• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "sfp.h"
22 #include "swphy.h"
23 
24 enum {
25 	GPIO_MODDEF0,
26 	GPIO_LOS,
27 	GPIO_TX_FAULT,
28 	GPIO_TX_DISABLE,
29 	GPIO_RATE_SELECT,
30 	GPIO_MAX,
31 
32 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 	SFP_F_LOS = BIT(GPIO_LOS),
34 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37 
38 	SFP_E_INSERT = 0,
39 	SFP_E_REMOVE,
40 	SFP_E_DEV_ATTACH,
41 	SFP_E_DEV_DETACH,
42 	SFP_E_DEV_DOWN,
43 	SFP_E_DEV_UP,
44 	SFP_E_TX_FAULT,
45 	SFP_E_TX_CLEAR,
46 	SFP_E_LOS_HIGH,
47 	SFP_E_LOS_LOW,
48 	SFP_E_TIMEOUT,
49 
50 	SFP_MOD_EMPTY = 0,
51 	SFP_MOD_ERROR,
52 	SFP_MOD_PROBE,
53 	SFP_MOD_WAITDEV,
54 	SFP_MOD_HPOWER,
55 	SFP_MOD_WAITPWR,
56 	SFP_MOD_PRESENT,
57 
58 	SFP_DEV_DETACHED = 0,
59 	SFP_DEV_DOWN,
60 	SFP_DEV_UP,
61 
62 	SFP_S_DOWN = 0,
63 	SFP_S_FAIL,
64 	SFP_S_WAIT,
65 	SFP_S_INIT,
66 	SFP_S_INIT_PHY,
67 	SFP_S_INIT_TX_FAULT,
68 	SFP_S_WAIT_LOS,
69 	SFP_S_LINK_UP,
70 	SFP_S_TX_FAULT,
71 	SFP_S_REINIT,
72 	SFP_S_TX_DISABLE,
73 };
74 
75 static const char  * const mod_state_strings[] = {
76 	[SFP_MOD_EMPTY] = "empty",
77 	[SFP_MOD_ERROR] = "error",
78 	[SFP_MOD_PROBE] = "probe",
79 	[SFP_MOD_WAITDEV] = "waitdev",
80 	[SFP_MOD_HPOWER] = "hpower",
81 	[SFP_MOD_WAITPWR] = "waitpwr",
82 	[SFP_MOD_PRESENT] = "present",
83 };
84 
mod_state_to_str(unsigned short mod_state)85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 		return "Unknown module state";
89 	return mod_state_strings[mod_state];
90 }
91 
92 static const char * const dev_state_strings[] = {
93 	[SFP_DEV_DETACHED] = "detached",
94 	[SFP_DEV_DOWN] = "down",
95 	[SFP_DEV_UP] = "up",
96 };
97 
dev_state_to_str(unsigned short dev_state)98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 		return "Unknown device state";
102 	return dev_state_strings[dev_state];
103 }
104 
105 static const char * const event_strings[] = {
106 	[SFP_E_INSERT] = "insert",
107 	[SFP_E_REMOVE] = "remove",
108 	[SFP_E_DEV_ATTACH] = "dev_attach",
109 	[SFP_E_DEV_DETACH] = "dev_detach",
110 	[SFP_E_DEV_DOWN] = "dev_down",
111 	[SFP_E_DEV_UP] = "dev_up",
112 	[SFP_E_TX_FAULT] = "tx_fault",
113 	[SFP_E_TX_CLEAR] = "tx_clear",
114 	[SFP_E_LOS_HIGH] = "los_high",
115 	[SFP_E_LOS_LOW] = "los_low",
116 	[SFP_E_TIMEOUT] = "timeout",
117 };
118 
event_to_str(unsigned short event)119 static const char *event_to_str(unsigned short event)
120 {
121 	if (event >= ARRAY_SIZE(event_strings))
122 		return "Unknown event";
123 	return event_strings[event];
124 }
125 
126 static const char * const sm_state_strings[] = {
127 	[SFP_S_DOWN] = "down",
128 	[SFP_S_FAIL] = "fail",
129 	[SFP_S_WAIT] = "wait",
130 	[SFP_S_INIT] = "init",
131 	[SFP_S_INIT_PHY] = "init_phy",
132 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 	[SFP_S_WAIT_LOS] = "wait_los",
134 	[SFP_S_LINK_UP] = "link_up",
135 	[SFP_S_TX_FAULT] = "tx_fault",
136 	[SFP_S_REINIT] = "reinit",
137 	[SFP_S_TX_DISABLE] = "tx_disable",
138 };
139 
sm_state_to_str(unsigned short sm_state)140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 		return "Unknown state";
144 	return sm_state_strings[sm_state];
145 }
146 
147 static const char *gpio_of_names[] = {
148 	"mod-def0",
149 	"los",
150 	"tx-fault",
151 	"tx-disable",
152 	"rate-select0",
153 };
154 
155 static const enum gpiod_flags gpio_flags[] = {
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_IN,
159 	GPIOD_ASIS,
160 	GPIOD_ASIS,
161 };
162 
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT			msecs_to_jiffies(50)
169 #define T_START_UP		msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
171 
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US		10
176 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
177 
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT		5
184 #define N_FAULT			5
185 
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY		msecs_to_jiffies(50)
190 #define R_PHY_RETRY		12
191 
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL		msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT	10
203 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW	12
205 
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR	22
210 
211 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
212  * at a time. Some SFP modules and also some Linux I2C drivers do not like
213  * reads longer than 16 bytes.
214  */
215 #define SFP_EEPROM_BLOCK_SIZE	16
216 
217 struct sff_data {
218 	unsigned int gpios;
219 	bool (*module_supported)(const struct sfp_eeprom_id *id);
220 };
221 
222 struct sfp {
223 	struct device *dev;
224 	struct i2c_adapter *i2c;
225 	struct mii_bus *i2c_mii;
226 	struct sfp_bus *sfp_bus;
227 	struct phy_device *mod_phy;
228 	const struct sff_data *type;
229 	size_t i2c_block_size;
230 	u32 max_power_mW;
231 
232 	unsigned int (*get_state)(struct sfp *);
233 	void (*set_state)(struct sfp *, unsigned int);
234 	int (*read)(struct sfp *, bool, u8, void *, size_t);
235 	int (*write)(struct sfp *, bool, u8, void *, size_t);
236 
237 	struct gpio_desc *gpio[GPIO_MAX];
238 	int gpio_irq[GPIO_MAX];
239 
240 	bool need_poll;
241 
242 	struct mutex st_mutex;			/* Protects state */
243 	unsigned int state_soft_mask;
244 	unsigned int state;
245 	struct delayed_work poll;
246 	struct delayed_work timeout;
247 	struct mutex sm_mutex;			/* Protects state machine */
248 	unsigned char sm_mod_state;
249 	unsigned char sm_mod_tries_init;
250 	unsigned char sm_mod_tries;
251 	unsigned char sm_dev_state;
252 	unsigned short sm_state;
253 	unsigned char sm_fault_retries;
254 	unsigned char sm_phy_retries;
255 
256 	struct sfp_eeprom_id id;
257 	unsigned int module_power_mW;
258 	unsigned int module_t_start_up;
259 	bool tx_fault_ignore;
260 
261 #if IS_ENABLED(CONFIG_HWMON)
262 	struct sfp_diag diag;
263 	struct delayed_work hwmon_probe;
264 	unsigned int hwmon_tries;
265 	struct device *hwmon_dev;
266 	char *hwmon_name;
267 #endif
268 
269 #if IS_ENABLED(CONFIG_DEBUG_FS)
270 	struct dentry *debugfs_dir;
271 #endif
272 };
273 
sff_module_supported(const struct sfp_eeprom_id * id)274 static bool sff_module_supported(const struct sfp_eeprom_id *id)
275 {
276 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
277 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
278 }
279 
280 static const struct sff_data sff_data = {
281 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
282 	.module_supported = sff_module_supported,
283 };
284 
sfp_module_supported(const struct sfp_eeprom_id * id)285 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
286 {
287 	if (id->base.phys_id == SFF8024_ID_SFP &&
288 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
289 		return true;
290 
291 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
292 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
293 	 * as supported based on vendor name and pn match.
294 	 */
295 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
296 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
297 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
298 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
299 		return true;
300 
301 	return false;
302 }
303 
304 static const struct sff_data sfp_data = {
305 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
306 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
307 	.module_supported = sfp_module_supported,
308 };
309 
310 static const struct of_device_id sfp_of_match[] = {
311 	{ .compatible = "sff,sff", .data = &sff_data, },
312 	{ .compatible = "sff,sfp", .data = &sfp_data, },
313 	{ },
314 };
315 MODULE_DEVICE_TABLE(of, sfp_of_match);
316 
317 static unsigned long poll_jiffies;
318 
sfp_gpio_get_state(struct sfp * sfp)319 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
320 {
321 	unsigned int i, state, v;
322 
323 	for (i = state = 0; i < GPIO_MAX; i++) {
324 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
325 			continue;
326 
327 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
328 		if (v)
329 			state |= BIT(i);
330 	}
331 
332 	return state;
333 }
334 
sff_gpio_get_state(struct sfp * sfp)335 static unsigned int sff_gpio_get_state(struct sfp *sfp)
336 {
337 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
338 }
339 
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)340 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
341 {
342 	if (state & SFP_F_PRESENT) {
343 		/* If the module is present, drive the signals */
344 		if (sfp->gpio[GPIO_TX_DISABLE])
345 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
346 					       state & SFP_F_TX_DISABLE);
347 		if (state & SFP_F_RATE_SELECT)
348 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
349 					       state & SFP_F_RATE_SELECT);
350 	} else {
351 		/* Otherwise, let them float to the pull-ups */
352 		if (sfp->gpio[GPIO_TX_DISABLE])
353 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
354 		if (state & SFP_F_RATE_SELECT)
355 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
356 	}
357 }
358 
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)359 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
360 			size_t len)
361 {
362 	struct i2c_msg msgs[2];
363 	u8 bus_addr = a2 ? 0x51 : 0x50;
364 	size_t block_size = sfp->i2c_block_size;
365 	size_t this_len;
366 	int ret;
367 
368 	msgs[0].addr = bus_addr;
369 	msgs[0].flags = 0;
370 	msgs[0].len = 1;
371 	msgs[0].buf = &dev_addr;
372 	msgs[1].addr = bus_addr;
373 	msgs[1].flags = I2C_M_RD;
374 	msgs[1].len = len;
375 	msgs[1].buf = buf;
376 
377 	while (len) {
378 		this_len = len;
379 		if (this_len > block_size)
380 			this_len = block_size;
381 
382 		msgs[1].len = this_len;
383 
384 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
385 		if (ret < 0)
386 			return ret;
387 
388 		if (ret != ARRAY_SIZE(msgs))
389 			break;
390 
391 		msgs[1].buf += this_len;
392 		dev_addr += this_len;
393 		len -= this_len;
394 	}
395 
396 	return msgs[1].buf - (u8 *)buf;
397 }
398 
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)399 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
400 	size_t len)
401 {
402 	struct i2c_msg msgs[1];
403 	u8 bus_addr = a2 ? 0x51 : 0x50;
404 	int ret;
405 
406 	msgs[0].addr = bus_addr;
407 	msgs[0].flags = 0;
408 	msgs[0].len = 1 + len;
409 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
410 	if (!msgs[0].buf)
411 		return -ENOMEM;
412 
413 	msgs[0].buf[0] = dev_addr;
414 	memcpy(&msgs[0].buf[1], buf, len);
415 
416 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
417 
418 	kfree(msgs[0].buf);
419 
420 	if (ret < 0)
421 		return ret;
422 
423 	return ret == ARRAY_SIZE(msgs) ? len : 0;
424 }
425 
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)426 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
427 {
428 	struct mii_bus *i2c_mii;
429 	int ret;
430 
431 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
432 		return -EINVAL;
433 
434 	sfp->i2c = i2c;
435 	sfp->read = sfp_i2c_read;
436 	sfp->write = sfp_i2c_write;
437 
438 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
439 	if (IS_ERR(i2c_mii))
440 		return PTR_ERR(i2c_mii);
441 
442 	i2c_mii->name = "SFP I2C Bus";
443 	i2c_mii->phy_mask = ~0;
444 
445 	ret = mdiobus_register(i2c_mii);
446 	if (ret < 0) {
447 		mdiobus_free(i2c_mii);
448 		return ret;
449 	}
450 
451 	sfp->i2c_mii = i2c_mii;
452 
453 	return 0;
454 }
455 
456 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)457 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
458 {
459 	return sfp->read(sfp, a2, addr, buf, len);
460 }
461 
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)462 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
463 {
464 	return sfp->write(sfp, a2, addr, buf, len);
465 }
466 
sfp_soft_get_state(struct sfp * sfp)467 static unsigned int sfp_soft_get_state(struct sfp *sfp)
468 {
469 	unsigned int state = 0;
470 	u8 status;
471 	int ret;
472 
473 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
474 	if (ret == sizeof(status)) {
475 		if (status & SFP_STATUS_RX_LOS)
476 			state |= SFP_F_LOS;
477 		if (status & SFP_STATUS_TX_FAULT)
478 			state |= SFP_F_TX_FAULT;
479 	} else {
480 		dev_err_ratelimited(sfp->dev,
481 				    "failed to read SFP soft status: %d\n",
482 				    ret);
483 		/* Preserve the current state */
484 		state = sfp->state;
485 	}
486 
487 	return state & sfp->state_soft_mask;
488 }
489 
sfp_soft_set_state(struct sfp * sfp,unsigned int state)490 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
491 {
492 	u8 status;
493 
494 	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
495 		     sizeof(status)) {
496 		if (state & SFP_F_TX_DISABLE)
497 			status |= SFP_STATUS_TX_DISABLE_FORCE;
498 		else
499 			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
500 
501 		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
502 	}
503 }
504 
sfp_soft_start_poll(struct sfp * sfp)505 static void sfp_soft_start_poll(struct sfp *sfp)
506 {
507 	const struct sfp_eeprom_id *id = &sfp->id;
508 
509 	sfp->state_soft_mask = 0;
510 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
511 	    !sfp->gpio[GPIO_TX_DISABLE])
512 		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
513 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
514 	    !sfp->gpio[GPIO_TX_FAULT])
515 		sfp->state_soft_mask |= SFP_F_TX_FAULT;
516 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
517 	    !sfp->gpio[GPIO_LOS])
518 		sfp->state_soft_mask |= SFP_F_LOS;
519 
520 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
521 	    !sfp->need_poll)
522 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
523 }
524 
sfp_soft_stop_poll(struct sfp * sfp)525 static void sfp_soft_stop_poll(struct sfp *sfp)
526 {
527 	sfp->state_soft_mask = 0;
528 }
529 
sfp_get_state(struct sfp * sfp)530 static unsigned int sfp_get_state(struct sfp *sfp)
531 {
532 	unsigned int state = sfp->get_state(sfp);
533 
534 	if (state & SFP_F_PRESENT &&
535 	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
536 		state |= sfp_soft_get_state(sfp);
537 
538 	return state;
539 }
540 
sfp_set_state(struct sfp * sfp,unsigned int state)541 static void sfp_set_state(struct sfp *sfp, unsigned int state)
542 {
543 	sfp->set_state(sfp, state);
544 
545 	if (state & SFP_F_PRESENT &&
546 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
547 		sfp_soft_set_state(sfp, state);
548 }
549 
sfp_check(void * buf,size_t len)550 static unsigned int sfp_check(void *buf, size_t len)
551 {
552 	u8 *p, check;
553 
554 	for (p = buf, check = 0; len; p++, len--)
555 		check += *p;
556 
557 	return check;
558 }
559 
560 /* hwmon */
561 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)562 static umode_t sfp_hwmon_is_visible(const void *data,
563 				    enum hwmon_sensor_types type,
564 				    u32 attr, int channel)
565 {
566 	const struct sfp *sfp = data;
567 
568 	switch (type) {
569 	case hwmon_temp:
570 		switch (attr) {
571 		case hwmon_temp_min_alarm:
572 		case hwmon_temp_max_alarm:
573 		case hwmon_temp_lcrit_alarm:
574 		case hwmon_temp_crit_alarm:
575 		case hwmon_temp_min:
576 		case hwmon_temp_max:
577 		case hwmon_temp_lcrit:
578 		case hwmon_temp_crit:
579 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
580 				return 0;
581 			fallthrough;
582 		case hwmon_temp_input:
583 		case hwmon_temp_label:
584 			return 0444;
585 		default:
586 			return 0;
587 		}
588 	case hwmon_in:
589 		switch (attr) {
590 		case hwmon_in_min_alarm:
591 		case hwmon_in_max_alarm:
592 		case hwmon_in_lcrit_alarm:
593 		case hwmon_in_crit_alarm:
594 		case hwmon_in_min:
595 		case hwmon_in_max:
596 		case hwmon_in_lcrit:
597 		case hwmon_in_crit:
598 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
599 				return 0;
600 			fallthrough;
601 		case hwmon_in_input:
602 		case hwmon_in_label:
603 			return 0444;
604 		default:
605 			return 0;
606 		}
607 	case hwmon_curr:
608 		switch (attr) {
609 		case hwmon_curr_min_alarm:
610 		case hwmon_curr_max_alarm:
611 		case hwmon_curr_lcrit_alarm:
612 		case hwmon_curr_crit_alarm:
613 		case hwmon_curr_min:
614 		case hwmon_curr_max:
615 		case hwmon_curr_lcrit:
616 		case hwmon_curr_crit:
617 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
618 				return 0;
619 			fallthrough;
620 		case hwmon_curr_input:
621 		case hwmon_curr_label:
622 			return 0444;
623 		default:
624 			return 0;
625 		}
626 	case hwmon_power:
627 		/* External calibration of receive power requires
628 		 * floating point arithmetic. Doing that in the kernel
629 		 * is not easy, so just skip it. If the module does
630 		 * not require external calibration, we can however
631 		 * show receiver power, since FP is then not needed.
632 		 */
633 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
634 		    channel == 1)
635 			return 0;
636 		switch (attr) {
637 		case hwmon_power_min_alarm:
638 		case hwmon_power_max_alarm:
639 		case hwmon_power_lcrit_alarm:
640 		case hwmon_power_crit_alarm:
641 		case hwmon_power_min:
642 		case hwmon_power_max:
643 		case hwmon_power_lcrit:
644 		case hwmon_power_crit:
645 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
646 				return 0;
647 			fallthrough;
648 		case hwmon_power_input:
649 		case hwmon_power_label:
650 			return 0444;
651 		default:
652 			return 0;
653 		}
654 	default:
655 		return 0;
656 	}
657 }
658 
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)659 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
660 {
661 	__be16 val;
662 	int err;
663 
664 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
665 	if (err < 0)
666 		return err;
667 
668 	*value = be16_to_cpu(val);
669 
670 	return 0;
671 }
672 
sfp_hwmon_to_rx_power(long * value)673 static void sfp_hwmon_to_rx_power(long *value)
674 {
675 	*value = DIV_ROUND_CLOSEST(*value, 10);
676 }
677 
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)678 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
679 				long *value)
680 {
681 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
682 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
683 }
684 
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)685 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
686 {
687 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
688 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
689 
690 	if (*value >= 0x8000)
691 		*value -= 0x10000;
692 
693 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
694 }
695 
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)696 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
697 {
698 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
699 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
700 
701 	*value = DIV_ROUND_CLOSEST(*value, 10);
702 }
703 
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)704 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
705 {
706 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
707 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
708 
709 	*value = DIV_ROUND_CLOSEST(*value, 500);
710 }
711 
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)712 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
713 {
714 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
715 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
716 
717 	*value = DIV_ROUND_CLOSEST(*value, 10);
718 }
719 
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)720 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
721 {
722 	int err;
723 
724 	err = sfp_hwmon_read_sensor(sfp, reg, value);
725 	if (err < 0)
726 		return err;
727 
728 	sfp_hwmon_calibrate_temp(sfp, value);
729 
730 	return 0;
731 }
732 
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)733 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
734 {
735 	int err;
736 
737 	err = sfp_hwmon_read_sensor(sfp, reg, value);
738 	if (err < 0)
739 		return err;
740 
741 	sfp_hwmon_calibrate_vcc(sfp, value);
742 
743 	return 0;
744 }
745 
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)746 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
747 {
748 	int err;
749 
750 	err = sfp_hwmon_read_sensor(sfp, reg, value);
751 	if (err < 0)
752 		return err;
753 
754 	sfp_hwmon_calibrate_bias(sfp, value);
755 
756 	return 0;
757 }
758 
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)759 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
760 {
761 	int err;
762 
763 	err = sfp_hwmon_read_sensor(sfp, reg, value);
764 	if (err < 0)
765 		return err;
766 
767 	sfp_hwmon_calibrate_tx_power(sfp, value);
768 
769 	return 0;
770 }
771 
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)772 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
773 {
774 	int err;
775 
776 	err = sfp_hwmon_read_sensor(sfp, reg, value);
777 	if (err < 0)
778 		return err;
779 
780 	sfp_hwmon_to_rx_power(value);
781 
782 	return 0;
783 }
784 
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)785 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
786 {
787 	u8 status;
788 	int err;
789 
790 	switch (attr) {
791 	case hwmon_temp_input:
792 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
793 
794 	case hwmon_temp_lcrit:
795 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
796 		sfp_hwmon_calibrate_temp(sfp, value);
797 		return 0;
798 
799 	case hwmon_temp_min:
800 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
801 		sfp_hwmon_calibrate_temp(sfp, value);
802 		return 0;
803 	case hwmon_temp_max:
804 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
805 		sfp_hwmon_calibrate_temp(sfp, value);
806 		return 0;
807 
808 	case hwmon_temp_crit:
809 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
810 		sfp_hwmon_calibrate_temp(sfp, value);
811 		return 0;
812 
813 	case hwmon_temp_lcrit_alarm:
814 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
815 		if (err < 0)
816 			return err;
817 
818 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
819 		return 0;
820 
821 	case hwmon_temp_min_alarm:
822 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
823 		if (err < 0)
824 			return err;
825 
826 		*value = !!(status & SFP_WARN0_TEMP_LOW);
827 		return 0;
828 
829 	case hwmon_temp_max_alarm:
830 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
831 		if (err < 0)
832 			return err;
833 
834 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
835 		return 0;
836 
837 	case hwmon_temp_crit_alarm:
838 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
839 		if (err < 0)
840 			return err;
841 
842 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
843 		return 0;
844 	default:
845 		return -EOPNOTSUPP;
846 	}
847 
848 	return -EOPNOTSUPP;
849 }
850 
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)851 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
852 {
853 	u8 status;
854 	int err;
855 
856 	switch (attr) {
857 	case hwmon_in_input:
858 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
859 
860 	case hwmon_in_lcrit:
861 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
862 		sfp_hwmon_calibrate_vcc(sfp, value);
863 		return 0;
864 
865 	case hwmon_in_min:
866 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
867 		sfp_hwmon_calibrate_vcc(sfp, value);
868 		return 0;
869 
870 	case hwmon_in_max:
871 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
872 		sfp_hwmon_calibrate_vcc(sfp, value);
873 		return 0;
874 
875 	case hwmon_in_crit:
876 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
877 		sfp_hwmon_calibrate_vcc(sfp, value);
878 		return 0;
879 
880 	case hwmon_in_lcrit_alarm:
881 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
882 		if (err < 0)
883 			return err;
884 
885 		*value = !!(status & SFP_ALARM0_VCC_LOW);
886 		return 0;
887 
888 	case hwmon_in_min_alarm:
889 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
890 		if (err < 0)
891 			return err;
892 
893 		*value = !!(status & SFP_WARN0_VCC_LOW);
894 		return 0;
895 
896 	case hwmon_in_max_alarm:
897 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
898 		if (err < 0)
899 			return err;
900 
901 		*value = !!(status & SFP_WARN0_VCC_HIGH);
902 		return 0;
903 
904 	case hwmon_in_crit_alarm:
905 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
906 		if (err < 0)
907 			return err;
908 
909 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
910 		return 0;
911 	default:
912 		return -EOPNOTSUPP;
913 	}
914 
915 	return -EOPNOTSUPP;
916 }
917 
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)918 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
919 {
920 	u8 status;
921 	int err;
922 
923 	switch (attr) {
924 	case hwmon_curr_input:
925 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
926 
927 	case hwmon_curr_lcrit:
928 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
929 		sfp_hwmon_calibrate_bias(sfp, value);
930 		return 0;
931 
932 	case hwmon_curr_min:
933 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
934 		sfp_hwmon_calibrate_bias(sfp, value);
935 		return 0;
936 
937 	case hwmon_curr_max:
938 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
939 		sfp_hwmon_calibrate_bias(sfp, value);
940 		return 0;
941 
942 	case hwmon_curr_crit:
943 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
944 		sfp_hwmon_calibrate_bias(sfp, value);
945 		return 0;
946 
947 	case hwmon_curr_lcrit_alarm:
948 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
949 		if (err < 0)
950 			return err;
951 
952 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
953 		return 0;
954 
955 	case hwmon_curr_min_alarm:
956 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
957 		if (err < 0)
958 			return err;
959 
960 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
961 		return 0;
962 
963 	case hwmon_curr_max_alarm:
964 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
965 		if (err < 0)
966 			return err;
967 
968 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
969 		return 0;
970 
971 	case hwmon_curr_crit_alarm:
972 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
973 		if (err < 0)
974 			return err;
975 
976 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
977 		return 0;
978 	default:
979 		return -EOPNOTSUPP;
980 	}
981 
982 	return -EOPNOTSUPP;
983 }
984 
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)985 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
986 {
987 	u8 status;
988 	int err;
989 
990 	switch (attr) {
991 	case hwmon_power_input:
992 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
993 
994 	case hwmon_power_lcrit:
995 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
996 		sfp_hwmon_calibrate_tx_power(sfp, value);
997 		return 0;
998 
999 	case hwmon_power_min:
1000 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1001 		sfp_hwmon_calibrate_tx_power(sfp, value);
1002 		return 0;
1003 
1004 	case hwmon_power_max:
1005 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1006 		sfp_hwmon_calibrate_tx_power(sfp, value);
1007 		return 0;
1008 
1009 	case hwmon_power_crit:
1010 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1011 		sfp_hwmon_calibrate_tx_power(sfp, value);
1012 		return 0;
1013 
1014 	case hwmon_power_lcrit_alarm:
1015 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1016 		if (err < 0)
1017 			return err;
1018 
1019 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1020 		return 0;
1021 
1022 	case hwmon_power_min_alarm:
1023 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1024 		if (err < 0)
1025 			return err;
1026 
1027 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1028 		return 0;
1029 
1030 	case hwmon_power_max_alarm:
1031 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1032 		if (err < 0)
1033 			return err;
1034 
1035 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1036 		return 0;
1037 
1038 	case hwmon_power_crit_alarm:
1039 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1040 		if (err < 0)
1041 			return err;
1042 
1043 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1044 		return 0;
1045 	default:
1046 		return -EOPNOTSUPP;
1047 	}
1048 
1049 	return -EOPNOTSUPP;
1050 }
1051 
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1052 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1053 {
1054 	u8 status;
1055 	int err;
1056 
1057 	switch (attr) {
1058 	case hwmon_power_input:
1059 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1060 
1061 	case hwmon_power_lcrit:
1062 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1063 		sfp_hwmon_to_rx_power(value);
1064 		return 0;
1065 
1066 	case hwmon_power_min:
1067 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1068 		sfp_hwmon_to_rx_power(value);
1069 		return 0;
1070 
1071 	case hwmon_power_max:
1072 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1073 		sfp_hwmon_to_rx_power(value);
1074 		return 0;
1075 
1076 	case hwmon_power_crit:
1077 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1078 		sfp_hwmon_to_rx_power(value);
1079 		return 0;
1080 
1081 	case hwmon_power_lcrit_alarm:
1082 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1083 		if (err < 0)
1084 			return err;
1085 
1086 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1087 		return 0;
1088 
1089 	case hwmon_power_min_alarm:
1090 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1091 		if (err < 0)
1092 			return err;
1093 
1094 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1095 		return 0;
1096 
1097 	case hwmon_power_max_alarm:
1098 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1099 		if (err < 0)
1100 			return err;
1101 
1102 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1103 		return 0;
1104 
1105 	case hwmon_power_crit_alarm:
1106 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1107 		if (err < 0)
1108 			return err;
1109 
1110 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1111 		return 0;
1112 	default:
1113 		return -EOPNOTSUPP;
1114 	}
1115 
1116 	return -EOPNOTSUPP;
1117 }
1118 
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1119 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1120 			  u32 attr, int channel, long *value)
1121 {
1122 	struct sfp *sfp = dev_get_drvdata(dev);
1123 
1124 	switch (type) {
1125 	case hwmon_temp:
1126 		return sfp_hwmon_temp(sfp, attr, value);
1127 	case hwmon_in:
1128 		return sfp_hwmon_vcc(sfp, attr, value);
1129 	case hwmon_curr:
1130 		return sfp_hwmon_bias(sfp, attr, value);
1131 	case hwmon_power:
1132 		switch (channel) {
1133 		case 0:
1134 			return sfp_hwmon_tx_power(sfp, attr, value);
1135 		case 1:
1136 			return sfp_hwmon_rx_power(sfp, attr, value);
1137 		default:
1138 			return -EOPNOTSUPP;
1139 		}
1140 	default:
1141 		return -EOPNOTSUPP;
1142 	}
1143 }
1144 
1145 static const char *const sfp_hwmon_power_labels[] = {
1146 	"TX_power",
1147 	"RX_power",
1148 };
1149 
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1150 static int sfp_hwmon_read_string(struct device *dev,
1151 				 enum hwmon_sensor_types type,
1152 				 u32 attr, int channel, const char **str)
1153 {
1154 	switch (type) {
1155 	case hwmon_curr:
1156 		switch (attr) {
1157 		case hwmon_curr_label:
1158 			*str = "bias";
1159 			return 0;
1160 		default:
1161 			return -EOPNOTSUPP;
1162 		}
1163 		break;
1164 	case hwmon_temp:
1165 		switch (attr) {
1166 		case hwmon_temp_label:
1167 			*str = "temperature";
1168 			return 0;
1169 		default:
1170 			return -EOPNOTSUPP;
1171 		}
1172 		break;
1173 	case hwmon_in:
1174 		switch (attr) {
1175 		case hwmon_in_label:
1176 			*str = "VCC";
1177 			return 0;
1178 		default:
1179 			return -EOPNOTSUPP;
1180 		}
1181 		break;
1182 	case hwmon_power:
1183 		switch (attr) {
1184 		case hwmon_power_label:
1185 			*str = sfp_hwmon_power_labels[channel];
1186 			return 0;
1187 		default:
1188 			return -EOPNOTSUPP;
1189 		}
1190 		break;
1191 	default:
1192 		return -EOPNOTSUPP;
1193 	}
1194 
1195 	return -EOPNOTSUPP;
1196 }
1197 
1198 static const struct hwmon_ops sfp_hwmon_ops = {
1199 	.is_visible = sfp_hwmon_is_visible,
1200 	.read = sfp_hwmon_read,
1201 	.read_string = sfp_hwmon_read_string,
1202 };
1203 
1204 static u32 sfp_hwmon_chip_config[] = {
1205 	HWMON_C_REGISTER_TZ,
1206 	0,
1207 };
1208 
1209 static const struct hwmon_channel_info sfp_hwmon_chip = {
1210 	.type = hwmon_chip,
1211 	.config = sfp_hwmon_chip_config,
1212 };
1213 
1214 static u32 sfp_hwmon_temp_config[] = {
1215 	HWMON_T_INPUT |
1216 	HWMON_T_MAX | HWMON_T_MIN |
1217 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1218 	HWMON_T_CRIT | HWMON_T_LCRIT |
1219 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1220 	HWMON_T_LABEL,
1221 	0,
1222 };
1223 
1224 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1225 	.type = hwmon_temp,
1226 	.config = sfp_hwmon_temp_config,
1227 };
1228 
1229 static u32 sfp_hwmon_vcc_config[] = {
1230 	HWMON_I_INPUT |
1231 	HWMON_I_MAX | HWMON_I_MIN |
1232 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1233 	HWMON_I_CRIT | HWMON_I_LCRIT |
1234 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1235 	HWMON_I_LABEL,
1236 	0,
1237 };
1238 
1239 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1240 	.type = hwmon_in,
1241 	.config = sfp_hwmon_vcc_config,
1242 };
1243 
1244 static u32 sfp_hwmon_bias_config[] = {
1245 	HWMON_C_INPUT |
1246 	HWMON_C_MAX | HWMON_C_MIN |
1247 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1248 	HWMON_C_CRIT | HWMON_C_LCRIT |
1249 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1250 	HWMON_C_LABEL,
1251 	0,
1252 };
1253 
1254 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1255 	.type = hwmon_curr,
1256 	.config = sfp_hwmon_bias_config,
1257 };
1258 
1259 static u32 sfp_hwmon_power_config[] = {
1260 	/* Transmit power */
1261 	HWMON_P_INPUT |
1262 	HWMON_P_MAX | HWMON_P_MIN |
1263 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264 	HWMON_P_CRIT | HWMON_P_LCRIT |
1265 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266 	HWMON_P_LABEL,
1267 	/* Receive power */
1268 	HWMON_P_INPUT |
1269 	HWMON_P_MAX | HWMON_P_MIN |
1270 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1271 	HWMON_P_CRIT | HWMON_P_LCRIT |
1272 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1273 	HWMON_P_LABEL,
1274 	0,
1275 };
1276 
1277 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1278 	.type = hwmon_power,
1279 	.config = sfp_hwmon_power_config,
1280 };
1281 
1282 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1283 	&sfp_hwmon_chip,
1284 	&sfp_hwmon_vcc_channel_info,
1285 	&sfp_hwmon_temp_channel_info,
1286 	&sfp_hwmon_bias_channel_info,
1287 	&sfp_hwmon_power_channel_info,
1288 	NULL,
1289 };
1290 
1291 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1292 	.ops = &sfp_hwmon_ops,
1293 	.info = sfp_hwmon_info,
1294 };
1295 
sfp_hwmon_probe(struct work_struct * work)1296 static void sfp_hwmon_probe(struct work_struct *work)
1297 {
1298 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1299 	int err, i;
1300 
1301 	/* hwmon interface needs to access 16bit registers in atomic way to
1302 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1303 	 * possible to guarantee coherency because EEPROM is broken in such way
1304 	 * that does not support atomic 16bit read operation then we have to
1305 	 * skip registration of hwmon device.
1306 	 */
1307 	if (sfp->i2c_block_size < 2) {
1308 		dev_info(sfp->dev,
1309 			 "skipping hwmon device registration due to broken EEPROM\n");
1310 		dev_info(sfp->dev,
1311 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1312 		return;
1313 	}
1314 
1315 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1316 	if (err < 0) {
1317 		if (sfp->hwmon_tries--) {
1318 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1319 					 T_PROBE_RETRY_SLOW);
1320 		} else {
1321 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1322 		}
1323 		return;
1324 	}
1325 
1326 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1327 	if (!sfp->hwmon_name) {
1328 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1329 		return;
1330 	}
1331 
1332 	for (i = 0; sfp->hwmon_name[i]; i++)
1333 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1334 			sfp->hwmon_name[i] = '_';
1335 
1336 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1337 							 sfp->hwmon_name, sfp,
1338 							 &sfp_hwmon_chip_info,
1339 							 NULL);
1340 	if (IS_ERR(sfp->hwmon_dev))
1341 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1342 			PTR_ERR(sfp->hwmon_dev));
1343 }
1344 
sfp_hwmon_insert(struct sfp * sfp)1345 static int sfp_hwmon_insert(struct sfp *sfp)
1346 {
1347 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1348 		return 0;
1349 
1350 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1351 		return 0;
1352 
1353 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1354 		/* This driver in general does not support address
1355 		 * change.
1356 		 */
1357 		return 0;
1358 
1359 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1360 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1361 
1362 	return 0;
1363 }
1364 
sfp_hwmon_remove(struct sfp * sfp)1365 static void sfp_hwmon_remove(struct sfp *sfp)
1366 {
1367 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1368 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1369 		hwmon_device_unregister(sfp->hwmon_dev);
1370 		sfp->hwmon_dev = NULL;
1371 		kfree(sfp->hwmon_name);
1372 	}
1373 }
1374 
sfp_hwmon_init(struct sfp * sfp)1375 static int sfp_hwmon_init(struct sfp *sfp)
1376 {
1377 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1378 
1379 	return 0;
1380 }
1381 
sfp_hwmon_exit(struct sfp * sfp)1382 static void sfp_hwmon_exit(struct sfp *sfp)
1383 {
1384 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1385 }
1386 #else
sfp_hwmon_insert(struct sfp * sfp)1387 static int sfp_hwmon_insert(struct sfp *sfp)
1388 {
1389 	return 0;
1390 }
1391 
sfp_hwmon_remove(struct sfp * sfp)1392 static void sfp_hwmon_remove(struct sfp *sfp)
1393 {
1394 }
1395 
sfp_hwmon_init(struct sfp * sfp)1396 static int sfp_hwmon_init(struct sfp *sfp)
1397 {
1398 	return 0;
1399 }
1400 
sfp_hwmon_exit(struct sfp * sfp)1401 static void sfp_hwmon_exit(struct sfp *sfp)
1402 {
1403 }
1404 #endif
1405 
1406 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1407 static void sfp_module_tx_disable(struct sfp *sfp)
1408 {
1409 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1410 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1411 	sfp->state |= SFP_F_TX_DISABLE;
1412 	sfp_set_state(sfp, sfp->state);
1413 }
1414 
sfp_module_tx_enable(struct sfp * sfp)1415 static void sfp_module_tx_enable(struct sfp *sfp)
1416 {
1417 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1418 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1419 	sfp->state &= ~SFP_F_TX_DISABLE;
1420 	sfp_set_state(sfp, sfp->state);
1421 }
1422 
1423 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1424 static int sfp_debug_state_show(struct seq_file *s, void *data)
1425 {
1426 	struct sfp *sfp = s->private;
1427 
1428 	seq_printf(s, "Module state: %s\n",
1429 		   mod_state_to_str(sfp->sm_mod_state));
1430 	seq_printf(s, "Module probe attempts: %d %d\n",
1431 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1432 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1433 	seq_printf(s, "Device state: %s\n",
1434 		   dev_state_to_str(sfp->sm_dev_state));
1435 	seq_printf(s, "Main state: %s\n",
1436 		   sm_state_to_str(sfp->sm_state));
1437 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1438 		   sfp->sm_fault_retries);
1439 	seq_printf(s, "PHY probe remaining retries: %d\n",
1440 		   sfp->sm_phy_retries);
1441 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1442 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1443 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1444 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1445 	return 0;
1446 }
1447 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1448 
sfp_debugfs_init(struct sfp * sfp)1449 static void sfp_debugfs_init(struct sfp *sfp)
1450 {
1451 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1452 
1453 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1454 			    &sfp_debug_state_fops);
1455 }
1456 
sfp_debugfs_exit(struct sfp * sfp)1457 static void sfp_debugfs_exit(struct sfp *sfp)
1458 {
1459 	debugfs_remove_recursive(sfp->debugfs_dir);
1460 }
1461 #else
sfp_debugfs_init(struct sfp * sfp)1462 static void sfp_debugfs_init(struct sfp *sfp)
1463 {
1464 }
1465 
sfp_debugfs_exit(struct sfp * sfp)1466 static void sfp_debugfs_exit(struct sfp *sfp)
1467 {
1468 }
1469 #endif
1470 
sfp_module_tx_fault_reset(struct sfp * sfp)1471 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1472 {
1473 	unsigned int state = sfp->state;
1474 
1475 	if (state & SFP_F_TX_DISABLE)
1476 		return;
1477 
1478 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1479 
1480 	udelay(T_RESET_US);
1481 
1482 	sfp_set_state(sfp, state);
1483 }
1484 
1485 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1486 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1487 {
1488 	if (timeout)
1489 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1490 				 timeout);
1491 	else
1492 		cancel_delayed_work(&sfp->timeout);
1493 }
1494 
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1495 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1496 			unsigned int timeout)
1497 {
1498 	sfp->sm_state = state;
1499 	sfp_sm_set_timer(sfp, timeout);
1500 }
1501 
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1502 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1503 			    unsigned int timeout)
1504 {
1505 	sfp->sm_mod_state = state;
1506 	sfp_sm_set_timer(sfp, timeout);
1507 }
1508 
sfp_sm_phy_detach(struct sfp * sfp)1509 static void sfp_sm_phy_detach(struct sfp *sfp)
1510 {
1511 	sfp_remove_phy(sfp->sfp_bus);
1512 	phy_device_remove(sfp->mod_phy);
1513 	phy_device_free(sfp->mod_phy);
1514 	sfp->mod_phy = NULL;
1515 }
1516 
sfp_sm_probe_phy(struct sfp * sfp,bool is_c45)1517 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1518 {
1519 	struct phy_device *phy;
1520 	int err;
1521 
1522 	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1523 	if (phy == ERR_PTR(-ENODEV))
1524 		return PTR_ERR(phy);
1525 	if (IS_ERR(phy)) {
1526 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1527 		return PTR_ERR(phy);
1528 	}
1529 
1530 	err = phy_device_register(phy);
1531 	if (err) {
1532 		phy_device_free(phy);
1533 		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1534 		return err;
1535 	}
1536 
1537 	err = sfp_add_phy(sfp->sfp_bus, phy);
1538 	if (err) {
1539 		phy_device_remove(phy);
1540 		phy_device_free(phy);
1541 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1542 		return err;
1543 	}
1544 
1545 	sfp->mod_phy = phy;
1546 
1547 	return 0;
1548 }
1549 
sfp_sm_link_up(struct sfp * sfp)1550 static void sfp_sm_link_up(struct sfp *sfp)
1551 {
1552 	sfp_link_up(sfp->sfp_bus);
1553 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1554 }
1555 
sfp_sm_link_down(struct sfp * sfp)1556 static void sfp_sm_link_down(struct sfp *sfp)
1557 {
1558 	sfp_link_down(sfp->sfp_bus);
1559 }
1560 
sfp_sm_link_check_los(struct sfp * sfp)1561 static void sfp_sm_link_check_los(struct sfp *sfp)
1562 {
1563 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1564 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1565 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1566 	bool los = false;
1567 
1568 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1569 	 * are set, we assume that no LOS signal is available. If both are
1570 	 * set, we assume LOS is not implemented (and is meaningless.)
1571 	 */
1572 	if (los_options == los_inverted)
1573 		los = !(sfp->state & SFP_F_LOS);
1574 	else if (los_options == los_normal)
1575 		los = !!(sfp->state & SFP_F_LOS);
1576 
1577 	if (los)
1578 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1579 	else
1580 		sfp_sm_link_up(sfp);
1581 }
1582 
sfp_los_event_active(struct sfp * sfp,unsigned int event)1583 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1584 {
1585 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1586 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1587 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1588 
1589 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1590 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1591 }
1592 
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1593 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1594 {
1595 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1596 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1597 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1598 
1599 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1600 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1601 }
1602 
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1603 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1604 {
1605 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1606 		dev_err(sfp->dev,
1607 			"module persistently indicates fault, disabling\n");
1608 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1609 	} else {
1610 		if (warn)
1611 			dev_err(sfp->dev, "module transmit fault indicated\n");
1612 
1613 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1614 	}
1615 }
1616 
1617 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1618  * normally sits at I2C bus address 0x56, and may either be a clause 22
1619  * or clause 45 PHY.
1620  *
1621  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1622  * negotiation enabled, but some may be in 1000base-X - which is for the
1623  * PHY driver to determine.
1624  *
1625  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1626  * mode according to the negotiated line speed.
1627  */
sfp_sm_probe_for_phy(struct sfp * sfp)1628 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1629 {
1630 	int err = 0;
1631 
1632 	switch (sfp->id.base.extended_cc) {
1633 	case SFF8024_ECC_10GBASE_T_SFI:
1634 	case SFF8024_ECC_10GBASE_T_SR:
1635 	case SFF8024_ECC_5GBASE_T:
1636 	case SFF8024_ECC_2_5GBASE_T:
1637 		err = sfp_sm_probe_phy(sfp, true);
1638 		break;
1639 
1640 	default:
1641 		if (sfp->id.base.e1000_base_t)
1642 			err = sfp_sm_probe_phy(sfp, false);
1643 		break;
1644 	}
1645 	return err;
1646 }
1647 
sfp_module_parse_power(struct sfp * sfp)1648 static int sfp_module_parse_power(struct sfp *sfp)
1649 {
1650 	u32 power_mW = 1000;
1651 	bool supports_a2;
1652 
1653 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1654 		power_mW = 1500;
1655 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1656 		power_mW = 2000;
1657 
1658 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1659 				SFP_SFF8472_COMPLIANCE_NONE ||
1660 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1661 
1662 	if (power_mW > sfp->max_power_mW) {
1663 		/* Module power specification exceeds the allowed maximum. */
1664 		if (!supports_a2) {
1665 			/* The module appears not to implement bus address
1666 			 * 0xa2, so assume that the module powers up in the
1667 			 * indicated mode.
1668 			 */
1669 			dev_err(sfp->dev,
1670 				"Host does not support %u.%uW modules\n",
1671 				power_mW / 1000, (power_mW / 100) % 10);
1672 			return -EINVAL;
1673 		} else {
1674 			dev_warn(sfp->dev,
1675 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1676 				 power_mW / 1000, (power_mW / 100) % 10);
1677 			return 0;
1678 		}
1679 	}
1680 
1681 	if (power_mW <= 1000) {
1682 		/* Modules below 1W do not require a power change sequence */
1683 		sfp->module_power_mW = power_mW;
1684 		return 0;
1685 	}
1686 
1687 	if (!supports_a2) {
1688 		/* The module power level is below the host maximum and the
1689 		 * module appears not to implement bus address 0xa2, so assume
1690 		 * that the module powers up in the indicated mode.
1691 		 */
1692 		return 0;
1693 	}
1694 
1695 	/* If the module requires a higher power mode, but also requires
1696 	 * an address change sequence, warn the user that the module may
1697 	 * not be functional.
1698 	 */
1699 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1700 		dev_warn(sfp->dev,
1701 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1702 			 power_mW / 1000, (power_mW / 100) % 10);
1703 		return 0;
1704 	}
1705 
1706 	sfp->module_power_mW = power_mW;
1707 
1708 	return 0;
1709 }
1710 
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1711 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1712 {
1713 	u8 val;
1714 	int err;
1715 
1716 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1717 	if (err != sizeof(val)) {
1718 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1719 		return -EAGAIN;
1720 	}
1721 
1722 	/* DM7052 reports as a high power module, responds to reads (with
1723 	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1724 	 * if the bit is already set, we're already in high power mode.
1725 	 */
1726 	if (!!(val & BIT(0)) == enable)
1727 		return 0;
1728 
1729 	if (enable)
1730 		val |= BIT(0);
1731 	else
1732 		val &= ~BIT(0);
1733 
1734 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1735 	if (err != sizeof(val)) {
1736 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1737 		return -EAGAIN;
1738 	}
1739 
1740 	if (enable)
1741 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1742 			 sfp->module_power_mW / 1000,
1743 			 (sfp->module_power_mW / 100) % 10);
1744 
1745 	return 0;
1746 }
1747 
1748 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1749  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1750  * not support multibyte reads from the EEPROM. Each multi-byte read
1751  * operation returns just one byte of EEPROM followed by zeros. There is
1752  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1753  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1754  * name and vendor id into EEPROM, so there is even no way to detect if
1755  * module is V-SOL V2801F. Therefore check for those zeros in the read
1756  * data and then based on check switch to reading EEPROM to one byte
1757  * at a time.
1758  */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)1759 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1760 {
1761 	size_t i, block_size = sfp->i2c_block_size;
1762 
1763 	/* Already using byte IO */
1764 	if (block_size == 1)
1765 		return false;
1766 
1767 	for (i = 1; i < len; i += block_size) {
1768 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1769 			return false;
1770 	}
1771 	return true;
1772 }
1773 
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)1774 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1775 {
1776 	u8 check;
1777 	int err;
1778 
1779 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1780 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1781 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1782 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1783 		id->base.phys_id = SFF8024_ID_SFF_8472;
1784 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1785 		id->base.connector = SFF8024_CONNECTOR_LC;
1786 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1787 		if (err != 3) {
1788 			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1789 			return err;
1790 		}
1791 
1792 		/* Cotsworks modules have been found to require a delay between write operations. */
1793 		mdelay(50);
1794 
1795 		/* Update base structure checksum */
1796 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1797 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1798 		if (err != 1) {
1799 			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1800 			return err;
1801 		}
1802 	}
1803 	return 0;
1804 }
1805 
sfp_sm_mod_probe(struct sfp * sfp,bool report)1806 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1807 {
1808 	/* SFP module inserted - read I2C data */
1809 	struct sfp_eeprom_id id;
1810 	bool cotsworks_sfbg;
1811 	bool cotsworks;
1812 	u8 check;
1813 	int ret;
1814 
1815 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
1816 
1817 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1818 	if (ret < 0) {
1819 		if (report)
1820 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1821 		return -EAGAIN;
1822 	}
1823 
1824 	if (ret != sizeof(id.base)) {
1825 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1826 		return -EAGAIN;
1827 	}
1828 
1829 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1830 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1831 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1832 	 * fields, so do not switch to one byte reading at a time unless it
1833 	 * is really required and we have no other option.
1834 	 */
1835 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1836 		dev_info(sfp->dev,
1837 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1838 		dev_info(sfp->dev,
1839 			 "Switching to reading EEPROM to one byte at a time\n");
1840 		sfp->i2c_block_size = 1;
1841 
1842 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1843 		if (ret < 0) {
1844 			if (report)
1845 				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1846 					ret);
1847 			return -EAGAIN;
1848 		}
1849 
1850 		if (ret != sizeof(id.base)) {
1851 			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1852 			return -EAGAIN;
1853 		}
1854 	}
1855 
1856 	/* Cotsworks do not seem to update the checksums when they
1857 	 * do the final programming with the final module part number,
1858 	 * serial number and date code.
1859 	 */
1860 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1861 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1862 
1863 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1864 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1865 	 * Cotsworks PN matches and bytes are not correct.
1866 	 */
1867 	if (cotsworks && cotsworks_sfbg) {
1868 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1869 		if (ret < 0)
1870 			return ret;
1871 	}
1872 
1873 	/* Validate the checksum over the base structure */
1874 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1875 	if (check != id.base.cc_base) {
1876 		if (cotsworks) {
1877 			dev_warn(sfp->dev,
1878 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1879 				 check, id.base.cc_base);
1880 		} else {
1881 			dev_err(sfp->dev,
1882 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1883 				check, id.base.cc_base);
1884 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1885 				       16, 1, &id, sizeof(id), true);
1886 			return -EINVAL;
1887 		}
1888 	}
1889 
1890 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1891 	if (ret < 0) {
1892 		if (report)
1893 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1894 		return -EAGAIN;
1895 	}
1896 
1897 	if (ret != sizeof(id.ext)) {
1898 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1899 		return -EAGAIN;
1900 	}
1901 
1902 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1903 	if (check != id.ext.cc_ext) {
1904 		if (cotsworks) {
1905 			dev_warn(sfp->dev,
1906 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1907 				 check, id.ext.cc_ext);
1908 		} else {
1909 			dev_err(sfp->dev,
1910 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1911 				check, id.ext.cc_ext);
1912 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1913 				       16, 1, &id, sizeof(id), true);
1914 			memset(&id.ext, 0, sizeof(id.ext));
1915 		}
1916 	}
1917 
1918 	sfp->id = id;
1919 
1920 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1921 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1922 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1923 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1924 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1925 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1926 
1927 	/* Check whether we support this module */
1928 	if (!sfp->type->module_supported(&id)) {
1929 		dev_err(sfp->dev,
1930 			"module is not supported - phys id 0x%02x 0x%02x\n",
1931 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1932 		return -EINVAL;
1933 	}
1934 
1935 	/* If the module requires address swap mode, warn about it */
1936 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1937 		dev_warn(sfp->dev,
1938 			 "module address swap to access page 0xA2 is not supported.\n");
1939 
1940 	/* Parse the module power requirement */
1941 	ret = sfp_module_parse_power(sfp);
1942 	if (ret < 0)
1943 		return ret;
1944 
1945 	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1946 	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1947 		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1948 	else
1949 		sfp->module_t_start_up = T_START_UP;
1950 
1951 	if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
1952 	    !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
1953 		sfp->tx_fault_ignore = true;
1954 	else
1955 		sfp->tx_fault_ignore = false;
1956 
1957 	return 0;
1958 }
1959 
sfp_sm_mod_remove(struct sfp * sfp)1960 static void sfp_sm_mod_remove(struct sfp *sfp)
1961 {
1962 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1963 		sfp_module_remove(sfp->sfp_bus);
1964 
1965 	sfp_hwmon_remove(sfp);
1966 
1967 	memset(&sfp->id, 0, sizeof(sfp->id));
1968 	sfp->module_power_mW = 0;
1969 
1970 	dev_info(sfp->dev, "module removed\n");
1971 }
1972 
1973 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)1974 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1975 {
1976 	switch (sfp->sm_dev_state) {
1977 	default:
1978 		if (event == SFP_E_DEV_ATTACH)
1979 			sfp->sm_dev_state = SFP_DEV_DOWN;
1980 		break;
1981 
1982 	case SFP_DEV_DOWN:
1983 		if (event == SFP_E_DEV_DETACH)
1984 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1985 		else if (event == SFP_E_DEV_UP)
1986 			sfp->sm_dev_state = SFP_DEV_UP;
1987 		break;
1988 
1989 	case SFP_DEV_UP:
1990 		if (event == SFP_E_DEV_DETACH)
1991 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1992 		else if (event == SFP_E_DEV_DOWN)
1993 			sfp->sm_dev_state = SFP_DEV_DOWN;
1994 		break;
1995 	}
1996 }
1997 
1998 /* This state machine tracks the insert/remove state of the module, probes
1999  * the on-board EEPROM, and sets up the power level.
2000  */
sfp_sm_module(struct sfp * sfp,unsigned int event)2001 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2002 {
2003 	int err;
2004 
2005 	/* Handle remove event globally, it resets this state machine */
2006 	if (event == SFP_E_REMOVE) {
2007 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2008 			sfp_sm_mod_remove(sfp);
2009 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2010 		return;
2011 	}
2012 
2013 	/* Handle device detach globally */
2014 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2015 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2016 		if (sfp->module_power_mW > 1000 &&
2017 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2018 			sfp_sm_mod_hpower(sfp, false);
2019 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2020 		return;
2021 	}
2022 
2023 	switch (sfp->sm_mod_state) {
2024 	default:
2025 		if (event == SFP_E_INSERT) {
2026 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2027 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2028 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2029 		}
2030 		break;
2031 
2032 	case SFP_MOD_PROBE:
2033 		/* Wait for T_PROBE_INIT to time out */
2034 		if (event != SFP_E_TIMEOUT)
2035 			break;
2036 
2037 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2038 		if (err == -EAGAIN) {
2039 			if (sfp->sm_mod_tries_init &&
2040 			   --sfp->sm_mod_tries_init) {
2041 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2042 				break;
2043 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2044 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2045 					dev_warn(sfp->dev,
2046 						 "please wait, module slow to respond\n");
2047 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2048 				break;
2049 			}
2050 		}
2051 		if (err < 0) {
2052 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2053 			break;
2054 		}
2055 
2056 		err = sfp_hwmon_insert(sfp);
2057 		if (err)
2058 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2059 
2060 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2061 		fallthrough;
2062 	case SFP_MOD_WAITDEV:
2063 		/* Ensure that the device is attached before proceeding */
2064 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2065 			break;
2066 
2067 		/* Report the module insertion to the upstream device */
2068 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2069 		if (err < 0) {
2070 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2071 			break;
2072 		}
2073 
2074 		/* If this is a power level 1 module, we are done */
2075 		if (sfp->module_power_mW <= 1000)
2076 			goto insert;
2077 
2078 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2079 		fallthrough;
2080 	case SFP_MOD_HPOWER:
2081 		/* Enable high power mode */
2082 		err = sfp_sm_mod_hpower(sfp, true);
2083 		if (err < 0) {
2084 			if (err != -EAGAIN) {
2085 				sfp_module_remove(sfp->sfp_bus);
2086 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2087 			} else {
2088 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2089 			}
2090 			break;
2091 		}
2092 
2093 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2094 		break;
2095 
2096 	case SFP_MOD_WAITPWR:
2097 		/* Wait for T_HPOWER_LEVEL to time out */
2098 		if (event != SFP_E_TIMEOUT)
2099 			break;
2100 
2101 	insert:
2102 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2103 		break;
2104 
2105 	case SFP_MOD_PRESENT:
2106 	case SFP_MOD_ERROR:
2107 		break;
2108 	}
2109 }
2110 
sfp_sm_main(struct sfp * sfp,unsigned int event)2111 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2112 {
2113 	unsigned long timeout;
2114 	int ret;
2115 
2116 	/* Some events are global */
2117 	if (sfp->sm_state != SFP_S_DOWN &&
2118 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2119 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2120 		if (sfp->sm_state == SFP_S_LINK_UP &&
2121 		    sfp->sm_dev_state == SFP_DEV_UP)
2122 			sfp_sm_link_down(sfp);
2123 		if (sfp->sm_state > SFP_S_INIT)
2124 			sfp_module_stop(sfp->sfp_bus);
2125 		if (sfp->mod_phy)
2126 			sfp_sm_phy_detach(sfp);
2127 		sfp_module_tx_disable(sfp);
2128 		sfp_soft_stop_poll(sfp);
2129 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2130 		return;
2131 	}
2132 
2133 	/* The main state machine */
2134 	switch (sfp->sm_state) {
2135 	case SFP_S_DOWN:
2136 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2137 		    sfp->sm_dev_state != SFP_DEV_UP)
2138 			break;
2139 
2140 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2141 			sfp_soft_start_poll(sfp);
2142 
2143 		sfp_module_tx_enable(sfp);
2144 
2145 		/* Initialise the fault clearance retries */
2146 		sfp->sm_fault_retries = N_FAULT_INIT;
2147 
2148 		/* We need to check the TX_FAULT state, which is not defined
2149 		 * while TX_DISABLE is asserted. The earliest we want to do
2150 		 * anything (such as probe for a PHY) is 50ms.
2151 		 */
2152 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2153 		break;
2154 
2155 	case SFP_S_WAIT:
2156 		if (event != SFP_E_TIMEOUT)
2157 			break;
2158 
2159 		if (sfp->state & SFP_F_TX_FAULT) {
2160 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2161 			 * from the TX_DISABLE deassertion for the module to
2162 			 * initialise, which is indicated by TX_FAULT
2163 			 * deasserting.
2164 			 */
2165 			timeout = sfp->module_t_start_up;
2166 			if (timeout > T_WAIT)
2167 				timeout -= T_WAIT;
2168 			else
2169 				timeout = 1;
2170 
2171 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2172 		} else {
2173 			/* TX_FAULT is not asserted, assume the module has
2174 			 * finished initialising.
2175 			 */
2176 			goto init_done;
2177 		}
2178 		break;
2179 
2180 	case SFP_S_INIT:
2181 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2182 			/* TX_FAULT is still asserted after t_init
2183 			 * or t_start_up, so assume there is a fault.
2184 			 */
2185 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2186 				     sfp->sm_fault_retries == N_FAULT_INIT);
2187 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2188 	init_done:
2189 			sfp->sm_phy_retries = R_PHY_RETRY;
2190 			goto phy_probe;
2191 		}
2192 		break;
2193 
2194 	case SFP_S_INIT_PHY:
2195 		if (event != SFP_E_TIMEOUT)
2196 			break;
2197 	phy_probe:
2198 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2199 		 * clear.  Probe for the PHY and check the LOS state.
2200 		 */
2201 		ret = sfp_sm_probe_for_phy(sfp);
2202 		if (ret == -ENODEV) {
2203 			if (--sfp->sm_phy_retries) {
2204 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2205 				break;
2206 			} else {
2207 				dev_info(sfp->dev, "no PHY detected\n");
2208 			}
2209 		} else if (ret) {
2210 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2211 			break;
2212 		}
2213 		if (sfp_module_start(sfp->sfp_bus)) {
2214 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2215 			break;
2216 		}
2217 		sfp_sm_link_check_los(sfp);
2218 
2219 		/* Reset the fault retry count */
2220 		sfp->sm_fault_retries = N_FAULT;
2221 		break;
2222 
2223 	case SFP_S_INIT_TX_FAULT:
2224 		if (event == SFP_E_TIMEOUT) {
2225 			sfp_module_tx_fault_reset(sfp);
2226 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2227 		}
2228 		break;
2229 
2230 	case SFP_S_WAIT_LOS:
2231 		if (event == SFP_E_TX_FAULT)
2232 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2233 		else if (sfp_los_event_inactive(sfp, event))
2234 			sfp_sm_link_up(sfp);
2235 		break;
2236 
2237 	case SFP_S_LINK_UP:
2238 		if (event == SFP_E_TX_FAULT) {
2239 			sfp_sm_link_down(sfp);
2240 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2241 		} else if (sfp_los_event_active(sfp, event)) {
2242 			sfp_sm_link_down(sfp);
2243 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2244 		}
2245 		break;
2246 
2247 	case SFP_S_TX_FAULT:
2248 		if (event == SFP_E_TIMEOUT) {
2249 			sfp_module_tx_fault_reset(sfp);
2250 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2251 		}
2252 		break;
2253 
2254 	case SFP_S_REINIT:
2255 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2256 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2257 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2258 			dev_info(sfp->dev, "module transmit fault recovered\n");
2259 			sfp_sm_link_check_los(sfp);
2260 		}
2261 		break;
2262 
2263 	case SFP_S_TX_DISABLE:
2264 		break;
2265 	}
2266 }
2267 
sfp_sm_event(struct sfp * sfp,unsigned int event)2268 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2269 {
2270 	mutex_lock(&sfp->sm_mutex);
2271 
2272 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2273 		mod_state_to_str(sfp->sm_mod_state),
2274 		dev_state_to_str(sfp->sm_dev_state),
2275 		sm_state_to_str(sfp->sm_state),
2276 		event_to_str(event));
2277 
2278 	sfp_sm_device(sfp, event);
2279 	sfp_sm_module(sfp, event);
2280 	sfp_sm_main(sfp, event);
2281 
2282 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2283 		mod_state_to_str(sfp->sm_mod_state),
2284 		dev_state_to_str(sfp->sm_dev_state),
2285 		sm_state_to_str(sfp->sm_state));
2286 
2287 	mutex_unlock(&sfp->sm_mutex);
2288 }
2289 
sfp_attach(struct sfp * sfp)2290 static void sfp_attach(struct sfp *sfp)
2291 {
2292 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2293 }
2294 
sfp_detach(struct sfp * sfp)2295 static void sfp_detach(struct sfp *sfp)
2296 {
2297 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2298 }
2299 
sfp_start(struct sfp * sfp)2300 static void sfp_start(struct sfp *sfp)
2301 {
2302 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2303 }
2304 
sfp_stop(struct sfp * sfp)2305 static void sfp_stop(struct sfp *sfp)
2306 {
2307 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2308 }
2309 
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2310 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2311 {
2312 	/* locking... and check module is present */
2313 
2314 	if (sfp->id.ext.sff8472_compliance &&
2315 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2316 		modinfo->type = ETH_MODULE_SFF_8472;
2317 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2318 	} else {
2319 		modinfo->type = ETH_MODULE_SFF_8079;
2320 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2321 	}
2322 	return 0;
2323 }
2324 
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2325 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2326 			     u8 *data)
2327 {
2328 	unsigned int first, last, len;
2329 	int ret;
2330 
2331 	if (ee->len == 0)
2332 		return -EINVAL;
2333 
2334 	first = ee->offset;
2335 	last = ee->offset + ee->len;
2336 	if (first < ETH_MODULE_SFF_8079_LEN) {
2337 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2338 		len -= first;
2339 
2340 		ret = sfp_read(sfp, false, first, data, len);
2341 		if (ret < 0)
2342 			return ret;
2343 
2344 		first += len;
2345 		data += len;
2346 	}
2347 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2348 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2349 		len -= first;
2350 		first -= ETH_MODULE_SFF_8079_LEN;
2351 
2352 		ret = sfp_read(sfp, true, first, data, len);
2353 		if (ret < 0)
2354 			return ret;
2355 	}
2356 	return 0;
2357 }
2358 
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2359 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2360 				     const struct ethtool_module_eeprom *page,
2361 				     struct netlink_ext_ack *extack)
2362 {
2363 	if (page->bank) {
2364 		NL_SET_ERR_MSG(extack, "Banks not supported");
2365 		return -EOPNOTSUPP;
2366 	}
2367 
2368 	if (page->page) {
2369 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2370 		return -EOPNOTSUPP;
2371 	}
2372 
2373 	if (page->i2c_address != 0x50 &&
2374 	    page->i2c_address != 0x51) {
2375 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2376 		return -EOPNOTSUPP;
2377 	}
2378 
2379 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2380 			page->data, page->length);
2381 };
2382 
2383 static const struct sfp_socket_ops sfp_module_ops = {
2384 	.attach = sfp_attach,
2385 	.detach = sfp_detach,
2386 	.start = sfp_start,
2387 	.stop = sfp_stop,
2388 	.module_info = sfp_module_info,
2389 	.module_eeprom = sfp_module_eeprom,
2390 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2391 };
2392 
sfp_timeout(struct work_struct * work)2393 static void sfp_timeout(struct work_struct *work)
2394 {
2395 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2396 
2397 	rtnl_lock();
2398 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2399 	rtnl_unlock();
2400 }
2401 
sfp_check_state(struct sfp * sfp)2402 static void sfp_check_state(struct sfp *sfp)
2403 {
2404 	unsigned int state, i, changed;
2405 
2406 	mutex_lock(&sfp->st_mutex);
2407 	state = sfp_get_state(sfp);
2408 	changed = state ^ sfp->state;
2409 	if (sfp->tx_fault_ignore)
2410 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2411 	else
2412 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2413 
2414 	for (i = 0; i < GPIO_MAX; i++)
2415 		if (changed & BIT(i))
2416 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2417 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2418 
2419 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2420 	sfp->state = state;
2421 
2422 	rtnl_lock();
2423 	if (changed & SFP_F_PRESENT)
2424 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2425 				SFP_E_INSERT : SFP_E_REMOVE);
2426 
2427 	if (changed & SFP_F_TX_FAULT)
2428 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2429 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2430 
2431 	if (changed & SFP_F_LOS)
2432 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2433 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2434 	rtnl_unlock();
2435 	mutex_unlock(&sfp->st_mutex);
2436 }
2437 
sfp_irq(int irq,void * data)2438 static irqreturn_t sfp_irq(int irq, void *data)
2439 {
2440 	struct sfp *sfp = data;
2441 
2442 	sfp_check_state(sfp);
2443 
2444 	return IRQ_HANDLED;
2445 }
2446 
sfp_poll(struct work_struct * work)2447 static void sfp_poll(struct work_struct *work)
2448 {
2449 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2450 
2451 	sfp_check_state(sfp);
2452 
2453 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2454 	    sfp->need_poll)
2455 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2456 }
2457 
sfp_alloc(struct device * dev)2458 static struct sfp *sfp_alloc(struct device *dev)
2459 {
2460 	struct sfp *sfp;
2461 
2462 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2463 	if (!sfp)
2464 		return ERR_PTR(-ENOMEM);
2465 
2466 	sfp->dev = dev;
2467 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2468 
2469 	mutex_init(&sfp->sm_mutex);
2470 	mutex_init(&sfp->st_mutex);
2471 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2472 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2473 
2474 	sfp_hwmon_init(sfp);
2475 
2476 	return sfp;
2477 }
2478 
sfp_cleanup(void * data)2479 static void sfp_cleanup(void *data)
2480 {
2481 	struct sfp *sfp = data;
2482 
2483 	sfp_hwmon_exit(sfp);
2484 
2485 	cancel_delayed_work_sync(&sfp->poll);
2486 	cancel_delayed_work_sync(&sfp->timeout);
2487 	if (sfp->i2c_mii) {
2488 		mdiobus_unregister(sfp->i2c_mii);
2489 		mdiobus_free(sfp->i2c_mii);
2490 	}
2491 	if (sfp->i2c)
2492 		i2c_put_adapter(sfp->i2c);
2493 	kfree(sfp);
2494 }
2495 
sfp_probe(struct platform_device * pdev)2496 static int sfp_probe(struct platform_device *pdev)
2497 {
2498 	const struct sff_data *sff;
2499 	struct i2c_adapter *i2c;
2500 	char *sfp_irq_name;
2501 	struct sfp *sfp;
2502 	int err, i;
2503 
2504 	sfp = sfp_alloc(&pdev->dev);
2505 	if (IS_ERR(sfp))
2506 		return PTR_ERR(sfp);
2507 
2508 	platform_set_drvdata(pdev, sfp);
2509 
2510 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2511 	if (err < 0)
2512 		return err;
2513 
2514 	sff = sfp->type = &sfp_data;
2515 
2516 	if (pdev->dev.of_node) {
2517 		struct device_node *node = pdev->dev.of_node;
2518 		const struct of_device_id *id;
2519 		struct device_node *np;
2520 
2521 		id = of_match_node(sfp_of_match, node);
2522 		if (WARN_ON(!id))
2523 			return -EINVAL;
2524 
2525 		sff = sfp->type = id->data;
2526 
2527 		np = of_parse_phandle(node, "i2c-bus", 0);
2528 		if (!np) {
2529 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2530 			return -ENODEV;
2531 		}
2532 
2533 		i2c = of_find_i2c_adapter_by_node(np);
2534 		of_node_put(np);
2535 	} else if (has_acpi_companion(&pdev->dev)) {
2536 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2537 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2538 		struct fwnode_reference_args args;
2539 		struct acpi_handle *acpi_handle;
2540 		int ret;
2541 
2542 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2543 		if (ret || !is_acpi_device_node(args.fwnode)) {
2544 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2545 			return -ENODEV;
2546 		}
2547 
2548 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2549 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2550 	} else {
2551 		return -EINVAL;
2552 	}
2553 
2554 	if (!i2c)
2555 		return -EPROBE_DEFER;
2556 
2557 	err = sfp_i2c_configure(sfp, i2c);
2558 	if (err < 0) {
2559 		i2c_put_adapter(i2c);
2560 		return err;
2561 	}
2562 
2563 	for (i = 0; i < GPIO_MAX; i++)
2564 		if (sff->gpios & BIT(i)) {
2565 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2566 					   gpio_of_names[i], gpio_flags[i]);
2567 			if (IS_ERR(sfp->gpio[i]))
2568 				return PTR_ERR(sfp->gpio[i]);
2569 		}
2570 
2571 	sfp->get_state = sfp_gpio_get_state;
2572 	sfp->set_state = sfp_gpio_set_state;
2573 
2574 	/* Modules that have no detect signal are always present */
2575 	if (!(sfp->gpio[GPIO_MODDEF0]))
2576 		sfp->get_state = sff_gpio_get_state;
2577 
2578 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2579 				 &sfp->max_power_mW);
2580 	if (!sfp->max_power_mW)
2581 		sfp->max_power_mW = 1000;
2582 
2583 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2584 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2585 
2586 	/* Get the initial state, and always signal TX disable,
2587 	 * since the network interface will not be up.
2588 	 */
2589 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2590 
2591 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2592 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2593 		sfp->state |= SFP_F_RATE_SELECT;
2594 	sfp_set_state(sfp, sfp->state);
2595 	sfp_module_tx_disable(sfp);
2596 	if (sfp->state & SFP_F_PRESENT) {
2597 		rtnl_lock();
2598 		sfp_sm_event(sfp, SFP_E_INSERT);
2599 		rtnl_unlock();
2600 	}
2601 
2602 	for (i = 0; i < GPIO_MAX; i++) {
2603 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2604 			continue;
2605 
2606 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2607 		if (sfp->gpio_irq[i] < 0) {
2608 			sfp->gpio_irq[i] = 0;
2609 			sfp->need_poll = true;
2610 			continue;
2611 		}
2612 
2613 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2614 					      "%s-%s", dev_name(sfp->dev),
2615 					      gpio_of_names[i]);
2616 
2617 		if (!sfp_irq_name)
2618 			return -ENOMEM;
2619 
2620 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2621 						NULL, sfp_irq,
2622 						IRQF_ONESHOT |
2623 						IRQF_TRIGGER_RISING |
2624 						IRQF_TRIGGER_FALLING,
2625 						sfp_irq_name, sfp);
2626 		if (err) {
2627 			sfp->gpio_irq[i] = 0;
2628 			sfp->need_poll = true;
2629 		}
2630 	}
2631 
2632 	if (sfp->need_poll)
2633 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2634 
2635 	/* We could have an issue in cases no Tx disable pin is available or
2636 	 * wired as modules using a laser as their light source will continue to
2637 	 * be active when the fiber is removed. This could be a safety issue and
2638 	 * we should at least warn the user about that.
2639 	 */
2640 	if (!sfp->gpio[GPIO_TX_DISABLE])
2641 		dev_warn(sfp->dev,
2642 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2643 
2644 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2645 	if (!sfp->sfp_bus)
2646 		return -ENOMEM;
2647 
2648 	sfp_debugfs_init(sfp);
2649 
2650 	return 0;
2651 }
2652 
sfp_remove(struct platform_device * pdev)2653 static int sfp_remove(struct platform_device *pdev)
2654 {
2655 	struct sfp *sfp = platform_get_drvdata(pdev);
2656 
2657 	sfp_debugfs_exit(sfp);
2658 	sfp_unregister_socket(sfp->sfp_bus);
2659 
2660 	rtnl_lock();
2661 	sfp_sm_event(sfp, SFP_E_REMOVE);
2662 	rtnl_unlock();
2663 
2664 	return 0;
2665 }
2666 
sfp_shutdown(struct platform_device * pdev)2667 static void sfp_shutdown(struct platform_device *pdev)
2668 {
2669 	struct sfp *sfp = platform_get_drvdata(pdev);
2670 	int i;
2671 
2672 	for (i = 0; i < GPIO_MAX; i++) {
2673 		if (!sfp->gpio_irq[i])
2674 			continue;
2675 
2676 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2677 	}
2678 
2679 	cancel_delayed_work_sync(&sfp->poll);
2680 	cancel_delayed_work_sync(&sfp->timeout);
2681 }
2682 
2683 static struct platform_driver sfp_driver = {
2684 	.probe = sfp_probe,
2685 	.remove = sfp_remove,
2686 	.shutdown = sfp_shutdown,
2687 	.driver = {
2688 		.name = "sfp",
2689 		.of_match_table = sfp_of_match,
2690 	},
2691 };
2692 
sfp_init(void)2693 static int sfp_init(void)
2694 {
2695 	poll_jiffies = msecs_to_jiffies(100);
2696 
2697 	return platform_driver_register(&sfp_driver);
2698 }
2699 module_init(sfp_init);
2700 
sfp_exit(void)2701 static void sfp_exit(void)
2702 {
2703 	platform_driver_unregister(&sfp_driver);
2704 }
2705 module_exit(sfp_exit);
2706 
2707 MODULE_ALIAS("platform:sfp");
2708 MODULE_AUTHOR("Russell King");
2709 MODULE_LICENSE("GPL v2");
2710