• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 #include <linux/reset.h>
33 #include <linux/math64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
ravb_config(struct net_device * ndev)71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
ravb_set_rate(struct net_device * ndev)85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
ravb_set_buffer_align(struct sk_buff * skb)99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)112 static void ravb_read_mac_address(struct device_node *np,
113 				  struct net_device *ndev)
114 {
115 	int ret;
116 
117 	ret = of_get_ethdev_address(np, ndev);
118 	if (ret) {
119 		u32 mahr = ravb_read(ndev, MAHR);
120 		u32 malr = ravb_read(ndev, MALR);
121 
122 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
123 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
124 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
125 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
126 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
127 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
128 	}
129 }
130 
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)131 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
132 {
133 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
134 						 mdiobb);
135 
136 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
137 }
138 
139 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)140 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
141 {
142 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
143 }
144 
145 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)146 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
147 {
148 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
149 }
150 
151 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)152 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
155 }
156 
157 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)158 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
159 {
160 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
161 						 mdiobb);
162 
163 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
164 }
165 
166 /* MDIO bus control struct */
167 static const struct mdiobb_ops bb_ops = {
168 	.owner = THIS_MODULE,
169 	.set_mdc = ravb_set_mdc,
170 	.set_mdio_dir = ravb_set_mdio_dir,
171 	.set_mdio_data = ravb_set_mdio_data,
172 	.get_mdio_data = ravb_get_mdio_data,
173 };
174 
175 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)176 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
177 {
178 	struct ravb_private *priv = netdev_priv(ndev);
179 	struct net_device_stats *stats = &priv->stats[q];
180 	unsigned int num_tx_desc = priv->num_tx_desc;
181 	struct ravb_tx_desc *desc;
182 	unsigned int entry;
183 	int free_num = 0;
184 	u32 size;
185 
186 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
187 		bool txed;
188 
189 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
190 					     num_tx_desc);
191 		desc = &priv->tx_ring[q][entry];
192 		txed = desc->die_dt == DT_FEMPTY;
193 		if (free_txed_only && !txed)
194 			break;
195 		/* Descriptor type must be checked before all other reads */
196 		dma_rmb();
197 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
198 		/* Free the original skb. */
199 		if (priv->tx_skb[q][entry / num_tx_desc]) {
200 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
201 					 size, DMA_TO_DEVICE);
202 			/* Last packet descriptor? */
203 			if (entry % num_tx_desc == num_tx_desc - 1) {
204 				entry /= num_tx_desc;
205 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
206 				priv->tx_skb[q][entry] = NULL;
207 				if (txed)
208 					stats->tx_packets++;
209 			}
210 			free_num++;
211 		}
212 		if (txed)
213 			stats->tx_bytes += size;
214 		desc->die_dt = DT_EEMPTY;
215 	}
216 	return free_num;
217 }
218 
ravb_rx_ring_free(struct net_device * ndev,int q)219 static void ravb_rx_ring_free(struct net_device *ndev, int q)
220 {
221 	struct ravb_private *priv = netdev_priv(ndev);
222 	unsigned int ring_size;
223 	unsigned int i;
224 
225 	if (!priv->rx_ring[q])
226 		return;
227 
228 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
229 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
230 
231 		if (!dma_mapping_error(ndev->dev.parent,
232 				       le32_to_cpu(desc->dptr)))
233 			dma_unmap_single(ndev->dev.parent,
234 					 le32_to_cpu(desc->dptr),
235 					 RX_BUF_SZ,
236 					 DMA_FROM_DEVICE);
237 	}
238 	ring_size = sizeof(struct ravb_ex_rx_desc) *
239 		    (priv->num_rx_ring[q] + 1);
240 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
241 			  priv->rx_desc_dma[q]);
242 	priv->rx_ring[q] = NULL;
243 }
244 
245 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)246 static void ravb_ring_free(struct net_device *ndev, int q)
247 {
248 	struct ravb_private *priv = netdev_priv(ndev);
249 	const struct ravb_hw_info *info = priv->info;
250 	unsigned int num_tx_desc = priv->num_tx_desc;
251 	unsigned int ring_size;
252 	unsigned int i;
253 
254 	info->rx_ring_free(ndev, q);
255 
256 	if (priv->tx_ring[q]) {
257 		ravb_tx_free(ndev, q, false);
258 
259 		ring_size = sizeof(struct ravb_tx_desc) *
260 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
261 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
262 				  priv->tx_desc_dma[q]);
263 		priv->tx_ring[q] = NULL;
264 	}
265 
266 	/* Free RX skb ringbuffer */
267 	if (priv->rx_skb[q]) {
268 		for (i = 0; i < priv->num_rx_ring[q]; i++)
269 			dev_kfree_skb(priv->rx_skb[q][i]);
270 	}
271 	kfree(priv->rx_skb[q]);
272 	priv->rx_skb[q] = NULL;
273 
274 	/* Free aligned TX buffers */
275 	kfree(priv->tx_align[q]);
276 	priv->tx_align[q] = NULL;
277 
278 	/* Free TX skb ringbuffer.
279 	 * SKBs are freed by ravb_tx_free() call above.
280 	 */
281 	kfree(priv->tx_skb[q]);
282 	priv->tx_skb[q] = NULL;
283 }
284 
ravb_rx_ring_format(struct net_device * ndev,int q)285 static void ravb_rx_ring_format(struct net_device *ndev, int q)
286 {
287 	struct ravb_private *priv = netdev_priv(ndev);
288 	struct ravb_ex_rx_desc *rx_desc;
289 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
290 	dma_addr_t dma_addr;
291 	unsigned int i;
292 
293 	memset(priv->rx_ring[q], 0, rx_ring_size);
294 	/* Build RX ring buffer */
295 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
296 		/* RX descriptor */
297 		rx_desc = &priv->rx_ring[q][i];
298 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
299 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
300 					  RX_BUF_SZ,
301 					  DMA_FROM_DEVICE);
302 		/* We just set the data size to 0 for a failed mapping which
303 		 * should prevent DMA from happening...
304 		 */
305 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
306 			rx_desc->ds_cc = cpu_to_le16(0);
307 		rx_desc->dptr = cpu_to_le32(dma_addr);
308 		rx_desc->die_dt = DT_FEMPTY;
309 	}
310 	rx_desc = &priv->rx_ring[q][i];
311 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
312 	rx_desc->die_dt = DT_LINKFIX; /* type */
313 }
314 
315 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)316 static void ravb_ring_format(struct net_device *ndev, int q)
317 {
318 	struct ravb_private *priv = netdev_priv(ndev);
319 	const struct ravb_hw_info *info = priv->info;
320 	unsigned int num_tx_desc = priv->num_tx_desc;
321 	struct ravb_tx_desc *tx_desc;
322 	struct ravb_desc *desc;
323 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
324 				    num_tx_desc;
325 	unsigned int i;
326 
327 	priv->cur_rx[q] = 0;
328 	priv->cur_tx[q] = 0;
329 	priv->dirty_rx[q] = 0;
330 	priv->dirty_tx[q] = 0;
331 
332 	info->rx_ring_format(ndev, q);
333 
334 	memset(priv->tx_ring[q], 0, tx_ring_size);
335 	/* Build TX ring buffer */
336 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
337 	     i++, tx_desc++) {
338 		tx_desc->die_dt = DT_EEMPTY;
339 		if (num_tx_desc > 1) {
340 			tx_desc++;
341 			tx_desc->die_dt = DT_EEMPTY;
342 		}
343 	}
344 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
345 	tx_desc->die_dt = DT_LINKFIX; /* type */
346 
347 	/* RX descriptor base address for best effort */
348 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
349 	desc->die_dt = DT_LINKFIX; /* type */
350 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
351 
352 	/* TX descriptor base address for best effort */
353 	desc = &priv->desc_bat[q];
354 	desc->die_dt = DT_LINKFIX; /* type */
355 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
356 }
357 
ravb_alloc_rx_desc(struct net_device * ndev,int q)358 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
359 {
360 	struct ravb_private *priv = netdev_priv(ndev);
361 	unsigned int ring_size;
362 
363 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
364 
365 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
366 					      &priv->rx_desc_dma[q],
367 					      GFP_KERNEL);
368 	return priv->rx_ring[q];
369 }
370 
371 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)372 static int ravb_ring_init(struct net_device *ndev, int q)
373 {
374 	struct ravb_private *priv = netdev_priv(ndev);
375 	const struct ravb_hw_info *info = priv->info;
376 	unsigned int num_tx_desc = priv->num_tx_desc;
377 	unsigned int ring_size;
378 	struct sk_buff *skb;
379 	unsigned int i;
380 
381 	/* Allocate RX and TX skb rings */
382 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
383 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
384 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
385 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
386 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
387 		goto error;
388 
389 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
390 		skb = netdev_alloc_skb(ndev, info->max_rx_len);
391 		if (!skb)
392 			goto error;
393 		ravb_set_buffer_align(skb);
394 		priv->rx_skb[q][i] = skb;
395 	}
396 
397 	if (num_tx_desc > 1) {
398 		/* Allocate rings for the aligned buffers */
399 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
400 					    DPTR_ALIGN - 1, GFP_KERNEL);
401 		if (!priv->tx_align[q])
402 			goto error;
403 	}
404 
405 	/* Allocate all RX descriptors. */
406 	if (!info->alloc_rx_desc(ndev, q))
407 		goto error;
408 
409 	priv->dirty_rx[q] = 0;
410 
411 	/* Allocate all TX descriptors. */
412 	ring_size = sizeof(struct ravb_tx_desc) *
413 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
414 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
415 					      &priv->tx_desc_dma[q],
416 					      GFP_KERNEL);
417 	if (!priv->tx_ring[q])
418 		goto error;
419 
420 	return 0;
421 
422 error:
423 	ravb_ring_free(ndev, q);
424 
425 	return -ENOMEM;
426 }
427 
ravb_rcar_emac_init(struct net_device * ndev)428 static void ravb_rcar_emac_init(struct net_device *ndev)
429 {
430 	/* Receive frame limit set register */
431 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
432 
433 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
434 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
435 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
436 		   ECMR_TE | ECMR_RE, ECMR);
437 
438 	ravb_set_rate(ndev);
439 
440 	/* Set MAC address */
441 	ravb_write(ndev,
442 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
443 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
444 	ravb_write(ndev,
445 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
446 
447 	/* E-MAC status register clear */
448 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
449 
450 	/* E-MAC interrupt enable register */
451 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
452 }
453 
454 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)455 static void ravb_emac_init(struct net_device *ndev)
456 {
457 	struct ravb_private *priv = netdev_priv(ndev);
458 	const struct ravb_hw_info *info = priv->info;
459 
460 	info->emac_init(ndev);
461 }
462 
ravb_rcar_dmac_init(struct net_device * ndev)463 static void ravb_rcar_dmac_init(struct net_device *ndev)
464 {
465 	struct ravb_private *priv = netdev_priv(ndev);
466 	const struct ravb_hw_info *info = priv->info;
467 
468 	/* Set AVB RX */
469 	ravb_write(ndev,
470 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
471 
472 	/* Set FIFO size */
473 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
474 
475 	/* Timestamp enable */
476 	ravb_write(ndev, TCCR_TFEN, TCCR);
477 
478 	/* Interrupt init: */
479 	if (info->multi_irqs) {
480 		/* Clear DIL.DPLx */
481 		ravb_write(ndev, 0, DIL);
482 		/* Set queue specific interrupt */
483 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
484 	}
485 	/* Frame receive */
486 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
487 	/* Disable FIFO full warning */
488 	ravb_write(ndev, 0, RIC1);
489 	/* Receive FIFO full error, descriptor empty */
490 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
491 	/* Frame transmitted, timestamp FIFO updated */
492 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
493 }
494 
495 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)496 static int ravb_dmac_init(struct net_device *ndev)
497 {
498 	struct ravb_private *priv = netdev_priv(ndev);
499 	const struct ravb_hw_info *info = priv->info;
500 	int error;
501 
502 	/* Set CONFIG mode */
503 	error = ravb_config(ndev);
504 	if (error)
505 		return error;
506 
507 	error = ravb_ring_init(ndev, RAVB_BE);
508 	if (error)
509 		return error;
510 	error = ravb_ring_init(ndev, RAVB_NC);
511 	if (error) {
512 		ravb_ring_free(ndev, RAVB_BE);
513 		return error;
514 	}
515 
516 	/* Descriptor format */
517 	ravb_ring_format(ndev, RAVB_BE);
518 	ravb_ring_format(ndev, RAVB_NC);
519 
520 	info->dmac_init(ndev);
521 
522 	/* Setting the control will start the AVB-DMAC process. */
523 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
524 
525 	return 0;
526 }
527 
ravb_get_tx_tstamp(struct net_device * ndev)528 static void ravb_get_tx_tstamp(struct net_device *ndev)
529 {
530 	struct ravb_private *priv = netdev_priv(ndev);
531 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
532 	struct skb_shared_hwtstamps shhwtstamps;
533 	struct sk_buff *skb;
534 	struct timespec64 ts;
535 	u16 tag, tfa_tag;
536 	int count;
537 	u32 tfa2;
538 
539 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
540 	while (count--) {
541 		tfa2 = ravb_read(ndev, TFA2);
542 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
543 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
544 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
545 			    ravb_read(ndev, TFA1);
546 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
547 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
548 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
549 					 list) {
550 			skb = ts_skb->skb;
551 			tag = ts_skb->tag;
552 			list_del(&ts_skb->list);
553 			kfree(ts_skb);
554 			if (tag == tfa_tag) {
555 				skb_tstamp_tx(skb, &shhwtstamps);
556 				dev_consume_skb_any(skb);
557 				break;
558 			} else {
559 				dev_kfree_skb_any(skb);
560 			}
561 		}
562 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
563 	}
564 }
565 
ravb_rx_csum(struct sk_buff * skb)566 static void ravb_rx_csum(struct sk_buff *skb)
567 {
568 	u8 *hw_csum;
569 
570 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
571 	 * appended to packet data
572 	 */
573 	if (unlikely(skb->len < sizeof(__sum16)))
574 		return;
575 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
576 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
577 	skb->ip_summed = CHECKSUM_COMPLETE;
578 	skb_trim(skb, skb->len - sizeof(__sum16));
579 }
580 
ravb_rcar_rx(struct net_device * ndev,int * quota,int q)581 static bool ravb_rcar_rx(struct net_device *ndev, int *quota, int q)
582 {
583 	struct ravb_private *priv = netdev_priv(ndev);
584 	const struct ravb_hw_info *info = priv->info;
585 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
586 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
587 			priv->cur_rx[q];
588 	struct net_device_stats *stats = &priv->stats[q];
589 	struct ravb_ex_rx_desc *desc;
590 	struct sk_buff *skb;
591 	dma_addr_t dma_addr;
592 	struct timespec64 ts;
593 	u8  desc_status;
594 	u16 pkt_len;
595 	int limit;
596 
597 	boguscnt = min(boguscnt, *quota);
598 	limit = boguscnt;
599 	desc = &priv->rx_ring[q][entry];
600 	while (desc->die_dt != DT_FEMPTY) {
601 		/* Descriptor type must be checked before all other reads */
602 		dma_rmb();
603 		desc_status = desc->msc;
604 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
605 
606 		if (--boguscnt < 0)
607 			break;
608 
609 		/* We use 0-byte descriptors to mark the DMA mapping errors */
610 		if (!pkt_len)
611 			continue;
612 
613 		if (desc_status & MSC_MC)
614 			stats->multicast++;
615 
616 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
617 				   MSC_CEEF)) {
618 			stats->rx_errors++;
619 			if (desc_status & MSC_CRC)
620 				stats->rx_crc_errors++;
621 			if (desc_status & MSC_RFE)
622 				stats->rx_frame_errors++;
623 			if (desc_status & (MSC_RTLF | MSC_RTSF))
624 				stats->rx_length_errors++;
625 			if (desc_status & MSC_CEEF)
626 				stats->rx_missed_errors++;
627 		} else {
628 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
629 
630 			skb = priv->rx_skb[q][entry];
631 			priv->rx_skb[q][entry] = NULL;
632 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
633 					 RX_BUF_SZ,
634 					 DMA_FROM_DEVICE);
635 			get_ts &= (q == RAVB_NC) ?
636 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
637 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
638 			if (get_ts) {
639 				struct skb_shared_hwtstamps *shhwtstamps;
640 
641 				shhwtstamps = skb_hwtstamps(skb);
642 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
643 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
644 					     32) | le32_to_cpu(desc->ts_sl);
645 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
646 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
647 			}
648 
649 			skb_put(skb, pkt_len);
650 			skb->protocol = eth_type_trans(skb, ndev);
651 			if (ndev->features & NETIF_F_RXCSUM)
652 				ravb_rx_csum(skb);
653 			napi_gro_receive(&priv->napi[q], skb);
654 			stats->rx_packets++;
655 			stats->rx_bytes += pkt_len;
656 		}
657 
658 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
659 		desc = &priv->rx_ring[q][entry];
660 	}
661 
662 	/* Refill the RX ring buffers. */
663 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
664 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
665 		desc = &priv->rx_ring[q][entry];
666 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
667 
668 		if (!priv->rx_skb[q][entry]) {
669 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
670 			if (!skb)
671 				break;	/* Better luck next round. */
672 			ravb_set_buffer_align(skb);
673 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
674 						  le16_to_cpu(desc->ds_cc),
675 						  DMA_FROM_DEVICE);
676 			skb_checksum_none_assert(skb);
677 			/* We just set the data size to 0 for a failed mapping
678 			 * which should prevent DMA  from happening...
679 			 */
680 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
681 				desc->ds_cc = cpu_to_le16(0);
682 			desc->dptr = cpu_to_le32(dma_addr);
683 			priv->rx_skb[q][entry] = skb;
684 		}
685 		/* Descriptor type must be set after all the above writes */
686 		dma_wmb();
687 		desc->die_dt = DT_FEMPTY;
688 	}
689 
690 	*quota -= limit - (++boguscnt);
691 
692 	return boguscnt <= 0;
693 }
694 
695 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int * quota,int q)696 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
697 {
698 	struct ravb_private *priv = netdev_priv(ndev);
699 	const struct ravb_hw_info *info = priv->info;
700 
701 	return info->receive(ndev, quota, q);
702 }
703 
ravb_rcv_snd_disable(struct net_device * ndev)704 static void ravb_rcv_snd_disable(struct net_device *ndev)
705 {
706 	/* Disable TX and RX */
707 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
708 }
709 
ravb_rcv_snd_enable(struct net_device * ndev)710 static void ravb_rcv_snd_enable(struct net_device *ndev)
711 {
712 	/* Enable TX and RX */
713 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
714 }
715 
716 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)717 static int ravb_stop_dma(struct net_device *ndev)
718 {
719 	int error;
720 
721 	/* Wait for stopping the hardware TX process */
722 	error = ravb_wait(ndev, TCCR,
723 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
724 	if (error)
725 		return error;
726 
727 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
728 			  0);
729 	if (error)
730 		return error;
731 
732 	/* Stop the E-MAC's RX/TX processes. */
733 	ravb_rcv_snd_disable(ndev);
734 
735 	/* Wait for stopping the RX DMA process */
736 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
737 	if (error)
738 		return error;
739 
740 	/* Stop AVB-DMAC process */
741 	return ravb_config(ndev);
742 }
743 
744 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)745 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
746 {
747 	struct ravb_private *priv = netdev_priv(ndev);
748 	u32 ecsr, psr;
749 
750 	ecsr = ravb_read(ndev, ECSR);
751 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
752 
753 	if (ecsr & ECSR_MPD)
754 		pm_wakeup_event(&priv->pdev->dev, 0);
755 	if (ecsr & ECSR_ICD)
756 		ndev->stats.tx_carrier_errors++;
757 	if (ecsr & ECSR_LCHNG) {
758 		/* Link changed */
759 		if (priv->no_avb_link)
760 			return;
761 		psr = ravb_read(ndev, PSR);
762 		if (priv->avb_link_active_low)
763 			psr ^= PSR_LMON;
764 		if (!(psr & PSR_LMON)) {
765 			/* DIsable RX and TX */
766 			ravb_rcv_snd_disable(ndev);
767 		} else {
768 			/* Enable RX and TX */
769 			ravb_rcv_snd_enable(ndev);
770 		}
771 	}
772 }
773 
ravb_emac_interrupt(int irq,void * dev_id)774 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
775 {
776 	struct net_device *ndev = dev_id;
777 	struct ravb_private *priv = netdev_priv(ndev);
778 
779 	spin_lock(&priv->lock);
780 	ravb_emac_interrupt_unlocked(ndev);
781 	spin_unlock(&priv->lock);
782 	return IRQ_HANDLED;
783 }
784 
785 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)786 static void ravb_error_interrupt(struct net_device *ndev)
787 {
788 	struct ravb_private *priv = netdev_priv(ndev);
789 	u32 eis, ris2;
790 
791 	eis = ravb_read(ndev, EIS);
792 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
793 	if (eis & EIS_QFS) {
794 		ris2 = ravb_read(ndev, RIS2);
795 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
796 			   RIS2);
797 
798 		/* Receive Descriptor Empty int */
799 		if (ris2 & RIS2_QFF0)
800 			priv->stats[RAVB_BE].rx_over_errors++;
801 
802 		/* Receive Descriptor Empty int */
803 		if (ris2 & RIS2_QFF1)
804 			priv->stats[RAVB_NC].rx_over_errors++;
805 
806 		/* Receive FIFO Overflow int */
807 		if (ris2 & RIS2_RFFF)
808 			priv->rx_fifo_errors++;
809 	}
810 }
811 
ravb_queue_interrupt(struct net_device * ndev,int q)812 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
813 {
814 	struct ravb_private *priv = netdev_priv(ndev);
815 	const struct ravb_hw_info *info = priv->info;
816 	u32 ris0 = ravb_read(ndev, RIS0);
817 	u32 ric0 = ravb_read(ndev, RIC0);
818 	u32 tis  = ravb_read(ndev, TIS);
819 	u32 tic  = ravb_read(ndev, TIC);
820 
821 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
822 		if (napi_schedule_prep(&priv->napi[q])) {
823 			/* Mask RX and TX interrupts */
824 			if (!info->multi_irqs) {
825 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
826 				ravb_write(ndev, tic & ~BIT(q), TIC);
827 			} else {
828 				ravb_write(ndev, BIT(q), RID0);
829 				ravb_write(ndev, BIT(q), TID);
830 			}
831 			__napi_schedule(&priv->napi[q]);
832 		} else {
833 			netdev_warn(ndev,
834 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
835 				    ris0, ric0);
836 			netdev_warn(ndev,
837 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
838 				    tis, tic);
839 		}
840 		return true;
841 	}
842 	return false;
843 }
844 
ravb_timestamp_interrupt(struct net_device * ndev)845 static bool ravb_timestamp_interrupt(struct net_device *ndev)
846 {
847 	u32 tis = ravb_read(ndev, TIS);
848 
849 	if (tis & TIS_TFUF) {
850 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
851 		ravb_get_tx_tstamp(ndev);
852 		return true;
853 	}
854 	return false;
855 }
856 
ravb_interrupt(int irq,void * dev_id)857 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
858 {
859 	struct net_device *ndev = dev_id;
860 	struct ravb_private *priv = netdev_priv(ndev);
861 	irqreturn_t result = IRQ_NONE;
862 	u32 iss;
863 
864 	spin_lock(&priv->lock);
865 	/* Get interrupt status */
866 	iss = ravb_read(ndev, ISS);
867 
868 	/* Received and transmitted interrupts */
869 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
870 		int q;
871 
872 		/* Timestamp updated */
873 		if (ravb_timestamp_interrupt(ndev))
874 			result = IRQ_HANDLED;
875 
876 		/* Network control and best effort queue RX/TX */
877 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
878 			if (ravb_queue_interrupt(ndev, q))
879 				result = IRQ_HANDLED;
880 		}
881 	}
882 
883 	/* E-MAC status summary */
884 	if (iss & ISS_MS) {
885 		ravb_emac_interrupt_unlocked(ndev);
886 		result = IRQ_HANDLED;
887 	}
888 
889 	/* Error status summary */
890 	if (iss & ISS_ES) {
891 		ravb_error_interrupt(ndev);
892 		result = IRQ_HANDLED;
893 	}
894 
895 	/* gPTP interrupt status summary */
896 	if (iss & ISS_CGIS) {
897 		ravb_ptp_interrupt(ndev);
898 		result = IRQ_HANDLED;
899 	}
900 
901 	spin_unlock(&priv->lock);
902 	return result;
903 }
904 
905 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)906 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
907 {
908 	struct net_device *ndev = dev_id;
909 	struct ravb_private *priv = netdev_priv(ndev);
910 	irqreturn_t result = IRQ_NONE;
911 	u32 iss;
912 
913 	spin_lock(&priv->lock);
914 	/* Get interrupt status */
915 	iss = ravb_read(ndev, ISS);
916 
917 	/* Timestamp updated */
918 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
919 		result = IRQ_HANDLED;
920 
921 	/* Error status summary */
922 	if (iss & ISS_ES) {
923 		ravb_error_interrupt(ndev);
924 		result = IRQ_HANDLED;
925 	}
926 
927 	/* gPTP interrupt status summary */
928 	if (iss & ISS_CGIS) {
929 		ravb_ptp_interrupt(ndev);
930 		result = IRQ_HANDLED;
931 	}
932 
933 	spin_unlock(&priv->lock);
934 	return result;
935 }
936 
ravb_dma_interrupt(int irq,void * dev_id,int q)937 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
938 {
939 	struct net_device *ndev = dev_id;
940 	struct ravb_private *priv = netdev_priv(ndev);
941 	irqreturn_t result = IRQ_NONE;
942 
943 	spin_lock(&priv->lock);
944 
945 	/* Network control/Best effort queue RX/TX */
946 	if (ravb_queue_interrupt(ndev, q))
947 		result = IRQ_HANDLED;
948 
949 	spin_unlock(&priv->lock);
950 	return result;
951 }
952 
ravb_be_interrupt(int irq,void * dev_id)953 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
954 {
955 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
956 }
957 
ravb_nc_interrupt(int irq,void * dev_id)958 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
959 {
960 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
961 }
962 
ravb_poll(struct napi_struct * napi,int budget)963 static int ravb_poll(struct napi_struct *napi, int budget)
964 {
965 	struct net_device *ndev = napi->dev;
966 	struct ravb_private *priv = netdev_priv(ndev);
967 	const struct ravb_hw_info *info = priv->info;
968 	unsigned long flags;
969 	int q = napi - priv->napi;
970 	int mask = BIT(q);
971 	int quota = budget;
972 
973 	/* Processing RX Descriptor Ring */
974 	/* Clear RX interrupt */
975 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
976 	if (ravb_rx(ndev, &quota, q))
977 		goto out;
978 
979 	/* Processing TX Descriptor Ring */
980 	spin_lock_irqsave(&priv->lock, flags);
981 	/* Clear TX interrupt */
982 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
983 	ravb_tx_free(ndev, q, true);
984 	netif_wake_subqueue(ndev, q);
985 	spin_unlock_irqrestore(&priv->lock, flags);
986 
987 	napi_complete(napi);
988 
989 	/* Re-enable RX/TX interrupts */
990 	spin_lock_irqsave(&priv->lock, flags);
991 	if (!info->multi_irqs) {
992 		ravb_modify(ndev, RIC0, mask, mask);
993 		ravb_modify(ndev, TIC,  mask, mask);
994 	} else {
995 		ravb_write(ndev, mask, RIE0);
996 		ravb_write(ndev, mask, TIE);
997 	}
998 	spin_unlock_irqrestore(&priv->lock, flags);
999 
1000 	/* Receive error message handling */
1001 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1002 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1003 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1004 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1005 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1006 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1007 out:
1008 	return budget - quota;
1009 }
1010 
1011 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1012 static void ravb_adjust_link(struct net_device *ndev)
1013 {
1014 	struct ravb_private *priv = netdev_priv(ndev);
1015 	const struct ravb_hw_info *info = priv->info;
1016 	struct phy_device *phydev = ndev->phydev;
1017 	bool new_state = false;
1018 	unsigned long flags;
1019 
1020 	spin_lock_irqsave(&priv->lock, flags);
1021 
1022 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1023 	if (priv->no_avb_link)
1024 		ravb_rcv_snd_disable(ndev);
1025 
1026 	if (phydev->link) {
1027 		if (phydev->speed != priv->speed) {
1028 			new_state = true;
1029 			priv->speed = phydev->speed;
1030 			info->set_rate(ndev);
1031 		}
1032 		if (!priv->link) {
1033 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1034 			new_state = true;
1035 			priv->link = phydev->link;
1036 		}
1037 	} else if (priv->link) {
1038 		new_state = true;
1039 		priv->link = 0;
1040 		priv->speed = 0;
1041 	}
1042 
1043 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1044 	if (priv->no_avb_link && phydev->link)
1045 		ravb_rcv_snd_enable(ndev);
1046 
1047 	spin_unlock_irqrestore(&priv->lock, flags);
1048 
1049 	if (new_state && netif_msg_link(priv))
1050 		phy_print_status(phydev);
1051 }
1052 
1053 static const struct soc_device_attribute r8a7795es10[] = {
1054 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1055 	{ /* sentinel */ }
1056 };
1057 
1058 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1059 static int ravb_phy_init(struct net_device *ndev)
1060 {
1061 	struct device_node *np = ndev->dev.parent->of_node;
1062 	struct ravb_private *priv = netdev_priv(ndev);
1063 	struct phy_device *phydev;
1064 	struct device_node *pn;
1065 	phy_interface_t iface;
1066 	int err;
1067 
1068 	priv->link = 0;
1069 	priv->speed = 0;
1070 
1071 	/* Try connecting to PHY */
1072 	pn = of_parse_phandle(np, "phy-handle", 0);
1073 	if (!pn) {
1074 		/* In the case of a fixed PHY, the DT node associated
1075 		 * to the PHY is the Ethernet MAC DT node.
1076 		 */
1077 		if (of_phy_is_fixed_link(np)) {
1078 			err = of_phy_register_fixed_link(np);
1079 			if (err)
1080 				return err;
1081 		}
1082 		pn = of_node_get(np);
1083 	}
1084 
1085 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1086 				     : priv->phy_interface;
1087 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1088 	of_node_put(pn);
1089 	if (!phydev) {
1090 		netdev_err(ndev, "failed to connect PHY\n");
1091 		err = -ENOENT;
1092 		goto err_deregister_fixed_link;
1093 	}
1094 
1095 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1096 	 * at this time.
1097 	 */
1098 	if (soc_device_match(r8a7795es10)) {
1099 		err = phy_set_max_speed(phydev, SPEED_100);
1100 		if (err) {
1101 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1102 			goto err_phy_disconnect;
1103 		}
1104 
1105 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1106 	}
1107 
1108 	/* 10BASE, Pause and Asym Pause is not supported */
1109 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1110 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1111 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1112 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1113 
1114 	/* Half Duplex is not supported */
1115 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1116 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1117 
1118 	phy_attached_info(phydev);
1119 
1120 	return 0;
1121 
1122 err_phy_disconnect:
1123 	phy_disconnect(phydev);
1124 err_deregister_fixed_link:
1125 	if (of_phy_is_fixed_link(np))
1126 		of_phy_deregister_fixed_link(np);
1127 
1128 	return err;
1129 }
1130 
1131 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1132 static int ravb_phy_start(struct net_device *ndev)
1133 {
1134 	int error;
1135 
1136 	error = ravb_phy_init(ndev);
1137 	if (error)
1138 		return error;
1139 
1140 	phy_start(ndev->phydev);
1141 
1142 	return 0;
1143 }
1144 
ravb_get_msglevel(struct net_device * ndev)1145 static u32 ravb_get_msglevel(struct net_device *ndev)
1146 {
1147 	struct ravb_private *priv = netdev_priv(ndev);
1148 
1149 	return priv->msg_enable;
1150 }
1151 
ravb_set_msglevel(struct net_device * ndev,u32 value)1152 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1153 {
1154 	struct ravb_private *priv = netdev_priv(ndev);
1155 
1156 	priv->msg_enable = value;
1157 }
1158 
1159 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1160 	"rx_queue_0_current",
1161 	"tx_queue_0_current",
1162 	"rx_queue_0_dirty",
1163 	"tx_queue_0_dirty",
1164 	"rx_queue_0_packets",
1165 	"tx_queue_0_packets",
1166 	"rx_queue_0_bytes",
1167 	"tx_queue_0_bytes",
1168 	"rx_queue_0_mcast_packets",
1169 	"rx_queue_0_errors",
1170 	"rx_queue_0_crc_errors",
1171 	"rx_queue_0_frame_errors",
1172 	"rx_queue_0_length_errors",
1173 	"rx_queue_0_missed_errors",
1174 	"rx_queue_0_over_errors",
1175 
1176 	"rx_queue_1_current",
1177 	"tx_queue_1_current",
1178 	"rx_queue_1_dirty",
1179 	"tx_queue_1_dirty",
1180 	"rx_queue_1_packets",
1181 	"tx_queue_1_packets",
1182 	"rx_queue_1_bytes",
1183 	"tx_queue_1_bytes",
1184 	"rx_queue_1_mcast_packets",
1185 	"rx_queue_1_errors",
1186 	"rx_queue_1_crc_errors",
1187 	"rx_queue_1_frame_errors",
1188 	"rx_queue_1_length_errors",
1189 	"rx_queue_1_missed_errors",
1190 	"rx_queue_1_over_errors",
1191 };
1192 
ravb_get_sset_count(struct net_device * netdev,int sset)1193 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1194 {
1195 	struct ravb_private *priv = netdev_priv(netdev);
1196 	const struct ravb_hw_info *info = priv->info;
1197 
1198 	switch (sset) {
1199 	case ETH_SS_STATS:
1200 		return info->stats_len;
1201 	default:
1202 		return -EOPNOTSUPP;
1203 	}
1204 }
1205 
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1206 static void ravb_get_ethtool_stats(struct net_device *ndev,
1207 				   struct ethtool_stats *estats, u64 *data)
1208 {
1209 	struct ravb_private *priv = netdev_priv(ndev);
1210 	int i = 0;
1211 	int q;
1212 
1213 	/* Device-specific stats */
1214 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1215 		struct net_device_stats *stats = &priv->stats[q];
1216 
1217 		data[i++] = priv->cur_rx[q];
1218 		data[i++] = priv->cur_tx[q];
1219 		data[i++] = priv->dirty_rx[q];
1220 		data[i++] = priv->dirty_tx[q];
1221 		data[i++] = stats->rx_packets;
1222 		data[i++] = stats->tx_packets;
1223 		data[i++] = stats->rx_bytes;
1224 		data[i++] = stats->tx_bytes;
1225 		data[i++] = stats->multicast;
1226 		data[i++] = stats->rx_errors;
1227 		data[i++] = stats->rx_crc_errors;
1228 		data[i++] = stats->rx_frame_errors;
1229 		data[i++] = stats->rx_length_errors;
1230 		data[i++] = stats->rx_missed_errors;
1231 		data[i++] = stats->rx_over_errors;
1232 	}
1233 }
1234 
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1235 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1236 {
1237 	struct ravb_private *priv = netdev_priv(ndev);
1238 	const struct ravb_hw_info *info = priv->info;
1239 
1240 	switch (stringset) {
1241 	case ETH_SS_STATS:
1242 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1243 		break;
1244 	}
1245 }
1246 
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1247 static void ravb_get_ringparam(struct net_device *ndev,
1248 			       struct ethtool_ringparam *ring)
1249 {
1250 	struct ravb_private *priv = netdev_priv(ndev);
1251 
1252 	ring->rx_max_pending = BE_RX_RING_MAX;
1253 	ring->tx_max_pending = BE_TX_RING_MAX;
1254 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1255 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1256 }
1257 
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1258 static int ravb_set_ringparam(struct net_device *ndev,
1259 			      struct ethtool_ringparam *ring)
1260 {
1261 	struct ravb_private *priv = netdev_priv(ndev);
1262 	const struct ravb_hw_info *info = priv->info;
1263 	int error;
1264 
1265 	if (ring->tx_pending > BE_TX_RING_MAX ||
1266 	    ring->rx_pending > BE_RX_RING_MAX ||
1267 	    ring->tx_pending < BE_TX_RING_MIN ||
1268 	    ring->rx_pending < BE_RX_RING_MIN)
1269 		return -EINVAL;
1270 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1271 		return -EINVAL;
1272 
1273 	if (netif_running(ndev)) {
1274 		netif_device_detach(ndev);
1275 		/* Stop PTP Clock driver */
1276 		if (info->gptp)
1277 			ravb_ptp_stop(ndev);
1278 		/* Wait for DMA stopping */
1279 		error = ravb_stop_dma(ndev);
1280 		if (error) {
1281 			netdev_err(ndev,
1282 				   "cannot set ringparam! Any AVB processes are still running?\n");
1283 			return error;
1284 		}
1285 		synchronize_irq(ndev->irq);
1286 
1287 		/* Free all the skb's in the RX queue and the DMA buffers. */
1288 		ravb_ring_free(ndev, RAVB_BE);
1289 		ravb_ring_free(ndev, RAVB_NC);
1290 	}
1291 
1292 	/* Set new parameters */
1293 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1294 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1295 
1296 	if (netif_running(ndev)) {
1297 		error = ravb_dmac_init(ndev);
1298 		if (error) {
1299 			netdev_err(ndev,
1300 				   "%s: ravb_dmac_init() failed, error %d\n",
1301 				   __func__, error);
1302 			return error;
1303 		}
1304 
1305 		ravb_emac_init(ndev);
1306 
1307 		/* Initialise PTP Clock driver */
1308 		if (info->gptp)
1309 			ravb_ptp_init(ndev, priv->pdev);
1310 
1311 		netif_device_attach(ndev);
1312 	}
1313 
1314 	return 0;
1315 }
1316 
ravb_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)1317 static int ravb_get_ts_info(struct net_device *ndev,
1318 			    struct ethtool_ts_info *info)
1319 {
1320 	struct ravb_private *priv = netdev_priv(ndev);
1321 
1322 	info->so_timestamping =
1323 		SOF_TIMESTAMPING_TX_SOFTWARE |
1324 		SOF_TIMESTAMPING_RX_SOFTWARE |
1325 		SOF_TIMESTAMPING_SOFTWARE |
1326 		SOF_TIMESTAMPING_TX_HARDWARE |
1327 		SOF_TIMESTAMPING_RX_HARDWARE |
1328 		SOF_TIMESTAMPING_RAW_HARDWARE;
1329 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1330 	info->rx_filters =
1331 		(1 << HWTSTAMP_FILTER_NONE) |
1332 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1333 		(1 << HWTSTAMP_FILTER_ALL);
1334 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1335 
1336 	return 0;
1337 }
1338 
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1339 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1340 {
1341 	struct ravb_private *priv = netdev_priv(ndev);
1342 
1343 	wol->supported = WAKE_MAGIC;
1344 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1345 }
1346 
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1347 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1348 {
1349 	struct ravb_private *priv = netdev_priv(ndev);
1350 
1351 	if (wol->wolopts & ~WAKE_MAGIC)
1352 		return -EOPNOTSUPP;
1353 
1354 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1355 
1356 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1357 
1358 	return 0;
1359 }
1360 
1361 static const struct ethtool_ops ravb_ethtool_ops = {
1362 	.nway_reset		= phy_ethtool_nway_reset,
1363 	.get_msglevel		= ravb_get_msglevel,
1364 	.set_msglevel		= ravb_set_msglevel,
1365 	.get_link		= ethtool_op_get_link,
1366 	.get_strings		= ravb_get_strings,
1367 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1368 	.get_sset_count		= ravb_get_sset_count,
1369 	.get_ringparam		= ravb_get_ringparam,
1370 	.set_ringparam		= ravb_set_ringparam,
1371 	.get_ts_info		= ravb_get_ts_info,
1372 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1373 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1374 	.get_wol		= ravb_get_wol,
1375 	.set_wol		= ravb_set_wol,
1376 };
1377 
ravb_hook_irq(unsigned int irq,irq_handler_t handler,struct net_device * ndev,struct device * dev,const char * ch)1378 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1379 				struct net_device *ndev, struct device *dev,
1380 				const char *ch)
1381 {
1382 	char *name;
1383 	int error;
1384 
1385 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1386 	if (!name)
1387 		return -ENOMEM;
1388 	error = request_irq(irq, handler, 0, name, ndev);
1389 	if (error)
1390 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1391 
1392 	return error;
1393 }
1394 
1395 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1396 static int ravb_open(struct net_device *ndev)
1397 {
1398 	struct ravb_private *priv = netdev_priv(ndev);
1399 	const struct ravb_hw_info *info = priv->info;
1400 	struct platform_device *pdev = priv->pdev;
1401 	struct device *dev = &pdev->dev;
1402 	int error;
1403 
1404 	napi_enable(&priv->napi[RAVB_BE]);
1405 	napi_enable(&priv->napi[RAVB_NC]);
1406 
1407 	if (!info->multi_irqs) {
1408 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1409 				    ndev->name, ndev);
1410 		if (error) {
1411 			netdev_err(ndev, "cannot request IRQ\n");
1412 			goto out_napi_off;
1413 		}
1414 	} else {
1415 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1416 				      dev, "ch22:multi");
1417 		if (error)
1418 			goto out_napi_off;
1419 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1420 				      dev, "ch24:emac");
1421 		if (error)
1422 			goto out_free_irq;
1423 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1424 				      ndev, dev, "ch0:rx_be");
1425 		if (error)
1426 			goto out_free_irq_emac;
1427 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1428 				      ndev, dev, "ch18:tx_be");
1429 		if (error)
1430 			goto out_free_irq_be_rx;
1431 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1432 				      ndev, dev, "ch1:rx_nc");
1433 		if (error)
1434 			goto out_free_irq_be_tx;
1435 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1436 				      ndev, dev, "ch19:tx_nc");
1437 		if (error)
1438 			goto out_free_irq_nc_rx;
1439 	}
1440 
1441 	/* Device init */
1442 	error = ravb_dmac_init(ndev);
1443 	if (error)
1444 		goto out_free_irq_nc_tx;
1445 	ravb_emac_init(ndev);
1446 
1447 	/* Initialise PTP Clock driver */
1448 	if (info->gptp)
1449 		ravb_ptp_init(ndev, priv->pdev);
1450 
1451 	/* PHY control start */
1452 	error = ravb_phy_start(ndev);
1453 	if (error)
1454 		goto out_ptp_stop;
1455 
1456 	netif_tx_start_all_queues(ndev);
1457 
1458 	return 0;
1459 
1460 out_ptp_stop:
1461 	/* Stop PTP Clock driver */
1462 	if (info->gptp)
1463 		ravb_ptp_stop(ndev);
1464 	ravb_stop_dma(ndev);
1465 out_free_irq_nc_tx:
1466 	if (!info->multi_irqs)
1467 		goto out_free_irq;
1468 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1469 out_free_irq_nc_rx:
1470 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1471 out_free_irq_be_tx:
1472 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1473 out_free_irq_be_rx:
1474 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1475 out_free_irq_emac:
1476 	free_irq(priv->emac_irq, ndev);
1477 out_free_irq:
1478 	free_irq(ndev->irq, ndev);
1479 out_napi_off:
1480 	napi_disable(&priv->napi[RAVB_NC]);
1481 	napi_disable(&priv->napi[RAVB_BE]);
1482 	return error;
1483 }
1484 
1485 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1486 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1487 {
1488 	struct ravb_private *priv = netdev_priv(ndev);
1489 
1490 	netif_err(priv, tx_err, ndev,
1491 		  "transmit timed out, status %08x, resetting...\n",
1492 		  ravb_read(ndev, ISS));
1493 
1494 	/* tx_errors count up */
1495 	ndev->stats.tx_errors++;
1496 
1497 	schedule_work(&priv->work);
1498 }
1499 
ravb_tx_timeout_work(struct work_struct * work)1500 static void ravb_tx_timeout_work(struct work_struct *work)
1501 {
1502 	struct ravb_private *priv = container_of(work, struct ravb_private,
1503 						 work);
1504 	const struct ravb_hw_info *info = priv->info;
1505 	struct net_device *ndev = priv->ndev;
1506 	int error;
1507 
1508 	if (!rtnl_trylock()) {
1509 		usleep_range(1000, 2000);
1510 		schedule_work(&priv->work);
1511 		return;
1512 	}
1513 
1514 	netif_tx_stop_all_queues(ndev);
1515 
1516 	/* Stop PTP Clock driver */
1517 	if (info->gptp)
1518 		ravb_ptp_stop(ndev);
1519 
1520 	/* Wait for DMA stopping */
1521 	if (ravb_stop_dma(ndev)) {
1522 		/* If ravb_stop_dma() fails, the hardware is still operating
1523 		 * for TX and/or RX. So, this should not call the following
1524 		 * functions because ravb_dmac_init() is possible to fail too.
1525 		 * Also, this should not retry ravb_stop_dma() again and again
1526 		 * here because it's possible to wait forever. So, this just
1527 		 * re-enables the TX and RX and skip the following
1528 		 * re-initialization procedure.
1529 		 */
1530 		ravb_rcv_snd_enable(ndev);
1531 		goto out;
1532 	}
1533 
1534 	ravb_ring_free(ndev, RAVB_BE);
1535 	ravb_ring_free(ndev, RAVB_NC);
1536 
1537 	/* Device init */
1538 	error = ravb_dmac_init(ndev);
1539 	if (error) {
1540 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1541 		 * should return here to avoid re-enabling the TX and RX in
1542 		 * ravb_emac_init().
1543 		 */
1544 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1545 			   __func__, error);
1546 		goto out_unlock;
1547 	}
1548 	ravb_emac_init(ndev);
1549 
1550 out:
1551 	/* Initialise PTP Clock driver */
1552 	if (info->gptp)
1553 		ravb_ptp_init(ndev, priv->pdev);
1554 
1555 	netif_tx_start_all_queues(ndev);
1556 
1557 out_unlock:
1558 	rtnl_unlock();
1559 }
1560 
1561 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)1562 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1563 {
1564 	struct ravb_private *priv = netdev_priv(ndev);
1565 	unsigned int num_tx_desc = priv->num_tx_desc;
1566 	u16 q = skb_get_queue_mapping(skb);
1567 	struct ravb_tstamp_skb *ts_skb;
1568 	struct ravb_tx_desc *desc;
1569 	unsigned long flags;
1570 	dma_addr_t dma_addr;
1571 	void *buffer;
1572 	u32 entry;
1573 	u32 len;
1574 
1575 	spin_lock_irqsave(&priv->lock, flags);
1576 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1577 	    num_tx_desc) {
1578 		netif_err(priv, tx_queued, ndev,
1579 			  "still transmitting with the full ring!\n");
1580 		netif_stop_subqueue(ndev, q);
1581 		spin_unlock_irqrestore(&priv->lock, flags);
1582 		return NETDEV_TX_BUSY;
1583 	}
1584 
1585 	if (skb_put_padto(skb, ETH_ZLEN))
1586 		goto exit;
1587 
1588 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1589 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1590 
1591 	if (num_tx_desc > 1) {
1592 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1593 			 entry / num_tx_desc * DPTR_ALIGN;
1594 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1595 
1596 		/* Zero length DMA descriptors are problematic as they seem
1597 		 * to terminate DMA transfers. Avoid them by simply using a
1598 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1599 		 * DPTR_ALIGN.
1600 		 *
1601 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1602 		 * bytes of data by the call to skb_put_padto() above this
1603 		 * is safe with respect to both the length of the first DMA
1604 		 * descriptor (len) overflowing the available data and the
1605 		 * length of the second DMA descriptor (skb->len - len)
1606 		 * being negative.
1607 		 */
1608 		if (len == 0)
1609 			len = DPTR_ALIGN;
1610 
1611 		memcpy(buffer, skb->data, len);
1612 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1613 					  DMA_TO_DEVICE);
1614 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1615 			goto drop;
1616 
1617 		desc = &priv->tx_ring[q][entry];
1618 		desc->ds_tagl = cpu_to_le16(len);
1619 		desc->dptr = cpu_to_le32(dma_addr);
1620 
1621 		buffer = skb->data + len;
1622 		len = skb->len - len;
1623 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1624 					  DMA_TO_DEVICE);
1625 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1626 			goto unmap;
1627 
1628 		desc++;
1629 	} else {
1630 		desc = &priv->tx_ring[q][entry];
1631 		len = skb->len;
1632 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1633 					  DMA_TO_DEVICE);
1634 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1635 			goto drop;
1636 	}
1637 	desc->ds_tagl = cpu_to_le16(len);
1638 	desc->dptr = cpu_to_le32(dma_addr);
1639 
1640 	/* TX timestamp required */
1641 	if (q == RAVB_NC) {
1642 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1643 		if (!ts_skb) {
1644 			if (num_tx_desc > 1) {
1645 				desc--;
1646 				dma_unmap_single(ndev->dev.parent, dma_addr,
1647 						 len, DMA_TO_DEVICE);
1648 			}
1649 			goto unmap;
1650 		}
1651 		ts_skb->skb = skb_get(skb);
1652 		ts_skb->tag = priv->ts_skb_tag++;
1653 		priv->ts_skb_tag &= 0x3ff;
1654 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1655 
1656 		/* TAG and timestamp required flag */
1657 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1658 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1659 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1660 	}
1661 
1662 	skb_tx_timestamp(skb);
1663 	/* Descriptor type must be set after all the above writes */
1664 	dma_wmb();
1665 	if (num_tx_desc > 1) {
1666 		desc->die_dt = DT_FEND;
1667 		desc--;
1668 		desc->die_dt = DT_FSTART;
1669 	} else {
1670 		desc->die_dt = DT_FSINGLE;
1671 	}
1672 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1673 
1674 	priv->cur_tx[q] += num_tx_desc;
1675 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1676 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1677 	    !ravb_tx_free(ndev, q, true))
1678 		netif_stop_subqueue(ndev, q);
1679 
1680 exit:
1681 	spin_unlock_irqrestore(&priv->lock, flags);
1682 	return NETDEV_TX_OK;
1683 
1684 unmap:
1685 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1686 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1687 drop:
1688 	dev_kfree_skb_any(skb);
1689 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1690 	goto exit;
1691 }
1692 
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)1693 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1694 			     struct net_device *sb_dev)
1695 {
1696 	/* If skb needs TX timestamp, it is handled in network control queue */
1697 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1698 							       RAVB_BE;
1699 
1700 }
1701 
ravb_get_stats(struct net_device * ndev)1702 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1703 {
1704 	struct ravb_private *priv = netdev_priv(ndev);
1705 	const struct ravb_hw_info *info = priv->info;
1706 	struct net_device_stats *nstats, *stats0, *stats1;
1707 
1708 	nstats = &ndev->stats;
1709 	stats0 = &priv->stats[RAVB_BE];
1710 	stats1 = &priv->stats[RAVB_NC];
1711 
1712 	if (info->tx_counters) {
1713 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1714 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1715 	}
1716 
1717 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1718 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1719 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1720 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1721 	nstats->multicast = stats0->multicast + stats1->multicast;
1722 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1723 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1724 	nstats->rx_frame_errors =
1725 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1726 	nstats->rx_length_errors =
1727 		stats0->rx_length_errors + stats1->rx_length_errors;
1728 	nstats->rx_missed_errors =
1729 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1730 	nstats->rx_over_errors =
1731 		stats0->rx_over_errors + stats1->rx_over_errors;
1732 
1733 	return nstats;
1734 }
1735 
1736 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)1737 static void ravb_set_rx_mode(struct net_device *ndev)
1738 {
1739 	struct ravb_private *priv = netdev_priv(ndev);
1740 	unsigned long flags;
1741 
1742 	spin_lock_irqsave(&priv->lock, flags);
1743 	ravb_modify(ndev, ECMR, ECMR_PRM,
1744 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1745 	spin_unlock_irqrestore(&priv->lock, flags);
1746 }
1747 
1748 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)1749 static int ravb_close(struct net_device *ndev)
1750 {
1751 	struct device_node *np = ndev->dev.parent->of_node;
1752 	struct ravb_private *priv = netdev_priv(ndev);
1753 	const struct ravb_hw_info *info = priv->info;
1754 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1755 
1756 	netif_tx_stop_all_queues(ndev);
1757 
1758 	/* Disable interrupts by clearing the interrupt masks. */
1759 	ravb_write(ndev, 0, RIC0);
1760 	ravb_write(ndev, 0, RIC2);
1761 	ravb_write(ndev, 0, TIC);
1762 
1763 	/* Stop PTP Clock driver */
1764 	if (info->gptp)
1765 		ravb_ptp_stop(ndev);
1766 
1767 	/* Set the config mode to stop the AVB-DMAC's processes */
1768 	if (ravb_stop_dma(ndev) < 0)
1769 		netdev_err(ndev,
1770 			   "device will be stopped after h/w processes are done.\n");
1771 
1772 	/* Clear the timestamp list */
1773 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1774 		list_del(&ts_skb->list);
1775 		kfree_skb(ts_skb->skb);
1776 		kfree(ts_skb);
1777 	}
1778 
1779 	/* PHY disconnect */
1780 	if (ndev->phydev) {
1781 		phy_stop(ndev->phydev);
1782 		phy_disconnect(ndev->phydev);
1783 		if (of_phy_is_fixed_link(np))
1784 			of_phy_deregister_fixed_link(np);
1785 	}
1786 
1787 	cancel_work_sync(&priv->work);
1788 
1789 	if (info->multi_irqs) {
1790 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1791 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1792 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1793 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1794 		free_irq(priv->emac_irq, ndev);
1795 	}
1796 	free_irq(ndev->irq, ndev);
1797 
1798 	napi_disable(&priv->napi[RAVB_NC]);
1799 	napi_disable(&priv->napi[RAVB_BE]);
1800 
1801 	/* Free all the skb's in the RX queue and the DMA buffers. */
1802 	ravb_ring_free(ndev, RAVB_BE);
1803 	ravb_ring_free(ndev, RAVB_NC);
1804 
1805 	return 0;
1806 }
1807 
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)1808 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1809 {
1810 	struct ravb_private *priv = netdev_priv(ndev);
1811 	struct hwtstamp_config config;
1812 
1813 	config.flags = 0;
1814 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1815 						HWTSTAMP_TX_OFF;
1816 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1817 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1818 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1819 		break;
1820 	case RAVB_RXTSTAMP_TYPE_ALL:
1821 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1822 		break;
1823 	default:
1824 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1825 	}
1826 
1827 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1828 		-EFAULT : 0;
1829 }
1830 
1831 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)1832 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1833 {
1834 	struct ravb_private *priv = netdev_priv(ndev);
1835 	struct hwtstamp_config config;
1836 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1837 	u32 tstamp_tx_ctrl;
1838 
1839 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1840 		return -EFAULT;
1841 
1842 	/* Reserved for future extensions */
1843 	if (config.flags)
1844 		return -EINVAL;
1845 
1846 	switch (config.tx_type) {
1847 	case HWTSTAMP_TX_OFF:
1848 		tstamp_tx_ctrl = 0;
1849 		break;
1850 	case HWTSTAMP_TX_ON:
1851 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1852 		break;
1853 	default:
1854 		return -ERANGE;
1855 	}
1856 
1857 	switch (config.rx_filter) {
1858 	case HWTSTAMP_FILTER_NONE:
1859 		tstamp_rx_ctrl = 0;
1860 		break;
1861 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1862 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1863 		break;
1864 	default:
1865 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1866 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1867 	}
1868 
1869 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1870 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1871 
1872 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1873 		-EFAULT : 0;
1874 }
1875 
1876 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)1877 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1878 {
1879 	struct phy_device *phydev = ndev->phydev;
1880 
1881 	if (!netif_running(ndev))
1882 		return -EINVAL;
1883 
1884 	if (!phydev)
1885 		return -ENODEV;
1886 
1887 	switch (cmd) {
1888 	case SIOCGHWTSTAMP:
1889 		return ravb_hwtstamp_get(ndev, req);
1890 	case SIOCSHWTSTAMP:
1891 		return ravb_hwtstamp_set(ndev, req);
1892 	}
1893 
1894 	return phy_mii_ioctl(phydev, req, cmd);
1895 }
1896 
ravb_change_mtu(struct net_device * ndev,int new_mtu)1897 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1898 {
1899 	struct ravb_private *priv = netdev_priv(ndev);
1900 
1901 	ndev->mtu = new_mtu;
1902 
1903 	if (netif_running(ndev)) {
1904 		synchronize_irq(priv->emac_irq);
1905 		ravb_emac_init(ndev);
1906 	}
1907 
1908 	netdev_update_features(ndev);
1909 
1910 	return 0;
1911 }
1912 
ravb_set_rx_csum(struct net_device * ndev,bool enable)1913 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1914 {
1915 	struct ravb_private *priv = netdev_priv(ndev);
1916 	unsigned long flags;
1917 
1918 	spin_lock_irqsave(&priv->lock, flags);
1919 
1920 	/* Disable TX and RX */
1921 	ravb_rcv_snd_disable(ndev);
1922 
1923 	/* Modify RX Checksum setting */
1924 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1925 
1926 	/* Enable TX and RX */
1927 	ravb_rcv_snd_enable(ndev);
1928 
1929 	spin_unlock_irqrestore(&priv->lock, flags);
1930 }
1931 
ravb_set_features_rx_csum(struct net_device * ndev,netdev_features_t features)1932 static int ravb_set_features_rx_csum(struct net_device *ndev,
1933 				     netdev_features_t features)
1934 {
1935 	netdev_features_t changed = ndev->features ^ features;
1936 
1937 	if (changed & NETIF_F_RXCSUM)
1938 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1939 
1940 	ndev->features = features;
1941 
1942 	return 0;
1943 }
1944 
ravb_set_features(struct net_device * ndev,netdev_features_t features)1945 static int ravb_set_features(struct net_device *ndev,
1946 			     netdev_features_t features)
1947 {
1948 	struct ravb_private *priv = netdev_priv(ndev);
1949 	const struct ravb_hw_info *info = priv->info;
1950 
1951 	return info->set_rx_csum_feature(ndev, features);
1952 }
1953 
1954 static const struct net_device_ops ravb_netdev_ops = {
1955 	.ndo_open		= ravb_open,
1956 	.ndo_stop		= ravb_close,
1957 	.ndo_start_xmit		= ravb_start_xmit,
1958 	.ndo_select_queue	= ravb_select_queue,
1959 	.ndo_get_stats		= ravb_get_stats,
1960 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1961 	.ndo_tx_timeout		= ravb_tx_timeout,
1962 	.ndo_eth_ioctl		= ravb_do_ioctl,
1963 	.ndo_change_mtu		= ravb_change_mtu,
1964 	.ndo_validate_addr	= eth_validate_addr,
1965 	.ndo_set_mac_address	= eth_mac_addr,
1966 	.ndo_set_features	= ravb_set_features,
1967 };
1968 
1969 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)1970 static int ravb_mdio_init(struct ravb_private *priv)
1971 {
1972 	struct platform_device *pdev = priv->pdev;
1973 	struct device *dev = &pdev->dev;
1974 	struct phy_device *phydev;
1975 	struct device_node *pn;
1976 	int error;
1977 
1978 	/* Bitbang init */
1979 	priv->mdiobb.ops = &bb_ops;
1980 
1981 	/* MII controller setting */
1982 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1983 	if (!priv->mii_bus)
1984 		return -ENOMEM;
1985 
1986 	/* Hook up MII support for ethtool */
1987 	priv->mii_bus->name = "ravb_mii";
1988 	priv->mii_bus->parent = dev;
1989 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1990 		 pdev->name, pdev->id);
1991 
1992 	/* Register MDIO bus */
1993 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1994 	if (error)
1995 		goto out_free_bus;
1996 
1997 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
1998 	phydev = of_phy_find_device(pn);
1999 	if (phydev) {
2000 		phydev->mac_managed_pm = true;
2001 		put_device(&phydev->mdio.dev);
2002 	}
2003 	of_node_put(pn);
2004 
2005 	return 0;
2006 
2007 out_free_bus:
2008 	free_mdio_bitbang(priv->mii_bus);
2009 	return error;
2010 }
2011 
2012 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2013 static int ravb_mdio_release(struct ravb_private *priv)
2014 {
2015 	/* Unregister mdio bus */
2016 	mdiobus_unregister(priv->mii_bus);
2017 
2018 	/* Free bitbang info */
2019 	free_mdio_bitbang(priv->mii_bus);
2020 
2021 	return 0;
2022 }
2023 
2024 static const struct ravb_hw_info ravb_gen3_hw_info = {
2025 	.rx_ring_free = ravb_rx_ring_free,
2026 	.rx_ring_format = ravb_rx_ring_format,
2027 	.alloc_rx_desc = ravb_alloc_rx_desc,
2028 	.receive = ravb_rcar_rx,
2029 	.set_rate = ravb_set_rate,
2030 	.set_rx_csum_feature = ravb_set_features_rx_csum,
2031 	.dmac_init = ravb_rcar_dmac_init,
2032 	.emac_init = ravb_rcar_emac_init,
2033 	.gstrings_stats = ravb_gstrings_stats,
2034 	.gstrings_size = sizeof(ravb_gstrings_stats),
2035 	.net_hw_features = NETIF_F_RXCSUM,
2036 	.net_features = NETIF_F_RXCSUM,
2037 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2038 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2039 	.internal_delay = 1,
2040 	.tx_counters = 1,
2041 	.multi_irqs = 1,
2042 	.ccc_gac = 1,
2043 };
2044 
2045 static const struct ravb_hw_info ravb_gen2_hw_info = {
2046 	.rx_ring_free = ravb_rx_ring_free,
2047 	.rx_ring_format = ravb_rx_ring_format,
2048 	.alloc_rx_desc = ravb_alloc_rx_desc,
2049 	.receive = ravb_rcar_rx,
2050 	.set_rate = ravb_set_rate,
2051 	.set_rx_csum_feature = ravb_set_features_rx_csum,
2052 	.dmac_init = ravb_rcar_dmac_init,
2053 	.emac_init = ravb_rcar_emac_init,
2054 	.gstrings_stats = ravb_gstrings_stats,
2055 	.gstrings_size = sizeof(ravb_gstrings_stats),
2056 	.net_hw_features = NETIF_F_RXCSUM,
2057 	.net_features = NETIF_F_RXCSUM,
2058 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2059 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2060 	.aligned_tx = 1,
2061 	.gptp = 1,
2062 };
2063 
2064 static const struct of_device_id ravb_match_table[] = {
2065 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2066 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2067 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2068 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2069 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2070 	{ }
2071 };
2072 MODULE_DEVICE_TABLE(of, ravb_match_table);
2073 
ravb_set_gti(struct net_device * ndev)2074 static int ravb_set_gti(struct net_device *ndev)
2075 {
2076 	struct ravb_private *priv = netdev_priv(ndev);
2077 	struct device *dev = ndev->dev.parent;
2078 	unsigned long rate;
2079 	uint64_t inc;
2080 
2081 	rate = clk_get_rate(priv->clk);
2082 	if (!rate)
2083 		return -EINVAL;
2084 
2085 	inc = div64_ul(1000000000ULL << 20, rate);
2086 
2087 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2088 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2089 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
2090 		return -EINVAL;
2091 	}
2092 
2093 	ravb_write(ndev, inc, GTI);
2094 
2095 	return 0;
2096 }
2097 
ravb_set_config_mode(struct net_device * ndev)2098 static void ravb_set_config_mode(struct net_device *ndev)
2099 {
2100 	struct ravb_private *priv = netdev_priv(ndev);
2101 	const struct ravb_hw_info *info = priv->info;
2102 
2103 	if (info->gptp) {
2104 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2105 		/* Set CSEL value */
2106 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2107 	} else {
2108 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2109 			    CCC_GAC | CCC_CSEL_HPB);
2110 	}
2111 }
2112 
2113 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)2114 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2115 {
2116 	struct ravb_private *priv = netdev_priv(ndev);
2117 	bool explicit_delay = false;
2118 	u32 delay;
2119 
2120 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2121 		/* Valid values are 0 and 1800, according to DT bindings */
2122 		priv->rxcidm = !!delay;
2123 		explicit_delay = true;
2124 	}
2125 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2126 		/* Valid values are 0 and 2000, according to DT bindings */
2127 		priv->txcidm = !!delay;
2128 		explicit_delay = true;
2129 	}
2130 
2131 	if (explicit_delay)
2132 		return;
2133 
2134 	/* Fall back to legacy rgmii-*id behavior */
2135 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2136 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2137 		priv->rxcidm = 1;
2138 		priv->rgmii_override = 1;
2139 	}
2140 
2141 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2142 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2143 		priv->txcidm = 1;
2144 		priv->rgmii_override = 1;
2145 	}
2146 }
2147 
ravb_set_delay_mode(struct net_device * ndev)2148 static void ravb_set_delay_mode(struct net_device *ndev)
2149 {
2150 	struct ravb_private *priv = netdev_priv(ndev);
2151 	u32 set = 0;
2152 
2153 	if (priv->rxcidm)
2154 		set |= APSR_RDM;
2155 	if (priv->txcidm)
2156 		set |= APSR_TDM;
2157 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2158 }
2159 
ravb_probe(struct platform_device * pdev)2160 static int ravb_probe(struct platform_device *pdev)
2161 {
2162 	struct device_node *np = pdev->dev.of_node;
2163 	const struct ravb_hw_info *info;
2164 	struct reset_control *rstc;
2165 	struct ravb_private *priv;
2166 	struct net_device *ndev;
2167 	int error, irq, q;
2168 	struct resource *res;
2169 	int i;
2170 
2171 	if (!np) {
2172 		dev_err(&pdev->dev,
2173 			"this driver is required to be instantiated from device tree\n");
2174 		return -EINVAL;
2175 	}
2176 
2177 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2178 	if (IS_ERR(rstc))
2179 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2180 				     "failed to get cpg reset\n");
2181 
2182 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2183 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2184 	if (!ndev)
2185 		return -ENOMEM;
2186 
2187 	info = of_device_get_match_data(&pdev->dev);
2188 
2189 	ndev->features = info->net_features;
2190 	ndev->hw_features = info->net_hw_features;
2191 
2192 	error = reset_control_deassert(rstc);
2193 	if (error)
2194 		goto out_free_netdev;
2195 
2196 	pm_runtime_enable(&pdev->dev);
2197 	error = pm_runtime_resume_and_get(&pdev->dev);
2198 	if (error < 0)
2199 		goto out_rpm_disable;
2200 
2201 	if (info->multi_irqs)
2202 		irq = platform_get_irq_byname(pdev, "ch22");
2203 	else
2204 		irq = platform_get_irq(pdev, 0);
2205 	if (irq < 0) {
2206 		error = irq;
2207 		goto out_release;
2208 	}
2209 	ndev->irq = irq;
2210 
2211 	SET_NETDEV_DEV(ndev, &pdev->dev);
2212 
2213 	priv = netdev_priv(ndev);
2214 	priv->info = info;
2215 	priv->rstc = rstc;
2216 	priv->ndev = ndev;
2217 	priv->pdev = pdev;
2218 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2219 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2220 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2221 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2222 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2223 	if (IS_ERR(priv->addr)) {
2224 		error = PTR_ERR(priv->addr);
2225 		goto out_release;
2226 	}
2227 
2228 	/* The Ether-specific entries in the device structure. */
2229 	ndev->base_addr = res->start;
2230 
2231 	spin_lock_init(&priv->lock);
2232 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2233 
2234 	error = of_get_phy_mode(np, &priv->phy_interface);
2235 	if (error && error != -ENODEV)
2236 		goto out_release;
2237 
2238 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2239 	priv->avb_link_active_low =
2240 		of_property_read_bool(np, "renesas,ether-link-active-low");
2241 
2242 	if (info->multi_irqs) {
2243 		irq = platform_get_irq_byname(pdev, "ch24");
2244 		if (irq < 0) {
2245 			error = irq;
2246 			goto out_release;
2247 		}
2248 		priv->emac_irq = irq;
2249 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2250 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2251 			if (irq < 0) {
2252 				error = irq;
2253 				goto out_release;
2254 			}
2255 			priv->rx_irqs[i] = irq;
2256 		}
2257 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2258 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2259 			if (irq < 0) {
2260 				error = irq;
2261 				goto out_release;
2262 			}
2263 			priv->tx_irqs[i] = irq;
2264 		}
2265 	}
2266 
2267 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2268 	if (IS_ERR(priv->clk)) {
2269 		error = PTR_ERR(priv->clk);
2270 		goto out_release;
2271 	}
2272 
2273 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2274 	if (IS_ERR(priv->refclk)) {
2275 		error = PTR_ERR(priv->refclk);
2276 		goto out_release;
2277 	}
2278 	clk_prepare_enable(priv->refclk);
2279 
2280 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2281 	ndev->min_mtu = ETH_MIN_MTU;
2282 
2283 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2284 	 * Use two descriptor to handle such situation. First descriptor to
2285 	 * handle aligned data buffer and second descriptor to handle the
2286 	 * overflow data because of alignment.
2287 	 */
2288 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2289 
2290 	/* Set function */
2291 	ndev->netdev_ops = &ravb_netdev_ops;
2292 	ndev->ethtool_ops = &ravb_ethtool_ops;
2293 
2294 	/* Set AVB config mode */
2295 	ravb_set_config_mode(ndev);
2296 
2297 	/* Set GTI value */
2298 	error = ravb_set_gti(ndev);
2299 	if (error)
2300 		goto out_disable_refclk;
2301 
2302 	/* Request GTI loading */
2303 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2304 
2305 	if (info->internal_delay) {
2306 		ravb_parse_delay_mode(np, ndev);
2307 		ravb_set_delay_mode(ndev);
2308 	}
2309 
2310 	/* Allocate descriptor base address table */
2311 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2312 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2313 					    &priv->desc_bat_dma, GFP_KERNEL);
2314 	if (!priv->desc_bat) {
2315 		dev_err(&pdev->dev,
2316 			"Cannot allocate desc base address table (size %d bytes)\n",
2317 			priv->desc_bat_size);
2318 		error = -ENOMEM;
2319 		goto out_disable_refclk;
2320 	}
2321 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2322 		priv->desc_bat[q].die_dt = DT_EOS;
2323 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2324 
2325 	/* Initialise HW timestamp list */
2326 	INIT_LIST_HEAD(&priv->ts_skb_list);
2327 
2328 	/* Initialise PTP Clock driver */
2329 	if (info->ccc_gac)
2330 		ravb_ptp_init(ndev, pdev);
2331 
2332 	/* Debug message level */
2333 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2334 
2335 	/* Read and set MAC address */
2336 	ravb_read_mac_address(np, ndev);
2337 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2338 		dev_warn(&pdev->dev,
2339 			 "no valid MAC address supplied, using a random one\n");
2340 		eth_hw_addr_random(ndev);
2341 	}
2342 
2343 	/* MDIO bus init */
2344 	error = ravb_mdio_init(priv);
2345 	if (error) {
2346 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2347 		goto out_dma_free;
2348 	}
2349 
2350 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2351 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2352 
2353 	/* Network device register */
2354 	error = register_netdev(ndev);
2355 	if (error)
2356 		goto out_napi_del;
2357 
2358 	device_set_wakeup_capable(&pdev->dev, 1);
2359 
2360 	/* Print device information */
2361 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2362 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2363 
2364 	platform_set_drvdata(pdev, ndev);
2365 
2366 	return 0;
2367 
2368 out_napi_del:
2369 	netif_napi_del(&priv->napi[RAVB_NC]);
2370 	netif_napi_del(&priv->napi[RAVB_BE]);
2371 	ravb_mdio_release(priv);
2372 out_dma_free:
2373 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2374 			  priv->desc_bat_dma);
2375 
2376 	/* Stop PTP Clock driver */
2377 	if (info->ccc_gac)
2378 		ravb_ptp_stop(ndev);
2379 out_disable_refclk:
2380 	clk_disable_unprepare(priv->refclk);
2381 out_release:
2382 	pm_runtime_put(&pdev->dev);
2383 out_rpm_disable:
2384 	pm_runtime_disable(&pdev->dev);
2385 	reset_control_assert(rstc);
2386 out_free_netdev:
2387 	free_netdev(ndev);
2388 	return error;
2389 }
2390 
ravb_remove(struct platform_device * pdev)2391 static int ravb_remove(struct platform_device *pdev)
2392 {
2393 	struct net_device *ndev = platform_get_drvdata(pdev);
2394 	struct ravb_private *priv = netdev_priv(ndev);
2395 	const struct ravb_hw_info *info = priv->info;
2396 
2397 	/* Stop PTP Clock driver */
2398 	if (info->ccc_gac)
2399 		ravb_ptp_stop(ndev);
2400 
2401 	clk_disable_unprepare(priv->refclk);
2402 
2403 	/* Set reset mode */
2404 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2405 	unregister_netdev(ndev);
2406 	netif_napi_del(&priv->napi[RAVB_NC]);
2407 	netif_napi_del(&priv->napi[RAVB_BE]);
2408 	ravb_mdio_release(priv);
2409 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2410 			  priv->desc_bat_dma);
2411 	pm_runtime_put_sync(&pdev->dev);
2412 	pm_runtime_disable(&pdev->dev);
2413 	reset_control_assert(priv->rstc);
2414 	free_netdev(ndev);
2415 	platform_set_drvdata(pdev, NULL);
2416 
2417 	return 0;
2418 }
2419 
ravb_wol_setup(struct net_device * ndev)2420 static int ravb_wol_setup(struct net_device *ndev)
2421 {
2422 	struct ravb_private *priv = netdev_priv(ndev);
2423 
2424 	/* Disable interrupts by clearing the interrupt masks. */
2425 	ravb_write(ndev, 0, RIC0);
2426 	ravb_write(ndev, 0, RIC2);
2427 	ravb_write(ndev, 0, TIC);
2428 
2429 	/* Only allow ECI interrupts */
2430 	synchronize_irq(priv->emac_irq);
2431 	napi_disable(&priv->napi[RAVB_NC]);
2432 	napi_disable(&priv->napi[RAVB_BE]);
2433 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2434 
2435 	/* Enable MagicPacket */
2436 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2437 
2438 	return enable_irq_wake(priv->emac_irq);
2439 }
2440 
ravb_wol_restore(struct net_device * ndev)2441 static int ravb_wol_restore(struct net_device *ndev)
2442 {
2443 	struct ravb_private *priv = netdev_priv(ndev);
2444 	int ret;
2445 
2446 	napi_enable(&priv->napi[RAVB_NC]);
2447 	napi_enable(&priv->napi[RAVB_BE]);
2448 
2449 	/* Disable MagicPacket */
2450 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2451 
2452 	ret = ravb_close(ndev);
2453 	if (ret < 0)
2454 		return ret;
2455 
2456 	return disable_irq_wake(priv->emac_irq);
2457 }
2458 
ravb_suspend(struct device * dev)2459 static int __maybe_unused ravb_suspend(struct device *dev)
2460 {
2461 	struct net_device *ndev = dev_get_drvdata(dev);
2462 	struct ravb_private *priv = netdev_priv(ndev);
2463 	int ret;
2464 
2465 	if (!netif_running(ndev))
2466 		return 0;
2467 
2468 	netif_device_detach(ndev);
2469 
2470 	if (priv->wol_enabled)
2471 		ret = ravb_wol_setup(ndev);
2472 	else
2473 		ret = ravb_close(ndev);
2474 
2475 	if (priv->info->ccc_gac)
2476 		ravb_ptp_stop(ndev);
2477 
2478 	return ret;
2479 }
2480 
ravb_resume(struct device * dev)2481 static int __maybe_unused ravb_resume(struct device *dev)
2482 {
2483 	struct net_device *ndev = dev_get_drvdata(dev);
2484 	struct ravb_private *priv = netdev_priv(ndev);
2485 	const struct ravb_hw_info *info = priv->info;
2486 	int ret = 0;
2487 
2488 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2489 	if (priv->wol_enabled)
2490 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2491 
2492 	/* All register have been reset to default values.
2493 	 * Restore all registers which where setup at probe time and
2494 	 * reopen device if it was running before system suspended.
2495 	 */
2496 
2497 	/* Set AVB config mode */
2498 	ravb_set_config_mode(ndev);
2499 
2500 	/* Set GTI value */
2501 	ret = ravb_set_gti(ndev);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/* Request GTI loading */
2506 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2507 
2508 	if (info->internal_delay)
2509 		ravb_set_delay_mode(ndev);
2510 
2511 	/* Restore descriptor base address table */
2512 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2513 
2514 	if (priv->info->ccc_gac)
2515 		ravb_ptp_init(ndev, priv->pdev);
2516 
2517 	if (netif_running(ndev)) {
2518 		if (priv->wol_enabled) {
2519 			ret = ravb_wol_restore(ndev);
2520 			if (ret)
2521 				return ret;
2522 		}
2523 		ret = ravb_open(ndev);
2524 		if (ret < 0)
2525 			return ret;
2526 		ravb_set_rx_mode(ndev);
2527 		netif_device_attach(ndev);
2528 	}
2529 
2530 	return ret;
2531 }
2532 
ravb_runtime_nop(struct device * dev)2533 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2534 {
2535 	/* Runtime PM callback shared between ->runtime_suspend()
2536 	 * and ->runtime_resume(). Simply returns success.
2537 	 *
2538 	 * This driver re-initializes all registers after
2539 	 * pm_runtime_get_sync() anyway so there is no need
2540 	 * to save and restore registers here.
2541 	 */
2542 	return 0;
2543 }
2544 
2545 static const struct dev_pm_ops ravb_dev_pm_ops = {
2546 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2547 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2548 };
2549 
2550 static struct platform_driver ravb_driver = {
2551 	.probe		= ravb_probe,
2552 	.remove		= ravb_remove,
2553 	.driver = {
2554 		.name	= "ravb",
2555 		.pm	= &ravb_dev_pm_ops,
2556 		.of_match_table = ravb_match_table,
2557 	},
2558 };
2559 
2560 module_platform_driver(ravb_driver);
2561 
2562 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2563 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2564 MODULE_LICENSE("GPL v2");
2565