• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41 
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44 
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48 
49 static const struct qed_eth_ops *qed_ops;
50 
51 #define CHIP_NUM_57980S_40		0x1634
52 #define CHIP_NUM_57980S_10		0x1666
53 #define CHIP_NUM_57980S_MF		0x1636
54 #define CHIP_NUM_57980S_100		0x1644
55 #define CHIP_NUM_57980S_50		0x1654
56 #define CHIP_NUM_57980S_25		0x1656
57 #define CHIP_NUM_57980S_IOV		0x1664
58 #define CHIP_NUM_AH			0x8070
59 #define CHIP_NUM_AH_IOV			0x8090
60 
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
71 
72 #endif
73 
74 enum qede_pci_private {
75 	QEDE_PRIVATE_PF,
76 	QEDE_PRIVATE_VF
77 };
78 
79 static const struct pci_device_id qede_pci_tbl[] = {
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93 	{ 0 }
94 };
95 
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97 
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101 
102 #define TX_TIMEOUT		(5 * HZ)
103 
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI	11
106 
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113 					 enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116 				      struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
qede_set_vf_vlan(struct net_device * ndev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120 			    __be16 vlan_proto)
121 {
122 	struct qede_dev *edev = netdev_priv(ndev);
123 
124 	if (vlan > 4095) {
125 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126 		return -EINVAL;
127 	}
128 
129 	if (vlan_proto != htons(ETH_P_8021Q))
130 		return -EPROTONOSUPPORT;
131 
132 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133 		   vlan, vf);
134 
135 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137 
qede_set_vf_mac(struct net_device * ndev,int vfidx,u8 * mac)138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140 	struct qede_dev *edev = netdev_priv(ndev);
141 
142 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143 
144 	if (!is_valid_ether_addr(mac)) {
145 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146 		return -EINVAL;
147 	}
148 
149 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151 
qede_sriov_configure(struct pci_dev * pdev,int num_vfs_param)152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155 	struct qed_dev_info *qed_info = &edev->dev_info.common;
156 	struct qed_update_vport_params *vport_params;
157 	int rc;
158 
159 	vport_params = vzalloc(sizeof(*vport_params));
160 	if (!vport_params)
161 		return -ENOMEM;
162 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163 
164 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165 
166 	/* Enable/Disable Tx switching for PF */
167 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169 		vport_params->vport_id = 0;
170 		vport_params->update_tx_switching_flg = 1;
171 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172 		edev->ops->vport_update(edev->cdev, vport_params);
173 	}
174 
175 	vfree(vport_params);
176 	return rc;
177 }
178 #endif
179 
180 static const struct pci_error_handlers qede_err_handler = {
181 	.error_detected = qede_io_error_detected,
182 };
183 
184 static struct pci_driver qede_pci_driver = {
185 	.name = "qede",
186 	.id_table = qede_pci_tbl,
187 	.probe = qede_probe,
188 	.remove = qede_remove,
189 	.shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191 	.sriov_configure = qede_sriov_configure,
192 #endif
193 	.err_handler = &qede_err_handler,
194 };
195 
196 static struct qed_eth_cb_ops qede_ll_ops = {
197 	{
198 #ifdef CONFIG_RFS_ACCEL
199 		.arfs_filter_op = qede_arfs_filter_op,
200 #endif
201 		.link_update = qede_link_update,
202 		.schedule_recovery_handler = qede_schedule_recovery_handler,
203 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
204 		.get_generic_tlv_data = qede_get_generic_tlv_data,
205 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
206 	},
207 	.force_mac = qede_force_mac,
208 	.ports_update = qede_udp_ports_update,
209 };
210 
qede_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212 			     void *ptr)
213 {
214 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215 	struct ethtool_drvinfo drvinfo;
216 	struct qede_dev *edev;
217 
218 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219 		goto done;
220 
221 	/* Check whether this is a qede device */
222 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223 		goto done;
224 
225 	memset(&drvinfo, 0, sizeof(drvinfo));
226 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227 	if (strcmp(drvinfo.driver, "qede"))
228 		goto done;
229 	edev = netdev_priv(ndev);
230 
231 	switch (event) {
232 	case NETDEV_CHANGENAME:
233 		/* Notify qed of the name change */
234 		if (!edev->ops || !edev->ops->common)
235 			goto done;
236 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237 		break;
238 	case NETDEV_CHANGEADDR:
239 		edev = netdev_priv(ndev);
240 		qede_rdma_event_changeaddr(edev);
241 		break;
242 	}
243 
244 done:
245 	return NOTIFY_DONE;
246 }
247 
248 static struct notifier_block qede_netdev_notifier = {
249 	.notifier_call = qede_netdev_event,
250 };
251 
252 static
qede_init(void)253 int __init qede_init(void)
254 {
255 	int ret;
256 
257 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258 
259 	qede_forced_speed_maps_init();
260 
261 	qed_ops = qed_get_eth_ops();
262 	if (!qed_ops) {
263 		pr_notice("Failed to get qed ethtool operations\n");
264 		return -EINVAL;
265 	}
266 
267 	/* Must register notifier before pci ops, since we might miss
268 	 * interface rename after pci probe and netdev registration.
269 	 */
270 	ret = register_netdevice_notifier(&qede_netdev_notifier);
271 	if (ret) {
272 		pr_notice("Failed to register netdevice_notifier\n");
273 		qed_put_eth_ops();
274 		return -EINVAL;
275 	}
276 
277 	ret = pci_register_driver(&qede_pci_driver);
278 	if (ret) {
279 		pr_notice("Failed to register driver\n");
280 		unregister_netdevice_notifier(&qede_netdev_notifier);
281 		qed_put_eth_ops();
282 		return -EINVAL;
283 	}
284 
285 	return 0;
286 }
287 
qede_cleanup(void)288 static void __exit qede_cleanup(void)
289 {
290 	if (debug & QED_LOG_INFO_MASK)
291 		pr_info("qede_cleanup called\n");
292 
293 	unregister_netdevice_notifier(&qede_netdev_notifier);
294 	pci_unregister_driver(&qede_pci_driver);
295 	qed_put_eth_ops();
296 }
297 
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300 
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303 
qede_fill_by_demand_stats(struct qede_dev * edev)304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306 	struct qede_stats_common *p_common = &edev->stats.common;
307 	struct qed_eth_stats stats;
308 
309 	edev->ops->get_vport_stats(edev->cdev, &stats);
310 
311 	spin_lock(&edev->stats_lock);
312 
313 	p_common->no_buff_discards = stats.common.no_buff_discards;
314 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
315 	p_common->ttl0_discard = stats.common.ttl0_discard;
316 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
317 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
318 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
319 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
320 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
321 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
322 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
323 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
324 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
325 
326 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
327 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
328 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
329 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
330 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
331 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
332 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
333 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
334 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
335 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
336 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
337 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
338 
339 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
340 	p_common->rx_65_to_127_byte_packets =
341 	    stats.common.rx_65_to_127_byte_packets;
342 	p_common->rx_128_to_255_byte_packets =
343 	    stats.common.rx_128_to_255_byte_packets;
344 	p_common->rx_256_to_511_byte_packets =
345 	    stats.common.rx_256_to_511_byte_packets;
346 	p_common->rx_512_to_1023_byte_packets =
347 	    stats.common.rx_512_to_1023_byte_packets;
348 	p_common->rx_1024_to_1518_byte_packets =
349 	    stats.common.rx_1024_to_1518_byte_packets;
350 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
351 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
352 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
353 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
354 	p_common->rx_align_errors = stats.common.rx_align_errors;
355 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
356 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
357 	p_common->rx_jabbers = stats.common.rx_jabbers;
358 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
359 	p_common->rx_fragments = stats.common.rx_fragments;
360 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
361 	p_common->tx_65_to_127_byte_packets =
362 	    stats.common.tx_65_to_127_byte_packets;
363 	p_common->tx_128_to_255_byte_packets =
364 	    stats.common.tx_128_to_255_byte_packets;
365 	p_common->tx_256_to_511_byte_packets =
366 	    stats.common.tx_256_to_511_byte_packets;
367 	p_common->tx_512_to_1023_byte_packets =
368 	    stats.common.tx_512_to_1023_byte_packets;
369 	p_common->tx_1024_to_1518_byte_packets =
370 	    stats.common.tx_1024_to_1518_byte_packets;
371 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
372 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
373 	p_common->brb_truncates = stats.common.brb_truncates;
374 	p_common->brb_discards = stats.common.brb_discards;
375 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
376 	p_common->link_change_count = stats.common.link_change_count;
377 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
378 
379 	if (QEDE_IS_BB(edev)) {
380 		struct qede_stats_bb *p_bb = &edev->stats.bb;
381 
382 		p_bb->rx_1519_to_1522_byte_packets =
383 		    stats.bb.rx_1519_to_1522_byte_packets;
384 		p_bb->rx_1519_to_2047_byte_packets =
385 		    stats.bb.rx_1519_to_2047_byte_packets;
386 		p_bb->rx_2048_to_4095_byte_packets =
387 		    stats.bb.rx_2048_to_4095_byte_packets;
388 		p_bb->rx_4096_to_9216_byte_packets =
389 		    stats.bb.rx_4096_to_9216_byte_packets;
390 		p_bb->rx_9217_to_16383_byte_packets =
391 		    stats.bb.rx_9217_to_16383_byte_packets;
392 		p_bb->tx_1519_to_2047_byte_packets =
393 		    stats.bb.tx_1519_to_2047_byte_packets;
394 		p_bb->tx_2048_to_4095_byte_packets =
395 		    stats.bb.tx_2048_to_4095_byte_packets;
396 		p_bb->tx_4096_to_9216_byte_packets =
397 		    stats.bb.tx_4096_to_9216_byte_packets;
398 		p_bb->tx_9217_to_16383_byte_packets =
399 		    stats.bb.tx_9217_to_16383_byte_packets;
400 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
401 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
402 	} else {
403 		struct qede_stats_ah *p_ah = &edev->stats.ah;
404 
405 		p_ah->rx_1519_to_max_byte_packets =
406 		    stats.ah.rx_1519_to_max_byte_packets;
407 		p_ah->tx_1519_to_max_byte_packets =
408 		    stats.ah.tx_1519_to_max_byte_packets;
409 	}
410 
411 	spin_unlock(&edev->stats_lock);
412 }
413 
qede_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)414 static void qede_get_stats64(struct net_device *dev,
415 			     struct rtnl_link_stats64 *stats)
416 {
417 	struct qede_dev *edev = netdev_priv(dev);
418 	struct qede_stats_common *p_common;
419 
420 	p_common = &edev->stats.common;
421 
422 	spin_lock(&edev->stats_lock);
423 
424 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
425 			    p_common->rx_bcast_pkts;
426 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
427 			    p_common->tx_bcast_pkts;
428 
429 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
430 			  p_common->rx_bcast_bytes;
431 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
432 			  p_common->tx_bcast_bytes;
433 
434 	stats->tx_errors = p_common->tx_err_drop_pkts;
435 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
436 
437 	stats->rx_fifo_errors = p_common->no_buff_discards;
438 
439 	if (QEDE_IS_BB(edev))
440 		stats->collisions = edev->stats.bb.tx_total_collisions;
441 	stats->rx_crc_errors = p_common->rx_crc_errors;
442 	stats->rx_frame_errors = p_common->rx_align_errors;
443 
444 	spin_unlock(&edev->stats_lock);
445 }
446 
447 #ifdef CONFIG_QED_SRIOV
qede_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)448 static int qede_get_vf_config(struct net_device *dev, int vfidx,
449 			      struct ifla_vf_info *ivi)
450 {
451 	struct qede_dev *edev = netdev_priv(dev);
452 
453 	if (!edev->ops)
454 		return -EINVAL;
455 
456 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
457 }
458 
qede_set_vf_rate(struct net_device * dev,int vfidx,int min_tx_rate,int max_tx_rate)459 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
460 			    int min_tx_rate, int max_tx_rate)
461 {
462 	struct qede_dev *edev = netdev_priv(dev);
463 
464 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
465 					max_tx_rate);
466 }
467 
qede_set_vf_spoofchk(struct net_device * dev,int vfidx,bool val)468 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
469 {
470 	struct qede_dev *edev = netdev_priv(dev);
471 
472 	if (!edev->ops)
473 		return -EINVAL;
474 
475 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
476 }
477 
qede_set_vf_link_state(struct net_device * dev,int vfidx,int link_state)478 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
479 				  int link_state)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	if (!edev->ops)
484 		return -EINVAL;
485 
486 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
487 }
488 
qede_set_vf_trust(struct net_device * dev,int vfidx,bool setting)489 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
490 {
491 	struct qede_dev *edev = netdev_priv(dev);
492 
493 	if (!edev->ops)
494 		return -EINVAL;
495 
496 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
497 }
498 #endif
499 
qede_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)500 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
501 {
502 	struct qede_dev *edev = netdev_priv(dev);
503 
504 	if (!netif_running(dev))
505 		return -EAGAIN;
506 
507 	switch (cmd) {
508 	case SIOCSHWTSTAMP:
509 		return qede_ptp_hw_ts(edev, ifr);
510 	default:
511 		DP_VERBOSE(edev, QED_MSG_DEBUG,
512 			   "default IOCTL cmd 0x%x\n", cmd);
513 		return -EOPNOTSUPP;
514 	}
515 
516 	return 0;
517 }
518 
qede_tx_log_print(struct qede_dev * edev,struct qede_tx_queue * txq)519 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
520 {
521 	DP_NOTICE(edev,
522 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
523 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
524 		  qed_chain_get_cons_idx(&txq->tx_pbl),
525 		  qed_chain_get_prod_idx(&txq->tx_pbl),
526 		  jiffies);
527 }
528 
qede_tx_timeout(struct net_device * dev,unsigned int txqueue)529 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
530 {
531 	struct qede_dev *edev = netdev_priv(dev);
532 	struct qede_tx_queue *txq;
533 	int cos;
534 
535 	netif_carrier_off(dev);
536 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
537 
538 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
539 		return;
540 
541 	for_each_cos_in_txq(edev, cos) {
542 		txq = &edev->fp_array[txqueue].txq[cos];
543 
544 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
545 		    qed_chain_get_prod_idx(&txq->tx_pbl))
546 			qede_tx_log_print(edev, txq);
547 	}
548 
549 	if (IS_VF(edev))
550 		return;
551 
552 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
553 	    edev->state == QEDE_STATE_RECOVERY) {
554 		DP_INFO(edev,
555 			"Avoid handling a Tx timeout while another HW error is being handled\n");
556 		return;
557 	}
558 
559 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
560 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
561 	schedule_delayed_work(&edev->sp_task, 0);
562 }
563 
qede_setup_tc(struct net_device * ndev,u8 num_tc)564 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
565 {
566 	struct qede_dev *edev = netdev_priv(ndev);
567 	int cos, count, offset;
568 
569 	if (num_tc > edev->dev_info.num_tc)
570 		return -EINVAL;
571 
572 	netdev_reset_tc(ndev);
573 	netdev_set_num_tc(ndev, num_tc);
574 
575 	for_each_cos_in_txq(edev, cos) {
576 		count = QEDE_TSS_COUNT(edev);
577 		offset = cos * QEDE_TSS_COUNT(edev);
578 		netdev_set_tc_queue(ndev, cos, count, offset);
579 	}
580 
581 	return 0;
582 }
583 
584 static int
qede_set_flower(struct qede_dev * edev,struct flow_cls_offload * f,__be16 proto)585 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
586 		__be16 proto)
587 {
588 	switch (f->command) {
589 	case FLOW_CLS_REPLACE:
590 		return qede_add_tc_flower_fltr(edev, proto, f);
591 	case FLOW_CLS_DESTROY:
592 		return qede_delete_flow_filter(edev, f->cookie);
593 	default:
594 		return -EOPNOTSUPP;
595 	}
596 }
597 
qede_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)598 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
599 				  void *cb_priv)
600 {
601 	struct flow_cls_offload *f;
602 	struct qede_dev *edev = cb_priv;
603 
604 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
605 		return -EOPNOTSUPP;
606 
607 	switch (type) {
608 	case TC_SETUP_CLSFLOWER:
609 		f = type_data;
610 		return qede_set_flower(edev, f, f->common.protocol);
611 	default:
612 		return -EOPNOTSUPP;
613 	}
614 }
615 
616 static LIST_HEAD(qede_block_cb_list);
617 
618 static int
qede_setup_tc_offload(struct net_device * dev,enum tc_setup_type type,void * type_data)619 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
620 		      void *type_data)
621 {
622 	struct qede_dev *edev = netdev_priv(dev);
623 	struct tc_mqprio_qopt *mqprio;
624 
625 	switch (type) {
626 	case TC_SETUP_BLOCK:
627 		return flow_block_cb_setup_simple(type_data,
628 						  &qede_block_cb_list,
629 						  qede_setup_tc_block_cb,
630 						  edev, edev, true);
631 	case TC_SETUP_QDISC_MQPRIO:
632 		mqprio = type_data;
633 
634 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
635 		return qede_setup_tc(dev, mqprio->num_tc);
636 	default:
637 		return -EOPNOTSUPP;
638 	}
639 }
640 
641 static const struct net_device_ops qede_netdev_ops = {
642 	.ndo_open		= qede_open,
643 	.ndo_stop		= qede_close,
644 	.ndo_start_xmit		= qede_start_xmit,
645 	.ndo_select_queue	= qede_select_queue,
646 	.ndo_set_rx_mode	= qede_set_rx_mode,
647 	.ndo_set_mac_address	= qede_set_mac_addr,
648 	.ndo_validate_addr	= eth_validate_addr,
649 	.ndo_change_mtu		= qede_change_mtu,
650 	.ndo_eth_ioctl		= qede_ioctl,
651 	.ndo_tx_timeout		= qede_tx_timeout,
652 #ifdef CONFIG_QED_SRIOV
653 	.ndo_set_vf_mac		= qede_set_vf_mac,
654 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
655 	.ndo_set_vf_trust	= qede_set_vf_trust,
656 #endif
657 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
658 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
659 	.ndo_fix_features	= qede_fix_features,
660 	.ndo_set_features	= qede_set_features,
661 	.ndo_get_stats64	= qede_get_stats64,
662 #ifdef CONFIG_QED_SRIOV
663 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
664 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
665 	.ndo_get_vf_config	= qede_get_vf_config,
666 	.ndo_set_vf_rate	= qede_set_vf_rate,
667 #endif
668 	.ndo_features_check	= qede_features_check,
669 	.ndo_bpf		= qede_xdp,
670 #ifdef CONFIG_RFS_ACCEL
671 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
672 #endif
673 	.ndo_xdp_xmit		= qede_xdp_transmit,
674 	.ndo_setup_tc		= qede_setup_tc_offload,
675 };
676 
677 static const struct net_device_ops qede_netdev_vf_ops = {
678 	.ndo_open		= qede_open,
679 	.ndo_stop		= qede_close,
680 	.ndo_start_xmit		= qede_start_xmit,
681 	.ndo_select_queue	= qede_select_queue,
682 	.ndo_set_rx_mode	= qede_set_rx_mode,
683 	.ndo_set_mac_address	= qede_set_mac_addr,
684 	.ndo_validate_addr	= eth_validate_addr,
685 	.ndo_change_mtu		= qede_change_mtu,
686 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
687 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
688 	.ndo_fix_features	= qede_fix_features,
689 	.ndo_set_features	= qede_set_features,
690 	.ndo_get_stats64	= qede_get_stats64,
691 	.ndo_features_check	= qede_features_check,
692 };
693 
694 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
695 	.ndo_open		= qede_open,
696 	.ndo_stop		= qede_close,
697 	.ndo_start_xmit		= qede_start_xmit,
698 	.ndo_select_queue	= qede_select_queue,
699 	.ndo_set_rx_mode	= qede_set_rx_mode,
700 	.ndo_set_mac_address	= qede_set_mac_addr,
701 	.ndo_validate_addr	= eth_validate_addr,
702 	.ndo_change_mtu		= qede_change_mtu,
703 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
704 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
705 	.ndo_fix_features	= qede_fix_features,
706 	.ndo_set_features	= qede_set_features,
707 	.ndo_get_stats64	= qede_get_stats64,
708 	.ndo_features_check	= qede_features_check,
709 	.ndo_bpf		= qede_xdp,
710 	.ndo_xdp_xmit		= qede_xdp_transmit,
711 };
712 
713 /* -------------------------------------------------------------------------
714  * START OF PROBE / REMOVE
715  * -------------------------------------------------------------------------
716  */
717 
qede_alloc_etherdev(struct qed_dev * cdev,struct pci_dev * pdev,struct qed_dev_eth_info * info,u32 dp_module,u8 dp_level)718 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
719 					    struct pci_dev *pdev,
720 					    struct qed_dev_eth_info *info,
721 					    u32 dp_module, u8 dp_level)
722 {
723 	struct net_device *ndev;
724 	struct qede_dev *edev;
725 
726 	ndev = alloc_etherdev_mqs(sizeof(*edev),
727 				  info->num_queues * info->num_tc,
728 				  info->num_queues);
729 	if (!ndev) {
730 		pr_err("etherdev allocation failed\n");
731 		return NULL;
732 	}
733 
734 	edev = netdev_priv(ndev);
735 	edev->ndev = ndev;
736 	edev->cdev = cdev;
737 	edev->pdev = pdev;
738 	edev->dp_module = dp_module;
739 	edev->dp_level = dp_level;
740 	edev->ops = qed_ops;
741 
742 	if (is_kdump_kernel()) {
743 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
744 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
745 	} else {
746 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
747 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
748 	}
749 
750 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
751 		info->num_queues, info->num_queues);
752 
753 	SET_NETDEV_DEV(ndev, &pdev->dev);
754 
755 	memset(&edev->stats, 0, sizeof(edev->stats));
756 	memcpy(&edev->dev_info, info, sizeof(*info));
757 
758 	/* As ethtool doesn't have the ability to show WoL behavior as
759 	 * 'default', if device supports it declare it's enabled.
760 	 */
761 	if (edev->dev_info.common.wol_support)
762 		edev->wol_enabled = true;
763 
764 	INIT_LIST_HEAD(&edev->vlan_list);
765 
766 	return edev;
767 }
768 
qede_init_ndev(struct qede_dev * edev)769 static void qede_init_ndev(struct qede_dev *edev)
770 {
771 	struct net_device *ndev = edev->ndev;
772 	struct pci_dev *pdev = edev->pdev;
773 	bool udp_tunnel_enable = false;
774 	netdev_features_t hw_features;
775 
776 	pci_set_drvdata(pdev, ndev);
777 
778 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
779 	ndev->base_addr = ndev->mem_start;
780 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
781 	ndev->irq = edev->dev_info.common.pci_irq;
782 
783 	ndev->watchdog_timeo = TX_TIMEOUT;
784 
785 	if (IS_VF(edev)) {
786 		if (edev->dev_info.xdp_supported)
787 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
788 		else
789 			ndev->netdev_ops = &qede_netdev_vf_ops;
790 	} else {
791 		ndev->netdev_ops = &qede_netdev_ops;
792 	}
793 
794 	qede_set_ethtool_ops(ndev);
795 
796 	ndev->priv_flags |= IFF_UNICAST_FLT;
797 
798 	/* user-changeble features */
799 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
800 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
801 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
802 
803 	if (edev->dev_info.common.b_arfs_capable)
804 		hw_features |= NETIF_F_NTUPLE;
805 
806 	if (edev->dev_info.common.vxlan_enable ||
807 	    edev->dev_info.common.geneve_enable)
808 		udp_tunnel_enable = true;
809 
810 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
811 		hw_features |= NETIF_F_TSO_ECN;
812 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
813 					NETIF_F_SG | NETIF_F_TSO |
814 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
815 					NETIF_F_RXCSUM;
816 	}
817 
818 	if (udp_tunnel_enable) {
819 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
820 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
821 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
822 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
823 
824 		qede_set_udp_tunnels(edev);
825 	}
826 
827 	if (edev->dev_info.common.gre_enable) {
828 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
829 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
830 					  NETIF_F_GSO_GRE_CSUM);
831 	}
832 
833 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
834 			      NETIF_F_HIGHDMA;
835 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
836 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
837 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
838 
839 	ndev->hw_features = hw_features;
840 
841 	/* MTU range: 46 - 9600 */
842 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
843 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
844 
845 	/* Set network device HW mac */
846 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
847 
848 	ndev->mtu = edev->dev_info.common.mtu;
849 }
850 
851 /* This function converts from 32b param to two params of level and module
852  * Input 32b decoding:
853  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
854  * 'happy' flow, e.g. memory allocation failed.
855  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
856  * and provide important parameters.
857  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
858  * module. VERBOSE prints are for tracking the specific flow in low level.
859  *
860  * Notice that the level should be that of the lowest required logs.
861  */
qede_config_debug(uint debug,u32 * p_dp_module,u8 * p_dp_level)862 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
863 {
864 	*p_dp_level = QED_LEVEL_NOTICE;
865 	*p_dp_module = 0;
866 
867 	if (debug & QED_LOG_VERBOSE_MASK) {
868 		*p_dp_level = QED_LEVEL_VERBOSE;
869 		*p_dp_module = (debug & 0x3FFFFFFF);
870 	} else if (debug & QED_LOG_INFO_MASK) {
871 		*p_dp_level = QED_LEVEL_INFO;
872 	} else if (debug & QED_LOG_NOTICE_MASK) {
873 		*p_dp_level = QED_LEVEL_NOTICE;
874 	}
875 }
876 
qede_free_fp_array(struct qede_dev * edev)877 static void qede_free_fp_array(struct qede_dev *edev)
878 {
879 	if (edev->fp_array) {
880 		struct qede_fastpath *fp;
881 		int i;
882 
883 		for_each_queue(i) {
884 			fp = &edev->fp_array[i];
885 
886 			kfree(fp->sb_info);
887 			/* Handle mem alloc failure case where qede_init_fp
888 			 * didn't register xdp_rxq_info yet.
889 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
890 			 */
891 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
892 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
893 			kfree(fp->rxq);
894 			kfree(fp->xdp_tx);
895 			kfree(fp->txq);
896 		}
897 		kfree(edev->fp_array);
898 	}
899 
900 	edev->num_queues = 0;
901 	edev->fp_num_tx = 0;
902 	edev->fp_num_rx = 0;
903 }
904 
qede_alloc_fp_array(struct qede_dev * edev)905 static int qede_alloc_fp_array(struct qede_dev *edev)
906 {
907 	u8 fp_combined, fp_rx = edev->fp_num_rx;
908 	struct qede_fastpath *fp;
909 	int i;
910 
911 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
912 				 sizeof(*edev->fp_array), GFP_KERNEL);
913 	if (!edev->fp_array) {
914 		DP_NOTICE(edev, "fp array allocation failed\n");
915 		goto err;
916 	}
917 
918 	if (!edev->coal_entry) {
919 		edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
920 					   sizeof(*edev->coal_entry),
921 					   GFP_KERNEL);
922 		if (!edev->coal_entry) {
923 			DP_ERR(edev, "coalesce entry allocation failed\n");
924 			goto err;
925 		}
926 	}
927 
928 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
929 
930 	/* Allocate the FP elements for Rx queues followed by combined and then
931 	 * the Tx. This ordering should be maintained so that the respective
932 	 * queues (Rx or Tx) will be together in the fastpath array and the
933 	 * associated ids will be sequential.
934 	 */
935 	for_each_queue(i) {
936 		fp = &edev->fp_array[i];
937 
938 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
939 		if (!fp->sb_info) {
940 			DP_NOTICE(edev, "sb info struct allocation failed\n");
941 			goto err;
942 		}
943 
944 		if (fp_rx) {
945 			fp->type = QEDE_FASTPATH_RX;
946 			fp_rx--;
947 		} else if (fp_combined) {
948 			fp->type = QEDE_FASTPATH_COMBINED;
949 			fp_combined--;
950 		} else {
951 			fp->type = QEDE_FASTPATH_TX;
952 		}
953 
954 		if (fp->type & QEDE_FASTPATH_TX) {
955 			fp->txq = kcalloc(edev->dev_info.num_tc,
956 					  sizeof(*fp->txq), GFP_KERNEL);
957 			if (!fp->txq)
958 				goto err;
959 		}
960 
961 		if (fp->type & QEDE_FASTPATH_RX) {
962 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
963 			if (!fp->rxq)
964 				goto err;
965 
966 			if (edev->xdp_prog) {
967 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
968 						     GFP_KERNEL);
969 				if (!fp->xdp_tx)
970 					goto err;
971 				fp->type |= QEDE_FASTPATH_XDP;
972 			}
973 		}
974 	}
975 
976 	return 0;
977 err:
978 	qede_free_fp_array(edev);
979 	return -ENOMEM;
980 }
981 
982 /* The qede lock is used to protect driver state change and driver flows that
983  * are not reentrant.
984  */
__qede_lock(struct qede_dev * edev)985 void __qede_lock(struct qede_dev *edev)
986 {
987 	mutex_lock(&edev->qede_lock);
988 }
989 
__qede_unlock(struct qede_dev * edev)990 void __qede_unlock(struct qede_dev *edev)
991 {
992 	mutex_unlock(&edev->qede_lock);
993 }
994 
995 /* This version of the lock should be used when acquiring the RTNL lock is also
996  * needed in addition to the internal qede lock.
997  */
qede_lock(struct qede_dev * edev)998 static void qede_lock(struct qede_dev *edev)
999 {
1000 	rtnl_lock();
1001 	__qede_lock(edev);
1002 }
1003 
qede_unlock(struct qede_dev * edev)1004 static void qede_unlock(struct qede_dev *edev)
1005 {
1006 	__qede_unlock(edev);
1007 	rtnl_unlock();
1008 }
1009 
qede_periodic_task(struct work_struct * work)1010 static void qede_periodic_task(struct work_struct *work)
1011 {
1012 	struct qede_dev *edev = container_of(work, struct qede_dev,
1013 					     periodic_task.work);
1014 
1015 	qede_fill_by_demand_stats(edev);
1016 	schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1017 }
1018 
qede_init_periodic_task(struct qede_dev * edev)1019 static void qede_init_periodic_task(struct qede_dev *edev)
1020 {
1021 	INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1022 	spin_lock_init(&edev->stats_lock);
1023 	edev->stats_coal_usecs = USEC_PER_SEC;
1024 	edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1025 }
1026 
qede_sp_task(struct work_struct * work)1027 static void qede_sp_task(struct work_struct *work)
1028 {
1029 	struct qede_dev *edev = container_of(work, struct qede_dev,
1030 					     sp_task.work);
1031 
1032 	/* Disable execution of this deferred work once
1033 	 * qede removal is in progress, this stop any future
1034 	 * scheduling of sp_task.
1035 	 */
1036 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1037 		return;
1038 
1039 	/* The locking scheme depends on the specific flag:
1040 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1041 	 * ensure that ongoing flows are ended and new ones are not started.
1042 	 * In other cases - only the internal qede lock should be acquired.
1043 	 */
1044 
1045 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1046 		cancel_delayed_work_sync(&edev->periodic_task);
1047 #ifdef CONFIG_QED_SRIOV
1048 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1049 		 * The recovery of the active VFs is currently not supported.
1050 		 */
1051 		if (pci_num_vf(edev->pdev))
1052 			qede_sriov_configure(edev->pdev, 0);
1053 #endif
1054 		qede_lock(edev);
1055 		qede_recovery_handler(edev);
1056 		qede_unlock(edev);
1057 	}
1058 
1059 	__qede_lock(edev);
1060 
1061 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1062 		if (edev->state == QEDE_STATE_OPEN)
1063 			qede_config_rx_mode(edev->ndev);
1064 
1065 #ifdef CONFIG_RFS_ACCEL
1066 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1067 		if (edev->state == QEDE_STATE_OPEN)
1068 			qede_process_arfs_filters(edev, false);
1069 	}
1070 #endif
1071 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1072 		qede_generic_hw_err_handler(edev);
1073 	__qede_unlock(edev);
1074 
1075 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1076 #ifdef CONFIG_QED_SRIOV
1077 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1078 		 * The recovery of the active VFs is currently not supported.
1079 		 */
1080 		if (pci_num_vf(edev->pdev))
1081 			qede_sriov_configure(edev->pdev, 0);
1082 #endif
1083 		edev->ops->common->recovery_process(edev->cdev);
1084 	}
1085 }
1086 
qede_update_pf_params(struct qed_dev * cdev)1087 static void qede_update_pf_params(struct qed_dev *cdev)
1088 {
1089 	struct qed_pf_params pf_params;
1090 	u16 num_cons;
1091 
1092 	/* 64 rx + 64 tx + 64 XDP */
1093 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1094 
1095 	/* 1 rx + 1 xdp + max tx cos */
1096 	num_cons = QED_MIN_L2_CONS;
1097 
1098 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1099 
1100 	/* Same for VFs - make sure they'll have sufficient connections
1101 	 * to support XDP Tx queues.
1102 	 */
1103 	pf_params.eth_pf_params.num_vf_cons = 48;
1104 
1105 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1106 	qed_ops->common->update_pf_params(cdev, &pf_params);
1107 }
1108 
1109 #define QEDE_FW_VER_STR_SIZE	80
1110 
qede_log_probe(struct qede_dev * edev)1111 static void qede_log_probe(struct qede_dev *edev)
1112 {
1113 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1114 	u8 buf[QEDE_FW_VER_STR_SIZE];
1115 	size_t left_size;
1116 
1117 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1118 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1119 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1120 		 p_dev_info->fw_eng,
1121 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1122 		 QED_MFW_VERSION_3_OFFSET,
1123 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1124 		 QED_MFW_VERSION_2_OFFSET,
1125 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1126 		 QED_MFW_VERSION_1_OFFSET,
1127 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1128 		 QED_MFW_VERSION_0_OFFSET);
1129 
1130 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1131 	if (p_dev_info->mbi_version && left_size)
1132 		snprintf(buf + strlen(buf), left_size,
1133 			 " [MBI %d.%d.%d]",
1134 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1135 			 QED_MBI_VERSION_2_OFFSET,
1136 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1137 			 QED_MBI_VERSION_1_OFFSET,
1138 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1139 			 QED_MBI_VERSION_0_OFFSET);
1140 
1141 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1142 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1143 		buf, edev->ndev->name);
1144 }
1145 
1146 enum qede_probe_mode {
1147 	QEDE_PROBE_NORMAL,
1148 	QEDE_PROBE_RECOVERY,
1149 };
1150 
__qede_probe(struct pci_dev * pdev,u32 dp_module,u8 dp_level,bool is_vf,enum qede_probe_mode mode)1151 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1152 			bool is_vf, enum qede_probe_mode mode)
1153 {
1154 	struct qed_probe_params probe_params;
1155 	struct qed_slowpath_params sp_params;
1156 	struct qed_dev_eth_info dev_info;
1157 	struct qede_dev *edev;
1158 	struct qed_dev *cdev;
1159 	int rc;
1160 
1161 	if (unlikely(dp_level & QED_LEVEL_INFO))
1162 		pr_notice("Starting qede probe\n");
1163 
1164 	memset(&probe_params, 0, sizeof(probe_params));
1165 	probe_params.protocol = QED_PROTOCOL_ETH;
1166 	probe_params.dp_module = dp_module;
1167 	probe_params.dp_level = dp_level;
1168 	probe_params.is_vf = is_vf;
1169 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1170 	cdev = qed_ops->common->probe(pdev, &probe_params);
1171 	if (!cdev) {
1172 		rc = -ENODEV;
1173 		goto err0;
1174 	}
1175 
1176 	qede_update_pf_params(cdev);
1177 
1178 	/* Start the Slowpath-process */
1179 	memset(&sp_params, 0, sizeof(sp_params));
1180 	sp_params.int_mode = QED_INT_MODE_MSIX;
1181 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1182 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1183 	if (rc) {
1184 		pr_notice("Cannot start slowpath\n");
1185 		goto err1;
1186 	}
1187 
1188 	/* Learn information crucial for qede to progress */
1189 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1190 	if (rc)
1191 		goto err2;
1192 
1193 	if (mode != QEDE_PROBE_RECOVERY) {
1194 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1195 					   dp_level);
1196 		if (!edev) {
1197 			rc = -ENOMEM;
1198 			goto err2;
1199 		}
1200 
1201 		edev->devlink = qed_ops->common->devlink_register(cdev);
1202 		if (IS_ERR(edev->devlink)) {
1203 			DP_NOTICE(edev, "Cannot register devlink\n");
1204 			rc = PTR_ERR(edev->devlink);
1205 			edev->devlink = NULL;
1206 			goto err3;
1207 		}
1208 	} else {
1209 		struct net_device *ndev = pci_get_drvdata(pdev);
1210 		struct qed_devlink *qdl;
1211 
1212 		edev = netdev_priv(ndev);
1213 		qdl = devlink_priv(edev->devlink);
1214 		qdl->cdev = cdev;
1215 		edev->cdev = cdev;
1216 		memset(&edev->stats, 0, sizeof(edev->stats));
1217 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1218 	}
1219 
1220 	if (is_vf)
1221 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1222 
1223 	qede_init_ndev(edev);
1224 
1225 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1226 	if (rc)
1227 		goto err3;
1228 
1229 	if (mode != QEDE_PROBE_RECOVERY) {
1230 		/* Prepare the lock prior to the registration of the netdev,
1231 		 * as once it's registered we might reach flows requiring it
1232 		 * [it's even possible to reach a flow needing it directly
1233 		 * from there, although it's unlikely].
1234 		 */
1235 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1236 		mutex_init(&edev->qede_lock);
1237 		qede_init_periodic_task(edev);
1238 
1239 		rc = register_netdev(edev->ndev);
1240 		if (rc) {
1241 			DP_NOTICE(edev, "Cannot register net-device\n");
1242 			goto err4;
1243 		}
1244 	}
1245 
1246 	edev->ops->common->set_name(cdev, edev->ndev->name);
1247 
1248 	/* PTP not supported on VFs */
1249 	if (!is_vf)
1250 		qede_ptp_enable(edev);
1251 
1252 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1253 
1254 #ifdef CONFIG_DCB
1255 	if (!IS_VF(edev))
1256 		qede_set_dcbnl_ops(edev->ndev);
1257 #endif
1258 
1259 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1260 
1261 	qede_log_probe(edev);
1262 
1263 	/* retain user config (for example - after recovery) */
1264 	if (edev->stats_coal_usecs)
1265 		schedule_delayed_work(&edev->periodic_task, 0);
1266 
1267 	return 0;
1268 
1269 err4:
1270 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1271 err3:
1272 	if (mode != QEDE_PROBE_RECOVERY)
1273 		free_netdev(edev->ndev);
1274 	else
1275 		edev->cdev = NULL;
1276 err2:
1277 	qed_ops->common->slowpath_stop(cdev);
1278 err1:
1279 	qed_ops->common->remove(cdev);
1280 err0:
1281 	return rc;
1282 }
1283 
qede_probe(struct pci_dev * pdev,const struct pci_device_id * id)1284 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1285 {
1286 	bool is_vf = false;
1287 	u32 dp_module = 0;
1288 	u8 dp_level = 0;
1289 
1290 	switch ((enum qede_pci_private)id->driver_data) {
1291 	case QEDE_PRIVATE_VF:
1292 		if (debug & QED_LOG_VERBOSE_MASK)
1293 			dev_err(&pdev->dev, "Probing a VF\n");
1294 		is_vf = true;
1295 		break;
1296 	default:
1297 		if (debug & QED_LOG_VERBOSE_MASK)
1298 			dev_err(&pdev->dev, "Probing a PF\n");
1299 	}
1300 
1301 	qede_config_debug(debug, &dp_module, &dp_level);
1302 
1303 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1304 			    QEDE_PROBE_NORMAL);
1305 }
1306 
1307 enum qede_remove_mode {
1308 	QEDE_REMOVE_NORMAL,
1309 	QEDE_REMOVE_RECOVERY,
1310 };
1311 
__qede_remove(struct pci_dev * pdev,enum qede_remove_mode mode)1312 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1313 {
1314 	struct net_device *ndev = pci_get_drvdata(pdev);
1315 	struct qede_dev *edev;
1316 	struct qed_dev *cdev;
1317 
1318 	if (!ndev) {
1319 		dev_info(&pdev->dev, "Device has already been removed\n");
1320 		return;
1321 	}
1322 
1323 	edev = netdev_priv(ndev);
1324 	cdev = edev->cdev;
1325 
1326 	DP_INFO(edev, "Starting qede_remove\n");
1327 
1328 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1329 
1330 	if (mode != QEDE_REMOVE_RECOVERY) {
1331 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1332 		unregister_netdev(ndev);
1333 
1334 		cancel_delayed_work_sync(&edev->sp_task);
1335 		cancel_delayed_work_sync(&edev->periodic_task);
1336 
1337 		edev->ops->common->set_power_state(cdev, PCI_D0);
1338 
1339 		pci_set_drvdata(pdev, NULL);
1340 	}
1341 
1342 	qede_ptp_disable(edev);
1343 
1344 	/* Use global ops since we've freed edev */
1345 	qed_ops->common->slowpath_stop(cdev);
1346 	if (system_state == SYSTEM_POWER_OFF)
1347 		return;
1348 
1349 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1350 		qed_ops->common->devlink_unregister(edev->devlink);
1351 		edev->devlink = NULL;
1352 	}
1353 	qed_ops->common->remove(cdev);
1354 	edev->cdev = NULL;
1355 
1356 	/* Since this can happen out-of-sync with other flows,
1357 	 * don't release the netdevice until after slowpath stop
1358 	 * has been called to guarantee various other contexts
1359 	 * [e.g., QED register callbacks] won't break anything when
1360 	 * accessing the netdevice.
1361 	 */
1362 	if (mode != QEDE_REMOVE_RECOVERY) {
1363 		kfree(edev->coal_entry);
1364 		free_netdev(ndev);
1365 	}
1366 
1367 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1368 }
1369 
qede_remove(struct pci_dev * pdev)1370 static void qede_remove(struct pci_dev *pdev)
1371 {
1372 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1373 }
1374 
qede_shutdown(struct pci_dev * pdev)1375 static void qede_shutdown(struct pci_dev *pdev)
1376 {
1377 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1378 }
1379 
1380 /* -------------------------------------------------------------------------
1381  * START OF LOAD / UNLOAD
1382  * -------------------------------------------------------------------------
1383  */
1384 
qede_set_num_queues(struct qede_dev * edev)1385 static int qede_set_num_queues(struct qede_dev *edev)
1386 {
1387 	int rc;
1388 	u16 rss_num;
1389 
1390 	/* Setup queues according to possible resources*/
1391 	if (edev->req_queues)
1392 		rss_num = edev->req_queues;
1393 	else
1394 		rss_num = netif_get_num_default_rss_queues() *
1395 			  edev->dev_info.common.num_hwfns;
1396 
1397 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1398 
1399 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1400 	if (rc > 0) {
1401 		/* Managed to request interrupts for our queues */
1402 		edev->num_queues = rc;
1403 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1404 			QEDE_QUEUE_CNT(edev), rss_num);
1405 		rc = 0;
1406 	}
1407 
1408 	edev->fp_num_tx = edev->req_num_tx;
1409 	edev->fp_num_rx = edev->req_num_rx;
1410 
1411 	return rc;
1412 }
1413 
qede_free_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1414 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1415 			     u16 sb_id)
1416 {
1417 	if (sb_info->sb_virt) {
1418 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1419 					      QED_SB_TYPE_L2_QUEUE);
1420 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1421 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1422 		memset(sb_info, 0, sizeof(*sb_info));
1423 	}
1424 }
1425 
1426 /* This function allocates fast-path status block memory */
qede_alloc_mem_sb(struct qede_dev * edev,struct qed_sb_info * sb_info,u16 sb_id)1427 static int qede_alloc_mem_sb(struct qede_dev *edev,
1428 			     struct qed_sb_info *sb_info, u16 sb_id)
1429 {
1430 	struct status_block_e4 *sb_virt;
1431 	dma_addr_t sb_phys;
1432 	int rc;
1433 
1434 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1435 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1436 	if (!sb_virt) {
1437 		DP_ERR(edev, "Status block allocation failed\n");
1438 		return -ENOMEM;
1439 	}
1440 
1441 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1442 					sb_virt, sb_phys, sb_id,
1443 					QED_SB_TYPE_L2_QUEUE);
1444 	if (rc) {
1445 		DP_ERR(edev, "Status block initialization failed\n");
1446 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1447 				  sb_virt, sb_phys);
1448 		return rc;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
qede_free_rx_buffers(struct qede_dev * edev,struct qede_rx_queue * rxq)1454 static void qede_free_rx_buffers(struct qede_dev *edev,
1455 				 struct qede_rx_queue *rxq)
1456 {
1457 	u16 i;
1458 
1459 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1460 		struct sw_rx_data *rx_buf;
1461 		struct page *data;
1462 
1463 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1464 		data = rx_buf->data;
1465 
1466 		dma_unmap_page(&edev->pdev->dev,
1467 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1468 
1469 		rx_buf->data = NULL;
1470 		__free_page(data);
1471 	}
1472 }
1473 
qede_free_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1474 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1475 {
1476 	/* Free rx buffers */
1477 	qede_free_rx_buffers(edev, rxq);
1478 
1479 	/* Free the parallel SW ring */
1480 	kfree(rxq->sw_rx_ring);
1481 
1482 	/* Free the real RQ ring used by FW */
1483 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1484 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1485 }
1486 
qede_set_tpa_param(struct qede_rx_queue * rxq)1487 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1488 {
1489 	int i;
1490 
1491 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1492 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1493 
1494 		tpa_info->state = QEDE_AGG_STATE_NONE;
1495 	}
1496 }
1497 
1498 /* This function allocates all memory needed per Rx queue */
qede_alloc_mem_rxq(struct qede_dev * edev,struct qede_rx_queue * rxq)1499 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1500 {
1501 	struct qed_chain_init_params params = {
1502 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1503 		.num_elems	= RX_RING_SIZE,
1504 	};
1505 	struct qed_dev *cdev = edev->cdev;
1506 	int i, rc, size;
1507 
1508 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1509 
1510 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1511 
1512 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1513 	size = rxq->rx_headroom +
1514 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1515 
1516 	/* Make sure that the headroom and  payload fit in a single page */
1517 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1518 		rxq->rx_buf_size = PAGE_SIZE - size;
1519 
1520 	/* Segment size to split a page in multiple equal parts,
1521 	 * unless XDP is used in which case we'd use the entire page.
1522 	 */
1523 	if (!edev->xdp_prog) {
1524 		size = size + rxq->rx_buf_size;
1525 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1526 	} else {
1527 		rxq->rx_buf_seg_size = PAGE_SIZE;
1528 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1529 	}
1530 
1531 	/* Allocate the parallel driver ring for Rx buffers */
1532 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1533 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1534 	if (!rxq->sw_rx_ring) {
1535 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1536 		rc = -ENOMEM;
1537 		goto err;
1538 	}
1539 
1540 	/* Allocate FW Rx ring  */
1541 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1542 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1543 	params.elem_size = sizeof(struct eth_rx_bd);
1544 
1545 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1546 	if (rc)
1547 		goto err;
1548 
1549 	/* Allocate FW completion ring */
1550 	params.mode = QED_CHAIN_MODE_PBL;
1551 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1552 	params.elem_size = sizeof(union eth_rx_cqe);
1553 
1554 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1555 	if (rc)
1556 		goto err;
1557 
1558 	/* Allocate buffers for the Rx ring */
1559 	rxq->filled_buffers = 0;
1560 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1561 		rc = qede_alloc_rx_buffer(rxq, false);
1562 		if (rc) {
1563 			DP_ERR(edev,
1564 			       "Rx buffers allocation failed at index %d\n", i);
1565 			goto err;
1566 		}
1567 	}
1568 
1569 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1570 	if (!edev->gro_disable)
1571 		qede_set_tpa_param(rxq);
1572 err:
1573 	return rc;
1574 }
1575 
qede_free_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1576 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1577 {
1578 	/* Free the parallel SW ring */
1579 	if (txq->is_xdp)
1580 		kfree(txq->sw_tx_ring.xdp);
1581 	else
1582 		kfree(txq->sw_tx_ring.skbs);
1583 
1584 	/* Free the real RQ ring used by FW */
1585 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1586 }
1587 
1588 /* This function allocates all memory needed per Tx queue */
qede_alloc_mem_txq(struct qede_dev * edev,struct qede_tx_queue * txq)1589 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1590 {
1591 	struct qed_chain_init_params params = {
1592 		.mode		= QED_CHAIN_MODE_PBL,
1593 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1594 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1595 		.num_elems	= edev->q_num_tx_buffers,
1596 		.elem_size	= sizeof(union eth_tx_bd_types),
1597 	};
1598 	int size, rc;
1599 
1600 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1601 
1602 	/* Allocate the parallel driver ring for Tx buffers */
1603 	if (txq->is_xdp) {
1604 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1605 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1606 		if (!txq->sw_tx_ring.xdp)
1607 			goto err;
1608 	} else {
1609 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1610 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1611 		if (!txq->sw_tx_ring.skbs)
1612 			goto err;
1613 	}
1614 
1615 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1616 	if (rc)
1617 		goto err;
1618 
1619 	return 0;
1620 
1621 err:
1622 	qede_free_mem_txq(edev, txq);
1623 	return -ENOMEM;
1624 }
1625 
1626 /* This function frees all memory of a single fp */
qede_free_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1627 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1628 {
1629 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1630 
1631 	if (fp->type & QEDE_FASTPATH_RX)
1632 		qede_free_mem_rxq(edev, fp->rxq);
1633 
1634 	if (fp->type & QEDE_FASTPATH_XDP)
1635 		qede_free_mem_txq(edev, fp->xdp_tx);
1636 
1637 	if (fp->type & QEDE_FASTPATH_TX) {
1638 		int cos;
1639 
1640 		for_each_cos_in_txq(edev, cos)
1641 			qede_free_mem_txq(edev, &fp->txq[cos]);
1642 	}
1643 }
1644 
1645 /* This function allocates all memory needed for a single fp (i.e. an entity
1646  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1647  */
qede_alloc_mem_fp(struct qede_dev * edev,struct qede_fastpath * fp)1648 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1649 {
1650 	int rc = 0;
1651 
1652 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1653 	if (rc)
1654 		goto out;
1655 
1656 	if (fp->type & QEDE_FASTPATH_RX) {
1657 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1658 		if (rc)
1659 			goto out;
1660 	}
1661 
1662 	if (fp->type & QEDE_FASTPATH_XDP) {
1663 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1664 		if (rc)
1665 			goto out;
1666 	}
1667 
1668 	if (fp->type & QEDE_FASTPATH_TX) {
1669 		int cos;
1670 
1671 		for_each_cos_in_txq(edev, cos) {
1672 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1673 			if (rc)
1674 				goto out;
1675 		}
1676 	}
1677 
1678 out:
1679 	return rc;
1680 }
1681 
qede_free_mem_load(struct qede_dev * edev)1682 static void qede_free_mem_load(struct qede_dev *edev)
1683 {
1684 	int i;
1685 
1686 	for_each_queue(i) {
1687 		struct qede_fastpath *fp = &edev->fp_array[i];
1688 
1689 		qede_free_mem_fp(edev, fp);
1690 	}
1691 }
1692 
1693 /* This function allocates all qede memory at NIC load. */
qede_alloc_mem_load(struct qede_dev * edev)1694 static int qede_alloc_mem_load(struct qede_dev *edev)
1695 {
1696 	int rc = 0, queue_id;
1697 
1698 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1699 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1700 
1701 		rc = qede_alloc_mem_fp(edev, fp);
1702 		if (rc) {
1703 			DP_ERR(edev,
1704 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1705 			       queue_id);
1706 			qede_free_mem_load(edev);
1707 			return rc;
1708 		}
1709 	}
1710 
1711 	return 0;
1712 }
1713 
qede_empty_tx_queue(struct qede_dev * edev,struct qede_tx_queue * txq)1714 static void qede_empty_tx_queue(struct qede_dev *edev,
1715 				struct qede_tx_queue *txq)
1716 {
1717 	unsigned int pkts_compl = 0, bytes_compl = 0;
1718 	struct netdev_queue *netdev_txq;
1719 	int rc, len = 0;
1720 
1721 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1722 
1723 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1724 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1725 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1726 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1727 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1728 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1729 
1730 		rc = qede_free_tx_pkt(edev, txq, &len);
1731 		if (rc) {
1732 			DP_NOTICE(edev,
1733 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1734 				  txq->index,
1735 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1736 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1737 			break;
1738 		}
1739 
1740 		bytes_compl += len;
1741 		pkts_compl++;
1742 		txq->sw_tx_cons++;
1743 	}
1744 
1745 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1746 }
1747 
qede_empty_tx_queues(struct qede_dev * edev)1748 static void qede_empty_tx_queues(struct qede_dev *edev)
1749 {
1750 	int i;
1751 
1752 	for_each_queue(i)
1753 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1754 			int cos;
1755 
1756 			for_each_cos_in_txq(edev, cos) {
1757 				struct qede_fastpath *fp;
1758 
1759 				fp = &edev->fp_array[i];
1760 				qede_empty_tx_queue(edev,
1761 						    &fp->txq[cos]);
1762 			}
1763 		}
1764 }
1765 
1766 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
qede_init_fp(struct qede_dev * edev)1767 static void qede_init_fp(struct qede_dev *edev)
1768 {
1769 	int queue_id, rxq_index = 0, txq_index = 0;
1770 	struct qede_fastpath *fp;
1771 	bool init_xdp = false;
1772 
1773 	for_each_queue(queue_id) {
1774 		fp = &edev->fp_array[queue_id];
1775 
1776 		fp->edev = edev;
1777 		fp->id = queue_id;
1778 
1779 		if (fp->type & QEDE_FASTPATH_XDP) {
1780 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1781 								rxq_index);
1782 			fp->xdp_tx->is_xdp = 1;
1783 
1784 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1785 			init_xdp = true;
1786 		}
1787 
1788 		if (fp->type & QEDE_FASTPATH_RX) {
1789 			fp->rxq->rxq_id = rxq_index++;
1790 
1791 			/* Determine how to map buffers for this queue */
1792 			if (fp->type & QEDE_FASTPATH_XDP)
1793 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1794 			else
1795 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1796 			fp->rxq->dev = &edev->pdev->dev;
1797 
1798 			/* Driver have no error path from here */
1799 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1800 						 fp->rxq->rxq_id, 0) < 0);
1801 
1802 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1803 						       MEM_TYPE_PAGE_ORDER0,
1804 						       NULL)) {
1805 				DP_NOTICE(edev,
1806 					  "Failed to register XDP memory model\n");
1807 			}
1808 		}
1809 
1810 		if (fp->type & QEDE_FASTPATH_TX) {
1811 			int cos;
1812 
1813 			for_each_cos_in_txq(edev, cos) {
1814 				struct qede_tx_queue *txq = &fp->txq[cos];
1815 				u16 ndev_tx_id;
1816 
1817 				txq->cos = cos;
1818 				txq->index = txq_index;
1819 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1820 				txq->ndev_txq_id = ndev_tx_id;
1821 
1822 				if (edev->dev_info.is_legacy)
1823 					txq->is_legacy = true;
1824 				txq->dev = &edev->pdev->dev;
1825 			}
1826 
1827 			txq_index++;
1828 		}
1829 
1830 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1831 			 edev->ndev->name, queue_id);
1832 	}
1833 
1834 	if (init_xdp) {
1835 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1836 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1837 	}
1838 }
1839 
qede_set_real_num_queues(struct qede_dev * edev)1840 static int qede_set_real_num_queues(struct qede_dev *edev)
1841 {
1842 	int rc = 0;
1843 
1844 	rc = netif_set_real_num_tx_queues(edev->ndev,
1845 					  QEDE_TSS_COUNT(edev) *
1846 					  edev->dev_info.num_tc);
1847 	if (rc) {
1848 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1849 		return rc;
1850 	}
1851 
1852 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1853 	if (rc) {
1854 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1855 		return rc;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
qede_napi_disable_remove(struct qede_dev * edev)1861 static void qede_napi_disable_remove(struct qede_dev *edev)
1862 {
1863 	int i;
1864 
1865 	for_each_queue(i) {
1866 		napi_disable(&edev->fp_array[i].napi);
1867 
1868 		netif_napi_del(&edev->fp_array[i].napi);
1869 	}
1870 }
1871 
qede_napi_add_enable(struct qede_dev * edev)1872 static void qede_napi_add_enable(struct qede_dev *edev)
1873 {
1874 	int i;
1875 
1876 	/* Add NAPI objects */
1877 	for_each_queue(i) {
1878 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1879 			       qede_poll, NAPI_POLL_WEIGHT);
1880 		napi_enable(&edev->fp_array[i].napi);
1881 	}
1882 }
1883 
qede_sync_free_irqs(struct qede_dev * edev)1884 static void qede_sync_free_irqs(struct qede_dev *edev)
1885 {
1886 	int i;
1887 
1888 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1889 		if (edev->int_info.msix_cnt) {
1890 			synchronize_irq(edev->int_info.msix[i].vector);
1891 			free_irq(edev->int_info.msix[i].vector,
1892 				 &edev->fp_array[i]);
1893 		} else {
1894 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1895 		}
1896 	}
1897 
1898 	edev->int_info.used_cnt = 0;
1899 	edev->int_info.msix_cnt = 0;
1900 }
1901 
qede_req_msix_irqs(struct qede_dev * edev)1902 static int qede_req_msix_irqs(struct qede_dev *edev)
1903 {
1904 	int i, rc;
1905 
1906 	/* Sanitize number of interrupts == number of prepared RSS queues */
1907 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1908 		DP_ERR(edev,
1909 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1910 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1911 		return -EINVAL;
1912 	}
1913 
1914 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1915 #ifdef CONFIG_RFS_ACCEL
1916 		struct qede_fastpath *fp = &edev->fp_array[i];
1917 
1918 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1919 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1920 					      edev->int_info.msix[i].vector);
1921 			if (rc) {
1922 				DP_ERR(edev, "Failed to add CPU rmap\n");
1923 				qede_free_arfs(edev);
1924 			}
1925 		}
1926 #endif
1927 		rc = request_irq(edev->int_info.msix[i].vector,
1928 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1929 				 &edev->fp_array[i]);
1930 		if (rc) {
1931 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1932 #ifdef CONFIG_RFS_ACCEL
1933 			if (edev->ndev->rx_cpu_rmap)
1934 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1935 
1936 			edev->ndev->rx_cpu_rmap = NULL;
1937 #endif
1938 			qede_sync_free_irqs(edev);
1939 			return rc;
1940 		}
1941 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1942 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1943 			   edev->fp_array[i].name, i,
1944 			   &edev->fp_array[i]);
1945 		edev->int_info.used_cnt++;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
qede_simd_fp_handler(void * cookie)1951 static void qede_simd_fp_handler(void *cookie)
1952 {
1953 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1954 
1955 	napi_schedule_irqoff(&fp->napi);
1956 }
1957 
qede_setup_irqs(struct qede_dev * edev)1958 static int qede_setup_irqs(struct qede_dev *edev)
1959 {
1960 	int i, rc = 0;
1961 
1962 	/* Learn Interrupt configuration */
1963 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1964 	if (rc)
1965 		return rc;
1966 
1967 	if (edev->int_info.msix_cnt) {
1968 		rc = qede_req_msix_irqs(edev);
1969 		if (rc)
1970 			return rc;
1971 		edev->ndev->irq = edev->int_info.msix[0].vector;
1972 	} else {
1973 		const struct qed_common_ops *ops;
1974 
1975 		/* qed should learn receive the RSS ids and callbacks */
1976 		ops = edev->ops->common;
1977 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1978 			ops->simd_handler_config(edev->cdev,
1979 						 &edev->fp_array[i], i,
1980 						 qede_simd_fp_handler);
1981 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1982 	}
1983 	return 0;
1984 }
1985 
qede_drain_txq(struct qede_dev * edev,struct qede_tx_queue * txq,bool allow_drain)1986 static int qede_drain_txq(struct qede_dev *edev,
1987 			  struct qede_tx_queue *txq, bool allow_drain)
1988 {
1989 	int rc, cnt = 1000;
1990 
1991 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1992 		if (!cnt) {
1993 			if (allow_drain) {
1994 				DP_NOTICE(edev,
1995 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1996 					  txq->index);
1997 				rc = edev->ops->common->drain(edev->cdev);
1998 				if (rc)
1999 					return rc;
2000 				return qede_drain_txq(edev, txq, false);
2001 			}
2002 			DP_NOTICE(edev,
2003 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2004 				  txq->index, txq->sw_tx_prod,
2005 				  txq->sw_tx_cons);
2006 			return -ENODEV;
2007 		}
2008 		cnt--;
2009 		usleep_range(1000, 2000);
2010 		barrier();
2011 	}
2012 
2013 	/* FW finished processing, wait for HW to transmit all tx packets */
2014 	usleep_range(1000, 2000);
2015 
2016 	return 0;
2017 }
2018 
qede_stop_txq(struct qede_dev * edev,struct qede_tx_queue * txq,int rss_id)2019 static int qede_stop_txq(struct qede_dev *edev,
2020 			 struct qede_tx_queue *txq, int rss_id)
2021 {
2022 	/* delete doorbell from doorbell recovery mechanism */
2023 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2024 					   &txq->tx_db);
2025 
2026 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2027 }
2028 
qede_stop_queues(struct qede_dev * edev)2029 static int qede_stop_queues(struct qede_dev *edev)
2030 {
2031 	struct qed_update_vport_params *vport_update_params;
2032 	struct qed_dev *cdev = edev->cdev;
2033 	struct qede_fastpath *fp;
2034 	int rc, i;
2035 
2036 	/* Disable the vport */
2037 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2038 	if (!vport_update_params)
2039 		return -ENOMEM;
2040 
2041 	vport_update_params->vport_id = 0;
2042 	vport_update_params->update_vport_active_flg = 1;
2043 	vport_update_params->vport_active_flg = 0;
2044 	vport_update_params->update_rss_flg = 0;
2045 
2046 	rc = edev->ops->vport_update(cdev, vport_update_params);
2047 	vfree(vport_update_params);
2048 
2049 	if (rc) {
2050 		DP_ERR(edev, "Failed to update vport\n");
2051 		return rc;
2052 	}
2053 
2054 	/* Flush Tx queues. If needed, request drain from MCP */
2055 	for_each_queue(i) {
2056 		fp = &edev->fp_array[i];
2057 
2058 		if (fp->type & QEDE_FASTPATH_TX) {
2059 			int cos;
2060 
2061 			for_each_cos_in_txq(edev, cos) {
2062 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2063 				if (rc)
2064 					return rc;
2065 			}
2066 		}
2067 
2068 		if (fp->type & QEDE_FASTPATH_XDP) {
2069 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2070 			if (rc)
2071 				return rc;
2072 		}
2073 	}
2074 
2075 	/* Stop all Queues in reverse order */
2076 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2077 		fp = &edev->fp_array[i];
2078 
2079 		/* Stop the Tx Queue(s) */
2080 		if (fp->type & QEDE_FASTPATH_TX) {
2081 			int cos;
2082 
2083 			for_each_cos_in_txq(edev, cos) {
2084 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2085 				if (rc)
2086 					return rc;
2087 			}
2088 		}
2089 
2090 		/* Stop the Rx Queue */
2091 		if (fp->type & QEDE_FASTPATH_RX) {
2092 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2093 			if (rc) {
2094 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2095 				return rc;
2096 			}
2097 		}
2098 
2099 		/* Stop the XDP forwarding queue */
2100 		if (fp->type & QEDE_FASTPATH_XDP) {
2101 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2102 			if (rc)
2103 				return rc;
2104 
2105 			bpf_prog_put(fp->rxq->xdp_prog);
2106 		}
2107 	}
2108 
2109 	/* Stop the vport */
2110 	rc = edev->ops->vport_stop(cdev, 0);
2111 	if (rc)
2112 		DP_ERR(edev, "Failed to stop VPORT\n");
2113 
2114 	return rc;
2115 }
2116 
qede_start_txq(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_tx_queue * txq,u8 rss_id,u16 sb_idx)2117 static int qede_start_txq(struct qede_dev *edev,
2118 			  struct qede_fastpath *fp,
2119 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2120 {
2121 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2122 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2123 	struct qed_queue_start_common_params params;
2124 	struct qed_txq_start_ret_params ret_params;
2125 	int rc;
2126 
2127 	memset(&params, 0, sizeof(params));
2128 	memset(&ret_params, 0, sizeof(ret_params));
2129 
2130 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2131 	 * We don't really care about its coalescing.
2132 	 */
2133 	if (txq->is_xdp)
2134 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2135 	else
2136 		params.queue_id = txq->index;
2137 
2138 	params.p_sb = fp->sb_info;
2139 	params.sb_idx = sb_idx;
2140 	params.tc = txq->cos;
2141 
2142 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2143 				   page_cnt, &ret_params);
2144 	if (rc) {
2145 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2146 		return rc;
2147 	}
2148 
2149 	txq->doorbell_addr = ret_params.p_doorbell;
2150 	txq->handle = ret_params.p_handle;
2151 
2152 	/* Determine the FW consumer address associated */
2153 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2154 
2155 	/* Prepare the doorbell parameters */
2156 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2157 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2158 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2159 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2160 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2161 
2162 	/* register doorbell with doorbell recovery mechanism */
2163 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2164 						&txq->tx_db, DB_REC_WIDTH_32B,
2165 						DB_REC_KERNEL);
2166 
2167 	return rc;
2168 }
2169 
qede_start_queues(struct qede_dev * edev,bool clear_stats)2170 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2171 {
2172 	int vlan_removal_en = 1;
2173 	struct qed_dev *cdev = edev->cdev;
2174 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2175 	struct qed_update_vport_params *vport_update_params;
2176 	struct qed_queue_start_common_params q_params;
2177 	struct qed_start_vport_params start = {0};
2178 	int rc, i;
2179 
2180 	if (!edev->num_queues) {
2181 		DP_ERR(edev,
2182 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2183 		return -EINVAL;
2184 	}
2185 
2186 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2187 	if (!vport_update_params)
2188 		return -ENOMEM;
2189 
2190 	start.handle_ptp_pkts = !!(edev->ptp);
2191 	start.gro_enable = !edev->gro_disable;
2192 	start.mtu = edev->ndev->mtu;
2193 	start.vport_id = 0;
2194 	start.drop_ttl0 = true;
2195 	start.remove_inner_vlan = vlan_removal_en;
2196 	start.clear_stats = clear_stats;
2197 
2198 	rc = edev->ops->vport_start(cdev, &start);
2199 
2200 	if (rc) {
2201 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2202 		goto out;
2203 	}
2204 
2205 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2206 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2207 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2208 
2209 	for_each_queue(i) {
2210 		struct qede_fastpath *fp = &edev->fp_array[i];
2211 		dma_addr_t p_phys_table;
2212 		u32 page_cnt;
2213 
2214 		if (fp->type & QEDE_FASTPATH_RX) {
2215 			struct qed_rxq_start_ret_params ret_params;
2216 			struct qede_rx_queue *rxq = fp->rxq;
2217 			__le16 *val;
2218 
2219 			memset(&ret_params, 0, sizeof(ret_params));
2220 			memset(&q_params, 0, sizeof(q_params));
2221 			q_params.queue_id = rxq->rxq_id;
2222 			q_params.vport_id = 0;
2223 			q_params.p_sb = fp->sb_info;
2224 			q_params.sb_idx = RX_PI;
2225 
2226 			p_phys_table =
2227 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2228 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2229 
2230 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2231 						   rxq->rx_buf_size,
2232 						   rxq->rx_bd_ring.p_phys_addr,
2233 						   p_phys_table,
2234 						   page_cnt, &ret_params);
2235 			if (rc) {
2236 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2237 				       rc);
2238 				goto out;
2239 			}
2240 
2241 			/* Use the return parameters */
2242 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2243 			rxq->handle = ret_params.p_handle;
2244 
2245 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2246 			rxq->hw_cons_ptr = val;
2247 
2248 			qede_update_rx_prod(edev, rxq);
2249 		}
2250 
2251 		if (fp->type & QEDE_FASTPATH_XDP) {
2252 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2253 			if (rc)
2254 				goto out;
2255 
2256 			bpf_prog_add(edev->xdp_prog, 1);
2257 			fp->rxq->xdp_prog = edev->xdp_prog;
2258 		}
2259 
2260 		if (fp->type & QEDE_FASTPATH_TX) {
2261 			int cos;
2262 
2263 			for_each_cos_in_txq(edev, cos) {
2264 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2265 						    TX_PI(cos));
2266 				if (rc)
2267 					goto out;
2268 			}
2269 		}
2270 	}
2271 
2272 	/* Prepare and send the vport enable */
2273 	vport_update_params->vport_id = start.vport_id;
2274 	vport_update_params->update_vport_active_flg = 1;
2275 	vport_update_params->vport_active_flg = 1;
2276 
2277 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2278 	    qed_info->tx_switching) {
2279 		vport_update_params->update_tx_switching_flg = 1;
2280 		vport_update_params->tx_switching_flg = 1;
2281 	}
2282 
2283 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2284 			     &vport_update_params->update_rss_flg);
2285 
2286 	rc = edev->ops->vport_update(cdev, vport_update_params);
2287 	if (rc)
2288 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2289 
2290 out:
2291 	vfree(vport_update_params);
2292 	return rc;
2293 }
2294 
2295 enum qede_unload_mode {
2296 	QEDE_UNLOAD_NORMAL,
2297 	QEDE_UNLOAD_RECOVERY,
2298 };
2299 
qede_unload(struct qede_dev * edev,enum qede_unload_mode mode,bool is_locked)2300 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2301 			bool is_locked)
2302 {
2303 	struct qed_link_params link_params;
2304 	int rc;
2305 
2306 	DP_INFO(edev, "Starting qede unload\n");
2307 
2308 	if (!is_locked)
2309 		__qede_lock(edev);
2310 
2311 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2312 
2313 	if (mode != QEDE_UNLOAD_RECOVERY)
2314 		edev->state = QEDE_STATE_CLOSED;
2315 
2316 	qede_rdma_dev_event_close(edev);
2317 
2318 	/* Close OS Tx */
2319 	netif_tx_disable(edev->ndev);
2320 	netif_carrier_off(edev->ndev);
2321 
2322 	if (mode != QEDE_UNLOAD_RECOVERY) {
2323 		/* Reset the link */
2324 		memset(&link_params, 0, sizeof(link_params));
2325 		link_params.link_up = false;
2326 		edev->ops->common->set_link(edev->cdev, &link_params);
2327 
2328 		rc = qede_stop_queues(edev);
2329 		if (rc) {
2330 #ifdef CONFIG_RFS_ACCEL
2331 			if (edev->dev_info.common.b_arfs_capable) {
2332 				qede_poll_for_freeing_arfs_filters(edev);
2333 				if (edev->ndev->rx_cpu_rmap)
2334 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2335 
2336 				edev->ndev->rx_cpu_rmap = NULL;
2337 			}
2338 #endif
2339 			qede_sync_free_irqs(edev);
2340 			goto out;
2341 		}
2342 
2343 		DP_INFO(edev, "Stopped Queues\n");
2344 	}
2345 
2346 	qede_vlan_mark_nonconfigured(edev);
2347 	edev->ops->fastpath_stop(edev->cdev);
2348 
2349 	if (edev->dev_info.common.b_arfs_capable) {
2350 		qede_poll_for_freeing_arfs_filters(edev);
2351 		qede_free_arfs(edev);
2352 	}
2353 
2354 	/* Release the interrupts */
2355 	qede_sync_free_irqs(edev);
2356 	edev->ops->common->set_fp_int(edev->cdev, 0);
2357 
2358 	qede_napi_disable_remove(edev);
2359 
2360 	if (mode == QEDE_UNLOAD_RECOVERY)
2361 		qede_empty_tx_queues(edev);
2362 
2363 	qede_free_mem_load(edev);
2364 	qede_free_fp_array(edev);
2365 
2366 out:
2367 	if (!is_locked)
2368 		__qede_unlock(edev);
2369 
2370 	if (mode != QEDE_UNLOAD_RECOVERY)
2371 		DP_NOTICE(edev, "Link is down\n");
2372 
2373 	edev->ptp_skip_txts = 0;
2374 
2375 	DP_INFO(edev, "Ending qede unload\n");
2376 }
2377 
2378 enum qede_load_mode {
2379 	QEDE_LOAD_NORMAL,
2380 	QEDE_LOAD_RELOAD,
2381 	QEDE_LOAD_RECOVERY,
2382 };
2383 
qede_load(struct qede_dev * edev,enum qede_load_mode mode,bool is_locked)2384 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2385 		     bool is_locked)
2386 {
2387 	struct qed_link_params link_params;
2388 	struct ethtool_coalesce coal = {};
2389 	u8 num_tc;
2390 	int rc, i;
2391 
2392 	DP_INFO(edev, "Starting qede load\n");
2393 
2394 	if (!is_locked)
2395 		__qede_lock(edev);
2396 
2397 	rc = qede_set_num_queues(edev);
2398 	if (rc)
2399 		goto out;
2400 
2401 	rc = qede_alloc_fp_array(edev);
2402 	if (rc)
2403 		goto out;
2404 
2405 	qede_init_fp(edev);
2406 
2407 	rc = qede_alloc_mem_load(edev);
2408 	if (rc)
2409 		goto err1;
2410 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2411 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2412 
2413 	rc = qede_set_real_num_queues(edev);
2414 	if (rc)
2415 		goto err2;
2416 
2417 	if (qede_alloc_arfs(edev)) {
2418 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2419 		edev->dev_info.common.b_arfs_capable = false;
2420 	}
2421 
2422 	qede_napi_add_enable(edev);
2423 	DP_INFO(edev, "Napi added and enabled\n");
2424 
2425 	rc = qede_setup_irqs(edev);
2426 	if (rc)
2427 		goto err3;
2428 	DP_INFO(edev, "Setup IRQs succeeded\n");
2429 
2430 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2431 	if (rc)
2432 		goto err4;
2433 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2434 
2435 	num_tc = netdev_get_num_tc(edev->ndev);
2436 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2437 	qede_setup_tc(edev->ndev, num_tc);
2438 
2439 	/* Program un-configured VLANs */
2440 	qede_configure_vlan_filters(edev);
2441 
2442 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2443 
2444 	/* Ask for link-up using current configuration */
2445 	memset(&link_params, 0, sizeof(link_params));
2446 	link_params.link_up = true;
2447 	edev->ops->common->set_link(edev->cdev, &link_params);
2448 
2449 	edev->state = QEDE_STATE_OPEN;
2450 
2451 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2452 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2453 
2454 	for_each_queue(i) {
2455 		if (edev->coal_entry[i].isvalid) {
2456 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2457 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2458 		}
2459 		__qede_unlock(edev);
2460 		qede_set_per_coalesce(edev->ndev, i, &coal);
2461 		__qede_lock(edev);
2462 	}
2463 	DP_INFO(edev, "Ending successfully qede load\n");
2464 
2465 	goto out;
2466 err4:
2467 	qede_sync_free_irqs(edev);
2468 err3:
2469 	qede_napi_disable_remove(edev);
2470 err2:
2471 	qede_free_mem_load(edev);
2472 err1:
2473 	edev->ops->common->set_fp_int(edev->cdev, 0);
2474 	qede_free_fp_array(edev);
2475 	edev->num_queues = 0;
2476 	edev->fp_num_tx = 0;
2477 	edev->fp_num_rx = 0;
2478 out:
2479 	if (!is_locked)
2480 		__qede_unlock(edev);
2481 
2482 	return rc;
2483 }
2484 
2485 /* 'func' should be able to run between unload and reload assuming interface
2486  * is actually running, or afterwards in case it's currently DOWN.
2487  */
qede_reload(struct qede_dev * edev,struct qede_reload_args * args,bool is_locked)2488 void qede_reload(struct qede_dev *edev,
2489 		 struct qede_reload_args *args, bool is_locked)
2490 {
2491 	if (!is_locked)
2492 		__qede_lock(edev);
2493 
2494 	/* Since qede_lock is held, internal state wouldn't change even
2495 	 * if netdev state would start transitioning. Check whether current
2496 	 * internal configuration indicates device is up, then reload.
2497 	 */
2498 	if (edev->state == QEDE_STATE_OPEN) {
2499 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2500 		if (args)
2501 			args->func(edev, args);
2502 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2503 
2504 		/* Since no one is going to do it for us, re-configure */
2505 		qede_config_rx_mode(edev->ndev);
2506 	} else if (args) {
2507 		args->func(edev, args);
2508 	}
2509 
2510 	if (!is_locked)
2511 		__qede_unlock(edev);
2512 }
2513 
2514 /* called with rtnl_lock */
qede_open(struct net_device * ndev)2515 static int qede_open(struct net_device *ndev)
2516 {
2517 	struct qede_dev *edev = netdev_priv(ndev);
2518 	int rc;
2519 
2520 	netif_carrier_off(ndev);
2521 
2522 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2523 
2524 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2525 	if (rc)
2526 		return rc;
2527 
2528 	udp_tunnel_nic_reset_ntf(ndev);
2529 
2530 	edev->ops->common->update_drv_state(edev->cdev, true);
2531 
2532 	return 0;
2533 }
2534 
qede_close(struct net_device * ndev)2535 static int qede_close(struct net_device *ndev)
2536 {
2537 	struct qede_dev *edev = netdev_priv(ndev);
2538 
2539 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2540 
2541 	if (edev->cdev)
2542 		edev->ops->common->update_drv_state(edev->cdev, false);
2543 
2544 	return 0;
2545 }
2546 
qede_link_update(void * dev,struct qed_link_output * link)2547 static void qede_link_update(void *dev, struct qed_link_output *link)
2548 {
2549 	struct qede_dev *edev = dev;
2550 
2551 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2552 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2553 		return;
2554 	}
2555 
2556 	if (link->link_up) {
2557 		if (!netif_carrier_ok(edev->ndev)) {
2558 			DP_NOTICE(edev, "Link is up\n");
2559 			netif_tx_start_all_queues(edev->ndev);
2560 			netif_carrier_on(edev->ndev);
2561 			qede_rdma_dev_event_open(edev);
2562 		}
2563 	} else {
2564 		if (netif_carrier_ok(edev->ndev)) {
2565 			DP_NOTICE(edev, "Link is down\n");
2566 			netif_tx_disable(edev->ndev);
2567 			netif_carrier_off(edev->ndev);
2568 			qede_rdma_dev_event_close(edev);
2569 		}
2570 	}
2571 }
2572 
qede_schedule_recovery_handler(void * dev)2573 static void qede_schedule_recovery_handler(void *dev)
2574 {
2575 	struct qede_dev *edev = dev;
2576 
2577 	if (edev->state == QEDE_STATE_RECOVERY) {
2578 		DP_NOTICE(edev,
2579 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2580 		return;
2581 	}
2582 
2583 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2584 	schedule_delayed_work(&edev->sp_task, 0);
2585 
2586 	DP_INFO(edev, "Scheduled a recovery handler\n");
2587 }
2588 
qede_recovery_failed(struct qede_dev * edev)2589 static void qede_recovery_failed(struct qede_dev *edev)
2590 {
2591 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2592 
2593 	netif_device_detach(edev->ndev);
2594 
2595 	if (edev->cdev)
2596 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2597 }
2598 
qede_recovery_handler(struct qede_dev * edev)2599 static void qede_recovery_handler(struct qede_dev *edev)
2600 {
2601 	u32 curr_state = edev->state;
2602 	int rc;
2603 
2604 	DP_NOTICE(edev, "Starting a recovery process\n");
2605 
2606 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2607 	 * before calling this function.
2608 	 */
2609 	edev->state = QEDE_STATE_RECOVERY;
2610 
2611 	edev->ops->common->recovery_prolog(edev->cdev);
2612 
2613 	if (curr_state == QEDE_STATE_OPEN)
2614 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2615 
2616 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2617 
2618 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2619 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2620 	if (rc) {
2621 		edev->cdev = NULL;
2622 		goto err;
2623 	}
2624 
2625 	if (curr_state == QEDE_STATE_OPEN) {
2626 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2627 		if (rc)
2628 			goto err;
2629 
2630 		qede_config_rx_mode(edev->ndev);
2631 		udp_tunnel_nic_reset_ntf(edev->ndev);
2632 	}
2633 
2634 	edev->state = curr_state;
2635 
2636 	DP_NOTICE(edev, "Recovery handling is done\n");
2637 
2638 	return;
2639 
2640 err:
2641 	qede_recovery_failed(edev);
2642 }
2643 
qede_atomic_hw_err_handler(struct qede_dev * edev)2644 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2645 {
2646 	struct qed_dev *cdev = edev->cdev;
2647 
2648 	DP_NOTICE(edev,
2649 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2650 		  edev->err_flags);
2651 
2652 	/* Get a call trace of the flow that led to the error */
2653 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2654 
2655 	/* Prevent HW attentions from being reasserted */
2656 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2657 		edev->ops->common->attn_clr_enable(cdev, true);
2658 
2659 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2660 }
2661 
qede_generic_hw_err_handler(struct qede_dev * edev)2662 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2663 {
2664 	DP_NOTICE(edev,
2665 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2666 		  edev->err_flags);
2667 
2668 	if (edev->devlink) {
2669 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2670 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2671 	}
2672 
2673 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2674 
2675 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2676 }
2677 
qede_set_hw_err_flags(struct qede_dev * edev,enum qed_hw_err_type err_type)2678 static void qede_set_hw_err_flags(struct qede_dev *edev,
2679 				  enum qed_hw_err_type err_type)
2680 {
2681 	unsigned long err_flags = 0;
2682 
2683 	switch (err_type) {
2684 	case QED_HW_ERR_DMAE_FAIL:
2685 		set_bit(QEDE_ERR_WARN, &err_flags);
2686 		fallthrough;
2687 	case QED_HW_ERR_MFW_RESP_FAIL:
2688 	case QED_HW_ERR_HW_ATTN:
2689 	case QED_HW_ERR_RAMROD_FAIL:
2690 	case QED_HW_ERR_FW_ASSERT:
2691 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2692 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2693 		/* make this error as recoverable and start recovery*/
2694 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2695 		break;
2696 
2697 	default:
2698 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2699 		break;
2700 	}
2701 
2702 	edev->err_flags |= err_flags;
2703 }
2704 
qede_schedule_hw_err_handler(void * dev,enum qed_hw_err_type err_type)2705 static void qede_schedule_hw_err_handler(void *dev,
2706 					 enum qed_hw_err_type err_type)
2707 {
2708 	struct qede_dev *edev = dev;
2709 
2710 	/* Fan failure cannot be masked by handling of another HW error or by a
2711 	 * concurrent recovery process.
2712 	 */
2713 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2714 	     edev->state == QEDE_STATE_RECOVERY) &&
2715 	     err_type != QED_HW_ERR_FAN_FAIL) {
2716 		DP_INFO(edev,
2717 			"Avoid scheduling an error handling while another HW error is being handled\n");
2718 		return;
2719 	}
2720 
2721 	if (err_type >= QED_HW_ERR_LAST) {
2722 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2723 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2724 		return;
2725 	}
2726 
2727 	edev->last_err_type = err_type;
2728 	qede_set_hw_err_flags(edev, err_type);
2729 	qede_atomic_hw_err_handler(edev);
2730 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2731 	schedule_delayed_work(&edev->sp_task, 0);
2732 
2733 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2734 }
2735 
qede_is_txq_full(struct qede_dev * edev,struct qede_tx_queue * txq)2736 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2737 {
2738 	struct netdev_queue *netdev_txq;
2739 
2740 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2741 	if (netif_xmit_stopped(netdev_txq))
2742 		return true;
2743 
2744 	return false;
2745 }
2746 
qede_get_generic_tlv_data(void * dev,struct qed_generic_tlvs * data)2747 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2748 {
2749 	struct qede_dev *edev = dev;
2750 	struct netdev_hw_addr *ha;
2751 	int i;
2752 
2753 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2754 		data->feat_flags |= QED_TLV_IP_CSUM;
2755 	if (edev->ndev->features & NETIF_F_TSO)
2756 		data->feat_flags |= QED_TLV_LSO;
2757 
2758 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2759 	eth_zero_addr(data->mac[1]);
2760 	eth_zero_addr(data->mac[2]);
2761 	/* Copy the first two UC macs */
2762 	netif_addr_lock_bh(edev->ndev);
2763 	i = 1;
2764 	netdev_for_each_uc_addr(ha, edev->ndev) {
2765 		ether_addr_copy(data->mac[i++], ha->addr);
2766 		if (i == QED_TLV_MAC_COUNT)
2767 			break;
2768 	}
2769 
2770 	netif_addr_unlock_bh(edev->ndev);
2771 }
2772 
qede_get_eth_tlv_data(void * dev,void * data)2773 static void qede_get_eth_tlv_data(void *dev, void *data)
2774 {
2775 	struct qed_mfw_tlv_eth *etlv = data;
2776 	struct qede_dev *edev = dev;
2777 	struct qede_fastpath *fp;
2778 	int i;
2779 
2780 	etlv->lso_maxoff_size = 0XFFFF;
2781 	etlv->lso_maxoff_size_set = true;
2782 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2783 	etlv->lso_minseg_size_set = true;
2784 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2785 	etlv->prom_mode_set = true;
2786 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2787 	etlv->tx_descr_size_set = true;
2788 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2789 	etlv->rx_descr_size_set = true;
2790 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2791 	etlv->iov_offload_set = true;
2792 
2793 	/* Fill information regarding queues; Should be done under the qede
2794 	 * lock to guarantee those don't change beneath our feet.
2795 	 */
2796 	etlv->txqs_empty = true;
2797 	etlv->rxqs_empty = true;
2798 	etlv->num_txqs_full = 0;
2799 	etlv->num_rxqs_full = 0;
2800 
2801 	__qede_lock(edev);
2802 	for_each_queue(i) {
2803 		fp = &edev->fp_array[i];
2804 		if (fp->type & QEDE_FASTPATH_TX) {
2805 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2806 
2807 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2808 				etlv->txqs_empty = false;
2809 			if (qede_is_txq_full(edev, txq))
2810 				etlv->num_txqs_full++;
2811 		}
2812 		if (fp->type & QEDE_FASTPATH_RX) {
2813 			if (qede_has_rx_work(fp->rxq))
2814 				etlv->rxqs_empty = false;
2815 
2816 			/* This one is a bit tricky; Firmware might stop
2817 			 * placing packets if ring is not yet full.
2818 			 * Give an approximation.
2819 			 */
2820 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2821 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2822 			    RX_RING_SIZE - 100)
2823 				etlv->num_rxqs_full++;
2824 		}
2825 	}
2826 	__qede_unlock(edev);
2827 
2828 	etlv->txqs_empty_set = true;
2829 	etlv->rxqs_empty_set = true;
2830 	etlv->num_txqs_full_set = true;
2831 	etlv->num_rxqs_full_set = true;
2832 }
2833 
2834 /**
2835  * qede_io_error_detected(): Called when PCI error is detected
2836  *
2837  * @pdev: Pointer to PCI device
2838  * @state: The current pci connection state
2839  *
2840  *Return: pci_ers_result_t.
2841  *
2842  * This function is called after a PCI bus error affecting
2843  * this device has been detected.
2844  */
2845 static pci_ers_result_t
qede_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2846 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2847 {
2848 	struct net_device *dev = pci_get_drvdata(pdev);
2849 	struct qede_dev *edev = netdev_priv(dev);
2850 
2851 	if (!edev)
2852 		return PCI_ERS_RESULT_NONE;
2853 
2854 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2855 
2856 	__qede_lock(edev);
2857 	if (edev->state == QEDE_STATE_RECOVERY) {
2858 		DP_NOTICE(edev, "Device already in the recovery state\n");
2859 		__qede_unlock(edev);
2860 		return PCI_ERS_RESULT_NONE;
2861 	}
2862 
2863 	/* PF handles the recovery of its VFs */
2864 	if (IS_VF(edev)) {
2865 		DP_VERBOSE(edev, QED_MSG_IOV,
2866 			   "VF recovery is handled by its PF\n");
2867 		__qede_unlock(edev);
2868 		return PCI_ERS_RESULT_RECOVERED;
2869 	}
2870 
2871 	/* Close OS Tx */
2872 	netif_tx_disable(edev->ndev);
2873 	netif_carrier_off(edev->ndev);
2874 
2875 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2876 	schedule_delayed_work(&edev->sp_task, 0);
2877 
2878 	__qede_unlock(edev);
2879 
2880 	return PCI_ERS_RESULT_CAN_RECOVER;
2881 }
2882