• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 	nvme_req(rq)->cmd = req->sqe.data;
318 
319 	return 0;
320 }
321 
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)322 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
327 
328 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)334 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
335 		unsigned int hctx_idx)
336 {
337 	struct nvme_rdma_ctrl *ctrl = data;
338 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
339 
340 	BUG_ON(hctx_idx != 0);
341 
342 	hctx->driver_data = queue;
343 	return 0;
344 }
345 
nvme_rdma_free_dev(struct kref * ref)346 static void nvme_rdma_free_dev(struct kref *ref)
347 {
348 	struct nvme_rdma_device *ndev =
349 		container_of(ref, struct nvme_rdma_device, ref);
350 
351 	mutex_lock(&device_list_mutex);
352 	list_del(&ndev->entry);
353 	mutex_unlock(&device_list_mutex);
354 
355 	ib_dealloc_pd(ndev->pd);
356 	kfree(ndev);
357 }
358 
nvme_rdma_dev_put(struct nvme_rdma_device * dev)359 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
360 {
361 	kref_put(&dev->ref, nvme_rdma_free_dev);
362 }
363 
nvme_rdma_dev_get(struct nvme_rdma_device * dev)364 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
365 {
366 	return kref_get_unless_zero(&dev->ref);
367 }
368 
369 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)370 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
371 {
372 	struct nvme_rdma_device *ndev;
373 
374 	mutex_lock(&device_list_mutex);
375 	list_for_each_entry(ndev, &device_list, entry) {
376 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
377 		    nvme_rdma_dev_get(ndev))
378 			goto out_unlock;
379 	}
380 
381 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
382 	if (!ndev)
383 		goto out_err;
384 
385 	ndev->dev = cm_id->device;
386 	kref_init(&ndev->ref);
387 
388 	ndev->pd = ib_alloc_pd(ndev->dev,
389 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
390 	if (IS_ERR(ndev->pd))
391 		goto out_free_dev;
392 
393 	if (!(ndev->dev->attrs.device_cap_flags &
394 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
395 		dev_err(&ndev->dev->dev,
396 			"Memory registrations not supported.\n");
397 		goto out_free_pd;
398 	}
399 
400 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
401 					ndev->dev->attrs.max_send_sge - 1);
402 	list_add(&ndev->entry, &device_list);
403 out_unlock:
404 	mutex_unlock(&device_list_mutex);
405 	return ndev;
406 
407 out_free_pd:
408 	ib_dealloc_pd(ndev->pd);
409 out_free_dev:
410 	kfree(ndev);
411 out_err:
412 	mutex_unlock(&device_list_mutex);
413 	return NULL;
414 }
415 
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)416 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
417 {
418 	if (nvme_rdma_poll_queue(queue))
419 		ib_free_cq(queue->ib_cq);
420 	else
421 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
422 }
423 
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)424 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct nvme_rdma_device *dev;
427 	struct ib_device *ibdev;
428 
429 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
430 		return;
431 
432 	dev = queue->device;
433 	ibdev = dev->dev;
434 
435 	if (queue->pi_support)
436 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
437 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
438 
439 	/*
440 	 * The cm_id object might have been destroyed during RDMA connection
441 	 * establishment error flow to avoid getting other cma events, thus
442 	 * the destruction of the QP shouldn't use rdma_cm API.
443 	 */
444 	ib_destroy_qp(queue->qp);
445 	nvme_rdma_free_cq(queue);
446 
447 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449 
450 	nvme_rdma_dev_put(dev);
451 }
452 
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)453 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
454 {
455 	u32 max_page_list_len;
456 
457 	if (pi_support)
458 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
459 	else
460 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
461 
462 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
463 }
464 
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)465 static int nvme_rdma_create_cq(struct ib_device *ibdev,
466 		struct nvme_rdma_queue *queue)
467 {
468 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
469 	enum ib_poll_context poll_ctx;
470 
471 	/*
472 	 * Spread I/O queues completion vectors according their queue index.
473 	 * Admin queues can always go on completion vector 0.
474 	 */
475 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
476 
477 	/* Polling queues need direct cq polling context */
478 	if (nvme_rdma_poll_queue(queue)) {
479 		poll_ctx = IB_POLL_DIRECT;
480 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
481 					   comp_vector, poll_ctx);
482 	} else {
483 		poll_ctx = IB_POLL_SOFTIRQ;
484 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
485 					      comp_vector, poll_ctx);
486 	}
487 
488 	if (IS_ERR(queue->ib_cq)) {
489 		ret = PTR_ERR(queue->ib_cq);
490 		return ret;
491 	}
492 
493 	return 0;
494 }
495 
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)496 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
497 {
498 	struct ib_device *ibdev;
499 	const int send_wr_factor = 3;			/* MR, SEND, INV */
500 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
501 	int ret, pages_per_mr;
502 
503 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
504 	if (!queue->device) {
505 		dev_err(queue->cm_id->device->dev.parent,
506 			"no client data found!\n");
507 		return -ECONNREFUSED;
508 	}
509 	ibdev = queue->device->dev;
510 
511 	/* +1 for ib_stop_cq */
512 	queue->cq_size = cq_factor * queue->queue_size + 1;
513 
514 	ret = nvme_rdma_create_cq(ibdev, queue);
515 	if (ret)
516 		goto out_put_dev;
517 
518 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
519 	if (ret)
520 		goto out_destroy_ib_cq;
521 
522 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
523 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
524 	if (!queue->rsp_ring) {
525 		ret = -ENOMEM;
526 		goto out_destroy_qp;
527 	}
528 
529 	/*
530 	 * Currently we don't use SG_GAPS MR's so if the first entry is
531 	 * misaligned we'll end up using two entries for a single data page,
532 	 * so one additional entry is required.
533 	 */
534 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
535 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
536 			      queue->queue_size,
537 			      IB_MR_TYPE_MEM_REG,
538 			      pages_per_mr, 0);
539 	if (ret) {
540 		dev_err(queue->ctrl->ctrl.device,
541 			"failed to initialize MR pool sized %d for QID %d\n",
542 			queue->queue_size, nvme_rdma_queue_idx(queue));
543 		goto out_destroy_ring;
544 	}
545 
546 	if (queue->pi_support) {
547 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
548 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
549 				      pages_per_mr, pages_per_mr);
550 		if (ret) {
551 			dev_err(queue->ctrl->ctrl.device,
552 				"failed to initialize PI MR pool sized %d for QID %d\n",
553 				queue->queue_size, nvme_rdma_queue_idx(queue));
554 			goto out_destroy_mr_pool;
555 		}
556 	}
557 
558 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
559 
560 	return 0;
561 
562 out_destroy_mr_pool:
563 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
564 out_destroy_ring:
565 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
566 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
567 out_destroy_qp:
568 	rdma_destroy_qp(queue->cm_id);
569 out_destroy_ib_cq:
570 	nvme_rdma_free_cq(queue);
571 out_put_dev:
572 	nvme_rdma_dev_put(queue->device);
573 	return ret;
574 }
575 
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)576 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
577 		int idx, size_t queue_size)
578 {
579 	struct nvme_rdma_queue *queue;
580 	struct sockaddr *src_addr = NULL;
581 	int ret;
582 
583 	queue = &ctrl->queues[idx];
584 	mutex_init(&queue->queue_lock);
585 	queue->ctrl = ctrl;
586 	if (idx && ctrl->ctrl.max_integrity_segments)
587 		queue->pi_support = true;
588 	else
589 		queue->pi_support = false;
590 	init_completion(&queue->cm_done);
591 
592 	if (idx > 0)
593 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
594 	else
595 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
596 
597 	queue->queue_size = queue_size;
598 
599 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
600 			RDMA_PS_TCP, IB_QPT_RC);
601 	if (IS_ERR(queue->cm_id)) {
602 		dev_info(ctrl->ctrl.device,
603 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
604 		ret = PTR_ERR(queue->cm_id);
605 		goto out_destroy_mutex;
606 	}
607 
608 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
609 		src_addr = (struct sockaddr *)&ctrl->src_addr;
610 
611 	queue->cm_error = -ETIMEDOUT;
612 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
613 			(struct sockaddr *)&ctrl->addr,
614 			NVME_RDMA_CONNECT_TIMEOUT_MS);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma_resolve_addr failed (%d).\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	ret = nvme_rdma_wait_for_cm(queue);
622 	if (ret) {
623 		dev_info(ctrl->ctrl.device,
624 			"rdma connection establishment failed (%d)\n", ret);
625 		goto out_destroy_cm_id;
626 	}
627 
628 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
629 
630 	return 0;
631 
632 out_destroy_cm_id:
633 	rdma_destroy_id(queue->cm_id);
634 	nvme_rdma_destroy_queue_ib(queue);
635 out_destroy_mutex:
636 	mutex_destroy(&queue->queue_lock);
637 	return ret;
638 }
639 
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)640 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 {
642 	rdma_disconnect(queue->cm_id);
643 	ib_drain_qp(queue->qp);
644 }
645 
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)646 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
647 {
648 	if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
649 		return;
650 
651 	mutex_lock(&queue->queue_lock);
652 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
653 		__nvme_rdma_stop_queue(queue);
654 	mutex_unlock(&queue->queue_lock);
655 }
656 
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)657 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
658 {
659 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
660 		return;
661 
662 	rdma_destroy_id(queue->cm_id);
663 	nvme_rdma_destroy_queue_ib(queue);
664 	mutex_destroy(&queue->queue_lock);
665 }
666 
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)667 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
668 {
669 	int i;
670 
671 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
672 		nvme_rdma_free_queue(&ctrl->queues[i]);
673 }
674 
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)675 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
676 {
677 	int i;
678 
679 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
680 		nvme_rdma_stop_queue(&ctrl->queues[i]);
681 }
682 
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)683 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
684 {
685 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
686 	int ret;
687 
688 	if (idx)
689 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
690 	else
691 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
692 
693 	if (!ret) {
694 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
695 	} else {
696 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
697 			__nvme_rdma_stop_queue(queue);
698 		dev_info(ctrl->ctrl.device,
699 			"failed to connect queue: %d ret=%d\n", idx, ret);
700 	}
701 	return ret;
702 }
703 
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)704 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
705 {
706 	int i, ret = 0;
707 
708 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
709 		ret = nvme_rdma_start_queue(ctrl, i);
710 		if (ret)
711 			goto out_stop_queues;
712 	}
713 
714 	return 0;
715 
716 out_stop_queues:
717 	for (i--; i >= 1; i--)
718 		nvme_rdma_stop_queue(&ctrl->queues[i]);
719 	return ret;
720 }
721 
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)722 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
723 {
724 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
725 	struct ib_device *ibdev = ctrl->device->dev;
726 	unsigned int nr_io_queues, nr_default_queues;
727 	unsigned int nr_read_queues, nr_poll_queues;
728 	int i, ret;
729 
730 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
731 				min(opts->nr_io_queues, num_online_cpus()));
732 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
733 				min(opts->nr_write_queues, num_online_cpus()));
734 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
735 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
736 
737 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
738 	if (ret)
739 		return ret;
740 
741 	if (nr_io_queues == 0) {
742 		dev_err(ctrl->ctrl.device,
743 			"unable to set any I/O queues\n");
744 		return -ENOMEM;
745 	}
746 
747 	ctrl->ctrl.queue_count = nr_io_queues + 1;
748 	dev_info(ctrl->ctrl.device,
749 		"creating %d I/O queues.\n", nr_io_queues);
750 
751 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
752 		/*
753 		 * separate read/write queues
754 		 * hand out dedicated default queues only after we have
755 		 * sufficient read queues.
756 		 */
757 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
759 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760 			min(nr_default_queues, nr_io_queues);
761 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762 	} else {
763 		/*
764 		 * shared read/write queues
765 		 * either no write queues were requested, or we don't have
766 		 * sufficient queue count to have dedicated default queues.
767 		 */
768 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
769 			min(nr_read_queues, nr_io_queues);
770 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
771 	}
772 
773 	if (opts->nr_poll_queues && nr_io_queues) {
774 		/* map dedicated poll queues only if we have queues left */
775 		ctrl->io_queues[HCTX_TYPE_POLL] =
776 			min(nr_poll_queues, nr_io_queues);
777 	}
778 
779 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
780 		ret = nvme_rdma_alloc_queue(ctrl, i,
781 				ctrl->ctrl.sqsize + 1);
782 		if (ret)
783 			goto out_free_queues;
784 	}
785 
786 	return 0;
787 
788 out_free_queues:
789 	for (i--; i >= 1; i--)
790 		nvme_rdma_free_queue(&ctrl->queues[i]);
791 
792 	return ret;
793 }
794 
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)795 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
796 		bool admin)
797 {
798 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
799 	struct blk_mq_tag_set *set;
800 	int ret;
801 
802 	if (admin) {
803 		set = &ctrl->admin_tag_set;
804 		memset(set, 0, sizeof(*set));
805 		set->ops = &nvme_rdma_admin_mq_ops;
806 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
807 		set->reserved_tags = NVMF_RESERVED_TAGS;
808 		set->numa_node = nctrl->numa_node;
809 		set->cmd_size = sizeof(struct nvme_rdma_request) +
810 				NVME_RDMA_DATA_SGL_SIZE;
811 		set->driver_data = ctrl;
812 		set->nr_hw_queues = 1;
813 		set->timeout = NVME_ADMIN_TIMEOUT;
814 		set->flags = BLK_MQ_F_NO_SCHED;
815 	} else {
816 		set = &ctrl->tag_set;
817 		memset(set, 0, sizeof(*set));
818 		set->ops = &nvme_rdma_mq_ops;
819 		set->queue_depth = nctrl->sqsize + 1;
820 		set->reserved_tags = NVMF_RESERVED_TAGS;
821 		set->numa_node = nctrl->numa_node;
822 		set->flags = BLK_MQ_F_SHOULD_MERGE;
823 		set->cmd_size = sizeof(struct nvme_rdma_request) +
824 				NVME_RDMA_DATA_SGL_SIZE;
825 		if (nctrl->max_integrity_segments)
826 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
827 					 NVME_RDMA_METADATA_SGL_SIZE;
828 		set->driver_data = ctrl;
829 		set->nr_hw_queues = nctrl->queue_count - 1;
830 		set->timeout = NVME_IO_TIMEOUT;
831 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
832 	}
833 
834 	ret = blk_mq_alloc_tag_set(set);
835 	if (ret)
836 		return ERR_PTR(ret);
837 
838 	return set;
839 }
840 
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)841 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
842 		bool remove)
843 {
844 	if (remove) {
845 		blk_cleanup_queue(ctrl->ctrl.admin_q);
846 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
847 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
848 	}
849 	if (ctrl->async_event_sqe.data) {
850 		cancel_work_sync(&ctrl->ctrl.async_event_work);
851 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
852 				sizeof(struct nvme_command), DMA_TO_DEVICE);
853 		ctrl->async_event_sqe.data = NULL;
854 	}
855 	nvme_rdma_free_queue(&ctrl->queues[0]);
856 }
857 
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)858 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
859 		bool new)
860 {
861 	bool pi_capable = false;
862 	int error;
863 
864 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
865 	if (error)
866 		return error;
867 
868 	ctrl->device = ctrl->queues[0].device;
869 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
870 
871 	/* T10-PI support */
872 	if (ctrl->device->dev->attrs.device_cap_flags &
873 	    IB_DEVICE_INTEGRITY_HANDOVER)
874 		pi_capable = true;
875 
876 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
877 							pi_capable);
878 
879 	/*
880 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
881 	 * It's safe, since any chage in the underlying RDMA device will issue
882 	 * error recovery and queue re-creation.
883 	 */
884 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
885 			sizeof(struct nvme_command), DMA_TO_DEVICE);
886 	if (error)
887 		goto out_free_queue;
888 
889 	if (new) {
890 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
891 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
892 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
893 			goto out_free_async_qe;
894 		}
895 
896 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
897 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
898 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
899 			goto out_free_tagset;
900 		}
901 
902 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
903 		if (IS_ERR(ctrl->ctrl.admin_q)) {
904 			error = PTR_ERR(ctrl->ctrl.admin_q);
905 			goto out_cleanup_fabrics_q;
906 		}
907 	}
908 
909 	error = nvme_rdma_start_queue(ctrl, 0);
910 	if (error)
911 		goto out_cleanup_queue;
912 
913 	error = nvme_enable_ctrl(&ctrl->ctrl);
914 	if (error)
915 		goto out_stop_queue;
916 
917 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
918 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
919 	if (pi_capable)
920 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
921 	else
922 		ctrl->ctrl.max_integrity_segments = 0;
923 
924 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
925 
926 	error = nvme_init_ctrl_finish(&ctrl->ctrl);
927 	if (error)
928 		goto out_quiesce_queue;
929 
930 	return 0;
931 
932 out_quiesce_queue:
933 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
934 	blk_sync_queue(ctrl->ctrl.admin_q);
935 out_stop_queue:
936 	nvme_rdma_stop_queue(&ctrl->queues[0]);
937 	nvme_cancel_admin_tagset(&ctrl->ctrl);
938 out_cleanup_queue:
939 	if (new)
940 		blk_cleanup_queue(ctrl->ctrl.admin_q);
941 out_cleanup_fabrics_q:
942 	if (new)
943 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
944 out_free_tagset:
945 	if (new)
946 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
947 out_free_async_qe:
948 	if (ctrl->async_event_sqe.data) {
949 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
950 			sizeof(struct nvme_command), DMA_TO_DEVICE);
951 		ctrl->async_event_sqe.data = NULL;
952 	}
953 out_free_queue:
954 	nvme_rdma_free_queue(&ctrl->queues[0]);
955 	return error;
956 }
957 
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)958 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
959 		bool remove)
960 {
961 	if (remove) {
962 		blk_cleanup_queue(ctrl->ctrl.connect_q);
963 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
964 	}
965 	nvme_rdma_free_io_queues(ctrl);
966 }
967 
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)968 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
969 {
970 	int ret;
971 
972 	ret = nvme_rdma_alloc_io_queues(ctrl);
973 	if (ret)
974 		return ret;
975 
976 	if (new) {
977 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
978 		if (IS_ERR(ctrl->ctrl.tagset)) {
979 			ret = PTR_ERR(ctrl->ctrl.tagset);
980 			goto out_free_io_queues;
981 		}
982 
983 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
984 		if (IS_ERR(ctrl->ctrl.connect_q)) {
985 			ret = PTR_ERR(ctrl->ctrl.connect_q);
986 			goto out_free_tag_set;
987 		}
988 	}
989 
990 	ret = nvme_rdma_start_io_queues(ctrl);
991 	if (ret)
992 		goto out_cleanup_connect_q;
993 
994 	if (!new) {
995 		nvme_start_freeze(&ctrl->ctrl);
996 		nvme_start_queues(&ctrl->ctrl);
997 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
998 			/*
999 			 * If we timed out waiting for freeze we are likely to
1000 			 * be stuck.  Fail the controller initialization just
1001 			 * to be safe.
1002 			 */
1003 			ret = -ENODEV;
1004 			nvme_unfreeze(&ctrl->ctrl);
1005 			goto out_wait_freeze_timed_out;
1006 		}
1007 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1008 			ctrl->ctrl.queue_count - 1);
1009 		nvme_unfreeze(&ctrl->ctrl);
1010 	}
1011 
1012 	return 0;
1013 
1014 out_wait_freeze_timed_out:
1015 	nvme_stop_queues(&ctrl->ctrl);
1016 	nvme_sync_io_queues(&ctrl->ctrl);
1017 	nvme_rdma_stop_io_queues(ctrl);
1018 out_cleanup_connect_q:
1019 	nvme_cancel_tagset(&ctrl->ctrl);
1020 	if (new)
1021 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1022 out_free_tag_set:
1023 	if (new)
1024 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1025 out_free_io_queues:
1026 	nvme_rdma_free_io_queues(ctrl);
1027 	return ret;
1028 }
1029 
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)1030 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1031 		bool remove)
1032 {
1033 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1034 	blk_sync_queue(ctrl->ctrl.admin_q);
1035 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1036 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1037 	if (remove)
1038 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1039 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1040 }
1041 
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)1042 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1043 		bool remove)
1044 {
1045 	if (ctrl->ctrl.queue_count > 1) {
1046 		nvme_stop_queues(&ctrl->ctrl);
1047 		nvme_sync_io_queues(&ctrl->ctrl);
1048 		nvme_rdma_stop_io_queues(ctrl);
1049 		nvme_cancel_tagset(&ctrl->ctrl);
1050 		if (remove)
1051 			nvme_start_queues(&ctrl->ctrl);
1052 		nvme_rdma_destroy_io_queues(ctrl, remove);
1053 	}
1054 }
1055 
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)1056 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1057 {
1058 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1059 
1060 	cancel_work_sync(&ctrl->err_work);
1061 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1062 }
1063 
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1064 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1065 {
1066 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1067 
1068 	if (list_empty(&ctrl->list))
1069 		goto free_ctrl;
1070 
1071 	mutex_lock(&nvme_rdma_ctrl_mutex);
1072 	list_del(&ctrl->list);
1073 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1074 
1075 	nvmf_free_options(nctrl->opts);
1076 free_ctrl:
1077 	kfree(ctrl->queues);
1078 	kfree(ctrl);
1079 }
1080 
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1081 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1082 {
1083 	/* If we are resetting/deleting then do nothing */
1084 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1085 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1086 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1087 		return;
1088 	}
1089 
1090 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1091 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1092 			ctrl->ctrl.opts->reconnect_delay);
1093 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1094 				ctrl->ctrl.opts->reconnect_delay * HZ);
1095 	} else {
1096 		nvme_delete_ctrl(&ctrl->ctrl);
1097 	}
1098 }
1099 
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1100 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1101 {
1102 	int ret;
1103 	bool changed;
1104 
1105 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1106 	if (ret)
1107 		return ret;
1108 
1109 	if (ctrl->ctrl.icdoff) {
1110 		ret = -EOPNOTSUPP;
1111 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1112 		goto destroy_admin;
1113 	}
1114 
1115 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1116 		ret = -EOPNOTSUPP;
1117 		dev_err(ctrl->ctrl.device,
1118 			"Mandatory keyed sgls are not supported!\n");
1119 		goto destroy_admin;
1120 	}
1121 
1122 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1123 		dev_warn(ctrl->ctrl.device,
1124 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1125 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1126 	}
1127 
1128 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1129 		dev_warn(ctrl->ctrl.device,
1130 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1131 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1132 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1133 	}
1134 
1135 	if (ctrl->ctrl.sgls & (1 << 20))
1136 		ctrl->use_inline_data = true;
1137 
1138 	if (ctrl->ctrl.queue_count > 1) {
1139 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1140 		if (ret)
1141 			goto destroy_admin;
1142 	}
1143 
1144 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1145 	if (!changed) {
1146 		/*
1147 		 * state change failure is ok if we started ctrl delete,
1148 		 * unless we're during creation of a new controller to
1149 		 * avoid races with teardown flow.
1150 		 */
1151 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1152 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1153 		WARN_ON_ONCE(new);
1154 		ret = -EINVAL;
1155 		goto destroy_io;
1156 	}
1157 
1158 	nvme_start_ctrl(&ctrl->ctrl);
1159 	return 0;
1160 
1161 destroy_io:
1162 	if (ctrl->ctrl.queue_count > 1) {
1163 		nvme_stop_queues(&ctrl->ctrl);
1164 		nvme_sync_io_queues(&ctrl->ctrl);
1165 		nvme_rdma_stop_io_queues(ctrl);
1166 		nvme_cancel_tagset(&ctrl->ctrl);
1167 		nvme_rdma_destroy_io_queues(ctrl, new);
1168 	}
1169 destroy_admin:
1170 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1171 	blk_sync_queue(ctrl->ctrl.admin_q);
1172 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1173 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1174 	nvme_rdma_destroy_admin_queue(ctrl, new);
1175 	return ret;
1176 }
1177 
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1178 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1179 {
1180 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1181 			struct nvme_rdma_ctrl, reconnect_work);
1182 
1183 	++ctrl->ctrl.nr_reconnects;
1184 
1185 	if (nvme_rdma_setup_ctrl(ctrl, false))
1186 		goto requeue;
1187 
1188 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1189 			ctrl->ctrl.nr_reconnects);
1190 
1191 	ctrl->ctrl.nr_reconnects = 0;
1192 
1193 	return;
1194 
1195 requeue:
1196 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1197 			ctrl->ctrl.nr_reconnects);
1198 	nvme_rdma_reconnect_or_remove(ctrl);
1199 }
1200 
nvme_rdma_error_recovery_work(struct work_struct * work)1201 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1202 {
1203 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1204 			struct nvme_rdma_ctrl, err_work);
1205 
1206 	nvme_stop_keep_alive(&ctrl->ctrl);
1207 	flush_work(&ctrl->ctrl.async_event_work);
1208 	nvme_rdma_teardown_io_queues(ctrl, false);
1209 	nvme_start_queues(&ctrl->ctrl);
1210 	nvme_rdma_teardown_admin_queue(ctrl, false);
1211 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1212 
1213 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1214 		/* state change failure is ok if we started ctrl delete */
1215 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1216 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1217 		return;
1218 	}
1219 
1220 	nvme_rdma_reconnect_or_remove(ctrl);
1221 }
1222 
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1223 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1224 {
1225 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1226 		return;
1227 
1228 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1229 	queue_work(nvme_reset_wq, &ctrl->err_work);
1230 }
1231 
nvme_rdma_end_request(struct nvme_rdma_request * req)1232 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1233 {
1234 	struct request *rq = blk_mq_rq_from_pdu(req);
1235 
1236 	if (!refcount_dec_and_test(&req->ref))
1237 		return;
1238 	if (!nvme_try_complete_req(rq, req->status, req->result))
1239 		nvme_rdma_complete_rq(rq);
1240 }
1241 
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1242 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1243 		const char *op)
1244 {
1245 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1246 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1247 
1248 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1249 		dev_info(ctrl->ctrl.device,
1250 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1251 			     op, wc->wr_cqe,
1252 			     ib_wc_status_msg(wc->status), wc->status);
1253 	nvme_rdma_error_recovery(ctrl);
1254 }
1255 
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1256 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1257 {
1258 	if (unlikely(wc->status != IB_WC_SUCCESS))
1259 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1260 }
1261 
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1262 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1263 {
1264 	struct nvme_rdma_request *req =
1265 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1266 
1267 	if (unlikely(wc->status != IB_WC_SUCCESS))
1268 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1269 	else
1270 		nvme_rdma_end_request(req);
1271 }
1272 
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1273 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1274 		struct nvme_rdma_request *req)
1275 {
1276 	struct ib_send_wr wr = {
1277 		.opcode		    = IB_WR_LOCAL_INV,
1278 		.next		    = NULL,
1279 		.num_sge	    = 0,
1280 		.send_flags	    = IB_SEND_SIGNALED,
1281 		.ex.invalidate_rkey = req->mr->rkey,
1282 	};
1283 
1284 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1285 	wr.wr_cqe = &req->reg_cqe;
1286 
1287 	return ib_post_send(queue->qp, &wr, NULL);
1288 }
1289 
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1290 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1291 		struct request *rq)
1292 {
1293 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1294 	struct nvme_rdma_device *dev = queue->device;
1295 	struct ib_device *ibdev = dev->dev;
1296 	struct list_head *pool = &queue->qp->rdma_mrs;
1297 
1298 	if (!blk_rq_nr_phys_segments(rq))
1299 		return;
1300 
1301 	if (blk_integrity_rq(rq)) {
1302 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1303 				req->metadata_sgl->nents, rq_dma_dir(rq));
1304 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1305 				      NVME_INLINE_METADATA_SG_CNT);
1306 	}
1307 
1308 	if (req->use_sig_mr)
1309 		pool = &queue->qp->sig_mrs;
1310 
1311 	if (req->mr) {
1312 		ib_mr_pool_put(queue->qp, pool, req->mr);
1313 		req->mr = NULL;
1314 	}
1315 
1316 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1317 			rq_dma_dir(rq));
1318 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1319 }
1320 
nvme_rdma_set_sg_null(struct nvme_command * c)1321 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1322 {
1323 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1324 
1325 	sg->addr = 0;
1326 	put_unaligned_le24(0, sg->length);
1327 	put_unaligned_le32(0, sg->key);
1328 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1329 	return 0;
1330 }
1331 
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1332 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1333 		struct nvme_rdma_request *req, struct nvme_command *c,
1334 		int count)
1335 {
1336 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1337 	struct ib_sge *sge = &req->sge[1];
1338 	struct scatterlist *sgl;
1339 	u32 len = 0;
1340 	int i;
1341 
1342 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1343 		sge->addr = sg_dma_address(sgl);
1344 		sge->length = sg_dma_len(sgl);
1345 		sge->lkey = queue->device->pd->local_dma_lkey;
1346 		len += sge->length;
1347 		sge++;
1348 	}
1349 
1350 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1351 	sg->length = cpu_to_le32(len);
1352 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1353 
1354 	req->num_sge += count;
1355 	return 0;
1356 }
1357 
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1358 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1359 		struct nvme_rdma_request *req, struct nvme_command *c)
1360 {
1361 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1362 
1363 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1364 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1365 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1366 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1367 	return 0;
1368 }
1369 
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1370 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1371 		struct nvme_rdma_request *req, struct nvme_command *c,
1372 		int count)
1373 {
1374 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1375 	int nr;
1376 
1377 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1378 	if (WARN_ON_ONCE(!req->mr))
1379 		return -EAGAIN;
1380 
1381 	/*
1382 	 * Align the MR to a 4K page size to match the ctrl page size and
1383 	 * the block virtual boundary.
1384 	 */
1385 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1386 			  SZ_4K);
1387 	if (unlikely(nr < count)) {
1388 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1389 		req->mr = NULL;
1390 		if (nr < 0)
1391 			return nr;
1392 		return -EINVAL;
1393 	}
1394 
1395 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1396 
1397 	req->reg_cqe.done = nvme_rdma_memreg_done;
1398 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1399 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1400 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1401 	req->reg_wr.wr.num_sge = 0;
1402 	req->reg_wr.mr = req->mr;
1403 	req->reg_wr.key = req->mr->rkey;
1404 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1405 			     IB_ACCESS_REMOTE_READ |
1406 			     IB_ACCESS_REMOTE_WRITE;
1407 
1408 	sg->addr = cpu_to_le64(req->mr->iova);
1409 	put_unaligned_le24(req->mr->length, sg->length);
1410 	put_unaligned_le32(req->mr->rkey, sg->key);
1411 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1412 			NVME_SGL_FMT_INVALIDATE;
1413 
1414 	return 0;
1415 }
1416 
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1417 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1418 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1419 		u16 control, u8 pi_type)
1420 {
1421 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1422 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1423 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1424 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1425 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1426 		domain->sig.dif.ref_remap = true;
1427 
1428 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1429 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1430 	domain->sig.dif.app_escape = true;
1431 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1432 		domain->sig.dif.ref_escape = true;
1433 }
1434 
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1435 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1436 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1437 		u8 pi_type)
1438 {
1439 	u16 control = le16_to_cpu(cmd->rw.control);
1440 
1441 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1442 	if (control & NVME_RW_PRINFO_PRACT) {
1443 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1444 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1445 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1446 					 pi_type);
1447 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1448 		control &= ~NVME_RW_PRINFO_PRACT;
1449 		cmd->rw.control = cpu_to_le16(control);
1450 	} else {
1451 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1452 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1453 					 pi_type);
1454 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1455 					 pi_type);
1456 	}
1457 }
1458 
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1459 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1460 {
1461 	*mask = 0;
1462 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1463 		*mask |= IB_SIG_CHECK_REFTAG;
1464 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1465 		*mask |= IB_SIG_CHECK_GUARD;
1466 }
1467 
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1468 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1469 {
1470 	if (unlikely(wc->status != IB_WC_SUCCESS))
1471 		nvme_rdma_wr_error(cq, wc, "SIG");
1472 }
1473 
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1474 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1475 		struct nvme_rdma_request *req, struct nvme_command *c,
1476 		int count, int pi_count)
1477 {
1478 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1479 	struct ib_reg_wr *wr = &req->reg_wr;
1480 	struct request *rq = blk_mq_rq_from_pdu(req);
1481 	struct nvme_ns *ns = rq->q->queuedata;
1482 	struct bio *bio = rq->bio;
1483 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1484 	int nr;
1485 
1486 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1487 	if (WARN_ON_ONCE(!req->mr))
1488 		return -EAGAIN;
1489 
1490 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1491 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1492 			     SZ_4K);
1493 	if (unlikely(nr))
1494 		goto mr_put;
1495 
1496 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1497 				req->mr->sig_attrs, ns->pi_type);
1498 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1499 
1500 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1501 
1502 	req->reg_cqe.done = nvme_rdma_sig_done;
1503 	memset(wr, 0, sizeof(*wr));
1504 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1505 	wr->wr.wr_cqe = &req->reg_cqe;
1506 	wr->wr.num_sge = 0;
1507 	wr->wr.send_flags = 0;
1508 	wr->mr = req->mr;
1509 	wr->key = req->mr->rkey;
1510 	wr->access = IB_ACCESS_LOCAL_WRITE |
1511 		     IB_ACCESS_REMOTE_READ |
1512 		     IB_ACCESS_REMOTE_WRITE;
1513 
1514 	sg->addr = cpu_to_le64(req->mr->iova);
1515 	put_unaligned_le24(req->mr->length, sg->length);
1516 	put_unaligned_le32(req->mr->rkey, sg->key);
1517 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1518 
1519 	return 0;
1520 
1521 mr_put:
1522 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1523 	req->mr = NULL;
1524 	if (nr < 0)
1525 		return nr;
1526 	return -EINVAL;
1527 }
1528 
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1529 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1530 		struct request *rq, struct nvme_command *c)
1531 {
1532 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1533 	struct nvme_rdma_device *dev = queue->device;
1534 	struct ib_device *ibdev = dev->dev;
1535 	int pi_count = 0;
1536 	int count, ret;
1537 
1538 	req->num_sge = 1;
1539 	refcount_set(&req->ref, 2); /* send and recv completions */
1540 
1541 	c->common.flags |= NVME_CMD_SGL_METABUF;
1542 
1543 	if (!blk_rq_nr_phys_segments(rq))
1544 		return nvme_rdma_set_sg_null(c);
1545 
1546 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1547 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1548 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1549 			NVME_INLINE_SG_CNT);
1550 	if (ret)
1551 		return -ENOMEM;
1552 
1553 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1554 					    req->data_sgl.sg_table.sgl);
1555 
1556 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1557 			      req->data_sgl.nents, rq_dma_dir(rq));
1558 	if (unlikely(count <= 0)) {
1559 		ret = -EIO;
1560 		goto out_free_table;
1561 	}
1562 
1563 	if (blk_integrity_rq(rq)) {
1564 		req->metadata_sgl->sg_table.sgl =
1565 			(struct scatterlist *)(req->metadata_sgl + 1);
1566 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1567 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1568 				req->metadata_sgl->sg_table.sgl,
1569 				NVME_INLINE_METADATA_SG_CNT);
1570 		if (unlikely(ret)) {
1571 			ret = -ENOMEM;
1572 			goto out_unmap_sg;
1573 		}
1574 
1575 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1576 				rq->bio, req->metadata_sgl->sg_table.sgl);
1577 		pi_count = ib_dma_map_sg(ibdev,
1578 					 req->metadata_sgl->sg_table.sgl,
1579 					 req->metadata_sgl->nents,
1580 					 rq_dma_dir(rq));
1581 		if (unlikely(pi_count <= 0)) {
1582 			ret = -EIO;
1583 			goto out_free_pi_table;
1584 		}
1585 	}
1586 
1587 	if (req->use_sig_mr) {
1588 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1589 		goto out;
1590 	}
1591 
1592 	if (count <= dev->num_inline_segments) {
1593 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1594 		    queue->ctrl->use_inline_data &&
1595 		    blk_rq_payload_bytes(rq) <=
1596 				nvme_rdma_inline_data_size(queue)) {
1597 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1598 			goto out;
1599 		}
1600 
1601 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1602 			ret = nvme_rdma_map_sg_single(queue, req, c);
1603 			goto out;
1604 		}
1605 	}
1606 
1607 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1608 out:
1609 	if (unlikely(ret))
1610 		goto out_unmap_pi_sg;
1611 
1612 	return 0;
1613 
1614 out_unmap_pi_sg:
1615 	if (blk_integrity_rq(rq))
1616 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1617 				req->metadata_sgl->nents, rq_dma_dir(rq));
1618 out_free_pi_table:
1619 	if (blk_integrity_rq(rq))
1620 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1621 				      NVME_INLINE_METADATA_SG_CNT);
1622 out_unmap_sg:
1623 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1624 			rq_dma_dir(rq));
1625 out_free_table:
1626 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1627 	return ret;
1628 }
1629 
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1630 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1631 {
1632 	struct nvme_rdma_qe *qe =
1633 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1634 	struct nvme_rdma_request *req =
1635 		container_of(qe, struct nvme_rdma_request, sqe);
1636 
1637 	if (unlikely(wc->status != IB_WC_SUCCESS))
1638 		nvme_rdma_wr_error(cq, wc, "SEND");
1639 	else
1640 		nvme_rdma_end_request(req);
1641 }
1642 
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1643 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1644 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1645 		struct ib_send_wr *first)
1646 {
1647 	struct ib_send_wr wr;
1648 	int ret;
1649 
1650 	sge->addr   = qe->dma;
1651 	sge->length = sizeof(struct nvme_command);
1652 	sge->lkey   = queue->device->pd->local_dma_lkey;
1653 
1654 	wr.next       = NULL;
1655 	wr.wr_cqe     = &qe->cqe;
1656 	wr.sg_list    = sge;
1657 	wr.num_sge    = num_sge;
1658 	wr.opcode     = IB_WR_SEND;
1659 	wr.send_flags = IB_SEND_SIGNALED;
1660 
1661 	if (first)
1662 		first->next = &wr;
1663 	else
1664 		first = &wr;
1665 
1666 	ret = ib_post_send(queue->qp, first, NULL);
1667 	if (unlikely(ret)) {
1668 		dev_err(queue->ctrl->ctrl.device,
1669 			     "%s failed with error code %d\n", __func__, ret);
1670 	}
1671 	return ret;
1672 }
1673 
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1674 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1675 		struct nvme_rdma_qe *qe)
1676 {
1677 	struct ib_recv_wr wr;
1678 	struct ib_sge list;
1679 	int ret;
1680 
1681 	list.addr   = qe->dma;
1682 	list.length = sizeof(struct nvme_completion);
1683 	list.lkey   = queue->device->pd->local_dma_lkey;
1684 
1685 	qe->cqe.done = nvme_rdma_recv_done;
1686 
1687 	wr.next     = NULL;
1688 	wr.wr_cqe   = &qe->cqe;
1689 	wr.sg_list  = &list;
1690 	wr.num_sge  = 1;
1691 
1692 	ret = ib_post_recv(queue->qp, &wr, NULL);
1693 	if (unlikely(ret)) {
1694 		dev_err(queue->ctrl->ctrl.device,
1695 			"%s failed with error code %d\n", __func__, ret);
1696 	}
1697 	return ret;
1698 }
1699 
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1700 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1701 {
1702 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1703 
1704 	if (queue_idx == 0)
1705 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1706 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1707 }
1708 
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1709 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1710 {
1711 	if (unlikely(wc->status != IB_WC_SUCCESS))
1712 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1713 }
1714 
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1715 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1716 {
1717 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1718 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1719 	struct ib_device *dev = queue->device->dev;
1720 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1721 	struct nvme_command *cmd = sqe->data;
1722 	struct ib_sge sge;
1723 	int ret;
1724 
1725 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1726 
1727 	memset(cmd, 0, sizeof(*cmd));
1728 	cmd->common.opcode = nvme_admin_async_event;
1729 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1730 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1731 	nvme_rdma_set_sg_null(cmd);
1732 
1733 	sqe->cqe.done = nvme_rdma_async_done;
1734 
1735 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1736 			DMA_TO_DEVICE);
1737 
1738 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1739 	WARN_ON_ONCE(ret);
1740 }
1741 
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1742 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1743 		struct nvme_completion *cqe, struct ib_wc *wc)
1744 {
1745 	struct request *rq;
1746 	struct nvme_rdma_request *req;
1747 
1748 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1749 	if (!rq) {
1750 		dev_err(queue->ctrl->ctrl.device,
1751 			"got bad command_id %#x on QP %#x\n",
1752 			cqe->command_id, queue->qp->qp_num);
1753 		nvme_rdma_error_recovery(queue->ctrl);
1754 		return;
1755 	}
1756 	req = blk_mq_rq_to_pdu(rq);
1757 
1758 	req->status = cqe->status;
1759 	req->result = cqe->result;
1760 
1761 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1762 		if (unlikely(!req->mr ||
1763 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1764 			dev_err(queue->ctrl->ctrl.device,
1765 				"Bogus remote invalidation for rkey %#x\n",
1766 				req->mr ? req->mr->rkey : 0);
1767 			nvme_rdma_error_recovery(queue->ctrl);
1768 		}
1769 	} else if (req->mr) {
1770 		int ret;
1771 
1772 		ret = nvme_rdma_inv_rkey(queue, req);
1773 		if (unlikely(ret < 0)) {
1774 			dev_err(queue->ctrl->ctrl.device,
1775 				"Queueing INV WR for rkey %#x failed (%d)\n",
1776 				req->mr->rkey, ret);
1777 			nvme_rdma_error_recovery(queue->ctrl);
1778 		}
1779 		/* the local invalidation completion will end the request */
1780 		return;
1781 	}
1782 
1783 	nvme_rdma_end_request(req);
1784 }
1785 
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1786 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1787 {
1788 	struct nvme_rdma_qe *qe =
1789 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1790 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1791 	struct ib_device *ibdev = queue->device->dev;
1792 	struct nvme_completion *cqe = qe->data;
1793 	const size_t len = sizeof(struct nvme_completion);
1794 
1795 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1796 		nvme_rdma_wr_error(cq, wc, "RECV");
1797 		return;
1798 	}
1799 
1800 	/* sanity checking for received data length */
1801 	if (unlikely(wc->byte_len < len)) {
1802 		dev_err(queue->ctrl->ctrl.device,
1803 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1804 		nvme_rdma_error_recovery(queue->ctrl);
1805 		return;
1806 	}
1807 
1808 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1809 	/*
1810 	 * AEN requests are special as they don't time out and can
1811 	 * survive any kind of queue freeze and often don't respond to
1812 	 * aborts.  We don't even bother to allocate a struct request
1813 	 * for them but rather special case them here.
1814 	 */
1815 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1816 				     cqe->command_id)))
1817 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1818 				&cqe->result);
1819 	else
1820 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1821 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1822 
1823 	nvme_rdma_post_recv(queue, qe);
1824 }
1825 
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1826 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1827 {
1828 	int ret, i;
1829 
1830 	for (i = 0; i < queue->queue_size; i++) {
1831 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1832 		if (ret)
1833 			return ret;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1839 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1840 		struct rdma_cm_event *ev)
1841 {
1842 	struct rdma_cm_id *cm_id = queue->cm_id;
1843 	int status = ev->status;
1844 	const char *rej_msg;
1845 	const struct nvme_rdma_cm_rej *rej_data;
1846 	u8 rej_data_len;
1847 
1848 	rej_msg = rdma_reject_msg(cm_id, status);
1849 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1850 
1851 	if (rej_data && rej_data_len >= sizeof(u16)) {
1852 		u16 sts = le16_to_cpu(rej_data->sts);
1853 
1854 		dev_err(queue->ctrl->ctrl.device,
1855 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1856 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1857 	} else {
1858 		dev_err(queue->ctrl->ctrl.device,
1859 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1860 	}
1861 
1862 	return -ECONNRESET;
1863 }
1864 
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1865 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1866 {
1867 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1868 	int ret;
1869 
1870 	ret = nvme_rdma_create_queue_ib(queue);
1871 	if (ret)
1872 		return ret;
1873 
1874 	if (ctrl->opts->tos >= 0)
1875 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1876 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1877 	if (ret) {
1878 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1879 			queue->cm_error);
1880 		goto out_destroy_queue;
1881 	}
1882 
1883 	return 0;
1884 
1885 out_destroy_queue:
1886 	nvme_rdma_destroy_queue_ib(queue);
1887 	return ret;
1888 }
1889 
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1890 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1891 {
1892 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1893 	struct rdma_conn_param param = { };
1894 	struct nvme_rdma_cm_req priv = { };
1895 	int ret;
1896 
1897 	param.qp_num = queue->qp->qp_num;
1898 	param.flow_control = 1;
1899 
1900 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1901 	/* maximum retry count */
1902 	param.retry_count = 7;
1903 	param.rnr_retry_count = 7;
1904 	param.private_data = &priv;
1905 	param.private_data_len = sizeof(priv);
1906 
1907 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1908 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1909 	/*
1910 	 * set the admin queue depth to the minimum size
1911 	 * specified by the Fabrics standard.
1912 	 */
1913 	if (priv.qid == 0) {
1914 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1915 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1916 	} else {
1917 		/*
1918 		 * current interpretation of the fabrics spec
1919 		 * is at minimum you make hrqsize sqsize+1, or a
1920 		 * 1's based representation of sqsize.
1921 		 */
1922 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1923 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1924 	}
1925 
1926 	ret = rdma_connect_locked(queue->cm_id, &param);
1927 	if (ret) {
1928 		dev_err(ctrl->ctrl.device,
1929 			"rdma_connect_locked failed (%d).\n", ret);
1930 		return ret;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1936 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1937 		struct rdma_cm_event *ev)
1938 {
1939 	struct nvme_rdma_queue *queue = cm_id->context;
1940 	int cm_error = 0;
1941 
1942 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1943 		rdma_event_msg(ev->event), ev->event,
1944 		ev->status, cm_id);
1945 
1946 	switch (ev->event) {
1947 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1948 		cm_error = nvme_rdma_addr_resolved(queue);
1949 		break;
1950 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1951 		cm_error = nvme_rdma_route_resolved(queue);
1952 		break;
1953 	case RDMA_CM_EVENT_ESTABLISHED:
1954 		queue->cm_error = nvme_rdma_conn_established(queue);
1955 		/* complete cm_done regardless of success/failure */
1956 		complete(&queue->cm_done);
1957 		return 0;
1958 	case RDMA_CM_EVENT_REJECTED:
1959 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1960 		break;
1961 	case RDMA_CM_EVENT_ROUTE_ERROR:
1962 	case RDMA_CM_EVENT_CONNECT_ERROR:
1963 	case RDMA_CM_EVENT_UNREACHABLE:
1964 	case RDMA_CM_EVENT_ADDR_ERROR:
1965 		dev_dbg(queue->ctrl->ctrl.device,
1966 			"CM error event %d\n", ev->event);
1967 		cm_error = -ECONNRESET;
1968 		break;
1969 	case RDMA_CM_EVENT_DISCONNECTED:
1970 	case RDMA_CM_EVENT_ADDR_CHANGE:
1971 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1972 		dev_dbg(queue->ctrl->ctrl.device,
1973 			"disconnect received - connection closed\n");
1974 		nvme_rdma_error_recovery(queue->ctrl);
1975 		break;
1976 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1977 		/* device removal is handled via the ib_client API */
1978 		break;
1979 	default:
1980 		dev_err(queue->ctrl->ctrl.device,
1981 			"Unexpected RDMA CM event (%d)\n", ev->event);
1982 		nvme_rdma_error_recovery(queue->ctrl);
1983 		break;
1984 	}
1985 
1986 	if (cm_error) {
1987 		queue->cm_error = cm_error;
1988 		complete(&queue->cm_done);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
nvme_rdma_complete_timed_out(struct request * rq)1994 static void nvme_rdma_complete_timed_out(struct request *rq)
1995 {
1996 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1997 	struct nvme_rdma_queue *queue = req->queue;
1998 
1999 	nvme_rdma_stop_queue(queue);
2000 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2001 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2002 		blk_mq_complete_request(rq);
2003 	}
2004 }
2005 
2006 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)2007 nvme_rdma_timeout(struct request *rq, bool reserved)
2008 {
2009 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2010 	struct nvme_rdma_queue *queue = req->queue;
2011 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2012 
2013 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2014 		 rq->tag, nvme_rdma_queue_idx(queue));
2015 
2016 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2017 		/*
2018 		 * If we are resetting, connecting or deleting we should
2019 		 * complete immediately because we may block controller
2020 		 * teardown or setup sequence
2021 		 * - ctrl disable/shutdown fabrics requests
2022 		 * - connect requests
2023 		 * - initialization admin requests
2024 		 * - I/O requests that entered after unquiescing and
2025 		 *   the controller stopped responding
2026 		 *
2027 		 * All other requests should be cancelled by the error
2028 		 * recovery work, so it's fine that we fail it here.
2029 		 */
2030 		nvme_rdma_complete_timed_out(rq);
2031 		return BLK_EH_DONE;
2032 	}
2033 
2034 	/*
2035 	 * LIVE state should trigger the normal error recovery which will
2036 	 * handle completing this request.
2037 	 */
2038 	nvme_rdma_error_recovery(ctrl);
2039 	return BLK_EH_RESET_TIMER;
2040 }
2041 
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2042 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2043 		const struct blk_mq_queue_data *bd)
2044 {
2045 	struct nvme_ns *ns = hctx->queue->queuedata;
2046 	struct nvme_rdma_queue *queue = hctx->driver_data;
2047 	struct request *rq = bd->rq;
2048 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2049 	struct nvme_rdma_qe *sqe = &req->sqe;
2050 	struct nvme_command *c = nvme_req(rq)->cmd;
2051 	struct ib_device *dev;
2052 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2053 	blk_status_t ret;
2054 	int err;
2055 
2056 	WARN_ON_ONCE(rq->tag < 0);
2057 
2058 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2059 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2060 
2061 	dev = queue->device->dev;
2062 
2063 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2064 					 sizeof(struct nvme_command),
2065 					 DMA_TO_DEVICE);
2066 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2067 	if (unlikely(err))
2068 		return BLK_STS_RESOURCE;
2069 
2070 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2071 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2072 
2073 	ret = nvme_setup_cmd(ns, rq);
2074 	if (ret)
2075 		goto unmap_qe;
2076 
2077 	blk_mq_start_request(rq);
2078 
2079 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2080 	    queue->pi_support &&
2081 	    (c->common.opcode == nvme_cmd_write ||
2082 	     c->common.opcode == nvme_cmd_read) &&
2083 	    nvme_ns_has_pi(ns))
2084 		req->use_sig_mr = true;
2085 	else
2086 		req->use_sig_mr = false;
2087 
2088 	err = nvme_rdma_map_data(queue, rq, c);
2089 	if (unlikely(err < 0)) {
2090 		dev_err(queue->ctrl->ctrl.device,
2091 			     "Failed to map data (%d)\n", err);
2092 		goto err;
2093 	}
2094 
2095 	sqe->cqe.done = nvme_rdma_send_done;
2096 
2097 	ib_dma_sync_single_for_device(dev, sqe->dma,
2098 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2099 
2100 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2101 			req->mr ? &req->reg_wr.wr : NULL);
2102 	if (unlikely(err))
2103 		goto err_unmap;
2104 
2105 	return BLK_STS_OK;
2106 
2107 err_unmap:
2108 	nvme_rdma_unmap_data(queue, rq);
2109 err:
2110 	if (err == -EIO)
2111 		ret = nvme_host_path_error(rq);
2112 	else if (err == -ENOMEM || err == -EAGAIN)
2113 		ret = BLK_STS_RESOURCE;
2114 	else
2115 		ret = BLK_STS_IOERR;
2116 	nvme_cleanup_cmd(rq);
2117 unmap_qe:
2118 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2119 			    DMA_TO_DEVICE);
2120 	return ret;
2121 }
2122 
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx)2123 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2124 {
2125 	struct nvme_rdma_queue *queue = hctx->driver_data;
2126 
2127 	return ib_process_cq_direct(queue->ib_cq, -1);
2128 }
2129 
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2130 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2131 {
2132 	struct request *rq = blk_mq_rq_from_pdu(req);
2133 	struct ib_mr_status mr_status;
2134 	int ret;
2135 
2136 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2137 	if (ret) {
2138 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2139 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2140 		return;
2141 	}
2142 
2143 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2144 		switch (mr_status.sig_err.err_type) {
2145 		case IB_SIG_BAD_GUARD:
2146 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2147 			break;
2148 		case IB_SIG_BAD_REFTAG:
2149 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2150 			break;
2151 		case IB_SIG_BAD_APPTAG:
2152 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2153 			break;
2154 		}
2155 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2156 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2157 		       mr_status.sig_err.actual);
2158 	}
2159 }
2160 
nvme_rdma_complete_rq(struct request * rq)2161 static void nvme_rdma_complete_rq(struct request *rq)
2162 {
2163 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2164 	struct nvme_rdma_queue *queue = req->queue;
2165 	struct ib_device *ibdev = queue->device->dev;
2166 
2167 	if (req->use_sig_mr)
2168 		nvme_rdma_check_pi_status(req);
2169 
2170 	nvme_rdma_unmap_data(queue, rq);
2171 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2172 			    DMA_TO_DEVICE);
2173 	nvme_complete_rq(rq);
2174 }
2175 
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2176 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2177 {
2178 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2179 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2180 
2181 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2182 		/* separate read/write queues */
2183 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2184 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2185 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2186 		set->map[HCTX_TYPE_READ].nr_queues =
2187 			ctrl->io_queues[HCTX_TYPE_READ];
2188 		set->map[HCTX_TYPE_READ].queue_offset =
2189 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2190 	} else {
2191 		/* shared read/write queues */
2192 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2193 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2194 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2195 		set->map[HCTX_TYPE_READ].nr_queues =
2196 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2197 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2198 	}
2199 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2200 			ctrl->device->dev, 0);
2201 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2202 			ctrl->device->dev, 0);
2203 
2204 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2205 		/* map dedicated poll queues only if we have queues left */
2206 		set->map[HCTX_TYPE_POLL].nr_queues =
2207 				ctrl->io_queues[HCTX_TYPE_POLL];
2208 		set->map[HCTX_TYPE_POLL].queue_offset =
2209 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2210 			ctrl->io_queues[HCTX_TYPE_READ];
2211 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2212 	}
2213 
2214 	dev_info(ctrl->ctrl.device,
2215 		"mapped %d/%d/%d default/read/poll queues.\n",
2216 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2217 		ctrl->io_queues[HCTX_TYPE_READ],
2218 		ctrl->io_queues[HCTX_TYPE_POLL]);
2219 
2220 	return 0;
2221 }
2222 
2223 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2224 	.queue_rq	= nvme_rdma_queue_rq,
2225 	.complete	= nvme_rdma_complete_rq,
2226 	.init_request	= nvme_rdma_init_request,
2227 	.exit_request	= nvme_rdma_exit_request,
2228 	.init_hctx	= nvme_rdma_init_hctx,
2229 	.timeout	= nvme_rdma_timeout,
2230 	.map_queues	= nvme_rdma_map_queues,
2231 	.poll		= nvme_rdma_poll,
2232 };
2233 
2234 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2235 	.queue_rq	= nvme_rdma_queue_rq,
2236 	.complete	= nvme_rdma_complete_rq,
2237 	.init_request	= nvme_rdma_init_request,
2238 	.exit_request	= nvme_rdma_exit_request,
2239 	.init_hctx	= nvme_rdma_init_admin_hctx,
2240 	.timeout	= nvme_rdma_timeout,
2241 };
2242 
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2243 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2244 {
2245 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2246 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2247 	if (shutdown)
2248 		nvme_shutdown_ctrl(&ctrl->ctrl);
2249 	else
2250 		nvme_disable_ctrl(&ctrl->ctrl);
2251 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2252 }
2253 
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2254 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2255 {
2256 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2257 }
2258 
nvme_rdma_reset_ctrl_work(struct work_struct * work)2259 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2260 {
2261 	struct nvme_rdma_ctrl *ctrl =
2262 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2263 
2264 	nvme_stop_ctrl(&ctrl->ctrl);
2265 	nvme_rdma_shutdown_ctrl(ctrl, false);
2266 
2267 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2268 		/* state change failure should never happen */
2269 		WARN_ON_ONCE(1);
2270 		return;
2271 	}
2272 
2273 	if (nvme_rdma_setup_ctrl(ctrl, false))
2274 		goto out_fail;
2275 
2276 	return;
2277 
2278 out_fail:
2279 	++ctrl->ctrl.nr_reconnects;
2280 	nvme_rdma_reconnect_or_remove(ctrl);
2281 }
2282 
2283 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2284 	.name			= "rdma",
2285 	.module			= THIS_MODULE,
2286 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2287 	.reg_read32		= nvmf_reg_read32,
2288 	.reg_read64		= nvmf_reg_read64,
2289 	.reg_write32		= nvmf_reg_write32,
2290 	.free_ctrl		= nvme_rdma_free_ctrl,
2291 	.submit_async_event	= nvme_rdma_submit_async_event,
2292 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2293 	.get_address		= nvmf_get_address,
2294 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2295 };
2296 
2297 /*
2298  * Fails a connection request if it matches an existing controller
2299  * (association) with the same tuple:
2300  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2301  *
2302  * if local address is not specified in the request, it will match an
2303  * existing controller with all the other parameters the same and no
2304  * local port address specified as well.
2305  *
2306  * The ports don't need to be compared as they are intrinsically
2307  * already matched by the port pointers supplied.
2308  */
2309 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2310 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2311 {
2312 	struct nvme_rdma_ctrl *ctrl;
2313 	bool found = false;
2314 
2315 	mutex_lock(&nvme_rdma_ctrl_mutex);
2316 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2317 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2318 		if (found)
2319 			break;
2320 	}
2321 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2322 
2323 	return found;
2324 }
2325 
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2326 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2327 		struct nvmf_ctrl_options *opts)
2328 {
2329 	struct nvme_rdma_ctrl *ctrl;
2330 	int ret;
2331 	bool changed;
2332 
2333 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2334 	if (!ctrl)
2335 		return ERR_PTR(-ENOMEM);
2336 	ctrl->ctrl.opts = opts;
2337 	INIT_LIST_HEAD(&ctrl->list);
2338 
2339 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2340 		opts->trsvcid =
2341 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2342 		if (!opts->trsvcid) {
2343 			ret = -ENOMEM;
2344 			goto out_free_ctrl;
2345 		}
2346 		opts->mask |= NVMF_OPT_TRSVCID;
2347 	}
2348 
2349 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2350 			opts->traddr, opts->trsvcid, &ctrl->addr);
2351 	if (ret) {
2352 		pr_err("malformed address passed: %s:%s\n",
2353 			opts->traddr, opts->trsvcid);
2354 		goto out_free_ctrl;
2355 	}
2356 
2357 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2358 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2359 			opts->host_traddr, NULL, &ctrl->src_addr);
2360 		if (ret) {
2361 			pr_err("malformed src address passed: %s\n",
2362 			       opts->host_traddr);
2363 			goto out_free_ctrl;
2364 		}
2365 	}
2366 
2367 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2368 		ret = -EALREADY;
2369 		goto out_free_ctrl;
2370 	}
2371 
2372 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2373 			nvme_rdma_reconnect_ctrl_work);
2374 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2375 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2376 
2377 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2378 				opts->nr_poll_queues + 1;
2379 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2380 	ctrl->ctrl.kato = opts->kato;
2381 
2382 	ret = -ENOMEM;
2383 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2384 				GFP_KERNEL);
2385 	if (!ctrl->queues)
2386 		goto out_free_ctrl;
2387 
2388 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2389 				0 /* no quirks, we're perfect! */);
2390 	if (ret)
2391 		goto out_kfree_queues;
2392 
2393 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2394 	WARN_ON_ONCE(!changed);
2395 
2396 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2397 	if (ret)
2398 		goto out_uninit_ctrl;
2399 
2400 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2401 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2402 
2403 	mutex_lock(&nvme_rdma_ctrl_mutex);
2404 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2405 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2406 
2407 	return &ctrl->ctrl;
2408 
2409 out_uninit_ctrl:
2410 	nvme_uninit_ctrl(&ctrl->ctrl);
2411 	nvme_put_ctrl(&ctrl->ctrl);
2412 	if (ret > 0)
2413 		ret = -EIO;
2414 	return ERR_PTR(ret);
2415 out_kfree_queues:
2416 	kfree(ctrl->queues);
2417 out_free_ctrl:
2418 	kfree(ctrl);
2419 	return ERR_PTR(ret);
2420 }
2421 
2422 static struct nvmf_transport_ops nvme_rdma_transport = {
2423 	.name		= "rdma",
2424 	.module		= THIS_MODULE,
2425 	.required_opts	= NVMF_OPT_TRADDR,
2426 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2427 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2428 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2429 			  NVMF_OPT_TOS,
2430 	.create_ctrl	= nvme_rdma_create_ctrl,
2431 };
2432 
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2433 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2434 {
2435 	struct nvme_rdma_ctrl *ctrl;
2436 	struct nvme_rdma_device *ndev;
2437 	bool found = false;
2438 
2439 	mutex_lock(&device_list_mutex);
2440 	list_for_each_entry(ndev, &device_list, entry) {
2441 		if (ndev->dev == ib_device) {
2442 			found = true;
2443 			break;
2444 		}
2445 	}
2446 	mutex_unlock(&device_list_mutex);
2447 
2448 	if (!found)
2449 		return;
2450 
2451 	/* Delete all controllers using this device */
2452 	mutex_lock(&nvme_rdma_ctrl_mutex);
2453 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2454 		if (ctrl->device->dev != ib_device)
2455 			continue;
2456 		nvme_delete_ctrl(&ctrl->ctrl);
2457 	}
2458 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2459 
2460 	flush_workqueue(nvme_delete_wq);
2461 }
2462 
2463 static struct ib_client nvme_rdma_ib_client = {
2464 	.name   = "nvme_rdma",
2465 	.remove = nvme_rdma_remove_one
2466 };
2467 
nvme_rdma_init_module(void)2468 static int __init nvme_rdma_init_module(void)
2469 {
2470 	int ret;
2471 
2472 	ret = ib_register_client(&nvme_rdma_ib_client);
2473 	if (ret)
2474 		return ret;
2475 
2476 	ret = nvmf_register_transport(&nvme_rdma_transport);
2477 	if (ret)
2478 		goto err_unreg_client;
2479 
2480 	return 0;
2481 
2482 err_unreg_client:
2483 	ib_unregister_client(&nvme_rdma_ib_client);
2484 	return ret;
2485 }
2486 
nvme_rdma_cleanup_module(void)2487 static void __exit nvme_rdma_cleanup_module(void)
2488 {
2489 	struct nvme_rdma_ctrl *ctrl;
2490 
2491 	nvmf_unregister_transport(&nvme_rdma_transport);
2492 	ib_unregister_client(&nvme_rdma_ib_client);
2493 
2494 	mutex_lock(&nvme_rdma_ctrl_mutex);
2495 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2496 		nvme_delete_ctrl(&ctrl->ctrl);
2497 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2498 	flush_workqueue(nvme_delete_wq);
2499 }
2500 
2501 module_init(nvme_rdma_init_module);
2502 module_exit(nvme_rdma_cleanup_module);
2503 
2504 MODULE_LICENSE("GPL v2");
2505