2439
2440 out:
2441 return ERR_PTR(-res);
2442 }
2443
2444 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2445 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2446 {
2447 /* Once tail pointer is updated, hardware can fetch the descriptors
2448 * any time so we issue a write membar here to ensure all memory
2449 * writes are complete before the tail pointer is updated.
2450 */
2451 wmb();
2452 writel(ring->next_to_use, ring->tail);
2453 }
2454
igc_finalize_xdp(struct igc_adapter * adapter,int status)2455 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2456 {
2457 int cpu = smp_processor_id();
2458 struct netdev_queue *nq;
2459 struct igc_ring *ring;
2460
2461 if (status & IGC_XDP_TX) {
2462 ring = igc_xdp_get_tx_ring(adapter, cpu);
2463 nq = txring_txq(ring);
2464
2465 __netif_tx_lock(nq, cpu);
2466 igc_flush_tx_descriptors(ring);
2467 __netif_tx_unlock(nq);
2468 }
2469
2470 if (status & IGC_XDP_REDIRECT)
2471 xdp_do_flush();
2472 }
2473
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2474 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2475 unsigned int packets, unsigned int bytes)
2476 {
2477 struct igc_ring *ring = q_vector->rx.ring;
2478
2479 u64_stats_update_begin(&ring->rx_syncp);
2480 ring->rx_stats.packets += packets;
2481 ring->rx_stats.bytes += bytes;
2482 u64_stats_update_end(&ring->rx_syncp);
2483
2484 q_vector->rx.total_packets += packets;
2485 q_vector->rx.total_bytes += bytes;
2486 }
2487
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2488 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2489 {
2490 unsigned int total_bytes = 0, total_packets = 0;
2491 struct igc_adapter *adapter = q_vector->adapter;
2492 struct igc_ring *rx_ring = q_vector->rx.ring;
2493 struct sk_buff *skb = rx_ring->skb;
2494 u16 cleaned_count = igc_desc_unused(rx_ring);
2495 int xdp_status = 0, rx_buffer_pgcnt;
2496
2497 while (likely(total_packets < budget)) {
2498 union igc_adv_rx_desc *rx_desc;
2499 struct igc_rx_buffer *rx_buffer;
2500 unsigned int size, truesize;
2501 ktime_t timestamp = 0;
2502 struct xdp_buff xdp;
2503 int pkt_offset = 0;
2504 void *pktbuf;
2505
2506 /* return some buffers to hardware, one at a time is too slow */
2507 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2508 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2509 cleaned_count = 0;
2510 }
2511
2512 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2513 size = le16_to_cpu(rx_desc->wb.upper.length);
2514 if (!size)
2515 break;
2516
2517 /* This memory barrier is needed to keep us from reading
2518 * any other fields out of the rx_desc until we know the
2519 * descriptor has been written back
2520 */
2521 dma_rmb();
2522
2523 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2524 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2525
2526 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2527
2528 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2529 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2530 pktbuf);
2531 pkt_offset = IGC_TS_HDR_LEN;
2532 size -= IGC_TS_HDR_LEN;
2533 }
2534
2535 if (!skb) {
2536 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2537 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2538 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2539
2540 skb = igc_xdp_run_prog(adapter, &xdp);
2541 }
2542
2543 if (IS_ERR(skb)) {
2544 unsigned int xdp_res = -PTR_ERR(skb);
2545
2546 switch (xdp_res) {
2547 case IGC_XDP_CONSUMED:
2548 rx_buffer->pagecnt_bias++;
2549 break;
2550 case IGC_XDP_TX:
2551 case IGC_XDP_REDIRECT:
2552 igc_rx_buffer_flip(rx_buffer, truesize);
2553 xdp_status |= xdp_res;
2554 break;
2555 }
2556
2557 total_packets++;
2558 total_bytes += size;
2559 } else if (skb)
2560 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2561 else if (ring_uses_build_skb(rx_ring))
2562 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2563 else
2564 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2565 timestamp);
2566
2567 /* exit if we failed to retrieve a buffer */
2568 if (!skb) {
2569 rx_ring->rx_stats.alloc_failed++;
2570 rx_buffer->pagecnt_bias++;
2571 break;
2572 }
2573
2574 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2575 cleaned_count++;
2576
2577 /* fetch next buffer in frame if non-eop */
2578 if (igc_is_non_eop(rx_ring, rx_desc))
2579 continue;
2580
2581 /* verify the packet layout is correct */
2582 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2583 skb = NULL;
2584 continue;
2585 }
2586
2587 /* probably a little skewed due to removing CRC */
2588 total_bytes += skb->len;
2589
2590 /* populate checksum, VLAN, and protocol */
2591 igc_process_skb_fields(rx_ring, rx_desc, skb);
2592
2593 napi_gro_receive(&q_vector->napi, skb);
2594
2595 /* reset skb pointer */
2596 skb = NULL;
2597
2598 /* update budget accounting */
2599 total_packets++;
2600 }
2601
2602 if (xdp_status)
2603 igc_finalize_xdp(adapter, xdp_status);
2604
2605 /* place incomplete frames back on ring for completion */
2606 rx_ring->skb = skb;
2607
2608 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2609
2610 if (cleaned_count)
2611 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2612
2613 return total_packets;
2614 }
2615
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2616 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2617 struct xdp_buff *xdp)
2618 {
2619 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2620 unsigned int metasize = xdp->data - xdp->data_meta;
2621 struct sk_buff *skb;
2622
2623 net_prefetch(xdp->data_meta);
2624
2625 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2626 GFP_ATOMIC | __GFP_NOWARN);
2627 if (unlikely(!skb))
2628 return NULL;
2629
2630 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2631 ALIGN(totalsize, sizeof(long)));
2632
2633 if (metasize) {
2634 skb_metadata_set(skb, metasize);
2635 __skb_pull(skb, metasize);
2636 }
2637
2638 return skb;
2639 }
2640
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2641 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2642 union igc_adv_rx_desc *desc,
2643 struct xdp_buff *xdp,
2644 ktime_t timestamp)
2645 {
2646 struct igc_ring *ring = q_vector->rx.ring;
2647 struct sk_buff *skb;
2648
2649 skb = igc_construct_skb_zc(ring, xdp);
2650 if (!skb) {
2651 ring->rx_stats.alloc_failed++;
2652 return;
2653 }
2654
2655 if (timestamp)
2656 skb_hwtstamps(skb)->hwtstamp = timestamp;
2657
2658 if (igc_cleanup_headers(ring, desc, skb))
2659 return;
2660
2661 igc_process_skb_fields(ring, desc, skb);
2662 napi_gro_receive(&q_vector->napi, skb);
2663 }
2664
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2665 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2666 {
2667 struct igc_adapter *adapter = q_vector->adapter;
2668 struct igc_ring *ring = q_vector->rx.ring;
2669 u16 cleaned_count = igc_desc_unused(ring);
2670 int total_bytes = 0, total_packets = 0;
2671 u16 ntc = ring->next_to_clean;
2672 struct bpf_prog *prog;
2673 bool failure = false;
2674 int xdp_status = 0;
2675
2676 rcu_read_lock();
2677
2678 prog = READ_ONCE(adapter->xdp_prog);
2679
2680 while (likely(total_packets < budget)) {
2681 union igc_adv_rx_desc *desc;
2682 struct igc_rx_buffer *bi;
2683 ktime_t timestamp = 0;
2684 unsigned int size;
2685 int res;
2686
2687 desc = IGC_RX_DESC(ring, ntc);
2688 size = le16_to_cpu(desc->wb.upper.length);
2689 if (!size)
2690 break;
2691
2692 /* This memory barrier is needed to keep us from reading
2693 * any other fields out of the rx_desc until we know the
2694 * descriptor has been written back
2695 */
2696 dma_rmb();
2697
2698 bi = &ring->rx_buffer_info[ntc];
2699
2700 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2701 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2702 bi->xdp->data);
2703
2704 bi->xdp->data += IGC_TS_HDR_LEN;
2705
2706 /* HW timestamp has been copied into local variable. Metadata
2707 * length when XDP program is called should be 0.
2708 */
2709 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2710 size -= IGC_TS_HDR_LEN;
2711 }
2712
2713 bi->xdp->data_end = bi->xdp->data + size;
2714 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2715
2716 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2717 switch (res) {
2718 case IGC_XDP_PASS:
2719 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2720 fallthrough;
2721 case IGC_XDP_CONSUMED:
2722 xsk_buff_free(bi->xdp);
2723 break;
2724 case IGC_XDP_TX:
2725 case IGC_XDP_REDIRECT:
2726 xdp_status |= res;
2727 break;
2728 }
2729
2730 bi->xdp = NULL;
2731 total_bytes += size;
2732 total_packets++;
2733 cleaned_count++;
2734 ntc++;
2735 if (ntc == ring->count)
2736 ntc = 0;
2737 }
2738
2739 ring->next_to_clean = ntc;
2740 rcu_read_unlock();
2741
2742 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2743 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2744
2745 if (xdp_status)
2746 igc_finalize_xdp(adapter, xdp_status);
2747
2748 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2749
2750 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2751 if (failure || ring->next_to_clean == ring->next_to_use)
2752 xsk_set_rx_need_wakeup(ring->xsk_pool);
2753 else
2754 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2755 return total_packets;
2756 }
2757
2758 return failure ? budget : total_packets;
2759 }
2760
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2761 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2762 unsigned int packets, unsigned int bytes)
2763 {
2764 struct igc_ring *ring = q_vector->tx.ring;
2765
2766 u64_stats_update_begin(&ring->tx_syncp);
2767 ring->tx_stats.bytes += bytes;
2768 ring->tx_stats.packets += packets;
2769 u64_stats_update_end(&ring->tx_syncp);
2770
2771 q_vector->tx.total_bytes += bytes;
2772 q_vector->tx.total_packets += packets;
2773 }
2774
igc_xdp_xmit_zc(struct igc_ring * ring)2775 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2776 {
2777 struct xsk_buff_pool *pool = ring->xsk_pool;
2778 struct netdev_queue *nq = txring_txq(ring);
2779 union igc_adv_tx_desc *tx_desc = NULL;
2780 int cpu = smp_processor_id();
2781 struct xdp_desc xdp_desc;
2782 u16 budget, ntu;
2783
2784 if (!netif_carrier_ok(ring->netdev))
2785 return;
2786
2787 __netif_tx_lock(nq, cpu);
2788
2789 ntu = ring->next_to_use;
2790 budget = igc_desc_unused(ring);
2791
2792 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2793 u32 cmd_type, olinfo_status;
2794 struct igc_tx_buffer *bi;
2795 dma_addr_t dma;
2796
2797 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2798 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2799 xdp_desc.len;
2800 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2801
2802 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2803 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2804
2805 tx_desc = IGC_TX_DESC(ring, ntu);
2806 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2807 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2808 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2809
2810 bi = &ring->tx_buffer_info[ntu];
2811 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2812 bi->protocol = 0;
2813 bi->bytecount = xdp_desc.len;
2814 bi->gso_segs = 1;
2815 bi->time_stamp = jiffies;
2816 bi->next_to_watch = tx_desc;
2817
2818 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2819
2820 ntu++;
2821 if (ntu == ring->count)
2822 ntu = 0;
2823 }
2824
2825 ring->next_to_use = ntu;
2826 if (tx_desc) {
2827 igc_flush_tx_descriptors(ring);
2828 xsk_tx_release(pool);
2829 }
2830
2831 __netif_tx_unlock(nq);
2832 }
2833
2834 /**
2835 * igc_clean_tx_irq - Reclaim resources after transmit completes
2836 * @q_vector: pointer to q_vector containing needed info
2837 * @napi_budget: Used to determine if we are in netpoll
2838 *
2839 * returns true if ring is completely cleaned
2840 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2841 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2842 {
2843 struct igc_adapter *adapter = q_vector->adapter;
2844 unsigned int total_bytes = 0, total_packets = 0;
2845 unsigned int budget = q_vector->tx.work_limit;
2846 struct igc_ring *tx_ring = q_vector->tx.ring;
2847 unsigned int i = tx_ring->next_to_clean;
2848 struct igc_tx_buffer *tx_buffer;
2849 union igc_adv_tx_desc *tx_desc;
2850 u32 xsk_frames = 0;
2851
2852 if (test_bit(__IGC_DOWN, &adapter->state))
2853 return true;
2854
2855 tx_buffer = &tx_ring->tx_buffer_info[i];
2856 tx_desc = IGC_TX_DESC(tx_ring, i);
2857 i -= tx_ring->count;
2858
2859 do {
2860 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2861
2862 /* if next_to_watch is not set then there is no work pending */
2863 if (!eop_desc)
2864 break;
2865
2866 /* prevent any other reads prior to eop_desc */
2867 smp_rmb();
2868
2869 /* if DD is not set pending work has not been completed */
2870 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2871 break;
2872
2873 /* clear next_to_watch to prevent false hangs */
2874 tx_buffer->next_to_watch = NULL;
2875
2876 /* update the statistics for this packet */
2877 total_bytes += tx_buffer->bytecount;
2878 total_packets += tx_buffer->gso_segs;
2879
2880 switch (tx_buffer->type) {
2881 case IGC_TX_BUFFER_TYPE_XSK:
2882 xsk_frames++;
2883 break;
2884 case IGC_TX_BUFFER_TYPE_XDP:
2885 xdp_return_frame(tx_buffer->xdpf);
2886 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2887 break;
2888 case IGC_TX_BUFFER_TYPE_SKB:
2889 napi_consume_skb(tx_buffer->skb, napi_budget);
2890 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2891 break;
2892 default:
2893 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2894 break;
2895 }
2896
2897 /* clear last DMA location and unmap remaining buffers */
2898 while (tx_desc != eop_desc) {
2899 tx_buffer++;
2900 tx_desc++;
2901 i++;
2902 if (unlikely(!i)) {
2903 i -= tx_ring->count;
2904 tx_buffer = tx_ring->tx_buffer_info;
2905 tx_desc = IGC_TX_DESC(tx_ring, 0);
2906 }
2907
2908 /* unmap any remaining paged data */
2909 if (dma_unmap_len(tx_buffer, len))
2910 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2911 }
2912
2913 /* move us one more past the eop_desc for start of next pkt */
2914 tx_buffer++;
2915 tx_desc++;
2916 i++;
2917 if (unlikely(!i)) {
2918 i -= tx_ring->count;
2919 tx_buffer = tx_ring->tx_buffer_info;
2920 tx_desc = IGC_TX_DESC(tx_ring, 0);
2921 }
2922
2923 /* issue prefetch for next Tx descriptor */
2924 prefetch(tx_desc);
2925
2926 /* update budget accounting */
2927 budget--;
2928 } while (likely(budget));
2929
2930 netdev_tx_completed_queue(txring_txq(tx_ring),
2931 total_packets, total_bytes);
2932
2933 i += tx_ring->count;
2934 tx_ring->next_to_clean = i;
2935
2936 igc_update_tx_stats(q_vector, total_packets, total_bytes);
2937
2938 if (tx_ring->xsk_pool) {
2939 if (xsk_frames)
2940 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2941 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2942 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2943 igc_xdp_xmit_zc(tx_ring);
2944 }
2945
2946 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2947 struct igc_hw *hw = &adapter->hw;
2948
2949 /* Detect a transmit hang in hardware, this serializes the
2950 * check with the clearing of time_stamp and movement of i
2951 */
2952 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2953 if (tx_buffer->next_to_watch &&
2954 time_after(jiffies, tx_buffer->time_stamp +
2955 (adapter->tx_timeout_factor * HZ)) &&
2956 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
2957 (rd32(IGC_TDH(tx_ring->reg_idx)) !=
2958 readl(tx_ring->tail))) {
2959 /* detected Tx unit hang */
2960 netdev_err(tx_ring->netdev,
2961 "Detected Tx Unit Hang\n"
2962 " Tx Queue <%d>\n"
2963 " TDH <%x>\n"
2964 " TDT <%x>\n"
2965 " next_to_use <%x>\n"
2966 " next_to_clean <%x>\n"
2967 "buffer_info[next_to_clean]\n"
2968 " time_stamp <%lx>\n"
2969 " next_to_watch <%p>\n"
2970 " jiffies <%lx>\n"
2971 " desc.status <%x>\n",
2972 tx_ring->queue_index,
2973 rd32(IGC_TDH(tx_ring->reg_idx)),
2974 readl(tx_ring->tail),
2975 tx_ring->next_to_use,
2976 tx_ring->next_to_clean,
2977 tx_buffer->time_stamp,
2978 tx_buffer->next_to_watch,
2979 jiffies,
2980 tx_buffer->next_to_watch->wb.status);
2981 netif_stop_subqueue(tx_ring->netdev,
2982 tx_ring->queue_index);
2983
2984 /* we are about to reset, no point in enabling stuff */
2985 return true;
2986 }
2987 }
2988
2989 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2990 if (unlikely(total_packets &&
2991 netif_carrier_ok(tx_ring->netdev) &&
2992 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2993 /* Make sure that anybody stopping the queue after this
2994 * sees the new next_to_clean.
2995 */
2996 smp_mb();
2997 if (__netif_subqueue_stopped(tx_ring->netdev,
2998 tx_ring->queue_index) &&
2999 !(test_bit(__IGC_DOWN, &adapter->state))) {
3000 netif_wake_subqueue(tx_ring->netdev,
3001 tx_ring->queue_index);
3002
3003 u64_stats_update_begin(&tx_ring->tx_syncp);
3004 tx_ring->tx_stats.restart_queue++;
3005 u64_stats_update_end(&tx_ring->tx_syncp);
3006 }
3007 }
3008
3009 return !!budget;
3010 }
3011
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3012 static int igc_find_mac_filter(struct igc_adapter *adapter,
3013 enum igc_mac_filter_type type, const u8 *addr)
3014 {
3015 struct igc_hw *hw = &adapter->hw;
3016 int max_entries = hw->mac.rar_entry_count;
3017 u32 ral, rah;
3018 int i;
3019
3020 for (i = 0; i < max_entries; i++) {
3021 ral = rd32(IGC_RAL(i));
3022 rah = rd32(IGC_RAH(i));
3023
3024 if (!(rah & IGC_RAH_AV))
3025 continue;
3026 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3027 continue;
3028 if ((rah & IGC_RAH_RAH_MASK) !=
3029 le16_to_cpup((__le16 *)(addr + 4)))
3030 continue;
3031 if (ral != le32_to_cpup((__le32 *)(addr)))
3032 continue;
3033
3034 return i;
3035 }
3036
3037 return -1;
3038 }
3039
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3040 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3041 {
3042 struct igc_hw *hw = &adapter->hw;
3043 int max_entries = hw->mac.rar_entry_count;
3044 u32 rah;
3045 int i;
3046
3047 for (i = 0; i < max_entries; i++) {
3048 rah = rd32(IGC_RAH(i));
3049
3050 if (!(rah & IGC_RAH_AV))
3051 return i;
3052 }
3053
3054 return -1;
3055 }
3056
3057 /**
3058 * igc_add_mac_filter() - Add MAC address filter
3059 * @adapter: Pointer to adapter where the filter should be added
3060 * @type: MAC address filter type (source or destination)
3061 * @addr: MAC address
3062 * @queue: If non-negative, queue assignment feature is enabled and frames
3063 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3064 * assignment is disabled.
3065 *
3066 * Return: 0 in case of success, negative errno code otherwise.
3067 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3068 static int igc_add_mac_filter(struct igc_adapter *adapter,
3069 enum igc_mac_filter_type type, const u8 *addr,
3070 int queue)
3071 {
3072 struct net_device *dev = adapter->netdev;
3073 int index;
3074
3075 index = igc_find_mac_filter(adapter, type, addr);
3076 if (index >= 0)
3077 goto update_filter;
3078
3079 index = igc_get_avail_mac_filter_slot(adapter);
3080 if (index < 0)
3081 return -ENOSPC;
3082
3083 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3084 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3085 addr, queue);
3086
3087 update_filter:
3088 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3089 return 0;
3090 }
3091
3092 /**
3093 * igc_del_mac_filter() - Delete MAC address filter
3094 * @adapter: Pointer to adapter where the filter should be deleted from
3095 * @type: MAC address filter type (source or destination)
3096 * @addr: MAC address
3097 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3098 static void igc_del_mac_filter(struct igc_adapter *adapter,
3099 enum igc_mac_filter_type type, const u8 *addr)
3100 {
3101 struct net_device *dev = adapter->netdev;
3102 int index;
3103
3104 index = igc_find_mac_filter(adapter, type, addr);
3105 if (index < 0)
3106 return;
3107
3108 if (index == 0) {
3109 /* If this is the default filter, we don't actually delete it.
3110 * We just reset to its default value i.e. disable queue
3111 * assignment.
3112 */
3113 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3114
3115 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3116 } else {
3117 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3118 index,
3119 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3120 addr);
3121
3122 igc_clear_mac_filter_hw(adapter, index);
3123 }
3124 }
3125
3126 /**
3127 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3128 * @adapter: Pointer to adapter where the filter should be added
3129 * @prio: VLAN priority value
3130 * @queue: Queue number which matching frames are assigned to
3131 *
3132 * Return: 0 in case of success, negative errno code otherwise.
3133 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3134 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3135 int queue)
3136 {
3137 struct net_device *dev = adapter->netdev;
3138 struct igc_hw *hw = &adapter->hw;
3139 u32 vlanpqf;
3140
3141 vlanpqf = rd32(IGC_VLANPQF);
3142
3143 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3144 netdev_dbg(dev, "VLAN priority filter already in use\n");
3145 return -EEXIST;
3146 }
3147
3148 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3149 vlanpqf |= IGC_VLANPQF_VALID(prio);
3150
3151 wr32(IGC_VLANPQF, vlanpqf);
3152
3153 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3154 prio, queue);
3155 return 0;
3156 }
3157
3158 /**
3159 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3160 * @adapter: Pointer to adapter where the filter should be deleted from
3161 * @prio: VLAN priority value
3162 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3163 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3164 {
3165 struct igc_hw *hw = &adapter->hw;
3166 u32 vlanpqf;
3167
3168 vlanpqf = rd32(IGC_VLANPQF);
3169
3170 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3171 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3172
3173 wr32(IGC_VLANPQF, vlanpqf);
3174
3175 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3176 prio);
3177 }
3178
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3179 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3180 {
3181 struct igc_hw *hw = &adapter->hw;
3182 int i;
3183
3184 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3185 u32 etqf = rd32(IGC_ETQF(i));
3186
3187 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3188 return i;
3189 }
3190
3191 return -1;
3192 }
3193
3194 /**
3195 * igc_add_etype_filter() - Add ethertype filter
3196 * @adapter: Pointer to adapter where the filter should be added
3197 * @etype: Ethertype value
3198 * @queue: If non-negative, queue assignment feature is enabled and frames
3199 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3200 * assignment is disabled.
3201 *
3202 * Return: 0 in case of success, negative errno code otherwise.
3203 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3204 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3205 int queue)
3206 {
3207 struct igc_hw *hw = &adapter->hw;
3208 int index;
3209 u32 etqf;
3210
3211 index = igc_get_avail_etype_filter_slot(adapter);
3212 if (index < 0)
3213 return -ENOSPC;
3214
3215 etqf = rd32(IGC_ETQF(index));
3216
3217 etqf &= ~IGC_ETQF_ETYPE_MASK;
3218 etqf |= etype;
3219
3220 if (queue >= 0) {
3221 etqf &= ~IGC_ETQF_QUEUE_MASK;
3222 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3223 etqf |= IGC_ETQF_QUEUE_ENABLE;
3224 }
3225
3226 etqf |= IGC_ETQF_FILTER_ENABLE;
3227
3228 wr32(IGC_ETQF(index), etqf);
3229
3230 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3231 etype, queue);
3232 return 0;
3233 }
3234
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3235 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3236 {
3237 struct igc_hw *hw = &adapter->hw;
3238 int i;
3239
3240 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3241 u32 etqf = rd32(IGC_ETQF(i));
3242
3243 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3244 return i;
3245 }
3246
3247 return -1;
3248 }
3249
3250 /**
3251 * igc_del_etype_filter() - Delete ethertype filter
3252 * @adapter: Pointer to adapter where the filter should be deleted from
3253 * @etype: Ethertype value
3254 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3255 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3256 {
3257 struct igc_hw *hw = &adapter->hw;
3258 int index;
3259
3260 index = igc_find_etype_filter(adapter, etype);
3261 if (index < 0)
3262 return;
3263
3264 wr32(IGC_ETQF(index), 0);
3265
3266 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3267 etype);
3268 }
3269
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3270 static int igc_flex_filter_select(struct igc_adapter *adapter,
3271 struct igc_flex_filter *input,
3272 u32 *fhft)
3273 {
3274 struct igc_hw *hw = &adapter->hw;
3275 u8 fhft_index;
3276 u32 fhftsl;
3277
3278 if (input->index >= MAX_FLEX_FILTER) {
3279 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3280 return -EINVAL;
3281 }
3282
3283 /* Indirect table select register */
3284 fhftsl = rd32(IGC_FHFTSL);
3285 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3286 switch (input->index) {
3287 case 0 ... 7:
3288 fhftsl |= 0x00;
3289 break;
3290 case 8 ... 15:
3291 fhftsl |= 0x01;
3292 break;
3293 case 16 ... 23:
3294 fhftsl |= 0x02;
3295 break;
3296 case 24 ... 31:
3297 fhftsl |= 0x03;
3298 break;
3299 }
3300 wr32(IGC_FHFTSL, fhftsl);
3301
3302 /* Normalize index down to host table register */
3303 fhft_index = input->index % 8;
3304
3305 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3306 IGC_FHFT_EXT(fhft_index - 4);
3307
3308 return 0;
3309 }
3310
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3311 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3312 struct igc_flex_filter *input)
3313 {
3314 struct device *dev = &adapter->pdev->dev;
3315 struct igc_hw *hw = &adapter->hw;
3316 u8 *data = input->data;
3317 u8 *mask = input->mask;
3318 u32 queuing;
3319 u32 fhft;
3320 u32 wufc;
3321 int ret;
3322 int i;
3323
3324 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3325 * out early to avoid surprises later.
3326 */
3327 if (input->length % 8 != 0) {
3328 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3329 return -EINVAL;
3330 }
3331
3332 /* Select corresponding flex filter register and get base for host table. */
3333 ret = igc_flex_filter_select(adapter, input, &fhft);
3334 if (ret)
3335 return ret;
3336
3337 /* When adding a filter globally disable flex filter feature. That is
3338 * recommended within the datasheet.
3339 */
3340 wufc = rd32(IGC_WUFC);
3341 wufc &= ~IGC_WUFC_FLEX_HQ;
3342 wr32(IGC_WUFC, wufc);
3343
3344 /* Configure filter */
3345 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3346 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3347 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3348
3349 if (input->immediate_irq)
3350 queuing |= IGC_FHFT_IMM_INT;
3351
3352 if (input->drop)
3353 queuing |= IGC_FHFT_DROP;
3354
3355 wr32(fhft + 0xFC, queuing);
3356
3357 /* Write data (128 byte) and mask (128 bit) */
3358 for (i = 0; i < 16; ++i) {
3359 const size_t data_idx = i * 8;
3360 const size_t row_idx = i * 16;
3361 u32 dw0 =
3362 (data[data_idx + 0] << 0) |
3363 (data[data_idx + 1] << 8) |
3364 (data[data_idx + 2] << 16) |
3365 (data[data_idx + 3] << 24);
3366 u32 dw1 =
3367 (data[data_idx + 4] << 0) |
3368 (data[data_idx + 5] << 8) |
3369 (data[data_idx + 6] << 16) |
3370 (data[data_idx + 7] << 24);
3371 u32 tmp;
3372
3373 /* Write row: dw0, dw1 and mask */
3374 wr32(fhft + row_idx, dw0);
3375 wr32(fhft + row_idx + 4, dw1);
3376
3377 /* mask is only valid for MASK(7, 0) */
3378 tmp = rd32(fhft + row_idx + 8);
3379 tmp &= ~GENMASK(7, 0);
3380 tmp |= mask[i];
3381 wr32(fhft + row_idx + 8, tmp);
3382 }
3383
3384 /* Enable filter. */
3385 wufc |= IGC_WUFC_FLEX_HQ;
3386 if (input->index > 8) {
3387 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3388 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3389
3390 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3391
3392 wr32(IGC_WUFC_EXT, wufc_ext);
3393 } else {
3394 wufc |= (IGC_WUFC_FLX0 << input->index);
3395 }
3396 wr32(IGC_WUFC, wufc);
3397
3398 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3399 input->index);
3400
3401 return 0;
3402 }
3403
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3404 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3405 const void *src, unsigned int offset,
3406 size_t len, const void *mask)
3407 {
3408 int i;
3409
3410 /* data */
3411 memcpy(&flex->data[offset], src, len);
3412
3413 /* mask */
3414 for (i = 0; i < len; ++i) {
3415 const unsigned int idx = i + offset;
3416 const u8 *ptr = mask;
3417
3418 if (mask) {
3419 if (ptr[i] & 0xff)
3420 flex->mask[idx / 8] |= BIT(idx % 8);
3421
3422 continue;
3423 }
3424
3425 flex->mask[idx / 8] |= BIT(idx % 8);
3426 }
3427 }
3428
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3429 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3430 {
3431 struct igc_hw *hw = &adapter->hw;
3432 u32 wufc, wufc_ext;
3433 int i;
3434
3435 wufc = rd32(IGC_WUFC);
3436 wufc_ext = rd32(IGC_WUFC_EXT);
3437
3438 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3439 if (i < 8) {
3440 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3441 return i;
3442 } else {
3443 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3444 return i;
3445 }
3446 }
3447
3448 return -ENOSPC;
3449 }
3450
igc_flex_filter_in_use(struct igc_adapter * adapter)3451 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3452 {
3453 struct igc_hw *hw = &adapter->hw;
3454 u32 wufc, wufc_ext;
3455
3456 wufc = rd32(IGC_WUFC);
3457 wufc_ext = rd32(IGC_WUFC_EXT);
3458
3459 if (wufc & IGC_WUFC_FILTER_MASK)
3460 return true;
3461
3462 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3463 return true;
3464
3465 return false;
3466 }
3467
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3468 static int igc_add_flex_filter(struct igc_adapter *adapter,
3469 struct igc_nfc_rule *rule)
3470 {
3471 struct igc_flex_filter flex = { };
3472 struct igc_nfc_filter *filter = &rule->filter;
3473 unsigned int eth_offset, user_offset;
3474 int ret, index;
3475 bool vlan;
3476
3477 index = igc_find_avail_flex_filter_slot(adapter);
3478 if (index < 0)
3479 return -ENOSPC;
3480
3481 /* Construct the flex filter:
3482 * -> dest_mac [6]
3483 * -> src_mac [6]
3484 * -> tpid [2]
3485 * -> vlan tci [2]
3486 * -> ether type [2]
3487 * -> user data [8]
3488 * -> = 26 bytes => 32 length
3489 */
3490 flex.index = index;
3491 flex.length = 32;
3492 flex.rx_queue = rule->action;
3493
3494 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3495 eth_offset = vlan ? 16 : 12;
3496 user_offset = vlan ? 18 : 14;
3497
3498 /* Add destination MAC */
3499 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3500 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3501 ETH_ALEN, NULL);
3502
3503 /* Add source MAC */
3504 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3505 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3506 ETH_ALEN, NULL);
3507
3508 /* Add VLAN etype */
3509 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3510 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3511 sizeof(filter->vlan_etype),
3512 NULL);
3513
3514 /* Add VLAN TCI */
3515 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3516 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3517 sizeof(filter->vlan_tci), NULL);
3518
3519 /* Add Ether type */
3520 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3521 __be16 etype = cpu_to_be16(filter->etype);
3522
3523 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3524 sizeof(etype), NULL);
3525 }
3526
3527 /* Add user data */
3528 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3529 igc_flex_filter_add_field(&flex, &filter->user_data,
3530 user_offset,
3531 sizeof(filter->user_data),
3532 filter->user_mask);
3533
3534 /* Add it down to the hardware and enable it. */
3535 ret = igc_write_flex_filter_ll(adapter, &flex);
3536 if (ret)
3537 return ret;
3538
3539 filter->flex_index = index;
3540
3541 return 0;
3542 }
3543
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3544 static void igc_del_flex_filter(struct igc_adapter *adapter,
3545 u16 reg_index)
3546 {
3547 struct igc_hw *hw = &adapter->hw;
3548 u32 wufc;
3549
3550 /* Just disable the filter. The filter table itself is kept
3551 * intact. Another flex_filter_add() should override the "old" data
3552 * then.
3553 */
3554 if (reg_index > 8) {
3555 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3556
3557 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3558 wr32(IGC_WUFC_EXT, wufc_ext);
3559 } else {
3560 wufc = rd32(IGC_WUFC);
3561
3562 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3563 wr32(IGC_WUFC, wufc);
3564 }
3565
3566 if (igc_flex_filter_in_use(adapter))
3567 return;
3568
3569 /* No filters are in use, we may disable flex filters */
3570 wufc = rd32(IGC_WUFC);
3571 wufc &= ~IGC_WUFC_FLEX_HQ;
3572 wr32(IGC_WUFC, wufc);
3573 }
3574
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3575 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3576 struct igc_nfc_rule *rule)
3577 {
3578 int err;
3579
3580 if (rule->flex) {
3581 return igc_add_flex_filter(adapter, rule);
3582 }
3583
3584 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3585 err = igc_add_etype_filter(adapter, rule->filter.etype,
3586 rule->action);
3587 if (err)
3588 return err;
3589 }
3590
3591 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3592 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3593 rule->filter.src_addr, rule->action);
3594 if (err)
3595 return err;
3596 }
3597
3598 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3599 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3600 rule->filter.dst_addr, rule->action);
3601 if (err)
3602 return err;
3603 }
3604
3605 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3606 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3607 VLAN_PRIO_SHIFT;
3608
3609 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3610 if (err)
3611 return err;
3612 }
3613
3614 return 0;
3615 }
3616
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3617 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3618 const struct igc_nfc_rule *rule)
3619 {
3620 if (rule->flex) {
3621 igc_del_flex_filter(adapter, rule->filter.flex_index);
3622 return;
3623 }
3624
3625 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3626 igc_del_etype_filter(adapter, rule->filter.etype);
3627
3628 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3629 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3630 VLAN_PRIO_SHIFT;
3631
3632 igc_del_vlan_prio_filter(adapter, prio);
3633 }
3634
3635 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3636 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3637 rule->filter.src_addr);
3638
3639 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3640 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3641 rule->filter.dst_addr);
3642 }
3643
3644 /**
3645 * igc_get_nfc_rule() - Get NFC rule
3646 * @adapter: Pointer to adapter
3647 * @location: Rule location
3648 *
3649 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3650 *
3651 * Return: Pointer to NFC rule at @location. If not found, NULL.
3652 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3653 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3654 u32 location)
3655 {
3656 struct igc_nfc_rule *rule;
3657
3658 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3659 if (rule->location == location)
3660 return rule;
3661 if (rule->location > location)
3662 break;
3663 }
3664
3665 return NULL;
3666 }
3667
3668 /**
3669 * igc_del_nfc_rule() - Delete NFC rule
3670 * @adapter: Pointer to adapter
3671 * @rule: Pointer to rule to be deleted
3672 *
3673 * Disable NFC rule in hardware and delete it from adapter.
3674 *
3675 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3676 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3677 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3678 {
3679 igc_disable_nfc_rule(adapter, rule);
3680
3681 list_del(&rule->list);
3682 adapter->nfc_rule_count--;
3683
3684 kfree(rule);
3685 }
3686
igc_flush_nfc_rules(struct igc_adapter * adapter)3687 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3688 {
3689 struct igc_nfc_rule *rule, *tmp;
3690
3691 mutex_lock(&adapter->nfc_rule_lock);
3692
3693 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3694 igc_del_nfc_rule(adapter, rule);
3695
3696 mutex_unlock(&adapter->nfc_rule_lock);
3697 }
3698
3699 /**
3700 * igc_add_nfc_rule() - Add NFC rule
3701 * @adapter: Pointer to adapter
3702 * @rule: Pointer to rule to be added
3703 *
3704 * Enable NFC rule in hardware and add it to adapter.
3705 *
3706 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3707 *
3708 * Return: 0 on success, negative errno on failure.
3709 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3710 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3711 {
3712 struct igc_nfc_rule *pred, *cur;
3713 int err;
3714
3715 err = igc_enable_nfc_rule(adapter, rule);
3716 if (err)
3717 return err;
3718
3719 pred = NULL;
3720 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3721 if (cur->location >= rule->location)
3722 break;
3723 pred = cur;
3724 }
3725
3726 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3727 adapter->nfc_rule_count++;
3728 return 0;
3729 }
3730
igc_restore_nfc_rules(struct igc_adapter * adapter)3731 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3732 {
3733 struct igc_nfc_rule *rule;
3734
3735 mutex_lock(&adapter->nfc_rule_lock);
3736
3737 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3738 igc_enable_nfc_rule(adapter, rule);
3739
3740 mutex_unlock(&adapter->nfc_rule_lock);
3741 }
3742
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3743 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3744 {
3745 struct igc_adapter *adapter = netdev_priv(netdev);
3746
3747 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3748 }
3749
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3750 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3751 {
3752 struct igc_adapter *adapter = netdev_priv(netdev);
3753
3754 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3755 return 0;
3756 }
3757
3758 /**
3759 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3760 * @netdev: network interface device structure
3761 *
3762 * The set_rx_mode entry point is called whenever the unicast or multicast
3763 * address lists or the network interface flags are updated. This routine is
3764 * responsible for configuring the hardware for proper unicast, multicast,
3765 * promiscuous mode, and all-multi behavior.
3766 */
igc_set_rx_mode(struct net_device * netdev)3767 static void igc_set_rx_mode(struct net_device *netdev)
3768 {
3769 struct igc_adapter *adapter = netdev_priv(netdev);
3770 struct igc_hw *hw = &adapter->hw;
3771 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3772 int count;
3773
3774 /* Check for Promiscuous and All Multicast modes */
3775 if (netdev->flags & IFF_PROMISC) {
3776 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3777 } else {
3778 if (netdev->flags & IFF_ALLMULTI) {
3779 rctl |= IGC_RCTL_MPE;
3780 } else {
3781 /* Write addresses to the MTA, if the attempt fails
3782 * then we should just turn on promiscuous mode so
3783 * that we can at least receive multicast traffic
3784 */
3785 count = igc_write_mc_addr_list(netdev);
3786 if (count < 0)
3787 rctl |= IGC_RCTL_MPE;
3788 }
3789 }
3790
3791 /* Write addresses to available RAR registers, if there is not
3792 * sufficient space to store all the addresses then enable
3793 * unicast promiscuous mode
3794 */
3795 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3796 rctl |= IGC_RCTL_UPE;
3797
3798 /* update state of unicast and multicast */
3799 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3800 wr32(IGC_RCTL, rctl);
3801
3802 #if (PAGE_SIZE < 8192)
3803 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3804 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3805 #endif
3806 wr32(IGC_RLPML, rlpml);
3807 }
3808
3809 /**
3810 * igc_configure - configure the hardware for RX and TX
3811 * @adapter: private board structure
3812 */
igc_configure(struct igc_adapter * adapter)3813 static void igc_configure(struct igc_adapter *adapter)
3814 {
3815 struct net_device *netdev = adapter->netdev;
3816 int i = 0;
3817
3818 igc_get_hw_control(adapter);
3819 igc_set_rx_mode(netdev);
3820
3821 igc_restore_vlan(adapter);
3822
3823 igc_setup_tctl(adapter);
3824 igc_setup_mrqc(adapter);
3825 igc_setup_rctl(adapter);
3826
3827 igc_set_default_mac_filter(adapter);
3828 igc_restore_nfc_rules(adapter);
3829
3830 igc_configure_tx(adapter);
3831 igc_configure_rx(adapter);
3832
3833 igc_rx_fifo_flush_base(&adapter->hw);
3834
3835 /* call igc_desc_unused which always leaves
3836 * at least 1 descriptor unused to make sure
3837 * next_to_use != next_to_clean
3838 */
3839 for (i = 0; i < adapter->num_rx_queues; i++) {
3840 struct igc_ring *ring = adapter->rx_ring[i];
3841
3842 if (ring->xsk_pool)
3843 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3844 else
3845 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3846 }
3847 }
3848
3849 /**
3850 * igc_write_ivar - configure ivar for given MSI-X vector
3851 * @hw: pointer to the HW structure
3852 * @msix_vector: vector number we are allocating to a given ring
3853 * @index: row index of IVAR register to write within IVAR table
3854 * @offset: column offset of in IVAR, should be multiple of 8
3855 *
3856 * The IVAR table consists of 2 columns,
3857 * each containing an cause allocation for an Rx and Tx ring, and a
3858 * variable number of rows depending on the number of queues supported.
3859 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3860 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3861 int index, int offset)
3862 {
3863 u32 ivar = array_rd32(IGC_IVAR0, index);
3864
3865 /* clear any bits that are currently set */
3866 ivar &= ~((u32)0xFF << offset);
3867
3868 /* write vector and valid bit */
3869 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3870
3871 array_wr32(IGC_IVAR0, index, ivar);
3872 }
3873
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3874 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3875 {
3876 struct igc_adapter *adapter = q_vector->adapter;
3877 struct igc_hw *hw = &adapter->hw;
3878 int rx_queue = IGC_N0_QUEUE;
3879 int tx_queue = IGC_N0_QUEUE;
3880
3881 if (q_vector->rx.ring)
3882 rx_queue = q_vector->rx.ring->reg_idx;
3883 if (q_vector->tx.ring)
3884 tx_queue = q_vector->tx.ring->reg_idx;
3885
3886 switch (hw->mac.type) {
3887 case igc_i225:
3888 if (rx_queue > IGC_N0_QUEUE)
3889 igc_write_ivar(hw, msix_vector,
3890 rx_queue >> 1,
3891 (rx_queue & 0x1) << 4);
3892 if (tx_queue > IGC_N0_QUEUE)
3893 igc_write_ivar(hw, msix_vector,
3894 tx_queue >> 1,
3895 ((tx_queue & 0x1) << 4) + 8);
3896 q_vector->eims_value = BIT(msix_vector);
3897 break;
3898 default:
3899 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3900 break;
3901 }
3902
3903 /* add q_vector eims value to global eims_enable_mask */
3904 adapter->eims_enable_mask |= q_vector->eims_value;
3905
3906 /* configure q_vector to set itr on first interrupt */
3907 q_vector->set_itr = 1;
3908 }
3909
3910 /**
3911 * igc_configure_msix - Configure MSI-X hardware
3912 * @adapter: Pointer to adapter structure
3913 *
3914 * igc_configure_msix sets up the hardware to properly
3915 * generate MSI-X interrupts.
3916 */
igc_configure_msix(struct igc_adapter * adapter)3917 static void igc_configure_msix(struct igc_adapter *adapter)
3918 {
3919 struct igc_hw *hw = &adapter->hw;
3920 int i, vector = 0;
3921 u32 tmp;
3922
3923 adapter->eims_enable_mask = 0;
3924
3925 /* set vector for other causes, i.e. link changes */
3926 switch (hw->mac.type) {
3927 case igc_i225:
3928 /* Turn on MSI-X capability first, or our settings
3929 * won't stick. And it will take days to debug.
3930 */
3931 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3932 IGC_GPIE_PBA | IGC_GPIE_EIAME |
3933 IGC_GPIE_NSICR);
3934
3935 /* enable msix_other interrupt */
3936 adapter->eims_other = BIT(vector);
3937 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3938
3939 wr32(IGC_IVAR_MISC, tmp);
3940 break;
3941 default:
3942 /* do nothing, since nothing else supports MSI-X */
3943 break;
3944 } /* switch (hw->mac.type) */
3945
3946 adapter->eims_enable_mask |= adapter->eims_other;
3947
3948 for (i = 0; i < adapter->num_q_vectors; i++)
3949 igc_assign_vector(adapter->q_vector[i], vector++);
3950
3951 wrfl();
3952 }
3953
3954 /**
3955 * igc_irq_enable - Enable default interrupt generation settings
3956 * @adapter: board private structure
3957 */
igc_irq_enable(struct igc_adapter * adapter)3958 static void igc_irq_enable(struct igc_adapter *adapter)
3959 {
3960 struct igc_hw *hw = &adapter->hw;
3961
3962 if (adapter->msix_entries) {
3963 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3964 u32 regval = rd32(IGC_EIAC);
3965
3966 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3967 regval = rd32(IGC_EIAM);
3968 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3969 wr32(IGC_EIMS, adapter->eims_enable_mask);
3970 wr32(IGC_IMS, ims);
3971 } else {
3972 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3973 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3974 }
3975 }
3976
3977 /**
3978 * igc_irq_disable - Mask off interrupt generation on the NIC
3979 * @adapter: board private structure
3980 */
igc_irq_disable(struct igc_adapter * adapter)3981 static void igc_irq_disable(struct igc_adapter *adapter)
3982 {
3983 struct igc_hw *hw = &adapter->hw;
3984
3985 if (adapter->msix_entries) {
3986 u32 regval = rd32(IGC_EIAM);
3987
3988 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3989 wr32(IGC_EIMC, adapter->eims_enable_mask);
3990 regval = rd32(IGC_EIAC);
3991 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3992 }
3993
3994 wr32(IGC_IAM, 0);
3995 wr32(IGC_IMC, ~0);
3996 wrfl();
3997
3998 if (adapter->msix_entries) {
3999 int vector = 0, i;
4000
4001 synchronize_irq(adapter->msix_entries[vector++].vector);
4002
4003 for (i = 0; i < adapter->num_q_vectors; i++)
4004 synchronize_irq(adapter->msix_entries[vector++].vector);
4005 } else {
4006 synchronize_irq(adapter->pdev->irq);
4007 }
4008 }
4009
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4010 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4011 const u32 max_rss_queues)
4012 {
4013 /* Determine if we need to pair queues. */
4014 /* If rss_queues > half of max_rss_queues, pair the queues in
4015 * order to conserve interrupts due to limited supply.
4016 */
4017 if (adapter->rss_queues > (max_rss_queues / 2))
4018 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4019 else
4020 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4021 }
4022
igc_get_max_rss_queues(struct igc_adapter * adapter)4023 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4024 {
4025 return IGC_MAX_RX_QUEUES;
4026 }
4027
igc_init_queue_configuration(struct igc_adapter * adapter)4028 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4029 {
4030 u32 max_rss_queues;
4031
4032 max_rss_queues = igc_get_max_rss_queues(adapter);
4033 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4034
4035 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4036 }
4037
4038 /**
4039 * igc_reset_q_vector - Reset config for interrupt vector
4040 * @adapter: board private structure to initialize
4041 * @v_idx: Index of vector to be reset
4042 *
4043 * If NAPI is enabled it will delete any references to the
4044 * NAPI struct. This is preparation for igc_free_q_vector.
4045 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4046 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4047 {
4048 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4049
4050 /* if we're coming from igc_set_interrupt_capability, the vectors are
4051 * not yet allocated
4052 */
4053 if (!q_vector)
4054 return;
4055
4056 if (q_vector->tx.ring)
4057 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4058
4059 if (q_vector->rx.ring)
4060 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4061
4062 netif_napi_del(&q_vector->napi);
4063 }
4064
4065 /**
4066 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4067 * @adapter: board private structure to initialize
4068 * @v_idx: Index of vector to be freed
4069 *
4070 * This function frees the memory allocated to the q_vector.
4071 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4072 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4073 {
4074 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4075
4076 adapter->q_vector[v_idx] = NULL;
4077
4078 /* igc_get_stats64() might access the rings on this vector,
4079 * we must wait a grace period before freeing it.
4080 */
4081 if (q_vector)
4082 kfree_rcu(q_vector, rcu);
4083 }
4084
4085 /**
4086 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4087 * @adapter: board private structure to initialize
4088 *
4089 * This function frees the memory allocated to the q_vectors. In addition if
4090 * NAPI is enabled it will delete any references to the NAPI struct prior
4091 * to freeing the q_vector.
4092 */
igc_free_q_vectors(struct igc_adapter * adapter)4093 static void igc_free_q_vectors(struct igc_adapter *adapter)
4094 {
4095 int v_idx = adapter->num_q_vectors;
4096
4097 adapter->num_tx_queues = 0;
4098 adapter->num_rx_queues = 0;
4099 adapter->num_q_vectors = 0;
4100
4101 while (v_idx--) {
4102 igc_reset_q_vector(adapter, v_idx);
4103 igc_free_q_vector(adapter, v_idx);
4104 }
4105 }
4106
4107 /**
4108 * igc_update_itr - update the dynamic ITR value based on statistics
4109 * @q_vector: pointer to q_vector
4110 * @ring_container: ring info to update the itr for
4111 *
4112 * Stores a new ITR value based on packets and byte
4113 * counts during the last interrupt. The advantage of per interrupt
4114 * computation is faster updates and more accurate ITR for the current
4115 * traffic pattern. Constants in this function were computed
4116 * based on theoretical maximum wire speed and thresholds were set based
4117 * on testing data as well as attempting to minimize response time
4118 * while increasing bulk throughput.
4119 * NOTE: These calculations are only valid when operating in a single-
4120 * queue environment.
4121 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4122 static void igc_update_itr(struct igc_q_vector *q_vector,
4123 struct igc_ring_container *ring_container)
4124 {
4125 unsigned int packets = ring_container->total_packets;
4126 unsigned int bytes = ring_container->total_bytes;
4127 u8 itrval = ring_container->itr;
4128
4129 /* no packets, exit with status unchanged */
4130 if (packets == 0)
4131 return;
4132
4133 switch (itrval) {
4134 case lowest_latency:
4135 /* handle TSO and jumbo frames */
4136 if (bytes / packets > 8000)
4137 itrval = bulk_latency;
4138 else if ((packets < 5) && (bytes > 512))
4139 itrval = low_latency;
4140 break;
4141 case low_latency: /* 50 usec aka 20000 ints/s */
4142 if (bytes > 10000) {
4143 /* this if handles the TSO accounting */
4144 if (bytes / packets > 8000)
4145 itrval = bulk_latency;
4146 else if ((packets < 10) || ((bytes / packets) > 1200))
4147 itrval = bulk_latency;
4148 else if ((packets > 35))
4149 itrval = lowest_latency;
4150 } else if (bytes / packets > 2000) {
4151 itrval = bulk_latency;
4152 } else if (packets <= 2 && bytes < 512) {
4153 itrval = lowest_latency;
4154 }
4155 break;
4156 case bulk_latency: /* 250 usec aka 4000 ints/s */
4157 if (bytes > 25000) {
4158 if (packets > 35)
4159 itrval = low_latency;
4160 } else if (bytes < 1500) {
4161 itrval = low_latency;
4162 }
4163 break;
4164 }
4165
4166 /* clear work counters since we have the values we need */
4167 ring_container->total_bytes = 0;
4168 ring_container->total_packets = 0;
4169
4170 /* write updated itr to ring container */
4171 ring_container->itr = itrval;
4172 }
4173
igc_set_itr(struct igc_q_vector * q_vector)4174 static void igc_set_itr(struct igc_q_vector *q_vector)
4175 {
4176 struct igc_adapter *adapter = q_vector->adapter;
4177 u32 new_itr = q_vector->itr_val;
4178 u8 current_itr = 0;
4179
4180 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4181 switch (adapter->link_speed) {
4182 case SPEED_10:
4183 case SPEED_100:
4184 current_itr = 0;
4185 new_itr = IGC_4K_ITR;
4186 goto set_itr_now;
4187 default:
4188 break;
4189 }
4190
4191 igc_update_itr(q_vector, &q_vector->tx);
4192 igc_update_itr(q_vector, &q_vector->rx);
4193
4194 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4195
4196 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4197 if (current_itr == lowest_latency &&
4198 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4199 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4200 current_itr = low_latency;
4201
4202 switch (current_itr) {
4203 /* counts and packets in update_itr are dependent on these numbers */
4204 case lowest_latency:
4205 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4206 break;
4207 case low_latency:
4208 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4209 break;
4210 case bulk_latency:
4211 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4212 break;
4213 default:
4214 break;
4215 }
4216
4217 set_itr_now:
4218 if (new_itr != q_vector->itr_val) {
4219 /* this attempts to bias the interrupt rate towards Bulk
4220 * by adding intermediate steps when interrupt rate is
4221 * increasing
4222 */
4223 new_itr = new_itr > q_vector->itr_val ?
4224 max((new_itr * q_vector->itr_val) /
4225 (new_itr + (q_vector->itr_val >> 2)),
4226 new_itr) : new_itr;
4227 /* Don't write the value here; it resets the adapter's
4228 * internal timer, and causes us to delay far longer than
4229 * we should between interrupts. Instead, we write the ITR
4230 * value at the beginning of the next interrupt so the timing
4231 * ends up being correct.
4232 */
4233 q_vector->itr_val = new_itr;
4234 q_vector->set_itr = 1;
4235 }
4236 }
4237
igc_reset_interrupt_capability(struct igc_adapter * adapter)4238 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4239 {
4240 int v_idx = adapter->num_q_vectors;
4241
4242 if (adapter->msix_entries) {
4243 pci_disable_msix(adapter->pdev);
4244 kfree(adapter->msix_entries);
4245 adapter->msix_entries = NULL;
4246 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4247 pci_disable_msi(adapter->pdev);
4248 }
4249
4250 while (v_idx--)
4251 igc_reset_q_vector(adapter, v_idx);
4252 }
4253
4254 /**
4255 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4256 * @adapter: Pointer to adapter structure
4257 * @msix: boolean value for MSI-X capability
4258 *
4259 * Attempt to configure interrupts using the best available
4260 * capabilities of the hardware and kernel.
4261 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4262 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4263 bool msix)
4264 {
4265 int numvecs, i;
4266 int err;
4267
4268 if (!msix)
4269 goto msi_only;
4270 adapter->flags |= IGC_FLAG_HAS_MSIX;
4271
4272 /* Number of supported queues. */
4273 adapter->num_rx_queues = adapter->rss_queues;
4274
4275 adapter->num_tx_queues = adapter->rss_queues;
4276
4277 /* start with one vector for every Rx queue */
4278 numvecs = adapter->num_rx_queues;
4279
4280 /* if Tx handler is separate add 1 for every Tx queue */
4281 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4282 numvecs += adapter->num_tx_queues;
4283
4284 /* store the number of vectors reserved for queues */
4285 adapter->num_q_vectors = numvecs;
4286
4287 /* add 1 vector for link status interrupts */
4288 numvecs++;
4289
4290 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4291 GFP_KERNEL);
4292
4293 if (!adapter->msix_entries)
4294 return;
4295
4296 /* populate entry values */
4297 for (i = 0; i < numvecs; i++)
4298 adapter->msix_entries[i].entry = i;
4299
4300 err = pci_enable_msix_range(adapter->pdev,
4301 adapter->msix_entries,
4302 numvecs,
4303 numvecs);
4304 if (err > 0)
4305 return;
4306
4307 kfree(adapter->msix_entries);
4308 adapter->msix_entries = NULL;
4309
4310 igc_reset_interrupt_capability(adapter);
4311
4312 msi_only:
4313 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4314
4315 adapter->rss_queues = 1;
4316 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4317 adapter->num_rx_queues = 1;
4318 adapter->num_tx_queues = 1;
4319 adapter->num_q_vectors = 1;
4320 if (!pci_enable_msi(adapter->pdev))
4321 adapter->flags |= IGC_FLAG_HAS_MSI;
4322 }
4323
4324 /**
4325 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4326 * @q_vector: pointer to q_vector
4327 *
4328 * Stores a new ITR value based on strictly on packet size. This
4329 * algorithm is less sophisticated than that used in igc_update_itr,
4330 * due to the difficulty of synchronizing statistics across multiple
4331 * receive rings. The divisors and thresholds used by this function
4332 * were determined based on theoretical maximum wire speed and testing
4333 * data, in order to minimize response time while increasing bulk
4334 * throughput.
4335 * NOTE: This function is called only when operating in a multiqueue
4336 * receive environment.
4337 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4338 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4339 {
4340 struct igc_adapter *adapter = q_vector->adapter;
4341 int new_val = q_vector->itr_val;
4342 int avg_wire_size = 0;
4343 unsigned int packets;
4344
4345 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4346 * ints/sec - ITR timer value of 120 ticks.
4347 */
4348 switch (adapter->link_speed) {
4349 case SPEED_10:
4350 case SPEED_100:
4351 new_val = IGC_4K_ITR;
4352 goto set_itr_val;
4353 default:
4354 break;
4355 }
4356
4357 packets = q_vector->rx.total_packets;
4358 if (packets)
4359 avg_wire_size = q_vector->rx.total_bytes / packets;
4360
4361 packets = q_vector->tx.total_packets;
4362 if (packets)
4363 avg_wire_size = max_t(u32, avg_wire_size,
4364 q_vector->tx.total_bytes / packets);
4365
4366 /* if avg_wire_size isn't set no work was done */
4367 if (!avg_wire_size)
4368 goto clear_counts;
4369
4370 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4371 avg_wire_size += 24;
4372
4373 /* Don't starve jumbo frames */
4374 avg_wire_size = min(avg_wire_size, 3000);
4375
4376 /* Give a little boost to mid-size frames */
4377 if (avg_wire_size > 300 && avg_wire_size < 1200)
4378 new_val = avg_wire_size / 3;
4379 else
4380 new_val = avg_wire_size / 2;
4381
4382 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4383 if (new_val < IGC_20K_ITR &&
4384 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4385 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4386 new_val = IGC_20K_ITR;
4387
4388 set_itr_val:
4389 if (new_val != q_vector->itr_val) {
4390 q_vector->itr_val = new_val;
4391 q_vector->set_itr = 1;
4392 }
4393 clear_counts:
4394 q_vector->rx.total_bytes = 0;
4395 q_vector->rx.total_packets = 0;
4396 q_vector->tx.total_bytes = 0;
4397 q_vector->tx.total_packets = 0;
4398 }
4399
igc_ring_irq_enable(struct igc_q_vector * q_vector)4400 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4401 {
4402 struct igc_adapter *adapter = q_vector->adapter;
4403 struct igc_hw *hw = &adapter->hw;
4404
4405 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4406 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4407 if (adapter->num_q_vectors == 1)
4408 igc_set_itr(q_vector);
4409 else
4410 igc_update_ring_itr(q_vector);
4411 }
4412
4413 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4414 if (adapter->msix_entries)
4415 wr32(IGC_EIMS, q_vector->eims_value);
4416 else
4417 igc_irq_enable(adapter);
4418 }
4419 }
4420
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4421 static void igc_add_ring(struct igc_ring *ring,
4422 struct igc_ring_container *head)
4423 {
4424 head->ring = ring;
4425 head->count++;
4426 }
4427
4428 /**
4429 * igc_cache_ring_register - Descriptor ring to register mapping
4430 * @adapter: board private structure to initialize
4431 *
4432 * Once we know the feature-set enabled for the device, we'll cache
4433 * the register offset the descriptor ring is assigned to.
4434 */
igc_cache_ring_register(struct igc_adapter * adapter)4435 static void igc_cache_ring_register(struct igc_adapter *adapter)
4436 {
4437 int i = 0, j = 0;
4438
4439 switch (adapter->hw.mac.type) {
4440 case igc_i225:
4441 default:
4442 for (; i < adapter->num_rx_queues; i++)
4443 adapter->rx_ring[i]->reg_idx = i;
4444 for (; j < adapter->num_tx_queues; j++)
4445 adapter->tx_ring[j]->reg_idx = j;
4446 break;
4447 }
4448 }
4449
4450 /**
4451 * igc_poll - NAPI Rx polling callback
4452 * @napi: napi polling structure
4453 * @budget: count of how many packets we should handle
4454 */
igc_poll(struct napi_struct * napi,int budget)4455 static int igc_poll(struct napi_struct *napi, int budget)
4456 {
4457 struct igc_q_vector *q_vector = container_of(napi,
4458 struct igc_q_vector,
4459 napi);
4460 struct igc_ring *rx_ring = q_vector->rx.ring;
4461 bool clean_complete = true;
4462 int work_done = 0;
4463
4464 if (q_vector->tx.ring)
4465 clean_complete = igc_clean_tx_irq(q_vector, budget);
4466
4467 if (rx_ring) {
4468 int cleaned = rx_ring->xsk_pool ?
4469 igc_clean_rx_irq_zc(q_vector, budget) :
4470 igc_clean_rx_irq(q_vector, budget);
4471
4472 work_done += cleaned;
4473 if (cleaned >= budget)
4474 clean_complete = false;
4475 }
4476
4477 /* If all work not completed, return budget and keep polling */
4478 if (!clean_complete)
4479 return budget;
4480
4481 /* Exit the polling mode, but don't re-enable interrupts if stack might
4482 * poll us due to busy-polling
4483 */
4484 if (likely(napi_complete_done(napi, work_done)))
4485 igc_ring_irq_enable(q_vector);
4486
4487 return min(work_done, budget - 1);
4488 }
4489
4490 /**
4491 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4492 * @adapter: board private structure to initialize
4493 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4494 * @v_idx: index of vector in adapter struct
4495 * @txr_count: total number of Tx rings to allocate
4496 * @txr_idx: index of first Tx ring to allocate
4497 * @rxr_count: total number of Rx rings to allocate
4498 * @rxr_idx: index of first Rx ring to allocate
4499 *
4500 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4501 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4502 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4503 unsigned int v_count, unsigned int v_idx,
4504 unsigned int txr_count, unsigned int txr_idx,
4505 unsigned int rxr_count, unsigned int rxr_idx)
4506 {
4507 struct igc_q_vector *q_vector;
4508 struct igc_ring *ring;
4509 int ring_count;
4510
4511 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4512 if (txr_count > 1 || rxr_count > 1)
4513 return -ENOMEM;
4514
4515 ring_count = txr_count + rxr_count;
4516
4517 /* allocate q_vector and rings */
4518 q_vector = adapter->q_vector[v_idx];
4519 if (!q_vector)
4520 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4521 GFP_KERNEL);
4522 else
4523 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4524 if (!q_vector)
4525 return -ENOMEM;
4526
4527 /* initialize NAPI */
4528 netif_napi_add(adapter->netdev, &q_vector->napi,
4529 igc_poll, 64);
4530
4531 /* tie q_vector and adapter together */
4532 adapter->q_vector[v_idx] = q_vector;
4533 q_vector->adapter = adapter;
4534
4535 /* initialize work limits */
4536 q_vector->tx.work_limit = adapter->tx_work_limit;
4537
4538 /* initialize ITR configuration */
4539 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4540 q_vector->itr_val = IGC_START_ITR;
4541
4542 /* initialize pointer to rings */
4543 ring = q_vector->ring;
4544
4545 /* initialize ITR */
4546 if (rxr_count) {
4547 /* rx or rx/tx vector */
4548 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4549 q_vector->itr_val = adapter->rx_itr_setting;
4550 } else {
4551 /* tx only vector */
4552 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4553 q_vector->itr_val = adapter->tx_itr_setting;
4554 }
4555
4556 if (txr_count) {
4557 /* assign generic ring traits */
4558 ring->dev = &adapter->pdev->dev;
4559 ring->netdev = adapter->netdev;
4560
4561 /* configure backlink on ring */
4562 ring->q_vector = q_vector;
4563
4564 /* update q_vector Tx values */
4565 igc_add_ring(ring, &q_vector->tx);
4566
4567 /* apply Tx specific ring traits */
4568 ring->count = adapter->tx_ring_count;
4569 ring->queue_index = txr_idx;
4570
4571 /* assign ring to adapter */
4572 adapter->tx_ring[txr_idx] = ring;
4573
4574 /* push pointer to next ring */
4575 ring++;
4576 }
4577
4578 if (rxr_count) {
4579 /* assign generic ring traits */
4580 ring->dev = &adapter->pdev->dev;
4581 ring->netdev = adapter->netdev;
4582
4583 /* configure backlink on ring */
4584 ring->q_vector = q_vector;
4585
4586 /* update q_vector Rx values */
4587 igc_add_ring(ring, &q_vector->rx);
4588
4589 /* apply Rx specific ring traits */
4590 ring->count = adapter->rx_ring_count;
4591 ring->queue_index = rxr_idx;
4592
4593 /* assign ring to adapter */
4594 adapter->rx_ring[rxr_idx] = ring;
4595 }
4596
4597 return 0;
4598 }
4599
4600 /**
4601 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4602 * @adapter: board private structure to initialize
4603 *
4604 * We allocate one q_vector per queue interrupt. If allocation fails we
4605 * return -ENOMEM.
4606 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4607 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4608 {
4609 int rxr_remaining = adapter->num_rx_queues;
4610 int txr_remaining = adapter->num_tx_queues;
4611 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4612 int q_vectors = adapter->num_q_vectors;
4613 int err;
4614
4615 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4616 for (; rxr_remaining; v_idx++) {
4617 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4618 0, 0, 1, rxr_idx);
4619
4620 if (err)
4621 goto err_out;
4622
4623 /* update counts and index */
4624 rxr_remaining--;
4625 rxr_idx++;
4626 }
4627 }
4628
4629 for (; v_idx < q_vectors; v_idx++) {
4630 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4631 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4632
4633 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4634 tqpv, txr_idx, rqpv, rxr_idx);
4635
4636 if (err)
4637 goto err_out;
4638
4639 /* update counts and index */
4640 rxr_remaining -= rqpv;
4641 txr_remaining -= tqpv;
4642 rxr_idx++;
4643 txr_idx++;
4644 }
4645
4646 return 0;
4647
4648 err_out:
4649 adapter->num_tx_queues = 0;
4650 adapter->num_rx_queues = 0;
4651 adapter->num_q_vectors = 0;
4652
4653 while (v_idx--)
4654 igc_free_q_vector(adapter, v_idx);
4655
4656 return -ENOMEM;
4657 }
4658
4659 /**
4660 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4661 * @adapter: Pointer to adapter structure
4662 * @msix: boolean for MSI-X capability
4663 *
4664 * This function initializes the interrupts and allocates all of the queues.
4665 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4666 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4667 {
4668 struct net_device *dev = adapter->netdev;
4669 int err = 0;
4670
4671 igc_set_interrupt_capability(adapter, msix);
4672
4673 err = igc_alloc_q_vectors(adapter);
4674 if (err) {
4675 netdev_err(dev, "Unable to allocate memory for vectors\n");
4676 goto err_alloc_q_vectors;
4677 }
4678
4679 igc_cache_ring_register(adapter);
4680
4681 return 0;
4682
4683 err_alloc_q_vectors:
4684 igc_reset_interrupt_capability(adapter);
4685 return err;
4686 }
4687
4688 /**
4689 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4690 * @adapter: board private structure to initialize
4691 *
4692 * igc_sw_init initializes the Adapter private data structure.
4693 * Fields are initialized based on PCI device information and
4694 * OS network device settings (MTU size).
4695 */
igc_sw_init(struct igc_adapter * adapter)4696 static int igc_sw_init(struct igc_adapter *adapter)
4697 {
4698 struct net_device *netdev = adapter->netdev;
4699 struct pci_dev *pdev = adapter->pdev;
4700 struct igc_hw *hw = &adapter->hw;
4701
4702 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4703
4704 /* set default ring sizes */
4705 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4706 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4707
4708 /* set default ITR values */
4709 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4710 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4711
4712 /* set default work limits */
4713 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4714
4715 /* adjust max frame to be at least the size of a standard frame */
4716 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4717 VLAN_HLEN;
4718 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4719
4720 mutex_init(&adapter->nfc_rule_lock);
4721 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4722 adapter->nfc_rule_count = 0;
4723
4724 spin_lock_init(&adapter->stats64_lock);
4725 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4726 adapter->flags |= IGC_FLAG_HAS_MSIX;
4727
4728 igc_init_queue_configuration(adapter);
4729
4730 /* This call may decrease the number of queues */
4731 if (igc_init_interrupt_scheme(adapter, true)) {
4732 netdev_err(netdev, "Unable to allocate memory for queues\n");
4733 return -ENOMEM;
4734 }
4735
4736 /* Explicitly disable IRQ since the NIC can be in any state. */
4737 igc_irq_disable(adapter);
4738
4739 set_bit(__IGC_DOWN, &adapter->state);
4740
4741 return 0;
4742 }
4743
4744 /**
4745 * igc_up - Open the interface and prepare it to handle traffic
4746 * @adapter: board private structure
4747 */
igc_up(struct igc_adapter * adapter)4748 void igc_up(struct igc_adapter *adapter)
4749 {
4750 struct igc_hw *hw = &adapter->hw;
4751 int i = 0;
4752
4753 /* hardware has been reset, we need to reload some things */
4754 igc_configure(adapter);
4755
4756 clear_bit(__IGC_DOWN, &adapter->state);
4757
4758 for (i = 0; i < adapter->num_q_vectors; i++)
4759 napi_enable(&adapter->q_vector[i]->napi);
4760
4761 if (adapter->msix_entries)
4762 igc_configure_msix(adapter);
4763 else
4764 igc_assign_vector(adapter->q_vector[0], 0);
4765
4766 /* Clear any pending interrupts. */
4767 rd32(IGC_ICR);
4768 igc_irq_enable(adapter);
4769
4770 netif_tx_start_all_queues(adapter->netdev);
4771
4772 /* start the watchdog. */
4773 hw->mac.get_link_status = true;
4774 schedule_work(&adapter->watchdog_task);
4775 }
4776
4777 /**
4778 * igc_update_stats - Update the board statistics counters
4779 * @adapter: board private structure
4780 */
igc_update_stats(struct igc_adapter * adapter)4781 void igc_update_stats(struct igc_adapter *adapter)
4782 {
4783 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4784 struct pci_dev *pdev = adapter->pdev;
4785 struct igc_hw *hw = &adapter->hw;
4786 u64 _bytes, _packets;
4787 u64 bytes, packets;
4788 unsigned int start;
4789 u32 mpc;
4790 int i;
4791
4792 /* Prevent stats update while adapter is being reset, or if the pci
4793 * connection is down.
4794 */
4795 if (adapter->link_speed == 0)
4796 return;
4797 if (pci_channel_offline(pdev))
4798 return;
4799
4800 packets = 0;
4801 bytes = 0;
4802
4803 rcu_read_lock();
4804 for (i = 0; i < adapter->num_rx_queues; i++) {
4805 struct igc_ring *ring = adapter->rx_ring[i];
4806 u32 rqdpc = rd32(IGC_RQDPC(i));
4807
4808 if (hw->mac.type >= igc_i225)
4809 wr32(IGC_RQDPC(i), 0);
4810
4811 if (rqdpc) {
4812 ring->rx_stats.drops += rqdpc;
4813 net_stats->rx_fifo_errors += rqdpc;
4814 }
4815
4816 do {
4817 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4818 _bytes = ring->rx_stats.bytes;
4819 _packets = ring->rx_stats.packets;
4820 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4821 bytes += _bytes;
4822 packets += _packets;
4823 }
4824
4825 net_stats->rx_bytes = bytes;
4826 net_stats->rx_packets = packets;
4827
4828 packets = 0;
4829 bytes = 0;
4830 for (i = 0; i < adapter->num_tx_queues; i++) {
4831 struct igc_ring *ring = adapter->tx_ring[i];
4832
4833 do {
4834 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4835 _bytes = ring->tx_stats.bytes;
4836 _packets = ring->tx_stats.packets;
4837 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4838 bytes += _bytes;
4839 packets += _packets;
4840 }
4841 net_stats->tx_bytes = bytes;
4842 net_stats->tx_packets = packets;
4843 rcu_read_unlock();
4844
4845 /* read stats registers */
4846 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4847 adapter->stats.gprc += rd32(IGC_GPRC);
4848 adapter->stats.gorc += rd32(IGC_GORCL);
4849 rd32(IGC_GORCH); /* clear GORCL */
4850 adapter->stats.bprc += rd32(IGC_BPRC);
4851 adapter->stats.mprc += rd32(IGC_MPRC);
4852 adapter->stats.roc += rd32(IGC_ROC);
4853
4854 adapter->stats.prc64 += rd32(IGC_PRC64);
4855 adapter->stats.prc127 += rd32(IGC_PRC127);
4856 adapter->stats.prc255 += rd32(IGC_PRC255);
4857 adapter->stats.prc511 += rd32(IGC_PRC511);
4858 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4859 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4860 adapter->stats.tlpic += rd32(IGC_TLPIC);
4861 adapter->stats.rlpic += rd32(IGC_RLPIC);
4862 adapter->stats.hgptc += rd32(IGC_HGPTC);
4863
4864 mpc = rd32(IGC_MPC);
4865 adapter->stats.mpc += mpc;
4866 net_stats->rx_fifo_errors += mpc;
4867 adapter->stats.scc += rd32(IGC_SCC);
4868 adapter->stats.ecol += rd32(IGC_ECOL);
4869 adapter->stats.mcc += rd32(IGC_MCC);
4870 adapter->stats.latecol += rd32(IGC_LATECOL);
4871 adapter->stats.dc += rd32(IGC_DC);
4872 adapter->stats.rlec += rd32(IGC_RLEC);
4873 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4874 adapter->stats.xontxc += rd32(IGC_XONTXC);
4875 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4876 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4877 adapter->stats.fcruc += rd32(IGC_FCRUC);
4878 adapter->stats.gptc += rd32(IGC_GPTC);
4879 adapter->stats.gotc += rd32(IGC_GOTCL);
4880 rd32(IGC_GOTCH); /* clear GOTCL */
4881 adapter->stats.rnbc += rd32(IGC_RNBC);
4882 adapter->stats.ruc += rd32(IGC_RUC);
4883 adapter->stats.rfc += rd32(IGC_RFC);
4884 adapter->stats.rjc += rd32(IGC_RJC);
4885 adapter->stats.tor += rd32(IGC_TORH);
4886 adapter->stats.tot += rd32(IGC_TOTH);
4887 adapter->stats.tpr += rd32(IGC_TPR);
4888
4889 adapter->stats.ptc64 += rd32(IGC_PTC64);
4890 adapter->stats.ptc127 += rd32(IGC_PTC127);
4891 adapter->stats.ptc255 += rd32(IGC_PTC255);
4892 adapter->stats.ptc511 += rd32(IGC_PTC511);
4893 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4894 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4895
4896 adapter->stats.mptc += rd32(IGC_MPTC);
4897 adapter->stats.bptc += rd32(IGC_BPTC);
4898
4899 adapter->stats.tpt += rd32(IGC_TPT);
4900 adapter->stats.colc += rd32(IGC_COLC);
4901 adapter->stats.colc += rd32(IGC_RERC);
4902
4903 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4904
4905 adapter->stats.tsctc += rd32(IGC_TSCTC);
4906
4907 adapter->stats.iac += rd32(IGC_IAC);
4908
4909 /* Fill out the OS statistics structure */
4910 net_stats->multicast = adapter->stats.mprc;
4911 net_stats->collisions = adapter->stats.colc;
4912
4913 /* Rx Errors */
4914
4915 /* RLEC on some newer hardware can be incorrect so build
4916 * our own version based on RUC and ROC
4917 */
4918 net_stats->rx_errors = adapter->stats.rxerrc +
4919 adapter->stats.crcerrs + adapter->stats.algnerrc +
4920 adapter->stats.ruc + adapter->stats.roc +
4921 adapter->stats.cexterr;
4922 net_stats->rx_length_errors = adapter->stats.ruc +
4923 adapter->stats.roc;
4924 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4925 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4926 net_stats->rx_missed_errors = adapter->stats.mpc;
4927
4928 /* Tx Errors */
4929 net_stats->tx_errors = adapter->stats.ecol +
4930 adapter->stats.latecol;
4931 net_stats->tx_aborted_errors = adapter->stats.ecol;
4932 net_stats->tx_window_errors = adapter->stats.latecol;
4933 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4934
4935 /* Tx Dropped needs to be maintained elsewhere */
4936
4937 /* Management Stats */
4938 adapter->stats.mgptc += rd32(IGC_MGTPTC);
4939 adapter->stats.mgprc += rd32(IGC_MGTPRC);
4940 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4941 }
4942
4943 /**
4944 * igc_down - Close the interface
4945 * @adapter: board private structure
4946 */
igc_down(struct igc_adapter * adapter)4947 void igc_down(struct igc_adapter *adapter)
4948 {
4949 struct net_device *netdev = adapter->netdev;
4950 struct igc_hw *hw = &adapter->hw;
4951 u32 tctl, rctl;
4952 int i = 0;
4953
4954 set_bit(__IGC_DOWN, &adapter->state);
4955
4956 igc_ptp_suspend(adapter);
4957
4958 if (pci_device_is_present(adapter->pdev)) {
4959 /* disable receives in the hardware */
4960 rctl = rd32(IGC_RCTL);
4961 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4962 /* flush and sleep below */
4963 }
4964 /* set trans_start so we don't get spurious watchdogs during reset */
4965 netif_trans_update(netdev);
4966
4967 netif_carrier_off(netdev);
4968 netif_tx_stop_all_queues(netdev);
4969
4970 if (pci_device_is_present(adapter->pdev)) {
4971 /* disable transmits in the hardware */
4972 tctl = rd32(IGC_TCTL);
4973 tctl &= ~IGC_TCTL_EN;
4974 wr32(IGC_TCTL, tctl);
4975 /* flush both disables and wait for them to finish */
4976 wrfl();
4977 usleep_range(10000, 20000);
4978
4979 igc_irq_disable(adapter);
4980 }
4981
4982 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4983
4984 for (i = 0; i < adapter->num_q_vectors; i++) {
4985 if (adapter->q_vector[i]) {
4986 napi_synchronize(&adapter->q_vector[i]->napi);
4987 napi_disable(&adapter->q_vector[i]->napi);
4988 }
4989 }
4990
4991 del_timer_sync(&adapter->watchdog_timer);
4992 del_timer_sync(&adapter->phy_info_timer);
4993
4994 /* record the stats before reset*/
4995 spin_lock(&adapter->stats64_lock);
4996 igc_update_stats(adapter);
4997 spin_unlock(&adapter->stats64_lock);
4998
4999 adapter->link_speed = 0;
5000 adapter->link_duplex = 0;
5001
5002 if (!pci_channel_offline(adapter->pdev))
5003 igc_reset(adapter);
5004
5005 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5006 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5007
5008 igc_disable_all_tx_rings_hw(adapter);
5009 igc_clean_all_tx_rings(adapter);
5010 igc_clean_all_rx_rings(adapter);
5011 }
5012
igc_reinit_locked(struct igc_adapter * adapter)5013 void igc_reinit_locked(struct igc_adapter *adapter)
5014 {
5015 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5016 usleep_range(1000, 2000);
5017 igc_down(adapter);
5018 igc_up(adapter);
5019 clear_bit(__IGC_RESETTING, &adapter->state);
5020 }
5021
igc_reset_task(struct work_struct * work)5022 static void igc_reset_task(struct work_struct *work)
5023 {
5024 struct igc_adapter *adapter;
5025
5026 adapter = container_of(work, struct igc_adapter, reset_task);
5027
5028 rtnl_lock();
5029 /* If we're already down or resetting, just bail */
5030 if (test_bit(__IGC_DOWN, &adapter->state) ||
5031 test_bit(__IGC_RESETTING, &adapter->state)) {
5032 rtnl_unlock();
5033 return;
5034 }
5035
5036 igc_rings_dump(adapter);
5037 igc_regs_dump(adapter);
5038 netdev_err(adapter->netdev, "Reset adapter\n");
5039 igc_reinit_locked(adapter);
5040 rtnl_unlock();
5041 }
5042
5043 /**
5044 * igc_change_mtu - Change the Maximum Transfer Unit
5045 * @netdev: network interface device structure
5046 * @new_mtu: new value for maximum frame size
5047 *
5048 * Returns 0 on success, negative on failure
5049 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5050 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5051 {
5052 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5053 struct igc_adapter *adapter = netdev_priv(netdev);
5054
5055 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5056 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5057 return -EINVAL;
5058 }
5059
5060 /* adjust max frame to be at least the size of a standard frame */
5061 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5062 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5063
5064 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5065 usleep_range(1000, 2000);
5066
5067 /* igc_down has a dependency on max_frame_size */
5068 adapter->max_frame_size = max_frame;
5069
5070 if (netif_running(netdev))
5071 igc_down(adapter);
5072
5073 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5074 netdev->mtu = new_mtu;
5075
5076 if (netif_running(netdev))
5077 igc_up(adapter);
5078 else
5079 igc_reset(adapter);
5080
5081 clear_bit(__IGC_RESETTING, &adapter->state);
5082
5083 return 0;
5084 }
5085
5086 /**
5087 * igc_tx_timeout - Respond to a Tx Hang
5088 * @netdev: network interface device structure
5089 * @txqueue: queue number that timed out
5090 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5091 static void igc_tx_timeout(struct net_device *netdev,
5092 unsigned int __always_unused txqueue)
5093 {
5094 struct igc_adapter *adapter = netdev_priv(netdev);
5095 struct igc_hw *hw = &adapter->hw;
5096
5097 /* Do the reset outside of interrupt context */
5098 adapter->tx_timeout_count++;
5099 schedule_work(&adapter->reset_task);
5100 wr32(IGC_EICS,
5101 (adapter->eims_enable_mask & ~adapter->eims_other));
5102 }
5103
5104 /**
5105 * igc_get_stats64 - Get System Network Statistics
5106 * @netdev: network interface device structure
5107 * @stats: rtnl_link_stats64 pointer
5108 *
5109 * Returns the address of the device statistics structure.
5110 * The statistics are updated here and also from the timer callback.
5111 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5112 static void igc_get_stats64(struct net_device *netdev,
5113 struct rtnl_link_stats64 *stats)
5114 {
5115 struct igc_adapter *adapter = netdev_priv(netdev);
5116
5117 spin_lock(&adapter->stats64_lock);
5118 if (!test_bit(__IGC_RESETTING, &adapter->state))
5119 igc_update_stats(adapter);
5120 memcpy(stats, &adapter->stats64, sizeof(*stats));
5121 spin_unlock(&adapter->stats64_lock);
5122 }
5123
igc_fix_features(struct net_device * netdev,netdev_features_t features)5124 static netdev_features_t igc_fix_features(struct net_device *netdev,
5125 netdev_features_t features)
5126 {
5127 /* Since there is no support for separate Rx/Tx vlan accel
5128 * enable/disable make sure Tx flag is always in same state as Rx.
5129 */
5130 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5131 features |= NETIF_F_HW_VLAN_CTAG_TX;
5132 else
5133 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5134
5135 return features;
5136 }
5137
igc_set_features(struct net_device * netdev,netdev_features_t features)5138 static int igc_set_features(struct net_device *netdev,
5139 netdev_features_t features)
5140 {
5141 netdev_features_t changed = netdev->features ^ features;
5142 struct igc_adapter *adapter = netdev_priv(netdev);
5143
5144 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5145 igc_vlan_mode(netdev, features);
5146
5147 /* Add VLAN support */
5148 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5149 return 0;
5150
5151 if (!(features & NETIF_F_NTUPLE))
5152 igc_flush_nfc_rules(adapter);
5153
5154 netdev->features = features;
5155
5156 if (netif_running(netdev))
5157 igc_reinit_locked(adapter);
5158 else
5159 igc_reset(adapter);
5160
5161 return 1;
5162 }
5163
5164 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5165 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5166 netdev_features_t features)
5167 {
5168 unsigned int network_hdr_len, mac_hdr_len;
5169
5170 /* Make certain the headers can be described by a context descriptor */
5171 mac_hdr_len = skb_network_header(skb) - skb->data;
5172 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5173 return features & ~(NETIF_F_HW_CSUM |
5174 NETIF_F_SCTP_CRC |
5175 NETIF_F_HW_VLAN_CTAG_TX |
5176 NETIF_F_TSO |
5177 NETIF_F_TSO6);
5178
5179 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5180 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5181 return features & ~(NETIF_F_HW_CSUM |
5182 NETIF_F_SCTP_CRC |
5183 NETIF_F_TSO |
5184 NETIF_F_TSO6);
5185
5186 /* We can only support IPv4 TSO in tunnels if we can mangle the
5187 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5188 */
5189 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5190 features &= ~NETIF_F_TSO;
5191
5192 return features;
5193 }
5194
igc_tsync_interrupt(struct igc_adapter * adapter)5195 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5196 {
5197 u32 ack, tsauxc, sec, nsec, tsicr;
5198 struct igc_hw *hw = &adapter->hw;
5199 struct ptp_clock_event event;
5200 struct timespec64 ts;
5201
5202 tsicr = rd32(IGC_TSICR);
5203 ack = 0;
5204
5205 if (tsicr & IGC_TSICR_SYS_WRAP) {
5206 event.type = PTP_CLOCK_PPS;
5207 if (adapter->ptp_caps.pps)
5208 ptp_clock_event(adapter->ptp_clock, &event);
5209 ack |= IGC_TSICR_SYS_WRAP;
5210 }
5211
5212 if (tsicr & IGC_TSICR_TXTS) {
5213 /* retrieve hardware timestamp */
5214 schedule_work(&adapter->ptp_tx_work);
5215 ack |= IGC_TSICR_TXTS;
5216 }
5217
5218 if (tsicr & IGC_TSICR_TT0) {
5219 spin_lock(&adapter->tmreg_lock);
5220 ts = timespec64_add(adapter->perout[0].start,
5221 adapter->perout[0].period);
5222 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5223 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5224 tsauxc = rd32(IGC_TSAUXC);
5225 tsauxc |= IGC_TSAUXC_EN_TT0;
5226 wr32(IGC_TSAUXC, tsauxc);
5227 adapter->perout[0].start = ts;
5228 spin_unlock(&adapter->tmreg_lock);
5229 ack |= IGC_TSICR_TT0;
5230 }
5231
5232 if (tsicr & IGC_TSICR_TT1) {
5233 spin_lock(&adapter->tmreg_lock);
5234 ts = timespec64_add(adapter->perout[1].start,
5235 adapter->perout[1].period);
5236 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5237 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5238 tsauxc = rd32(IGC_TSAUXC);
5239 tsauxc |= IGC_TSAUXC_EN_TT1;
5240 wr32(IGC_TSAUXC, tsauxc);
5241 adapter->perout[1].start = ts;
5242 spin_unlock(&adapter->tmreg_lock);
5243 ack |= IGC_TSICR_TT1;
5244 }
5245
5246 if (tsicr & IGC_TSICR_AUTT0) {
5247 nsec = rd32(IGC_AUXSTMPL0);
5248 sec = rd32(IGC_AUXSTMPH0);
5249 event.type = PTP_CLOCK_EXTTS;
5250 event.index = 0;
5251 event.timestamp = sec * NSEC_PER_SEC + nsec;
5252 ptp_clock_event(adapter->ptp_clock, &event);
5253 ack |= IGC_TSICR_AUTT0;
5254 }
5255
5256 if (tsicr & IGC_TSICR_AUTT1) {
5257 nsec = rd32(IGC_AUXSTMPL1);
5258 sec = rd32(IGC_AUXSTMPH1);
5259 event.type = PTP_CLOCK_EXTTS;
5260 event.index = 1;
5261 event.timestamp = sec * NSEC_PER_SEC + nsec;
5262 ptp_clock_event(adapter->ptp_clock, &event);
5263 ack |= IGC_TSICR_AUTT1;
5264 }
5265
5266 /* acknowledge the interrupts */
5267 wr32(IGC_TSICR, ack);
5268 }
5269
5270 /**
5271 * igc_msix_other - msix other interrupt handler
5272 * @irq: interrupt number
5273 * @data: pointer to a q_vector
5274 */
igc_msix_other(int irq,void * data)5275 static irqreturn_t igc_msix_other(int irq, void *data)
5276 {
5277 struct igc_adapter *adapter = data;
5278 struct igc_hw *hw = &adapter->hw;
5279 u32 icr = rd32(IGC_ICR);
5280
5281 /* reading ICR causes bit 31 of EICR to be cleared */
5282 if (icr & IGC_ICR_DRSTA)
5283 schedule_work(&adapter->reset_task);
5284
5285 if (icr & IGC_ICR_DOUTSYNC) {
5286 /* HW is reporting DMA is out of sync */
5287 adapter->stats.doosync++;
5288 }
5289
5290 if (icr & IGC_ICR_LSC) {
5291 hw->mac.get_link_status = true;
5292 /* guard against interrupt when we're going down */
5293 if (!test_bit(__IGC_DOWN, &adapter->state))
5294 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5295 }
5296
5297 if (icr & IGC_ICR_TS)
5298 igc_tsync_interrupt(adapter);
5299
5300 wr32(IGC_EIMS, adapter->eims_other);
5301
5302 return IRQ_HANDLED;
5303 }
5304
igc_write_itr(struct igc_q_vector * q_vector)5305 static void igc_write_itr(struct igc_q_vector *q_vector)
5306 {
5307 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5308
5309 if (!q_vector->set_itr)
5310 return;
5311
5312 if (!itr_val)
5313 itr_val = IGC_ITR_VAL_MASK;
5314
5315 itr_val |= IGC_EITR_CNT_IGNR;
5316
5317 writel(itr_val, q_vector->itr_register);
5318 q_vector->set_itr = 0;
5319 }
5320
igc_msix_ring(int irq,void * data)5321 static irqreturn_t igc_msix_ring(int irq, void *data)
5322 {
5323 struct igc_q_vector *q_vector = data;
5324
5325 /* Write the ITR value calculated from the previous interrupt. */
5326 igc_write_itr(q_vector);
5327
5328 napi_schedule(&q_vector->napi);
5329
5330 return IRQ_HANDLED;
5331 }
5332
5333 /**
5334 * igc_request_msix - Initialize MSI-X interrupts
5335 * @adapter: Pointer to adapter structure
5336 *
5337 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5338 * kernel.
5339 */
igc_request_msix(struct igc_adapter * adapter)5340 static int igc_request_msix(struct igc_adapter *adapter)
5341 {
5342 unsigned int num_q_vectors = adapter->num_q_vectors;
5343 int i = 0, err = 0, vector = 0, free_vector = 0;
5344 struct net_device *netdev = adapter->netdev;
5345
5346 err = request_irq(adapter->msix_entries[vector].vector,
5347 &igc_msix_other, 0, netdev->name, adapter);
5348 if (err)
5349 goto err_out;
5350
5351 if (num_q_vectors > MAX_Q_VECTORS) {
5352 num_q_vectors = MAX_Q_VECTORS;
5353 dev_warn(&adapter->pdev->dev,
5354 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5355 adapter->num_q_vectors, MAX_Q_VECTORS);
5356 }
5357 for (i = 0; i < num_q_vectors; i++) {
5358 struct igc_q_vector *q_vector = adapter->q_vector[i];
5359
5360 vector++;
5361
5362 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5363
5364 if (q_vector->rx.ring && q_vector->tx.ring)
5365 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5366 q_vector->rx.ring->queue_index);
5367 else if (q_vector->tx.ring)
5368 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5369 q_vector->tx.ring->queue_index);
5370 else if (q_vector->rx.ring)
5371 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5372 q_vector->rx.ring->queue_index);
5373 else
5374 sprintf(q_vector->name, "%s-unused", netdev->name);
5375
5376 err = request_irq(adapter->msix_entries[vector].vector,
5377 igc_msix_ring, 0, q_vector->name,
5378 q_vector);
5379 if (err)
5380 goto err_free;
5381 }
5382
5383 igc_configure_msix(adapter);
5384 return 0;
5385
5386 err_free:
5387 /* free already assigned IRQs */
5388 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5389
5390 vector--;
5391 for (i = 0; i < vector; i++) {
5392 free_irq(adapter->msix_entries[free_vector++].vector,
5393 adapter->q_vector[i]);
5394 }
5395 err_out:
5396 return err;
5397 }
5398
5399 /**
5400 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5401 * @adapter: Pointer to adapter structure
5402 *
5403 * This function resets the device so that it has 0 rx queues, tx queues, and
5404 * MSI-X interrupts allocated.
5405 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5406 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5407 {
5408 igc_free_q_vectors(adapter);
5409 igc_reset_interrupt_capability(adapter);
5410 }
5411
5412 /* Need to wait a few seconds after link up to get diagnostic information from
5413 * the phy
5414 */
igc_update_phy_info(struct timer_list * t)5415 static void igc_update_phy_info(struct timer_list *t)
5416 {
5417 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5418
5419 igc_get_phy_info(&adapter->hw);
5420 }
5421
5422 /**
5423 * igc_has_link - check shared code for link and determine up/down
5424 * @adapter: pointer to driver private info
5425 */
igc_has_link(struct igc_adapter * adapter)5426 bool igc_has_link(struct igc_adapter *adapter)
5427 {
5428 struct igc_hw *hw = &adapter->hw;
5429 bool link_active = false;
5430
5431 /* get_link_status is set on LSC (link status) interrupt or
5432 * rx sequence error interrupt. get_link_status will stay
5433 * false until the igc_check_for_link establishes link
5434 * for copper adapters ONLY
5435 */
5436 if (!hw->mac.get_link_status)
5437 return true;
5438 hw->mac.ops.check_for_link(hw);
5439 link_active = !hw->mac.get_link_status;
5440
5441 if (hw->mac.type == igc_i225) {
5442 if (!netif_carrier_ok(adapter->netdev)) {
5443 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5444 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5445 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5446 adapter->link_check_timeout = jiffies;
5447 }
5448 }
5449
5450 return link_active;
5451 }
5452
5453 /**
5454 * igc_watchdog - Timer Call-back
5455 * @t: timer for the watchdog
5456 */
igc_watchdog(struct timer_list * t)5457 static void igc_watchdog(struct timer_list *t)
5458 {
5459 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5460 /* Do the rest outside of interrupt context */
5461 schedule_work(&adapter->watchdog_task);
5462 }
5463
igc_watchdog_task(struct work_struct * work)5464 static void igc_watchdog_task(struct work_struct *work)
5465 {
5466 struct igc_adapter *adapter = container_of(work,
5467 struct igc_adapter,
5468 watchdog_task);
5469 struct net_device *netdev = adapter->netdev;
5470 struct igc_hw *hw = &adapter->hw;
5471 struct igc_phy_info *phy = &hw->phy;
5472 u16 phy_data, retry_count = 20;
5473 u32 link;
5474 int i;
5475
5476 link = igc_has_link(adapter);
5477
5478 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5479 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5480 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5481 else
5482 link = false;
5483 }
5484
5485 if (link) {
5486 /* Cancel scheduled suspend requests. */
5487 pm_runtime_resume(netdev->dev.parent);
5488
5489 if (!netif_carrier_ok(netdev)) {
5490 u32 ctrl;
5491
5492 hw->mac.ops.get_speed_and_duplex(hw,
5493 &adapter->link_speed,
5494 &adapter->link_duplex);
5495
5496 ctrl = rd32(IGC_CTRL);
5497 /* Link status message must follow this format */
5498 netdev_info(netdev,
5499 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5500 adapter->link_speed,
5501 adapter->link_duplex == FULL_DUPLEX ?
5502 "Full" : "Half",
5503 (ctrl & IGC_CTRL_TFCE) &&
5504 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5505 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5506 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5507
5508 /* disable EEE if enabled */
5509 if ((adapter->flags & IGC_FLAG_EEE) &&
5510 adapter->link_duplex == HALF_DUPLEX) {
5511 netdev_info(netdev,
5512 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5513 adapter->hw.dev_spec._base.eee_enable = false;
5514 adapter->flags &= ~IGC_FLAG_EEE;
5515 }
5516
5517 /* check if SmartSpeed worked */
5518 igc_check_downshift(hw);
5519 if (phy->speed_downgraded)
5520 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5521
5522 /* adjust timeout factor according to speed/duplex */
5523 adapter->tx_timeout_factor = 1;
5524 switch (adapter->link_speed) {
5525 case SPEED_10:
5526 adapter->tx_timeout_factor = 14;
5527 break;
5528 case SPEED_100:
5529 case SPEED_1000:
5530 case SPEED_2500:
5531 adapter->tx_timeout_factor = 1;
5532 break;
5533 }
5534
5535 if (adapter->link_speed != SPEED_1000)
5536 goto no_wait;
5537
5538 /* wait for Remote receiver status OK */
5539 retry_read_status:
5540 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5541 &phy_data)) {
5542 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5543 retry_count) {
5544 msleep(100);
5545 retry_count--;
5546 goto retry_read_status;
5547 } else if (!retry_count) {
5548 netdev_err(netdev, "exceed max 2 second\n");
5549 }
5550 } else {
5551 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5552 }
5553 no_wait:
5554 netif_carrier_on(netdev);
5555
5556 /* link state has changed, schedule phy info update */
5557 if (!test_bit(__IGC_DOWN, &adapter->state))
5558 mod_timer(&adapter->phy_info_timer,
5559 round_jiffies(jiffies + 2 * HZ));
5560 }
5561 } else {
5562 if (netif_carrier_ok(netdev)) {
5563 adapter->link_speed = 0;
5564 adapter->link_duplex = 0;
5565
5566 /* Links status message must follow this format */
5567 netdev_info(netdev, "NIC Link is Down\n");
5568 netif_carrier_off(netdev);
5569
5570 /* link state has changed, schedule phy info update */
5571 if (!test_bit(__IGC_DOWN, &adapter->state))
5572 mod_timer(&adapter->phy_info_timer,
5573 round_jiffies(jiffies + 2 * HZ));
5574
5575 /* link is down, time to check for alternate media */
5576 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5577 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5578 schedule_work(&adapter->reset_task);
5579 /* return immediately */
5580 return;
5581 }
5582 }
5583 pm_schedule_suspend(netdev->dev.parent,
5584 MSEC_PER_SEC * 5);
5585
5586 /* also check for alternate media here */
5587 } else if (!netif_carrier_ok(netdev) &&
5588 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5589 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5590 schedule_work(&adapter->reset_task);
5591 /* return immediately */
5592 return;
5593 }
5594 }
5595 }
5596
5597 spin_lock(&adapter->stats64_lock);
5598 igc_update_stats(adapter);
5599 spin_unlock(&adapter->stats64_lock);
5600
5601 for (i = 0; i < adapter->num_tx_queues; i++) {
5602 struct igc_ring *tx_ring = adapter->tx_ring[i];
5603
5604 if (!netif_carrier_ok(netdev)) {
5605 /* We've lost link, so the controller stops DMA,
5606 * but we've got queued Tx work that's never going
5607 * to get done, so reset controller to flush Tx.
5608 * (Do the reset outside of interrupt context).
5609 */
5610 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5611 adapter->tx_timeout_count++;
5612 schedule_work(&adapter->reset_task);
5613 /* return immediately since reset is imminent */
5614 return;
5615 }
5616 }
5617
5618 /* Force detection of hung controller every watchdog period */
5619 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5620 }
5621
5622 /* Cause software interrupt to ensure Rx ring is cleaned */
5623 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5624 u32 eics = 0;
5625
5626 for (i = 0; i < adapter->num_q_vectors; i++)
5627 eics |= adapter->q_vector[i]->eims_value;
5628 wr32(IGC_EICS, eics);
5629 } else {
5630 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5631 }
5632
5633 igc_ptp_tx_hang(adapter);
5634
5635 /* Reset the timer */
5636 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5637 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5638 mod_timer(&adapter->watchdog_timer,
5639 round_jiffies(jiffies + HZ));
5640 else
5641 mod_timer(&adapter->watchdog_timer,
5642 round_jiffies(jiffies + 2 * HZ));
5643 }
5644 }
5645
5646 /**
5647 * igc_intr_msi - Interrupt Handler
5648 * @irq: interrupt number
5649 * @data: pointer to a network interface device structure
5650 */
igc_intr_msi(int irq,void * data)5651 static irqreturn_t igc_intr_msi(int irq, void *data)
5652 {
5653 struct igc_adapter *adapter = data;
5654 struct igc_q_vector *q_vector = adapter->q_vector[0];
5655 struct igc_hw *hw = &adapter->hw;
5656 /* read ICR disables interrupts using IAM */
5657 u32 icr = rd32(IGC_ICR);
5658
5659 igc_write_itr(q_vector);
5660
5661 if (icr & IGC_ICR_DRSTA)
5662 schedule_work(&adapter->reset_task);
5663
5664 if (icr & IGC_ICR_DOUTSYNC) {
5665 /* HW is reporting DMA is out of sync */
5666 adapter->stats.doosync++;
5667 }
5668
5669 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5670 hw->mac.get_link_status = true;
5671 if (!test_bit(__IGC_DOWN, &adapter->state))
5672 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5673 }
5674
5675 if (icr & IGC_ICR_TS)
5676 igc_tsync_interrupt(adapter);
5677
5678 napi_schedule(&q_vector->napi);
5679
5680 return IRQ_HANDLED;
5681 }
5682
5683 /**
5684 * igc_intr - Legacy Interrupt Handler
5685 * @irq: interrupt number
5686 * @data: pointer to a network interface device structure
5687 */
igc_intr(int irq,void * data)5688 static irqreturn_t igc_intr(int irq, void *data)
5689 {
5690 struct igc_adapter *adapter = data;
5691 struct igc_q_vector *q_vector = adapter->q_vector[0];
5692 struct igc_hw *hw = &adapter->hw;
5693 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5694 * need for the IMC write
5695 */
5696 u32 icr = rd32(IGC_ICR);
5697
5698 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5699 * not set, then the adapter didn't send an interrupt
5700 */
5701 if (!(icr & IGC_ICR_INT_ASSERTED))
5702 return IRQ_NONE;
5703
5704 igc_write_itr(q_vector);
5705
5706 if (icr & IGC_ICR_DRSTA)
5707 schedule_work(&adapter->reset_task);
5708
5709 if (icr & IGC_ICR_DOUTSYNC) {
5710 /* HW is reporting DMA is out of sync */
5711 adapter->stats.doosync++;
5712 }
5713
5714 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5715 hw->mac.get_link_status = true;
5716 /* guard against interrupt when we're going down */
5717 if (!test_bit(__IGC_DOWN, &adapter->state))
5718 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5719 }
5720
5721 if (icr & IGC_ICR_TS)
5722 igc_tsync_interrupt(adapter);
5723
5724 napi_schedule(&q_vector->napi);
5725
5726 return IRQ_HANDLED;
5727 }
5728
igc_free_irq(struct igc_adapter * adapter)5729 static void igc_free_irq(struct igc_adapter *adapter)
5730 {
5731 if (adapter->msix_entries) {
5732 int vector = 0, i;
5733
5734 free_irq(adapter->msix_entries[vector++].vector, adapter);
5735
5736 for (i = 0; i < adapter->num_q_vectors; i++)
5737 free_irq(adapter->msix_entries[vector++].vector,
5738 adapter->q_vector[i]);
5739 } else {
5740 free_irq(adapter->pdev->irq, adapter);
5741 }
5742 }
5743
5744 /**
5745 * igc_request_irq - initialize interrupts
5746 * @adapter: Pointer to adapter structure
5747 *
5748 * Attempts to configure interrupts using the best available
5749 * capabilities of the hardware and kernel.
5750 */
igc_request_irq(struct igc_adapter * adapter)5751 static int igc_request_irq(struct igc_adapter *adapter)
5752 {
5753 struct net_device *netdev = adapter->netdev;
5754 struct pci_dev *pdev = adapter->pdev;
5755 int err = 0;
5756
5757 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5758 err = igc_request_msix(adapter);
5759 if (!err)
5760 goto request_done;
5761 /* fall back to MSI */
5762 igc_free_all_tx_resources(adapter);
5763 igc_free_all_rx_resources(adapter);
5764
5765 igc_clear_interrupt_scheme(adapter);
5766 err = igc_init_interrupt_scheme(adapter, false);
5767 if (err)
5768 goto request_done;
5769 igc_setup_all_tx_resources(adapter);
5770 igc_setup_all_rx_resources(adapter);
5771 igc_configure(adapter);
5772 }
5773
5774 igc_assign_vector(adapter->q_vector[0], 0);
5775
5776 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5777 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5778 netdev->name, adapter);
5779 if (!err)
5780 goto request_done;
5781
5782 /* fall back to legacy interrupts */
5783 igc_reset_interrupt_capability(adapter);
5784 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5785 }
5786
5787 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5788 netdev->name, adapter);
5789
5790 if (err)
5791 netdev_err(netdev, "Error %d getting interrupt\n", err);
5792
5793 request_done:
5794 return err;
5795 }
5796
5797 /**
5798 * __igc_open - Called when a network interface is made active
5799 * @netdev: network interface device structure
5800 * @resuming: boolean indicating if the device is resuming
5801 *
5802 * Returns 0 on success, negative value on failure
5803 *
5804 * The open entry point is called when a network interface is made
5805 * active by the system (IFF_UP). At this point all resources needed
5806 * for transmit and receive operations are allocated, the interrupt
5807 * handler is registered with the OS, the watchdog timer is started,
5808 * and the stack is notified that the interface is ready.
5809 */
__igc_open(struct net_device * netdev,bool resuming)5810 static int __igc_open(struct net_device *netdev, bool resuming)
5811 {
5812 struct igc_adapter *adapter = netdev_priv(netdev);
5813 struct pci_dev *pdev = adapter->pdev;
5814 struct igc_hw *hw = &adapter->hw;
5815 int err = 0;
5816 int i = 0;
5817
5818 /* disallow open during test */
5819
5820 if (test_bit(__IGC_TESTING, &adapter->state)) {
5821 WARN_ON(resuming);
5822 return -EBUSY;
5823 }
5824
5825 if (!resuming)
5826 pm_runtime_get_sync(&pdev->dev);
5827
5828 netif_carrier_off(netdev);
5829
5830 /* allocate transmit descriptors */
5831 err = igc_setup_all_tx_resources(adapter);
5832 if (err)
5833 goto err_setup_tx;
5834
5835 /* allocate receive descriptors */
5836 err = igc_setup_all_rx_resources(adapter);
5837 if (err)
5838 goto err_setup_rx;
5839
5840 igc_power_up_link(adapter);
5841
5842 igc_configure(adapter);
5843
5844 err = igc_request_irq(adapter);
5845 if (err)
5846 goto err_req_irq;
5847
5848 /* Notify the stack of the actual queue counts. */
5849 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5850 if (err)
5851 goto err_set_queues;
5852
5853 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5854 if (err)
5855 goto err_set_queues;
5856
5857 clear_bit(__IGC_DOWN, &adapter->state);
5858
5859 for (i = 0; i < adapter->num_q_vectors; i++)
5860 napi_enable(&adapter->q_vector[i]->napi);
5861
5862 /* Clear any pending interrupts. */
5863 rd32(IGC_ICR);
5864 igc_irq_enable(adapter);
5865
5866 if (!resuming)
5867 pm_runtime_put(&pdev->dev);
5868
5869 netif_tx_start_all_queues(netdev);
5870
5871 /* start the watchdog. */
5872 hw->mac.get_link_status = true;
5873 schedule_work(&adapter->watchdog_task);
5874
5875 return IGC_SUCCESS;
5876
5877 err_set_queues:
5878 igc_free_irq(adapter);
5879 err_req_irq:
5880 igc_release_hw_control(adapter);
5881 igc_power_down_phy_copper_base(&adapter->hw);
5882 igc_free_all_rx_resources(adapter);
5883 err_setup_rx:
5884 igc_free_all_tx_resources(adapter);
5885 err_setup_tx:
5886 igc_reset(adapter);
5887 if (!resuming)
5888 pm_runtime_put(&pdev->dev);
5889
5890 return err;
5891 }
5892
igc_open(struct net_device * netdev)5893 int igc_open(struct net_device *netdev)
5894 {
5895 return __igc_open(netdev, false);
5896 }
5897
5898 /**
5899 * __igc_close - Disables a network interface
5900 * @netdev: network interface device structure
5901 * @suspending: boolean indicating the device is suspending
5902 *
5903 * Returns 0, this is not allowed to fail
5904 *
5905 * The close entry point is called when an interface is de-activated
5906 * by the OS. The hardware is still under the driver's control, but
5907 * needs to be disabled. A global MAC reset is issued to stop the
5908 * hardware, and all transmit and receive resources are freed.
5909 */
__igc_close(struct net_device * netdev,bool suspending)5910 static int __igc_close(struct net_device *netdev, bool suspending)
5911 {
5912 struct igc_adapter *adapter = netdev_priv(netdev);
5913 struct pci_dev *pdev = adapter->pdev;
5914
5915 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5916
5917 if (!suspending)
5918 pm_runtime_get_sync(&pdev->dev);
5919
5920 igc_down(adapter);
5921
5922 igc_release_hw_control(adapter);
5923
5924 igc_free_irq(adapter);
5925
5926 igc_free_all_tx_resources(adapter);
5927 igc_free_all_rx_resources(adapter);
5928
5929 if (!suspending)
5930 pm_runtime_put_sync(&pdev->dev);
5931
5932 return 0;
5933 }
5934
igc_close(struct net_device * netdev)5935 int igc_close(struct net_device *netdev)
5936 {
5937 if (netif_device_present(netdev) || netdev->dismantle)
5938 return __igc_close(netdev, false);
5939 return 0;
5940 }
5941
5942 /**
5943 * igc_ioctl - Access the hwtstamp interface
5944 * @netdev: network interface device structure
5945 * @ifr: interface request data
5946 * @cmd: ioctl command
5947 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)5948 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5949 {
5950 switch (cmd) {
5951 case SIOCGHWTSTAMP:
5952 return igc_ptp_get_ts_config(netdev, ifr);
5953 case SIOCSHWTSTAMP:
5954 return igc_ptp_set_ts_config(netdev, ifr);
5955 default:
5956 return -EOPNOTSUPP;
5957 }
5958 }
5959
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)5960 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5961 bool enable)
5962 {
5963 struct igc_ring *ring;
5964
5965 if (queue < 0 || queue >= adapter->num_tx_queues)
5966 return -EINVAL;
5967
5968 ring = adapter->tx_ring[queue];
5969 ring->launchtime_enable = enable;
5970
5971 return 0;
5972 }
5973
is_base_time_past(ktime_t base_time,const struct timespec64 * now)5974 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5975 {
5976 struct timespec64 b;
5977
5978 b = ktime_to_timespec64(base_time);
5979
5980 return timespec64_compare(now, &b) > 0;
5981 }
5982
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)5983 static bool validate_schedule(struct igc_adapter *adapter,
5984 const struct tc_taprio_qopt_offload *qopt)
5985 {
5986 int queue_uses[IGC_MAX_TX_QUEUES] = { };
5987 struct timespec64 now;
5988 size_t n;
5989
5990 if (qopt->cycle_time_extension)
5991 return false;
5992
5993 igc_ptp_read(adapter, &now);
5994
5995 /* If we program the controller's BASET registers with a time
5996 * in the future, it will hold all the packets until that
5997 * time, causing a lot of TX Hangs, so to avoid that, we
5998 * reject schedules that would start in the future.
5999 */
6000 if (!is_base_time_past(qopt->base_time, &now))
6001 return false;
6002
6003 for (n = 0; n < qopt->num_entries; n++) {
6004 const struct tc_taprio_sched_entry *e, *prev;
6005 int i;
6006
6007 prev = n ? &qopt->entries[n - 1] : NULL;
6008 e = &qopt->entries[n];
6009
6010 /* i225 only supports "global" frame preemption
6011 * settings.
6012 */
6013 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6014 return false;
6015
6016 for (i = 0; i < adapter->num_tx_queues; i++)
6017 if (e->gate_mask & BIT(i)) {
6018 queue_uses[i]++;
6019
6020 /* There are limitations: A single queue cannot
6021 * be opened and closed multiple times per cycle
6022 * unless the gate stays open. Check for it.
6023 */
6024 if (queue_uses[i] > 1 &&
6025 !(prev->gate_mask & BIT(i)))
6026 return false;
6027 }
6028 }
6029
6030 return true;
6031 }
6032
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6033 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6034 struct tc_etf_qopt_offload *qopt)
6035 {
6036 struct igc_hw *hw = &adapter->hw;
6037 int err;
6038
6039 if (hw->mac.type != igc_i225)
6040 return -EOPNOTSUPP;
6041
6042 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6043 if (err)
6044 return err;
6045
6046 return igc_tsn_offload_apply(adapter);
6047 }
6048
igc_tsn_clear_schedule(struct igc_adapter * adapter)6049 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6050 {
6051 int i;
6052
6053 adapter->base_time = 0;
6054 adapter->cycle_time = NSEC_PER_SEC;
6055
6056 for (i = 0; i < adapter->num_tx_queues; i++) {
6057 struct igc_ring *ring = adapter->tx_ring[i];
6058
6059 ring->start_time = 0;
6060 ring->end_time = NSEC_PER_SEC;
6061 }
6062
6063 return 0;
6064 }
6065
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6066 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6067 struct tc_taprio_qopt_offload *qopt)
6068 {
6069 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6070 u32 start_time = 0, end_time = 0;
6071 size_t n;
6072 int i;
6073
6074 adapter->qbv_enable = qopt->enable;
6075
6076 if (!qopt->enable)
6077 return igc_tsn_clear_schedule(adapter);
6078
6079 if (qopt->base_time < 0)
6080 return -ERANGE;
6081
6082 if (adapter->base_time)
6083 return -EALREADY;
6084
6085 if (!validate_schedule(adapter, qopt))
6086 return -EINVAL;
6087
6088 adapter->cycle_time = qopt->cycle_time;
6089 adapter->base_time = qopt->base_time;
6090
6091 for (n = 0; n < qopt->num_entries; n++) {
6092 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6093
6094 end_time += e->interval;
6095
6096 /* If any of the conditions below are true, we need to manually
6097 * control the end time of the cycle.
6098 * 1. Qbv users can specify a cycle time that is not equal
6099 * to the total GCL intervals. Hence, recalculation is
6100 * necessary here to exclude the time interval that
6101 * exceeds the cycle time.
6102 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6103 * once the end of the list is reached, it will switch
6104 * to the END_OF_CYCLE state and leave the gates in the
6105 * same state until the next cycle is started.
6106 */
6107 if (end_time > adapter->cycle_time ||
6108 n + 1 == qopt->num_entries)
6109 end_time = adapter->cycle_time;
6110
6111 for (i = 0; i < adapter->num_tx_queues; i++) {
6112 struct igc_ring *ring = adapter->tx_ring[i];
6113
6114 if (!(e->gate_mask & BIT(i)))
6115 continue;
6116
6117 /* Check whether a queue stays open for more than one
6118 * entry. If so, keep the start and advance the end
6119 * time.
6120 */
6121 if (!queue_configured[i])
6122 ring->start_time = start_time;
6123 ring->end_time = end_time;
6124
6125 queue_configured[i] = true;
6126 }
6127
6128 start_time += e->interval;
6129 }
6130
6131 /* Check whether a queue gets configured.
6132 * If not, set the start and end time to be end time.
6133 */
6134 for (i = 0; i < adapter->num_tx_queues; i++) {
6135 if (!queue_configured[i]) {
6136 struct igc_ring *ring = adapter->tx_ring[i];
6137
6138 ring->start_time = end_time;
6139 ring->end_time = end_time;
6140 }
6141 }
6142
6143 return 0;
6144 }
6145
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6146 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6147 struct tc_taprio_qopt_offload *qopt)
6148 {
6149 struct igc_hw *hw = &adapter->hw;
6150 int err;
6151
6152 if (hw->mac.type != igc_i225)
6153 return -EOPNOTSUPP;
6154
6155 err = igc_save_qbv_schedule(adapter, qopt);
6156 if (err)
6157 return err;
6158
6159 return igc_tsn_offload_apply(adapter);
6160 }
6161
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6162 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6163 bool enable, int idleslope, int sendslope,
6164 int hicredit, int locredit)
6165 {
6166 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6167 struct net_device *netdev = adapter->netdev;
6168 struct igc_ring *ring;
6169 int i;
6170
6171 /* i225 has two sets of credit-based shaper logic.
6172 * Supporting it only on the top two priority queues
6173 */
6174 if (queue < 0 || queue > 1)
6175 return -EINVAL;
6176
6177 ring = adapter->tx_ring[queue];
6178
6179 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6180 if (adapter->tx_ring[i])
6181 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6182
6183 /* CBS should be enabled on the highest priority queue first in order
6184 * for the CBS algorithm to operate as intended.
6185 */
6186 if (enable) {
6187 if (queue == 1 && !cbs_status[0]) {
6188 netdev_err(netdev,
6189 "Enabling CBS on queue1 before queue0\n");
6190 return -EINVAL;
6191 }
6192 } else {
6193 if (queue == 0 && cbs_status[1]) {
6194 netdev_err(netdev,
6195 "Disabling CBS on queue0 before queue1\n");
6196 return -EINVAL;
6197 }
6198 }
6199
6200 ring->cbs_enable = enable;
6201 ring->idleslope = idleslope;
6202 ring->sendslope = sendslope;
6203 ring->hicredit = hicredit;
6204 ring->locredit = locredit;
6205
6206 return 0;
6207 }
6208
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6209 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6210 struct tc_cbs_qopt_offload *qopt)
6211 {
6212 struct igc_hw *hw = &adapter->hw;
6213 int err;
6214
6215 if (hw->mac.type != igc_i225)
6216 return -EOPNOTSUPP;
6217
6218 if (qopt->queue < 0 || qopt->queue > 1)
6219 return -EINVAL;
6220
6221 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6222 qopt->idleslope, qopt->sendslope,
6223 qopt->hicredit, qopt->locredit);
6224 if (err)
6225 return err;
6226
6227 return igc_tsn_offload_apply(adapter);
6228 }
6229
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6230 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6231 void *type_data)
6232 {
6233 struct igc_adapter *adapter = netdev_priv(dev);
6234
6235 switch (type) {
6236 case TC_SETUP_QDISC_TAPRIO:
6237 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6238
6239 case TC_SETUP_QDISC_ETF:
6240 return igc_tsn_enable_launchtime(adapter, type_data);
6241
6242 case TC_SETUP_QDISC_CBS:
6243 return igc_tsn_enable_cbs(adapter, type_data);
6244
6245 default:
6246 return -EOPNOTSUPP;
6247 }
6248 }
6249
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6250 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6251 {
6252 struct igc_adapter *adapter = netdev_priv(dev);
6253
6254 switch (bpf->command) {
6255 case XDP_SETUP_PROG:
6256 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6257 case XDP_SETUP_XSK_POOL:
6258 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6259 bpf->xsk.queue_id);
6260 default:
6261 return -EOPNOTSUPP;
6262 }
6263 }
6264
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6265 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6266 struct xdp_frame **frames, u32 flags)
6267 {
6268 struct igc_adapter *adapter = netdev_priv(dev);
6269 int cpu = smp_processor_id();
6270 struct netdev_queue *nq;
6271 struct igc_ring *ring;
6272 int i, drops;
6273
6274 if (unlikely(!netif_carrier_ok(dev)))
6275 return -ENETDOWN;
6276
6277 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6278 return -EINVAL;
6279
6280 ring = igc_xdp_get_tx_ring(adapter, cpu);
6281 nq = txring_txq(ring);
6282
6283 __netif_tx_lock(nq, cpu);
6284
6285 drops = 0;
6286 for (i = 0; i < num_frames; i++) {
6287 int err;
6288 struct xdp_frame *xdpf = frames[i];
6289
6290 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6291 if (err) {
6292 xdp_return_frame_rx_napi(xdpf);
6293 drops++;
6294 }
6295 }
6296
6297 if (flags & XDP_XMIT_FLUSH)
6298 igc_flush_tx_descriptors(ring);
6299
6300 __netif_tx_unlock(nq);
6301
6302 return num_frames - drops;
6303 }
6304
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6305 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6306 struct igc_q_vector *q_vector)
6307 {
6308 struct igc_hw *hw = &adapter->hw;
6309 u32 eics = 0;
6310
6311 eics |= q_vector->eims_value;
6312 wr32(IGC_EICS, eics);
6313 }
6314
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6315 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6316 {
6317 struct igc_adapter *adapter = netdev_priv(dev);
6318 struct igc_q_vector *q_vector;
6319 struct igc_ring *ring;
6320
6321 if (test_bit(__IGC_DOWN, &adapter->state))
6322 return -ENETDOWN;
6323
6324 if (!igc_xdp_is_enabled(adapter))
6325 return -ENXIO;
6326
6327 if (queue_id >= adapter->num_rx_queues)
6328 return -EINVAL;
6329
6330 ring = adapter->rx_ring[queue_id];
6331
6332 if (!ring->xsk_pool)
6333 return -ENXIO;
6334
6335 q_vector = adapter->q_vector[queue_id];
6336 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6337 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6338
6339 return 0;
6340 }
6341
6342 static const struct net_device_ops igc_netdev_ops = {
6343 .ndo_open = igc_open,
6344 .ndo_stop = igc_close,
6345 .ndo_start_xmit = igc_xmit_frame,
6346 .ndo_set_rx_mode = igc_set_rx_mode,
6347 .ndo_set_mac_address = igc_set_mac,
6348 .ndo_change_mtu = igc_change_mtu,
6349 .ndo_tx_timeout = igc_tx_timeout,
6350 .ndo_get_stats64 = igc_get_stats64,
6351 .ndo_fix_features = igc_fix_features,
6352 .ndo_set_features = igc_set_features,
6353 .ndo_features_check = igc_features_check,
6354 .ndo_eth_ioctl = igc_ioctl,
6355 .ndo_setup_tc = igc_setup_tc,
6356 .ndo_bpf = igc_bpf,
6357 .ndo_xdp_xmit = igc_xdp_xmit,
6358 .ndo_xsk_wakeup = igc_xsk_wakeup,
6359 };
6360
6361 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6362 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6363 {
6364 struct igc_adapter *adapter = hw->back;
6365
6366 pci_read_config_word(adapter->pdev, reg, value);
6367 }
6368
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6369 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6370 {
6371 struct igc_adapter *adapter = hw->back;
6372
6373 pci_write_config_word(adapter->pdev, reg, *value);
6374 }
6375
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6376 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6377 {
6378 struct igc_adapter *adapter = hw->back;
6379
6380 if (!pci_is_pcie(adapter->pdev))
6381 return -IGC_ERR_CONFIG;
6382
6383 pcie_capability_read_word(adapter->pdev, reg, value);
6384
6385 return IGC_SUCCESS;
6386 }
6387
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6388 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6389 {
6390 struct igc_adapter *adapter = hw->back;
6391
6392 if (!pci_is_pcie(adapter->pdev))
6393 return -IGC_ERR_CONFIG;
6394
6395 pcie_capability_write_word(adapter->pdev, reg, *value);
6396
6397 return IGC_SUCCESS;
6398 }
6399
igc_rd32(struct igc_hw * hw,u32 reg)6400 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6401 {
6402 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6403 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6404 u32 value = 0;
6405
6406 if (IGC_REMOVED(hw_addr))
6407 return ~value;
6408
6409 value = readl(&hw_addr[reg]);
6410
6411 /* reads should not return all F's */
6412 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6413 struct net_device *netdev = igc->netdev;
6414
6415 hw->hw_addr = NULL;
6416 netif_device_detach(netdev);
6417 netdev_err(netdev, "PCIe link lost, device now detached\n");
6418 WARN(pci_device_is_present(igc->pdev),
6419 "igc: Failed to read reg 0x%x!\n", reg);
6420 }
6421
6422 return value;
6423 }
6424
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)6425 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
6426 {
6427 struct igc_mac_info *mac = &adapter->hw.mac;
6428
6429 mac->autoneg = false;
6430
6431 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6432 * for the switch() below to work
6433 */
6434 if ((spd & 1) || (dplx & ~1))
6435 goto err_inval;
6436
6437 switch (spd + dplx) {
6438 case SPEED_10 + DUPLEX_HALF:
6439 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6440 break;
6441 case SPEED_10 + DUPLEX_FULL:
6442 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6443 break;
6444 case SPEED_100 + DUPLEX_HALF:
6445 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6446 break;
6447 case SPEED_100 + DUPLEX_FULL:
6448 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6449 break;
6450 case SPEED_1000 + DUPLEX_FULL:
6451 mac->autoneg = true;
6452 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6453 break;
6454 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6455 goto err_inval;
6456 case SPEED_2500 + DUPLEX_FULL:
6457 mac->autoneg = true;
6458 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
6459 break;
6460 case SPEED_2500 + DUPLEX_HALF: /* not supported */
6461 default:
6462 goto err_inval;
6463 }
6464
6465 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6466 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6467
6468 return 0;
6469
6470 err_inval:
6471 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
6472 return -EINVAL;
6473 }
6474
6475 /**
6476 * igc_probe - Device Initialization Routine
6477 * @pdev: PCI device information struct
6478 * @ent: entry in igc_pci_tbl
6479 *
6480 * Returns 0 on success, negative on failure
6481 *
6482 * igc_probe initializes an adapter identified by a pci_dev structure.
6483 * The OS initialization, configuring the adapter private structure,
6484 * and a hardware reset occur.
6485 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6486 static int igc_probe(struct pci_dev *pdev,
6487 const struct pci_device_id *ent)
6488 {
6489 struct igc_adapter *adapter;
6490 struct net_device *netdev;
6491 struct igc_hw *hw;
6492 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6493 int err, pci_using_dac;
6494
6495 err = pci_enable_device_mem(pdev);
6496 if (err)
6497 return err;
6498
6499 pci_using_dac = 0;
6500 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6501 if (!err) {
6502 pci_using_dac = 1;
6503 } else {
6504 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6505 if (err) {
6506 dev_err(&pdev->dev,
6507 "No usable DMA configuration, aborting\n");
6508 goto err_dma;
6509 }
6510 }
6511
6512 err = pci_request_mem_regions(pdev, igc_driver_name);
6513 if (err)
6514 goto err_pci_reg;
6515
6516 pci_enable_pcie_error_reporting(pdev);
6517
6518 err = pci_enable_ptm(pdev, NULL);
6519 if (err < 0)
6520 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6521
6522 pci_set_master(pdev);
6523
6524 err = -ENOMEM;
6525 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6526 IGC_MAX_TX_QUEUES);
6527
6528 if (!netdev)
6529 goto err_alloc_etherdev;
6530
6531 SET_NETDEV_DEV(netdev, &pdev->dev);
6532
6533 pci_set_drvdata(pdev, netdev);
6534 adapter = netdev_priv(netdev);
6535 adapter->netdev = netdev;
6536 adapter->pdev = pdev;
6537 hw = &adapter->hw;
6538 hw->back = adapter;
6539 adapter->port_num = hw->bus.func;
6540 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6541
6542 err = pci_save_state(pdev);
6543 if (err)
6544 goto err_ioremap;
6545
6546 err = -EIO;
6547 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6548 pci_resource_len(pdev, 0));
6549 if (!adapter->io_addr)
6550 goto err_ioremap;
6551
6552 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6553 hw->hw_addr = adapter->io_addr;
6554
6555 netdev->netdev_ops = &igc_netdev_ops;
6556 igc_ethtool_set_ops(netdev);
6557 netdev->watchdog_timeo = 5 * HZ;
6558
6559 netdev->mem_start = pci_resource_start(pdev, 0);
6560 netdev->mem_end = pci_resource_end(pdev, 0);
6561
6562 /* PCI config space info */
6563 hw->vendor_id = pdev->vendor;
6564 hw->device_id = pdev->device;
6565 hw->revision_id = pdev->revision;
6566 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6567 hw->subsystem_device_id = pdev->subsystem_device;
6568
6569 /* Copy the default MAC and PHY function pointers */
6570 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6571 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6572
6573 /* Initialize skew-specific constants */
6574 err = ei->get_invariants(hw);
6575 if (err)
6576 goto err_sw_init;
6577
6578 /* Add supported features to the features list*/
6579 netdev->features |= NETIF_F_SG;
6580 netdev->features |= NETIF_F_TSO;
6581 netdev->features |= NETIF_F_TSO6;
6582 netdev->features |= NETIF_F_TSO_ECN;
6583 netdev->features |= NETIF_F_RXHASH;
6584 netdev->features |= NETIF_F_RXCSUM;
6585 netdev->features |= NETIF_F_HW_CSUM;
6586 netdev->features |= NETIF_F_SCTP_CRC;
6587 netdev->features |= NETIF_F_HW_TC;
6588
6589 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6590 NETIF_F_GSO_GRE_CSUM | \
6591 NETIF_F_GSO_IPXIP4 | \
6592 NETIF_F_GSO_IPXIP6 | \
6593 NETIF_F_GSO_UDP_TUNNEL | \
6594 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6595
6596 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6597 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6598
6599 /* setup the private structure */
6600 err = igc_sw_init(adapter);
6601 if (err)
6602 goto err_sw_init;
6603
6604 /* copy netdev features into list of user selectable features */
6605 netdev->hw_features |= NETIF_F_NTUPLE;
6606 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6607 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6608 netdev->hw_features |= netdev->features;
6609
6610 if (pci_using_dac)
6611 netdev->features |= NETIF_F_HIGHDMA;
6612
6613 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6614 netdev->mpls_features |= NETIF_F_HW_CSUM;
6615 netdev->hw_enc_features |= netdev->vlan_features;
6616
6617 /* MTU range: 68 - 9216 */
6618 netdev->min_mtu = ETH_MIN_MTU;
6619 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6620
6621 /* before reading the NVM, reset the controller to put the device in a
6622 * known good starting state
6623 */
6624 hw->mac.ops.reset_hw(hw);
6625
6626 if (igc_get_flash_presence_i225(hw)) {
6627 if (hw->nvm.ops.validate(hw) < 0) {
6628 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6629 err = -EIO;
6630 goto err_eeprom;
6631 }
6632 }
6633
6634 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6635 /* copy the MAC address out of the NVM */
6636 if (hw->mac.ops.read_mac_addr(hw))
6637 dev_err(&pdev->dev, "NVM Read Error\n");
6638 }
6639
6640 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
6641
6642 if (!is_valid_ether_addr(netdev->dev_addr)) {
6643 dev_err(&pdev->dev, "Invalid MAC Address\n");
6644 err = -EIO;
6645 goto err_eeprom;
6646 }
6647
6648 /* configure RXPBSIZE and TXPBSIZE */
6649 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6650 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6651
6652 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6653 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6654
6655 INIT_WORK(&adapter->reset_task, igc_reset_task);
6656 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6657
6658 /* Initialize link properties that are user-changeable */
6659 adapter->fc_autoneg = true;
6660 hw->mac.autoneg = true;
6661 hw->phy.autoneg_advertised = 0xaf;
6662
6663 hw->fc.requested_mode = igc_fc_default;
6664 hw->fc.current_mode = igc_fc_default;
6665
6666 /* By default, support wake on port A */
6667 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6668
6669 /* initialize the wol settings based on the eeprom settings */
6670 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6671 adapter->wol |= IGC_WUFC_MAG;
6672
6673 device_set_wakeup_enable(&adapter->pdev->dev,
6674 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6675
6676 igc_ptp_init(adapter);
6677
6678 igc_tsn_clear_schedule(adapter);
6679
6680 /* reset the hardware with the new settings */
6681 igc_reset(adapter);
6682
6683 /* let the f/w know that the h/w is now under the control of the
6684 * driver.
6685 */
6686 igc_get_hw_control(adapter);
6687
6688 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6689 err = register_netdev(netdev);
6690 if (err)
6691 goto err_register;
6692
6693 /* carrier off reporting is important to ethtool even BEFORE open */
6694 netif_carrier_off(netdev);
6695
6696 /* Check if Media Autosense is enabled */
6697 adapter->ei = *ei;
6698
6699 /* print pcie link status and MAC address */
6700 pcie_print_link_status(pdev);
6701 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6702
6703 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6704 /* Disable EEE for internal PHY devices */
6705 hw->dev_spec._base.eee_enable = false;
6706 adapter->flags &= ~IGC_FLAG_EEE;
6707 igc_set_eee_i225(hw, false, false, false);
6708
6709 pm_runtime_put_noidle(&pdev->dev);
6710
6711 return 0;
6712
6713 err_register:
6714 igc_release_hw_control(adapter);
6715 err_eeprom:
6716 if (!igc_check_reset_block(hw))
6717 igc_reset_phy(hw);
6718 err_sw_init:
6719 igc_clear_interrupt_scheme(adapter);
6720 iounmap(adapter->io_addr);
6721 err_ioremap:
6722 free_netdev(netdev);
6723 err_alloc_etherdev:
6724 pci_disable_pcie_error_reporting(pdev);
6725 pci_release_mem_regions(pdev);
6726 err_pci_reg:
6727 err_dma:
6728 pci_disable_device(pdev);
6729 return err;
6730 }
6731
6732 /**
6733 * igc_remove - Device Removal Routine
6734 * @pdev: PCI device information struct
6735 *
6736 * igc_remove is called by the PCI subsystem to alert the driver
6737 * that it should release a PCI device. This could be caused by a
6738 * Hot-Plug event, or because the driver is going to be removed from
6739 * memory.
6740 */
igc_remove(struct pci_dev * pdev)6741 static void igc_remove(struct pci_dev *pdev)
6742 {
6743 struct net_device *netdev = pci_get_drvdata(pdev);
6744 struct igc_adapter *adapter = netdev_priv(netdev);
6745
6746 pm_runtime_get_noresume(&pdev->dev);
6747
6748 igc_flush_nfc_rules(adapter);
6749
6750 igc_ptp_stop(adapter);
6751
6752 set_bit(__IGC_DOWN, &adapter->state);
6753
6754 del_timer_sync(&adapter->watchdog_timer);
6755 del_timer_sync(&adapter->phy_info_timer);
6756
6757 cancel_work_sync(&adapter->reset_task);
6758 cancel_work_sync(&adapter->watchdog_task);
6759
6760 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6761 * would have already happened in close and is redundant.
6762 */
6763 igc_release_hw_control(adapter);
6764 unregister_netdev(netdev);
6765
6766 igc_clear_interrupt_scheme(adapter);
6767 pci_iounmap(pdev, adapter->io_addr);
6768 pci_release_mem_regions(pdev);
6769
6770 free_netdev(netdev);
6771
6772 pci_disable_pcie_error_reporting(pdev);
6773
6774 pci_disable_device(pdev);
6775 }
6776
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)6777 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6778 bool runtime)
6779 {
6780 struct net_device *netdev = pci_get_drvdata(pdev);
6781 struct igc_adapter *adapter = netdev_priv(netdev);
6782 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6783 struct igc_hw *hw = &adapter->hw;
6784 u32 ctrl, rctl, status;
6785 bool wake;
6786
6787 rtnl_lock();
6788 netif_device_detach(netdev);
6789
6790 if (netif_running(netdev))
6791 __igc_close(netdev, true);
6792
6793 igc_ptp_suspend(adapter);
6794
6795 igc_clear_interrupt_scheme(adapter);
6796 rtnl_unlock();
6797
6798 status = rd32(IGC_STATUS);
6799 if (status & IGC_STATUS_LU)
6800 wufc &= ~IGC_WUFC_LNKC;
6801
6802 if (wufc) {
6803 igc_setup_rctl(adapter);
6804 igc_set_rx_mode(netdev);
6805
6806 /* turn on all-multi mode if wake on multicast is enabled */
6807 if (wufc & IGC_WUFC_MC) {
6808 rctl = rd32(IGC_RCTL);
6809 rctl |= IGC_RCTL_MPE;
6810 wr32(IGC_RCTL, rctl);
6811 }
6812
6813 ctrl = rd32(IGC_CTRL);
6814 ctrl |= IGC_CTRL_ADVD3WUC;
6815 wr32(IGC_CTRL, ctrl);
6816
6817 /* Allow time for pending master requests to run */
6818 igc_disable_pcie_master(hw);
6819
6820 wr32(IGC_WUC, IGC_WUC_PME_EN);
6821 wr32(IGC_WUFC, wufc);
6822 } else {
6823 wr32(IGC_WUC, 0);
6824 wr32(IGC_WUFC, 0);
6825 }
6826
6827 wake = wufc || adapter->en_mng_pt;
6828 if (!wake)
6829 igc_power_down_phy_copper_base(&adapter->hw);
6830 else
6831 igc_power_up_link(adapter);
6832
6833 if (enable_wake)
6834 *enable_wake = wake;
6835
6836 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6837 * would have already happened in close and is redundant.
6838 */
6839 igc_release_hw_control(adapter);
6840
6841 pci_disable_device(pdev);
6842
6843 return 0;
6844 }
6845
6846 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)6847 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6848 {
6849 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6850 }
6851
igc_deliver_wake_packet(struct net_device * netdev)6852 static void igc_deliver_wake_packet(struct net_device *netdev)
6853 {
6854 struct igc_adapter *adapter = netdev_priv(netdev);
6855 struct igc_hw *hw = &adapter->hw;
6856 struct sk_buff *skb;
6857 u32 wupl;
6858
6859 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6860
6861 /* WUPM stores only the first 128 bytes of the wake packet.
6862 * Read the packet only if we have the whole thing.
6863 */
6864 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6865 return;
6866
6867 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6868 if (!skb)
6869 return;
6870
6871 skb_put(skb, wupl);
6872
6873 /* Ensure reads are 32-bit aligned */
6874 wupl = roundup(wupl, 4);
6875
6876 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6877
6878 skb->protocol = eth_type_trans(skb, netdev);
6879 netif_rx(skb);
6880 }
6881
igc_resume(struct device * dev)6882 static int __maybe_unused igc_resume(struct device *dev)
6883 {
6884 struct pci_dev *pdev = to_pci_dev(dev);
6885 struct net_device *netdev = pci_get_drvdata(pdev);
6886 struct igc_adapter *adapter = netdev_priv(netdev);
6887 struct igc_hw *hw = &adapter->hw;
6888 u32 err, val;
6889
6890 pci_set_power_state(pdev, PCI_D0);
6891 pci_restore_state(pdev);
6892 pci_save_state(pdev);
6893
6894 if (!pci_device_is_present(pdev))
6895 return -ENODEV;
6896 err = pci_enable_device_mem(pdev);
6897 if (err) {
6898 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6899 return err;
6900 }
6901 pci_set_master(pdev);
6902
6903 pci_enable_wake(pdev, PCI_D3hot, 0);
6904 pci_enable_wake(pdev, PCI_D3cold, 0);
6905
6906 if (igc_init_interrupt_scheme(adapter, true)) {
6907 netdev_err(netdev, "Unable to allocate memory for queues\n");
6908 return -ENOMEM;
6909 }
6910
6911 igc_reset(adapter);
6912
6913 /* let the f/w know that the h/w is now under the control of the
6914 * driver.
6915 */
6916 igc_get_hw_control(adapter);
6917
6918 val = rd32(IGC_WUS);
6919 if (val & WAKE_PKT_WUS)
6920 igc_deliver_wake_packet(netdev);
6921
6922 wr32(IGC_WUS, ~0);
6923
6924 rtnl_lock();
6925 if (!err && netif_running(netdev))
6926 err = __igc_open(netdev, true);
6927
6928 if (!err)
6929 netif_device_attach(netdev);
6930 rtnl_unlock();
6931
6932 return err;
6933 }
6934
igc_runtime_resume(struct device * dev)6935 static int __maybe_unused igc_runtime_resume(struct device *dev)
6936 {
6937 return igc_resume(dev);
6938 }
6939
igc_suspend(struct device * dev)6940 static int __maybe_unused igc_suspend(struct device *dev)
6941 {
6942 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6943 }
6944
igc_runtime_idle(struct device * dev)6945 static int __maybe_unused igc_runtime_idle(struct device *dev)
6946 {
6947 struct net_device *netdev = dev_get_drvdata(dev);
6948 struct igc_adapter *adapter = netdev_priv(netdev);
6949
6950 if (!igc_has_link(adapter))
6951 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6952
6953 return -EBUSY;
6954 }
6955 #endif /* CONFIG_PM */
6956
igc_shutdown(struct pci_dev * pdev)6957 static void igc_shutdown(struct pci_dev *pdev)
6958 {
6959 bool wake;
6960
6961 __igc_shutdown(pdev, &wake, 0);
6962
6963 if (system_state == SYSTEM_POWER_OFF) {
6964 pci_wake_from_d3(pdev, wake);
6965 pci_set_power_state(pdev, PCI_D3hot);
6966 }
6967 }
6968
6969 /**
6970 * igc_io_error_detected - called when PCI error is detected
6971 * @pdev: Pointer to PCI device
6972 * @state: The current PCI connection state
6973 *
6974 * This function is called after a PCI bus error affecting
6975 * this device has been detected.
6976 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6977 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6978 pci_channel_state_t state)
6979 {
6980 struct net_device *netdev = pci_get_drvdata(pdev);
6981 struct igc_adapter *adapter = netdev_priv(netdev);
6982
6983 netif_device_detach(netdev);
6984
6985 if (state == pci_channel_io_perm_failure)
6986 return PCI_ERS_RESULT_DISCONNECT;
6987
6988 if (netif_running(netdev))
6989 igc_down(adapter);
6990 pci_disable_device(pdev);
6991
6992 /* Request a slot reset. */
6993 return PCI_ERS_RESULT_NEED_RESET;
6994 }
6995
6996 /**
6997 * igc_io_slot_reset - called after the PCI bus has been reset.
6998 * @pdev: Pointer to PCI device
6999 *
7000 * Restart the card from scratch, as if from a cold-boot. Implementation
7001 * resembles the first-half of the igc_resume routine.
7002 **/
igc_io_slot_reset(struct pci_dev * pdev)7003 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7004 {
7005 struct net_device *netdev = pci_get_drvdata(pdev);
7006 struct igc_adapter *adapter = netdev_priv(netdev);
7007 struct igc_hw *hw = &adapter->hw;
7008 pci_ers_result_t result;
7009
7010 if (pci_enable_device_mem(pdev)) {
7011 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7012 result = PCI_ERS_RESULT_DISCONNECT;
7013 } else {
7014 pci_set_master(pdev);
7015 pci_restore_state(pdev);
7016 pci_save_state(pdev);
7017
7018 pci_enable_wake(pdev, PCI_D3hot, 0);
7019 pci_enable_wake(pdev, PCI_D3cold, 0);
7020
7021 /* In case of PCI error, adapter loses its HW address
7022 * so we should re-assign it here.
7023 */
7024 hw->hw_addr = adapter->io_addr;
7025
7026 igc_reset(adapter);
7027 wr32(IGC_WUS, ~0);
7028 result = PCI_ERS_RESULT_RECOVERED;
7029 }
7030
7031 return result;
7032 }
7033
7034 /**
7035 * igc_io_resume - called when traffic can start to flow again.
7036 * @pdev: Pointer to PCI device
7037 *
7038 * This callback is called when the error recovery driver tells us that
7039 * its OK to resume normal operation. Implementation resembles the
7040 * second-half of the igc_resume routine.
7041 */
igc_io_resume(struct pci_dev * pdev)7042 static void igc_io_resume(struct pci_dev *pdev)
7043 {
7044 struct net_device *netdev = pci_get_drvdata(pdev);
7045 struct igc_adapter *adapter = netdev_priv(netdev);
7046
7047 rtnl_lock();
7048 if (netif_running(netdev)) {
7049 if (igc_open(netdev)) {
7050 netdev_err(netdev, "igc_open failed after reset\n");
7051 return;
7052 }
7053 }
7054
7055 netif_device_attach(netdev);
7056
7057 /* let the f/w know that the h/w is now under the control of the
7058 * driver.
7059 */
7060 igc_get_hw_control(adapter);
7061 rtnl_unlock();
7062 }
7063
7064 static const struct pci_error_handlers igc_err_handler = {
7065 .error_detected = igc_io_error_detected,
7066 .slot_reset = igc_io_slot_reset,
7067 .resume = igc_io_resume,
7068 };
7069
7070 #ifdef CONFIG_PM
7071 static const struct dev_pm_ops igc_pm_ops = {
7072 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7073 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7074 igc_runtime_idle)
7075 };
7076 #endif
7077
7078 static struct pci_driver igc_driver = {
7079 .name = igc_driver_name,
7080 .id_table = igc_pci_tbl,
7081 .probe = igc_probe,
7082 .remove = igc_remove,
7083 #ifdef CONFIG_PM
7084 .driver.pm = &igc_pm_ops,
7085 #endif
7086 .shutdown = igc_shutdown,
7087 .err_handler = &igc_err_handler,
7088 };
7089
7090 /**
7091 * igc_reinit_queues - return error
7092 * @adapter: pointer to adapter structure
7093 */
igc_reinit_queues(struct igc_adapter * adapter)7094 int igc_reinit_queues(struct igc_adapter *adapter)
7095 {
7096 struct net_device *netdev = adapter->netdev;
7097 int err = 0;
7098
7099 if (netif_running(netdev))
7100 igc_close(netdev);
7101
7102 igc_reset_interrupt_capability(adapter);
7103
7104 if (igc_init_interrupt_scheme(adapter, true)) {
7105 netdev_err(netdev, "Unable to allocate memory for queues\n");
7106 return -ENOMEM;
7107 }
7108
7109 if (netif_running(netdev))
7110 err = igc_open(netdev);
7111
7112 return err;
7113 }
7114
7115 /**
7116 * igc_get_hw_dev - return device
7117 * @hw: pointer to hardware structure
7118 *
7119 * used by hardware layer to print debugging information
7120 */
igc_get_hw_dev(struct igc_hw * hw)7121 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7122 {
7123 struct igc_adapter *adapter = hw->back;
7124
7125 return adapter->netdev;
7126 }
7127
igc_disable_rx_ring_hw(struct igc_ring * ring)7128 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7129 {
7130 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7131 u8 idx = ring->reg_idx;
7132 u32 rxdctl;
7133
7134 rxdctl = rd32(IGC_RXDCTL(idx));
7135 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7136 rxdctl |= IGC_RXDCTL_SWFLUSH;
7137 wr32(IGC_RXDCTL(idx), rxdctl);
7138 }
7139
igc_disable_rx_ring(struct igc_ring * ring)7140 void igc_disable_rx_ring(struct igc_ring *ring)
7141 {
7142 igc_disable_rx_ring_hw(ring);
7143 igc_clean_rx_ring(ring);
7144 }
7145
igc_enable_rx_ring(struct igc_ring * ring)7146 void igc_enable_rx_ring(struct igc_ring *ring)
7147 {
7148 struct igc_adapter *adapter = ring->q_vector->adapter;
7149
7150 igc_configure_rx_ring(adapter, ring);
7151
7152 if (ring->xsk_pool)
7153 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7154 else
7155 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7156 }
7157
igc_disable_tx_ring(struct igc_ring * ring)7158 void igc_disable_tx_ring(struct igc_ring *ring)
7159 {
7160 igc_disable_tx_ring_hw(ring);
7161 igc_clean_tx_ring(ring);
7162 }
7163
igc_enable_tx_ring(struct igc_ring * ring)7164 void igc_enable_tx_ring(struct igc_ring *ring)
7165 {
7166 struct igc_adapter *adapter = ring->q_vector->adapter;
7167
7168 igc_configure_tx_ring(adapter, ring);
7169 }
7170
7171 /**
7172 * igc_init_module - Driver Registration Routine
7173 *
7174 * igc_init_module is the first routine called when the driver is
7175 * loaded. All it does is register with the PCI subsystem.
7176 */
igc_init_module(void)7177 static int __init igc_init_module(void)
7178 {
7179 int ret;
7180
7181 pr_info("%s\n", igc_driver_string);
7182 pr_info("%s\n", igc_copyright);
7183
7184 ret = pci_register_driver(&igc_driver);
7185 return ret;
7186 }
7187
7188 module_init(igc_init_module);
7189
7190 /**
7191 * igc_exit_module - Driver Exit Cleanup Routine
7192 *
7193 * igc_exit_module is called just before the driver is removed
7194 * from memory.
7195 */
igc_exit_module(void)7196 static void __exit igc_exit_module(void)
7197 {
7198 pci_unregister_driver(&igc_driver);
7199 }
7200
7201 module_exit(igc_exit_module);
7202 /* igc_main.c */
7203