1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 if (ret < 0)
253 return ret;
254 if (ret == 0)
255 return -ETIMEDOUT;
256 WARN_ON_ONCE(queue->cm_error > 0);
257 return queue->cm_error;
258 }
259
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
264 int ret;
265
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
268 /* +1 for drain */
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 /* +1 for drain */
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278 if (queue->pi_support)
279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 init_attr.qp_context = queue;
281
282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284 queue->qp = queue->cm_id->qp;
285 return ret;
286 }
287
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 struct request *rq, unsigned int hctx_idx)
290 {
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293 kfree(req->sqe.data);
294 }
295
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 struct request *rq, unsigned int hctx_idx,
298 unsigned int numa_node)
299 {
300 struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305 nvme_req(rq)->ctrl = &ctrl->ctrl;
306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 if (!req->sqe.data)
308 return -ENOMEM;
309
310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 if (queue->pi_support)
312 req->metadata_sgl = (void *)nvme_req(rq) +
313 sizeof(struct nvme_rdma_request) +
314 NVME_RDMA_DATA_SGL_SIZE;
315
316 req->queue = queue;
317 nvme_req(rq)->cmd = req->sqe.data;
318
319 return 0;
320 }
321
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)322 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 unsigned int hctx_idx)
324 {
325 struct nvme_rdma_ctrl *ctrl = data;
326 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
327
328 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
329
330 hctx->driver_data = queue;
331 return 0;
332 }
333
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)334 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
335 unsigned int hctx_idx)
336 {
337 struct nvme_rdma_ctrl *ctrl = data;
338 struct nvme_rdma_queue *queue = &ctrl->queues[0];
339
340 BUG_ON(hctx_idx != 0);
341
342 hctx->driver_data = queue;
343 return 0;
344 }
345
nvme_rdma_free_dev(struct kref * ref)346 static void nvme_rdma_free_dev(struct kref *ref)
347 {
348 struct nvme_rdma_device *ndev =
349 container_of(ref, struct nvme_rdma_device, ref);
350
351 mutex_lock(&device_list_mutex);
352 list_del(&ndev->entry);
353 mutex_unlock(&device_list_mutex);
354
355 ib_dealloc_pd(ndev->pd);
356 kfree(ndev);
357 }
358
nvme_rdma_dev_put(struct nvme_rdma_device * dev)359 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
360 {
361 kref_put(&dev->ref, nvme_rdma_free_dev);
362 }
363
nvme_rdma_dev_get(struct nvme_rdma_device * dev)364 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
365 {
366 return kref_get_unless_zero(&dev->ref);
367 }
368
369 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)370 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
371 {
372 struct nvme_rdma_device *ndev;
373
374 mutex_lock(&device_list_mutex);
375 list_for_each_entry(ndev, &device_list, entry) {
376 if (ndev->dev->node_guid == cm_id->device->node_guid &&
377 nvme_rdma_dev_get(ndev))
378 goto out_unlock;
379 }
380
381 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
382 if (!ndev)
383 goto out_err;
384
385 ndev->dev = cm_id->device;
386 kref_init(&ndev->ref);
387
388 ndev->pd = ib_alloc_pd(ndev->dev,
389 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
390 if (IS_ERR(ndev->pd))
391 goto out_free_dev;
392
393 if (!(ndev->dev->attrs.device_cap_flags &
394 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
395 dev_err(&ndev->dev->dev,
396 "Memory registrations not supported.\n");
397 goto out_free_pd;
398 }
399
400 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
401 ndev->dev->attrs.max_send_sge - 1);
402 list_add(&ndev->entry, &device_list);
403 out_unlock:
404 mutex_unlock(&device_list_mutex);
405 return ndev;
406
407 out_free_pd:
408 ib_dealloc_pd(ndev->pd);
409 out_free_dev:
410 kfree(ndev);
411 out_err:
412 mutex_unlock(&device_list_mutex);
413 return NULL;
414 }
415
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)416 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
417 {
418 if (nvme_rdma_poll_queue(queue))
419 ib_free_cq(queue->ib_cq);
420 else
421 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
422 }
423
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)424 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 struct nvme_rdma_device *dev;
427 struct ib_device *ibdev;
428
429 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
430 return;
431
432 dev = queue->device;
433 ibdev = dev->dev;
434
435 if (queue->pi_support)
436 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
437 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
438
439 /*
440 * The cm_id object might have been destroyed during RDMA connection
441 * establishment error flow to avoid getting other cma events, thus
442 * the destruction of the QP shouldn't use rdma_cm API.
443 */
444 ib_destroy_qp(queue->qp);
445 nvme_rdma_free_cq(queue);
446
447 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449
450 nvme_rdma_dev_put(dev);
451 }
452
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)453 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
454 {
455 u32 max_page_list_len;
456
457 if (pi_support)
458 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
459 else
460 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
461
462 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
463 }
464
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)465 static int nvme_rdma_create_cq(struct ib_device *ibdev,
466 struct nvme_rdma_queue *queue)
467 {
468 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
469 enum ib_poll_context poll_ctx;
470
471 /*
472 * Spread I/O queues completion vectors according their queue index.
473 * Admin queues can always go on completion vector 0.
474 */
475 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
476
477 /* Polling queues need direct cq polling context */
478 if (nvme_rdma_poll_queue(queue)) {
479 poll_ctx = IB_POLL_DIRECT;
480 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
481 comp_vector, poll_ctx);
482 } else {
483 poll_ctx = IB_POLL_SOFTIRQ;
484 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
485 comp_vector, poll_ctx);
486 }
487
488 if (IS_ERR(queue->ib_cq)) {
489 ret = PTR_ERR(queue->ib_cq);
490 return ret;
491 }
492
493 return 0;
494 }
495
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)496 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
497 {
498 struct ib_device *ibdev;
499 const int send_wr_factor = 3; /* MR, SEND, INV */
500 const int cq_factor = send_wr_factor + 1; /* + RECV */
501 int ret, pages_per_mr;
502
503 queue->device = nvme_rdma_find_get_device(queue->cm_id);
504 if (!queue->device) {
505 dev_err(queue->cm_id->device->dev.parent,
506 "no client data found!\n");
507 return -ECONNREFUSED;
508 }
509 ibdev = queue->device->dev;
510
511 /* +1 for ib_stop_cq */
512 queue->cq_size = cq_factor * queue->queue_size + 1;
513
514 ret = nvme_rdma_create_cq(ibdev, queue);
515 if (ret)
516 goto out_put_dev;
517
518 ret = nvme_rdma_create_qp(queue, send_wr_factor);
519 if (ret)
520 goto out_destroy_ib_cq;
521
522 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
523 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
524 if (!queue->rsp_ring) {
525 ret = -ENOMEM;
526 goto out_destroy_qp;
527 }
528
529 /*
530 * Currently we don't use SG_GAPS MR's so if the first entry is
531 * misaligned we'll end up using two entries for a single data page,
532 * so one additional entry is required.
533 */
534 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
535 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
536 queue->queue_size,
537 IB_MR_TYPE_MEM_REG,
538 pages_per_mr, 0);
539 if (ret) {
540 dev_err(queue->ctrl->ctrl.device,
541 "failed to initialize MR pool sized %d for QID %d\n",
542 queue->queue_size, nvme_rdma_queue_idx(queue));
543 goto out_destroy_ring;
544 }
545
546 if (queue->pi_support) {
547 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
548 queue->queue_size, IB_MR_TYPE_INTEGRITY,
549 pages_per_mr, pages_per_mr);
550 if (ret) {
551 dev_err(queue->ctrl->ctrl.device,
552 "failed to initialize PI MR pool sized %d for QID %d\n",
553 queue->queue_size, nvme_rdma_queue_idx(queue));
554 goto out_destroy_mr_pool;
555 }
556 }
557
558 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
559
560 return 0;
561
562 out_destroy_mr_pool:
563 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
564 out_destroy_ring:
565 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
566 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
567 out_destroy_qp:
568 rdma_destroy_qp(queue->cm_id);
569 out_destroy_ib_cq:
570 nvme_rdma_free_cq(queue);
571 out_put_dev:
572 nvme_rdma_dev_put(queue->device);
573 return ret;
574 }
575
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)576 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
577 int idx, size_t queue_size)
578 {
579 struct nvme_rdma_queue *queue;
580 struct sockaddr *src_addr = NULL;
581 int ret;
582
583 queue = &ctrl->queues[idx];
584 mutex_init(&queue->queue_lock);
585 queue->ctrl = ctrl;
586 if (idx && ctrl->ctrl.max_integrity_segments)
587 queue->pi_support = true;
588 else
589 queue->pi_support = false;
590 init_completion(&queue->cm_done);
591
592 if (idx > 0)
593 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
594 else
595 queue->cmnd_capsule_len = sizeof(struct nvme_command);
596
597 queue->queue_size = queue_size;
598
599 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
600 RDMA_PS_TCP, IB_QPT_RC);
601 if (IS_ERR(queue->cm_id)) {
602 dev_info(ctrl->ctrl.device,
603 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
604 ret = PTR_ERR(queue->cm_id);
605 goto out_destroy_mutex;
606 }
607
608 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
609 src_addr = (struct sockaddr *)&ctrl->src_addr;
610
611 queue->cm_error = -ETIMEDOUT;
612 ret = rdma_resolve_addr(queue->cm_id, src_addr,
613 (struct sockaddr *)&ctrl->addr,
614 NVME_RDMA_CONNECT_TIMEOUT_MS);
615 if (ret) {
616 dev_info(ctrl->ctrl.device,
617 "rdma_resolve_addr failed (%d).\n", ret);
618 goto out_destroy_cm_id;
619 }
620
621 ret = nvme_rdma_wait_for_cm(queue);
622 if (ret) {
623 dev_info(ctrl->ctrl.device,
624 "rdma connection establishment failed (%d)\n", ret);
625 goto out_destroy_cm_id;
626 }
627
628 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
629
630 return 0;
631
632 out_destroy_cm_id:
633 rdma_destroy_id(queue->cm_id);
634 nvme_rdma_destroy_queue_ib(queue);
635 out_destroy_mutex:
636 mutex_destroy(&queue->queue_lock);
637 return ret;
638 }
639
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)640 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 {
642 rdma_disconnect(queue->cm_id);
643 ib_drain_qp(queue->qp);
644 }
645
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)646 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
647 {
648 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
649 return;
650
651 mutex_lock(&queue->queue_lock);
652 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
653 __nvme_rdma_stop_queue(queue);
654 mutex_unlock(&queue->queue_lock);
655 }
656
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)657 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
658 {
659 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
660 return;
661
662 rdma_destroy_id(queue->cm_id);
663 nvme_rdma_destroy_queue_ib(queue);
664 mutex_destroy(&queue->queue_lock);
665 }
666
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)667 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
668 {
669 int i;
670
671 for (i = 1; i < ctrl->ctrl.queue_count; i++)
672 nvme_rdma_free_queue(&ctrl->queues[i]);
673 }
674
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)675 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
676 {
677 int i;
678
679 for (i = 1; i < ctrl->ctrl.queue_count; i++)
680 nvme_rdma_stop_queue(&ctrl->queues[i]);
681 }
682
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)683 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
684 {
685 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
686 int ret;
687
688 if (idx)
689 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
690 else
691 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
692
693 if (!ret) {
694 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
695 } else {
696 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
697 __nvme_rdma_stop_queue(queue);
698 dev_info(ctrl->ctrl.device,
699 "failed to connect queue: %d ret=%d\n", idx, ret);
700 }
701 return ret;
702 }
703
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)704 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
705 {
706 int i, ret = 0;
707
708 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
709 ret = nvme_rdma_start_queue(ctrl, i);
710 if (ret)
711 goto out_stop_queues;
712 }
713
714 return 0;
715
716 out_stop_queues:
717 for (i--; i >= 1; i--)
718 nvme_rdma_stop_queue(&ctrl->queues[i]);
719 return ret;
720 }
721
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)722 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
723 {
724 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
725 struct ib_device *ibdev = ctrl->device->dev;
726 unsigned int nr_io_queues, nr_default_queues;
727 unsigned int nr_read_queues, nr_poll_queues;
728 int i, ret;
729
730 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
731 min(opts->nr_io_queues, num_online_cpus()));
732 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
733 min(opts->nr_write_queues, num_online_cpus()));
734 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
735 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
736
737 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
738 if (ret)
739 return ret;
740
741 if (nr_io_queues == 0) {
742 dev_err(ctrl->ctrl.device,
743 "unable to set any I/O queues\n");
744 return -ENOMEM;
745 }
746
747 ctrl->ctrl.queue_count = nr_io_queues + 1;
748 dev_info(ctrl->ctrl.device,
749 "creating %d I/O queues.\n", nr_io_queues);
750
751 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
752 /*
753 * separate read/write queues
754 * hand out dedicated default queues only after we have
755 * sufficient read queues.
756 */
757 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
759 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760 min(nr_default_queues, nr_io_queues);
761 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762 } else {
763 /*
764 * shared read/write queues
765 * either no write queues were requested, or we don't have
766 * sufficient queue count to have dedicated default queues.
767 */
768 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
769 min(nr_read_queues, nr_io_queues);
770 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
771 }
772
773 if (opts->nr_poll_queues && nr_io_queues) {
774 /* map dedicated poll queues only if we have queues left */
775 ctrl->io_queues[HCTX_TYPE_POLL] =
776 min(nr_poll_queues, nr_io_queues);
777 }
778
779 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
780 ret = nvme_rdma_alloc_queue(ctrl, i,
781 ctrl->ctrl.sqsize + 1);
782 if (ret)
783 goto out_free_queues;
784 }
785
786 return 0;
787
788 out_free_queues:
789 for (i--; i >= 1; i--)
790 nvme_rdma_free_queue(&ctrl->queues[i]);
791
792 return ret;
793 }
794
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)795 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
796 bool admin)
797 {
798 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
799 struct blk_mq_tag_set *set;
800 int ret;
801
802 if (admin) {
803 set = &ctrl->admin_tag_set;
804 memset(set, 0, sizeof(*set));
805 set->ops = &nvme_rdma_admin_mq_ops;
806 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
807 set->reserved_tags = NVMF_RESERVED_TAGS;
808 set->numa_node = nctrl->numa_node;
809 set->cmd_size = sizeof(struct nvme_rdma_request) +
810 NVME_RDMA_DATA_SGL_SIZE;
811 set->driver_data = ctrl;
812 set->nr_hw_queues = 1;
813 set->timeout = NVME_ADMIN_TIMEOUT;
814 set->flags = BLK_MQ_F_NO_SCHED;
815 } else {
816 set = &ctrl->tag_set;
817 memset(set, 0, sizeof(*set));
818 set->ops = &nvme_rdma_mq_ops;
819 set->queue_depth = nctrl->sqsize + 1;
820 set->reserved_tags = NVMF_RESERVED_TAGS;
821 set->numa_node = nctrl->numa_node;
822 set->flags = BLK_MQ_F_SHOULD_MERGE;
823 set->cmd_size = sizeof(struct nvme_rdma_request) +
824 NVME_RDMA_DATA_SGL_SIZE;
825 if (nctrl->max_integrity_segments)
826 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
827 NVME_RDMA_METADATA_SGL_SIZE;
828 set->driver_data = ctrl;
829 set->nr_hw_queues = nctrl->queue_count - 1;
830 set->timeout = NVME_IO_TIMEOUT;
831 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
832 }
833
834 ret = blk_mq_alloc_tag_set(set);
835 if (ret)
836 return ERR_PTR(ret);
837
838 return set;
839 }
840
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)841 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
842 bool remove)
843 {
844 if (remove) {
845 blk_cleanup_queue(ctrl->ctrl.admin_q);
846 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
847 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
848 }
849 if (ctrl->async_event_sqe.data) {
850 cancel_work_sync(&ctrl->ctrl.async_event_work);
851 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
852 sizeof(struct nvme_command), DMA_TO_DEVICE);
853 ctrl->async_event_sqe.data = NULL;
854 }
855 nvme_rdma_free_queue(&ctrl->queues[0]);
856 }
857
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)858 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
859 bool new)
860 {
861 bool pi_capable = false;
862 int error;
863
864 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
865 if (error)
866 return error;
867
868 ctrl->device = ctrl->queues[0].device;
869 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
870
871 /* T10-PI support */
872 if (ctrl->device->dev->attrs.device_cap_flags &
873 IB_DEVICE_INTEGRITY_HANDOVER)
874 pi_capable = true;
875
876 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
877 pi_capable);
878
879 /*
880 * Bind the async event SQE DMA mapping to the admin queue lifetime.
881 * It's safe, since any chage in the underlying RDMA device will issue
882 * error recovery and queue re-creation.
883 */
884 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
885 sizeof(struct nvme_command), DMA_TO_DEVICE);
886 if (error)
887 goto out_free_queue;
888
889 if (new) {
890 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
891 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
892 error = PTR_ERR(ctrl->ctrl.admin_tagset);
893 goto out_free_async_qe;
894 }
895
896 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
897 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
898 error = PTR_ERR(ctrl->ctrl.fabrics_q);
899 goto out_free_tagset;
900 }
901
902 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
903 if (IS_ERR(ctrl->ctrl.admin_q)) {
904 error = PTR_ERR(ctrl->ctrl.admin_q);
905 goto out_cleanup_fabrics_q;
906 }
907 }
908
909 error = nvme_rdma_start_queue(ctrl, 0);
910 if (error)
911 goto out_cleanup_queue;
912
913 error = nvme_enable_ctrl(&ctrl->ctrl);
914 if (error)
915 goto out_stop_queue;
916
917 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
918 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
919 if (pi_capable)
920 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
921 else
922 ctrl->ctrl.max_integrity_segments = 0;
923
924 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
925
926 error = nvme_init_ctrl_finish(&ctrl->ctrl);
927 if (error)
928 goto out_quiesce_queue;
929
930 return 0;
931
932 out_quiesce_queue:
933 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 out_stop_queue:
936 nvme_rdma_stop_queue(&ctrl->queues[0]);
937 nvme_cancel_admin_tagset(&ctrl->ctrl);
938 out_cleanup_queue:
939 if (new)
940 blk_cleanup_queue(ctrl->ctrl.admin_q);
941 out_cleanup_fabrics_q:
942 if (new)
943 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
944 out_free_tagset:
945 if (new)
946 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
947 out_free_async_qe:
948 if (ctrl->async_event_sqe.data) {
949 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
950 sizeof(struct nvme_command), DMA_TO_DEVICE);
951 ctrl->async_event_sqe.data = NULL;
952 }
953 out_free_queue:
954 nvme_rdma_free_queue(&ctrl->queues[0]);
955 return error;
956 }
957
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)958 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
959 bool remove)
960 {
961 if (remove) {
962 blk_cleanup_queue(ctrl->ctrl.connect_q);
963 blk_mq_free_tag_set(ctrl->ctrl.tagset);
964 }
965 nvme_rdma_free_io_queues(ctrl);
966 }
967
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)968 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
969 {
970 int ret;
971
972 ret = nvme_rdma_alloc_io_queues(ctrl);
973 if (ret)
974 return ret;
975
976 if (new) {
977 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
978 if (IS_ERR(ctrl->ctrl.tagset)) {
979 ret = PTR_ERR(ctrl->ctrl.tagset);
980 goto out_free_io_queues;
981 }
982
983 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
984 if (IS_ERR(ctrl->ctrl.connect_q)) {
985 ret = PTR_ERR(ctrl->ctrl.connect_q);
986 goto out_free_tag_set;
987 }
988 }
989
990 ret = nvme_rdma_start_io_queues(ctrl);
991 if (ret)
992 goto out_cleanup_connect_q;
993
994 if (!new) {
995 nvme_start_freeze(&ctrl->ctrl);
996 nvme_start_queues(&ctrl->ctrl);
997 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
998 /*
999 * If we timed out waiting for freeze we are likely to
1000 * be stuck. Fail the controller initialization just
1001 * to be safe.
1002 */
1003 ret = -ENODEV;
1004 nvme_unfreeze(&ctrl->ctrl);
1005 goto out_wait_freeze_timed_out;
1006 }
1007 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1008 ctrl->ctrl.queue_count - 1);
1009 nvme_unfreeze(&ctrl->ctrl);
1010 }
1011
1012 return 0;
1013
1014 out_wait_freeze_timed_out:
1015 nvme_stop_queues(&ctrl->ctrl);
1016 nvme_sync_io_queues(&ctrl->ctrl);
1017 nvme_rdma_stop_io_queues(ctrl);
1018 out_cleanup_connect_q:
1019 nvme_cancel_tagset(&ctrl->ctrl);
1020 if (new)
1021 blk_cleanup_queue(ctrl->ctrl.connect_q);
1022 out_free_tag_set:
1023 if (new)
1024 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1025 out_free_io_queues:
1026 nvme_rdma_free_io_queues(ctrl);
1027 return ret;
1028 }
1029
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)1030 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1031 bool remove)
1032 {
1033 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1034 blk_sync_queue(ctrl->ctrl.admin_q);
1035 nvme_rdma_stop_queue(&ctrl->queues[0]);
1036 nvme_cancel_admin_tagset(&ctrl->ctrl);
1037 if (remove)
1038 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1039 nvme_rdma_destroy_admin_queue(ctrl, remove);
1040 }
1041
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)1042 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1043 bool remove)
1044 {
1045 if (ctrl->ctrl.queue_count > 1) {
1046 nvme_stop_queues(&ctrl->ctrl);
1047 nvme_sync_io_queues(&ctrl->ctrl);
1048 nvme_rdma_stop_io_queues(ctrl);
1049 nvme_cancel_tagset(&ctrl->ctrl);
1050 if (remove)
1051 nvme_start_queues(&ctrl->ctrl);
1052 nvme_rdma_destroy_io_queues(ctrl, remove);
1053 }
1054 }
1055
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)1056 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1057 {
1058 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1059
1060 cancel_work_sync(&ctrl->err_work);
1061 cancel_delayed_work_sync(&ctrl->reconnect_work);
1062 }
1063
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1064 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1065 {
1066 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1067
1068 if (list_empty(&ctrl->list))
1069 goto free_ctrl;
1070
1071 mutex_lock(&nvme_rdma_ctrl_mutex);
1072 list_del(&ctrl->list);
1073 mutex_unlock(&nvme_rdma_ctrl_mutex);
1074
1075 nvmf_free_options(nctrl->opts);
1076 free_ctrl:
1077 kfree(ctrl->queues);
1078 kfree(ctrl);
1079 }
1080
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1081 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1082 {
1083 /* If we are resetting/deleting then do nothing */
1084 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1085 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1086 ctrl->ctrl.state == NVME_CTRL_LIVE);
1087 return;
1088 }
1089
1090 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1091 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1092 ctrl->ctrl.opts->reconnect_delay);
1093 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1094 ctrl->ctrl.opts->reconnect_delay * HZ);
1095 } else {
1096 nvme_delete_ctrl(&ctrl->ctrl);
1097 }
1098 }
1099
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1100 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1101 {
1102 int ret;
1103 bool changed;
1104
1105 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1106 if (ret)
1107 return ret;
1108
1109 if (ctrl->ctrl.icdoff) {
1110 ret = -EOPNOTSUPP;
1111 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1112 goto destroy_admin;
1113 }
1114
1115 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1116 ret = -EOPNOTSUPP;
1117 dev_err(ctrl->ctrl.device,
1118 "Mandatory keyed sgls are not supported!\n");
1119 goto destroy_admin;
1120 }
1121
1122 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1123 dev_warn(ctrl->ctrl.device,
1124 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1125 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1126 }
1127
1128 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1129 dev_warn(ctrl->ctrl.device,
1130 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1131 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1132 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1133 }
1134
1135 if (ctrl->ctrl.sgls & (1 << 20))
1136 ctrl->use_inline_data = true;
1137
1138 if (ctrl->ctrl.queue_count > 1) {
1139 ret = nvme_rdma_configure_io_queues(ctrl, new);
1140 if (ret)
1141 goto destroy_admin;
1142 }
1143
1144 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1145 if (!changed) {
1146 /*
1147 * state change failure is ok if we started ctrl delete,
1148 * unless we're during creation of a new controller to
1149 * avoid races with teardown flow.
1150 */
1151 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1152 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1153 WARN_ON_ONCE(new);
1154 ret = -EINVAL;
1155 goto destroy_io;
1156 }
1157
1158 nvme_start_ctrl(&ctrl->ctrl);
1159 return 0;
1160
1161 destroy_io:
1162 if (ctrl->ctrl.queue_count > 1) {
1163 nvme_stop_queues(&ctrl->ctrl);
1164 nvme_sync_io_queues(&ctrl->ctrl);
1165 nvme_rdma_stop_io_queues(ctrl);
1166 nvme_cancel_tagset(&ctrl->ctrl);
1167 nvme_rdma_destroy_io_queues(ctrl, new);
1168 }
1169 destroy_admin:
1170 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1171 blk_sync_queue(ctrl->ctrl.admin_q);
1172 nvme_rdma_stop_queue(&ctrl->queues[0]);
1173 nvme_cancel_admin_tagset(&ctrl->ctrl);
1174 nvme_rdma_destroy_admin_queue(ctrl, new);
1175 return ret;
1176 }
1177
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1178 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1179 {
1180 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1181 struct nvme_rdma_ctrl, reconnect_work);
1182
1183 ++ctrl->ctrl.nr_reconnects;
1184
1185 if (nvme_rdma_setup_ctrl(ctrl, false))
1186 goto requeue;
1187
1188 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1189 ctrl->ctrl.nr_reconnects);
1190
1191 ctrl->ctrl.nr_reconnects = 0;
1192
1193 return;
1194
1195 requeue:
1196 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1197 ctrl->ctrl.nr_reconnects);
1198 nvme_rdma_reconnect_or_remove(ctrl);
1199 }
1200
nvme_rdma_error_recovery_work(struct work_struct * work)1201 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1202 {
1203 struct nvme_rdma_ctrl *ctrl = container_of(work,
1204 struct nvme_rdma_ctrl, err_work);
1205
1206 nvme_stop_keep_alive(&ctrl->ctrl);
1207 flush_work(&ctrl->ctrl.async_event_work);
1208 nvme_rdma_teardown_io_queues(ctrl, false);
1209 nvme_start_queues(&ctrl->ctrl);
1210 nvme_rdma_teardown_admin_queue(ctrl, false);
1211 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1212
1213 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1214 /* state change failure is ok if we started ctrl delete */
1215 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1216 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1217 return;
1218 }
1219
1220 nvme_rdma_reconnect_or_remove(ctrl);
1221 }
1222
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1223 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1224 {
1225 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1226 return;
1227
1228 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1229 queue_work(nvme_reset_wq, &ctrl->err_work);
1230 }
1231
nvme_rdma_end_request(struct nvme_rdma_request * req)1232 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1233 {
1234 struct request *rq = blk_mq_rq_from_pdu(req);
1235
1236 if (!refcount_dec_and_test(&req->ref))
1237 return;
1238 if (!nvme_try_complete_req(rq, req->status, req->result))
1239 nvme_rdma_complete_rq(rq);
1240 }
1241
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1242 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1243 const char *op)
1244 {
1245 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1246 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1247
1248 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1249 dev_info(ctrl->ctrl.device,
1250 "%s for CQE 0x%p failed with status %s (%d)\n",
1251 op, wc->wr_cqe,
1252 ib_wc_status_msg(wc->status), wc->status);
1253 nvme_rdma_error_recovery(ctrl);
1254 }
1255
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1256 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1257 {
1258 if (unlikely(wc->status != IB_WC_SUCCESS))
1259 nvme_rdma_wr_error(cq, wc, "MEMREG");
1260 }
1261
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1262 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1263 {
1264 struct nvme_rdma_request *req =
1265 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1266
1267 if (unlikely(wc->status != IB_WC_SUCCESS))
1268 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1269 else
1270 nvme_rdma_end_request(req);
1271 }
1272
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1273 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1274 struct nvme_rdma_request *req)
1275 {
1276 struct ib_send_wr wr = {
1277 .opcode = IB_WR_LOCAL_INV,
1278 .next = NULL,
1279 .num_sge = 0,
1280 .send_flags = IB_SEND_SIGNALED,
1281 .ex.invalidate_rkey = req->mr->rkey,
1282 };
1283
1284 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1285 wr.wr_cqe = &req->reg_cqe;
1286
1287 return ib_post_send(queue->qp, &wr, NULL);
1288 }
1289
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1290 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1291 struct request *rq)
1292 {
1293 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1294 struct nvme_rdma_device *dev = queue->device;
1295 struct ib_device *ibdev = dev->dev;
1296 struct list_head *pool = &queue->qp->rdma_mrs;
1297
1298 if (!blk_rq_nr_phys_segments(rq))
1299 return;
1300
1301 if (blk_integrity_rq(rq)) {
1302 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1303 req->metadata_sgl->nents, rq_dma_dir(rq));
1304 sg_free_table_chained(&req->metadata_sgl->sg_table,
1305 NVME_INLINE_METADATA_SG_CNT);
1306 }
1307
1308 if (req->use_sig_mr)
1309 pool = &queue->qp->sig_mrs;
1310
1311 if (req->mr) {
1312 ib_mr_pool_put(queue->qp, pool, req->mr);
1313 req->mr = NULL;
1314 }
1315
1316 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1317 rq_dma_dir(rq));
1318 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1319 }
1320
nvme_rdma_set_sg_null(struct nvme_command * c)1321 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1322 {
1323 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1324
1325 sg->addr = 0;
1326 put_unaligned_le24(0, sg->length);
1327 put_unaligned_le32(0, sg->key);
1328 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1329 return 0;
1330 }
1331
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1332 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1333 struct nvme_rdma_request *req, struct nvme_command *c,
1334 int count)
1335 {
1336 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1337 struct ib_sge *sge = &req->sge[1];
1338 struct scatterlist *sgl;
1339 u32 len = 0;
1340 int i;
1341
1342 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1343 sge->addr = sg_dma_address(sgl);
1344 sge->length = sg_dma_len(sgl);
1345 sge->lkey = queue->device->pd->local_dma_lkey;
1346 len += sge->length;
1347 sge++;
1348 }
1349
1350 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1351 sg->length = cpu_to_le32(len);
1352 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1353
1354 req->num_sge += count;
1355 return 0;
1356 }
1357
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1358 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1359 struct nvme_rdma_request *req, struct nvme_command *c)
1360 {
1361 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1362
1363 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1364 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1365 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1366 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1367 return 0;
1368 }
1369
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1370 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1371 struct nvme_rdma_request *req, struct nvme_command *c,
1372 int count)
1373 {
1374 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1375 int nr;
1376
1377 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1378 if (WARN_ON_ONCE(!req->mr))
1379 return -EAGAIN;
1380
1381 /*
1382 * Align the MR to a 4K page size to match the ctrl page size and
1383 * the block virtual boundary.
1384 */
1385 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1386 SZ_4K);
1387 if (unlikely(nr < count)) {
1388 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1389 req->mr = NULL;
1390 if (nr < 0)
1391 return nr;
1392 return -EINVAL;
1393 }
1394
1395 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1396
1397 req->reg_cqe.done = nvme_rdma_memreg_done;
1398 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1399 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1400 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1401 req->reg_wr.wr.num_sge = 0;
1402 req->reg_wr.mr = req->mr;
1403 req->reg_wr.key = req->mr->rkey;
1404 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1405 IB_ACCESS_REMOTE_READ |
1406 IB_ACCESS_REMOTE_WRITE;
1407
1408 sg->addr = cpu_to_le64(req->mr->iova);
1409 put_unaligned_le24(req->mr->length, sg->length);
1410 put_unaligned_le32(req->mr->rkey, sg->key);
1411 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1412 NVME_SGL_FMT_INVALIDATE;
1413
1414 return 0;
1415 }
1416
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1417 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1418 struct nvme_command *cmd, struct ib_sig_domain *domain,
1419 u16 control, u8 pi_type)
1420 {
1421 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1422 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1423 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1424 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1425 if (control & NVME_RW_PRINFO_PRCHK_REF)
1426 domain->sig.dif.ref_remap = true;
1427
1428 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1429 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1430 domain->sig.dif.app_escape = true;
1431 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1432 domain->sig.dif.ref_escape = true;
1433 }
1434
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1435 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1436 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1437 u8 pi_type)
1438 {
1439 u16 control = le16_to_cpu(cmd->rw.control);
1440
1441 memset(sig_attrs, 0, sizeof(*sig_attrs));
1442 if (control & NVME_RW_PRINFO_PRACT) {
1443 /* for WRITE_INSERT/READ_STRIP no memory domain */
1444 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1445 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1446 pi_type);
1447 /* Clear the PRACT bit since HCA will generate/verify the PI */
1448 control &= ~NVME_RW_PRINFO_PRACT;
1449 cmd->rw.control = cpu_to_le16(control);
1450 } else {
1451 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1452 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1453 pi_type);
1454 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1455 pi_type);
1456 }
1457 }
1458
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1459 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1460 {
1461 *mask = 0;
1462 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1463 *mask |= IB_SIG_CHECK_REFTAG;
1464 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1465 *mask |= IB_SIG_CHECK_GUARD;
1466 }
1467
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1468 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1469 {
1470 if (unlikely(wc->status != IB_WC_SUCCESS))
1471 nvme_rdma_wr_error(cq, wc, "SIG");
1472 }
1473
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1474 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1475 struct nvme_rdma_request *req, struct nvme_command *c,
1476 int count, int pi_count)
1477 {
1478 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1479 struct ib_reg_wr *wr = &req->reg_wr;
1480 struct request *rq = blk_mq_rq_from_pdu(req);
1481 struct nvme_ns *ns = rq->q->queuedata;
1482 struct bio *bio = rq->bio;
1483 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1484 int nr;
1485
1486 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1487 if (WARN_ON_ONCE(!req->mr))
1488 return -EAGAIN;
1489
1490 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1491 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1492 SZ_4K);
1493 if (unlikely(nr))
1494 goto mr_put;
1495
1496 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1497 req->mr->sig_attrs, ns->pi_type);
1498 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1499
1500 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1501
1502 req->reg_cqe.done = nvme_rdma_sig_done;
1503 memset(wr, 0, sizeof(*wr));
1504 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1505 wr->wr.wr_cqe = &req->reg_cqe;
1506 wr->wr.num_sge = 0;
1507 wr->wr.send_flags = 0;
1508 wr->mr = req->mr;
1509 wr->key = req->mr->rkey;
1510 wr->access = IB_ACCESS_LOCAL_WRITE |
1511 IB_ACCESS_REMOTE_READ |
1512 IB_ACCESS_REMOTE_WRITE;
1513
1514 sg->addr = cpu_to_le64(req->mr->iova);
1515 put_unaligned_le24(req->mr->length, sg->length);
1516 put_unaligned_le32(req->mr->rkey, sg->key);
1517 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1518
1519 return 0;
1520
1521 mr_put:
1522 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1523 req->mr = NULL;
1524 if (nr < 0)
1525 return nr;
1526 return -EINVAL;
1527 }
1528
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1529 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1530 struct request *rq, struct nvme_command *c)
1531 {
1532 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1533 struct nvme_rdma_device *dev = queue->device;
1534 struct ib_device *ibdev = dev->dev;
1535 int pi_count = 0;
1536 int count, ret;
1537
1538 req->num_sge = 1;
1539 refcount_set(&req->ref, 2); /* send and recv completions */
1540
1541 c->common.flags |= NVME_CMD_SGL_METABUF;
1542
1543 if (!blk_rq_nr_phys_segments(rq))
1544 return nvme_rdma_set_sg_null(c);
1545
1546 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1547 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1548 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1549 NVME_INLINE_SG_CNT);
1550 if (ret)
1551 return -ENOMEM;
1552
1553 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1554 req->data_sgl.sg_table.sgl);
1555
1556 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1557 req->data_sgl.nents, rq_dma_dir(rq));
1558 if (unlikely(count <= 0)) {
1559 ret = -EIO;
1560 goto out_free_table;
1561 }
1562
1563 if (blk_integrity_rq(rq)) {
1564 req->metadata_sgl->sg_table.sgl =
1565 (struct scatterlist *)(req->metadata_sgl + 1);
1566 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1567 blk_rq_count_integrity_sg(rq->q, rq->bio),
1568 req->metadata_sgl->sg_table.sgl,
1569 NVME_INLINE_METADATA_SG_CNT);
1570 if (unlikely(ret)) {
1571 ret = -ENOMEM;
1572 goto out_unmap_sg;
1573 }
1574
1575 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1576 rq->bio, req->metadata_sgl->sg_table.sgl);
1577 pi_count = ib_dma_map_sg(ibdev,
1578 req->metadata_sgl->sg_table.sgl,
1579 req->metadata_sgl->nents,
1580 rq_dma_dir(rq));
1581 if (unlikely(pi_count <= 0)) {
1582 ret = -EIO;
1583 goto out_free_pi_table;
1584 }
1585 }
1586
1587 if (req->use_sig_mr) {
1588 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1589 goto out;
1590 }
1591
1592 if (count <= dev->num_inline_segments) {
1593 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1594 queue->ctrl->use_inline_data &&
1595 blk_rq_payload_bytes(rq) <=
1596 nvme_rdma_inline_data_size(queue)) {
1597 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1598 goto out;
1599 }
1600
1601 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1602 ret = nvme_rdma_map_sg_single(queue, req, c);
1603 goto out;
1604 }
1605 }
1606
1607 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1608 out:
1609 if (unlikely(ret))
1610 goto out_unmap_pi_sg;
1611
1612 return 0;
1613
1614 out_unmap_pi_sg:
1615 if (blk_integrity_rq(rq))
1616 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1617 req->metadata_sgl->nents, rq_dma_dir(rq));
1618 out_free_pi_table:
1619 if (blk_integrity_rq(rq))
1620 sg_free_table_chained(&req->metadata_sgl->sg_table,
1621 NVME_INLINE_METADATA_SG_CNT);
1622 out_unmap_sg:
1623 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1624 rq_dma_dir(rq));
1625 out_free_table:
1626 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1627 return ret;
1628 }
1629
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1630 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1631 {
1632 struct nvme_rdma_qe *qe =
1633 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1634 struct nvme_rdma_request *req =
1635 container_of(qe, struct nvme_rdma_request, sqe);
1636
1637 if (unlikely(wc->status != IB_WC_SUCCESS))
1638 nvme_rdma_wr_error(cq, wc, "SEND");
1639 else
1640 nvme_rdma_end_request(req);
1641 }
1642
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1643 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1644 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1645 struct ib_send_wr *first)
1646 {
1647 struct ib_send_wr wr;
1648 int ret;
1649
1650 sge->addr = qe->dma;
1651 sge->length = sizeof(struct nvme_command);
1652 sge->lkey = queue->device->pd->local_dma_lkey;
1653
1654 wr.next = NULL;
1655 wr.wr_cqe = &qe->cqe;
1656 wr.sg_list = sge;
1657 wr.num_sge = num_sge;
1658 wr.opcode = IB_WR_SEND;
1659 wr.send_flags = IB_SEND_SIGNALED;
1660
1661 if (first)
1662 first->next = ≀
1663 else
1664 first = ≀
1665
1666 ret = ib_post_send(queue->qp, first, NULL);
1667 if (unlikely(ret)) {
1668 dev_err(queue->ctrl->ctrl.device,
1669 "%s failed with error code %d\n", __func__, ret);
1670 }
1671 return ret;
1672 }
1673
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1674 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1675 struct nvme_rdma_qe *qe)
1676 {
1677 struct ib_recv_wr wr;
1678 struct ib_sge list;
1679 int ret;
1680
1681 list.addr = qe->dma;
1682 list.length = sizeof(struct nvme_completion);
1683 list.lkey = queue->device->pd->local_dma_lkey;
1684
1685 qe->cqe.done = nvme_rdma_recv_done;
1686
1687 wr.next = NULL;
1688 wr.wr_cqe = &qe->cqe;
1689 wr.sg_list = &list;
1690 wr.num_sge = 1;
1691
1692 ret = ib_post_recv(queue->qp, &wr, NULL);
1693 if (unlikely(ret)) {
1694 dev_err(queue->ctrl->ctrl.device,
1695 "%s failed with error code %d\n", __func__, ret);
1696 }
1697 return ret;
1698 }
1699
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1700 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1701 {
1702 u32 queue_idx = nvme_rdma_queue_idx(queue);
1703
1704 if (queue_idx == 0)
1705 return queue->ctrl->admin_tag_set.tags[queue_idx];
1706 return queue->ctrl->tag_set.tags[queue_idx - 1];
1707 }
1708
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1709 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1710 {
1711 if (unlikely(wc->status != IB_WC_SUCCESS))
1712 nvme_rdma_wr_error(cq, wc, "ASYNC");
1713 }
1714
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1715 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1716 {
1717 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1718 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1719 struct ib_device *dev = queue->device->dev;
1720 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1721 struct nvme_command *cmd = sqe->data;
1722 struct ib_sge sge;
1723 int ret;
1724
1725 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1726
1727 memset(cmd, 0, sizeof(*cmd));
1728 cmd->common.opcode = nvme_admin_async_event;
1729 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1730 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1731 nvme_rdma_set_sg_null(cmd);
1732
1733 sqe->cqe.done = nvme_rdma_async_done;
1734
1735 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1736 DMA_TO_DEVICE);
1737
1738 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1739 WARN_ON_ONCE(ret);
1740 }
1741
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1742 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1743 struct nvme_completion *cqe, struct ib_wc *wc)
1744 {
1745 struct request *rq;
1746 struct nvme_rdma_request *req;
1747
1748 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1749 if (!rq) {
1750 dev_err(queue->ctrl->ctrl.device,
1751 "got bad command_id %#x on QP %#x\n",
1752 cqe->command_id, queue->qp->qp_num);
1753 nvme_rdma_error_recovery(queue->ctrl);
1754 return;
1755 }
1756 req = blk_mq_rq_to_pdu(rq);
1757
1758 req->status = cqe->status;
1759 req->result = cqe->result;
1760
1761 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1762 if (unlikely(!req->mr ||
1763 wc->ex.invalidate_rkey != req->mr->rkey)) {
1764 dev_err(queue->ctrl->ctrl.device,
1765 "Bogus remote invalidation for rkey %#x\n",
1766 req->mr ? req->mr->rkey : 0);
1767 nvme_rdma_error_recovery(queue->ctrl);
1768 }
1769 } else if (req->mr) {
1770 int ret;
1771
1772 ret = nvme_rdma_inv_rkey(queue, req);
1773 if (unlikely(ret < 0)) {
1774 dev_err(queue->ctrl->ctrl.device,
1775 "Queueing INV WR for rkey %#x failed (%d)\n",
1776 req->mr->rkey, ret);
1777 nvme_rdma_error_recovery(queue->ctrl);
1778 }
1779 /* the local invalidation completion will end the request */
1780 return;
1781 }
1782
1783 nvme_rdma_end_request(req);
1784 }
1785
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1786 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1787 {
1788 struct nvme_rdma_qe *qe =
1789 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1790 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1791 struct ib_device *ibdev = queue->device->dev;
1792 struct nvme_completion *cqe = qe->data;
1793 const size_t len = sizeof(struct nvme_completion);
1794
1795 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1796 nvme_rdma_wr_error(cq, wc, "RECV");
1797 return;
1798 }
1799
1800 /* sanity checking for received data length */
1801 if (unlikely(wc->byte_len < len)) {
1802 dev_err(queue->ctrl->ctrl.device,
1803 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1804 nvme_rdma_error_recovery(queue->ctrl);
1805 return;
1806 }
1807
1808 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1809 /*
1810 * AEN requests are special as they don't time out and can
1811 * survive any kind of queue freeze and often don't respond to
1812 * aborts. We don't even bother to allocate a struct request
1813 * for them but rather special case them here.
1814 */
1815 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1816 cqe->command_id)))
1817 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1818 &cqe->result);
1819 else
1820 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1821 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1822
1823 nvme_rdma_post_recv(queue, qe);
1824 }
1825
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1826 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1827 {
1828 int ret, i;
1829
1830 for (i = 0; i < queue->queue_size; i++) {
1831 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1832 if (ret)
1833 return ret;
1834 }
1835
1836 return 0;
1837 }
1838
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1839 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1840 struct rdma_cm_event *ev)
1841 {
1842 struct rdma_cm_id *cm_id = queue->cm_id;
1843 int status = ev->status;
1844 const char *rej_msg;
1845 const struct nvme_rdma_cm_rej *rej_data;
1846 u8 rej_data_len;
1847
1848 rej_msg = rdma_reject_msg(cm_id, status);
1849 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1850
1851 if (rej_data && rej_data_len >= sizeof(u16)) {
1852 u16 sts = le16_to_cpu(rej_data->sts);
1853
1854 dev_err(queue->ctrl->ctrl.device,
1855 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1856 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1857 } else {
1858 dev_err(queue->ctrl->ctrl.device,
1859 "Connect rejected: status %d (%s).\n", status, rej_msg);
1860 }
1861
1862 return -ECONNRESET;
1863 }
1864
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1865 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1866 {
1867 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1868 int ret;
1869
1870 ret = nvme_rdma_create_queue_ib(queue);
1871 if (ret)
1872 return ret;
1873
1874 if (ctrl->opts->tos >= 0)
1875 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1876 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1877 if (ret) {
1878 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1879 queue->cm_error);
1880 goto out_destroy_queue;
1881 }
1882
1883 return 0;
1884
1885 out_destroy_queue:
1886 nvme_rdma_destroy_queue_ib(queue);
1887 return ret;
1888 }
1889
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1890 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1891 {
1892 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1893 struct rdma_conn_param param = { };
1894 struct nvme_rdma_cm_req priv = { };
1895 int ret;
1896
1897 param.qp_num = queue->qp->qp_num;
1898 param.flow_control = 1;
1899
1900 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1901 /* maximum retry count */
1902 param.retry_count = 7;
1903 param.rnr_retry_count = 7;
1904 param.private_data = &priv;
1905 param.private_data_len = sizeof(priv);
1906
1907 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1908 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1909 /*
1910 * set the admin queue depth to the minimum size
1911 * specified by the Fabrics standard.
1912 */
1913 if (priv.qid == 0) {
1914 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1915 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1916 } else {
1917 /*
1918 * current interpretation of the fabrics spec
1919 * is at minimum you make hrqsize sqsize+1, or a
1920 * 1's based representation of sqsize.
1921 */
1922 priv.hrqsize = cpu_to_le16(queue->queue_size);
1923 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1924 }
1925
1926 ret = rdma_connect_locked(queue->cm_id, ¶m);
1927 if (ret) {
1928 dev_err(ctrl->ctrl.device,
1929 "rdma_connect_locked failed (%d).\n", ret);
1930 return ret;
1931 }
1932
1933 return 0;
1934 }
1935
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1936 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1937 struct rdma_cm_event *ev)
1938 {
1939 struct nvme_rdma_queue *queue = cm_id->context;
1940 int cm_error = 0;
1941
1942 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1943 rdma_event_msg(ev->event), ev->event,
1944 ev->status, cm_id);
1945
1946 switch (ev->event) {
1947 case RDMA_CM_EVENT_ADDR_RESOLVED:
1948 cm_error = nvme_rdma_addr_resolved(queue);
1949 break;
1950 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1951 cm_error = nvme_rdma_route_resolved(queue);
1952 break;
1953 case RDMA_CM_EVENT_ESTABLISHED:
1954 queue->cm_error = nvme_rdma_conn_established(queue);
1955 /* complete cm_done regardless of success/failure */
1956 complete(&queue->cm_done);
1957 return 0;
1958 case RDMA_CM_EVENT_REJECTED:
1959 cm_error = nvme_rdma_conn_rejected(queue, ev);
1960 break;
1961 case RDMA_CM_EVENT_ROUTE_ERROR:
1962 case RDMA_CM_EVENT_CONNECT_ERROR:
1963 case RDMA_CM_EVENT_UNREACHABLE:
1964 case RDMA_CM_EVENT_ADDR_ERROR:
1965 dev_dbg(queue->ctrl->ctrl.device,
1966 "CM error event %d\n", ev->event);
1967 cm_error = -ECONNRESET;
1968 break;
1969 case RDMA_CM_EVENT_DISCONNECTED:
1970 case RDMA_CM_EVENT_ADDR_CHANGE:
1971 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1972 dev_dbg(queue->ctrl->ctrl.device,
1973 "disconnect received - connection closed\n");
1974 nvme_rdma_error_recovery(queue->ctrl);
1975 break;
1976 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1977 /* device removal is handled via the ib_client API */
1978 break;
1979 default:
1980 dev_err(queue->ctrl->ctrl.device,
1981 "Unexpected RDMA CM event (%d)\n", ev->event);
1982 nvme_rdma_error_recovery(queue->ctrl);
1983 break;
1984 }
1985
1986 if (cm_error) {
1987 queue->cm_error = cm_error;
1988 complete(&queue->cm_done);
1989 }
1990
1991 return 0;
1992 }
1993
nvme_rdma_complete_timed_out(struct request * rq)1994 static void nvme_rdma_complete_timed_out(struct request *rq)
1995 {
1996 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1997 struct nvme_rdma_queue *queue = req->queue;
1998
1999 nvme_rdma_stop_queue(queue);
2000 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2001 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2002 blk_mq_complete_request(rq);
2003 }
2004 }
2005
2006 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)2007 nvme_rdma_timeout(struct request *rq, bool reserved)
2008 {
2009 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2010 struct nvme_rdma_queue *queue = req->queue;
2011 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2012
2013 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2014 rq->tag, nvme_rdma_queue_idx(queue));
2015
2016 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2017 /*
2018 * If we are resetting, connecting or deleting we should
2019 * complete immediately because we may block controller
2020 * teardown or setup sequence
2021 * - ctrl disable/shutdown fabrics requests
2022 * - connect requests
2023 * - initialization admin requests
2024 * - I/O requests that entered after unquiescing and
2025 * the controller stopped responding
2026 *
2027 * All other requests should be cancelled by the error
2028 * recovery work, so it's fine that we fail it here.
2029 */
2030 nvme_rdma_complete_timed_out(rq);
2031 return BLK_EH_DONE;
2032 }
2033
2034 /*
2035 * LIVE state should trigger the normal error recovery which will
2036 * handle completing this request.
2037 */
2038 nvme_rdma_error_recovery(ctrl);
2039 return BLK_EH_RESET_TIMER;
2040 }
2041
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2042 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2043 const struct blk_mq_queue_data *bd)
2044 {
2045 struct nvme_ns *ns = hctx->queue->queuedata;
2046 struct nvme_rdma_queue *queue = hctx->driver_data;
2047 struct request *rq = bd->rq;
2048 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2049 struct nvme_rdma_qe *sqe = &req->sqe;
2050 struct nvme_command *c = nvme_req(rq)->cmd;
2051 struct ib_device *dev;
2052 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2053 blk_status_t ret;
2054 int err;
2055
2056 WARN_ON_ONCE(rq->tag < 0);
2057
2058 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2059 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2060
2061 dev = queue->device->dev;
2062
2063 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2064 sizeof(struct nvme_command),
2065 DMA_TO_DEVICE);
2066 err = ib_dma_mapping_error(dev, req->sqe.dma);
2067 if (unlikely(err))
2068 return BLK_STS_RESOURCE;
2069
2070 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2071 sizeof(struct nvme_command), DMA_TO_DEVICE);
2072
2073 ret = nvme_setup_cmd(ns, rq);
2074 if (ret)
2075 goto unmap_qe;
2076
2077 blk_mq_start_request(rq);
2078
2079 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2080 queue->pi_support &&
2081 (c->common.opcode == nvme_cmd_write ||
2082 c->common.opcode == nvme_cmd_read) &&
2083 nvme_ns_has_pi(ns))
2084 req->use_sig_mr = true;
2085 else
2086 req->use_sig_mr = false;
2087
2088 err = nvme_rdma_map_data(queue, rq, c);
2089 if (unlikely(err < 0)) {
2090 dev_err(queue->ctrl->ctrl.device,
2091 "Failed to map data (%d)\n", err);
2092 goto err;
2093 }
2094
2095 sqe->cqe.done = nvme_rdma_send_done;
2096
2097 ib_dma_sync_single_for_device(dev, sqe->dma,
2098 sizeof(struct nvme_command), DMA_TO_DEVICE);
2099
2100 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2101 req->mr ? &req->reg_wr.wr : NULL);
2102 if (unlikely(err))
2103 goto err_unmap;
2104
2105 return BLK_STS_OK;
2106
2107 err_unmap:
2108 nvme_rdma_unmap_data(queue, rq);
2109 err:
2110 if (err == -EIO)
2111 ret = nvme_host_path_error(rq);
2112 else if (err == -ENOMEM || err == -EAGAIN)
2113 ret = BLK_STS_RESOURCE;
2114 else
2115 ret = BLK_STS_IOERR;
2116 nvme_cleanup_cmd(rq);
2117 unmap_qe:
2118 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2119 DMA_TO_DEVICE);
2120 return ret;
2121 }
2122
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx)2123 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2124 {
2125 struct nvme_rdma_queue *queue = hctx->driver_data;
2126
2127 return ib_process_cq_direct(queue->ib_cq, -1);
2128 }
2129
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2130 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2131 {
2132 struct request *rq = blk_mq_rq_from_pdu(req);
2133 struct ib_mr_status mr_status;
2134 int ret;
2135
2136 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2137 if (ret) {
2138 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2139 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2140 return;
2141 }
2142
2143 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2144 switch (mr_status.sig_err.err_type) {
2145 case IB_SIG_BAD_GUARD:
2146 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2147 break;
2148 case IB_SIG_BAD_REFTAG:
2149 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2150 break;
2151 case IB_SIG_BAD_APPTAG:
2152 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2153 break;
2154 }
2155 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2156 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2157 mr_status.sig_err.actual);
2158 }
2159 }
2160
nvme_rdma_complete_rq(struct request * rq)2161 static void nvme_rdma_complete_rq(struct request *rq)
2162 {
2163 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2164 struct nvme_rdma_queue *queue = req->queue;
2165 struct ib_device *ibdev = queue->device->dev;
2166
2167 if (req->use_sig_mr)
2168 nvme_rdma_check_pi_status(req);
2169
2170 nvme_rdma_unmap_data(queue, rq);
2171 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2172 DMA_TO_DEVICE);
2173 nvme_complete_rq(rq);
2174 }
2175
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2176 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2177 {
2178 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2179 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2180
2181 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2182 /* separate read/write queues */
2183 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2184 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2185 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2186 set->map[HCTX_TYPE_READ].nr_queues =
2187 ctrl->io_queues[HCTX_TYPE_READ];
2188 set->map[HCTX_TYPE_READ].queue_offset =
2189 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2190 } else {
2191 /* shared read/write queues */
2192 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2193 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2194 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2195 set->map[HCTX_TYPE_READ].nr_queues =
2196 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2197 set->map[HCTX_TYPE_READ].queue_offset = 0;
2198 }
2199 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2200 ctrl->device->dev, 0);
2201 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2202 ctrl->device->dev, 0);
2203
2204 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2205 /* map dedicated poll queues only if we have queues left */
2206 set->map[HCTX_TYPE_POLL].nr_queues =
2207 ctrl->io_queues[HCTX_TYPE_POLL];
2208 set->map[HCTX_TYPE_POLL].queue_offset =
2209 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2210 ctrl->io_queues[HCTX_TYPE_READ];
2211 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2212 }
2213
2214 dev_info(ctrl->ctrl.device,
2215 "mapped %d/%d/%d default/read/poll queues.\n",
2216 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2217 ctrl->io_queues[HCTX_TYPE_READ],
2218 ctrl->io_queues[HCTX_TYPE_POLL]);
2219
2220 return 0;
2221 }
2222
2223 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2224 .queue_rq = nvme_rdma_queue_rq,
2225 .complete = nvme_rdma_complete_rq,
2226 .init_request = nvme_rdma_init_request,
2227 .exit_request = nvme_rdma_exit_request,
2228 .init_hctx = nvme_rdma_init_hctx,
2229 .timeout = nvme_rdma_timeout,
2230 .map_queues = nvme_rdma_map_queues,
2231 .poll = nvme_rdma_poll,
2232 };
2233
2234 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2235 .queue_rq = nvme_rdma_queue_rq,
2236 .complete = nvme_rdma_complete_rq,
2237 .init_request = nvme_rdma_init_request,
2238 .exit_request = nvme_rdma_exit_request,
2239 .init_hctx = nvme_rdma_init_admin_hctx,
2240 .timeout = nvme_rdma_timeout,
2241 };
2242
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2243 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2244 {
2245 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2246 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2247 if (shutdown)
2248 nvme_shutdown_ctrl(&ctrl->ctrl);
2249 else
2250 nvme_disable_ctrl(&ctrl->ctrl);
2251 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2252 }
2253
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2254 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2255 {
2256 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2257 }
2258
nvme_rdma_reset_ctrl_work(struct work_struct * work)2259 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2260 {
2261 struct nvme_rdma_ctrl *ctrl =
2262 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2263
2264 nvme_stop_ctrl(&ctrl->ctrl);
2265 nvme_rdma_shutdown_ctrl(ctrl, false);
2266
2267 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2268 /* state change failure should never happen */
2269 WARN_ON_ONCE(1);
2270 return;
2271 }
2272
2273 if (nvme_rdma_setup_ctrl(ctrl, false))
2274 goto out_fail;
2275
2276 return;
2277
2278 out_fail:
2279 ++ctrl->ctrl.nr_reconnects;
2280 nvme_rdma_reconnect_or_remove(ctrl);
2281 }
2282
2283 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2284 .name = "rdma",
2285 .module = THIS_MODULE,
2286 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2287 .reg_read32 = nvmf_reg_read32,
2288 .reg_read64 = nvmf_reg_read64,
2289 .reg_write32 = nvmf_reg_write32,
2290 .free_ctrl = nvme_rdma_free_ctrl,
2291 .submit_async_event = nvme_rdma_submit_async_event,
2292 .delete_ctrl = nvme_rdma_delete_ctrl,
2293 .get_address = nvmf_get_address,
2294 .stop_ctrl = nvme_rdma_stop_ctrl,
2295 };
2296
2297 /*
2298 * Fails a connection request if it matches an existing controller
2299 * (association) with the same tuple:
2300 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2301 *
2302 * if local address is not specified in the request, it will match an
2303 * existing controller with all the other parameters the same and no
2304 * local port address specified as well.
2305 *
2306 * The ports don't need to be compared as they are intrinsically
2307 * already matched by the port pointers supplied.
2308 */
2309 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2310 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2311 {
2312 struct nvme_rdma_ctrl *ctrl;
2313 bool found = false;
2314
2315 mutex_lock(&nvme_rdma_ctrl_mutex);
2316 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2317 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2318 if (found)
2319 break;
2320 }
2321 mutex_unlock(&nvme_rdma_ctrl_mutex);
2322
2323 return found;
2324 }
2325
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2326 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2327 struct nvmf_ctrl_options *opts)
2328 {
2329 struct nvme_rdma_ctrl *ctrl;
2330 int ret;
2331 bool changed;
2332
2333 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2334 if (!ctrl)
2335 return ERR_PTR(-ENOMEM);
2336 ctrl->ctrl.opts = opts;
2337 INIT_LIST_HEAD(&ctrl->list);
2338
2339 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2340 opts->trsvcid =
2341 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2342 if (!opts->trsvcid) {
2343 ret = -ENOMEM;
2344 goto out_free_ctrl;
2345 }
2346 opts->mask |= NVMF_OPT_TRSVCID;
2347 }
2348
2349 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2350 opts->traddr, opts->trsvcid, &ctrl->addr);
2351 if (ret) {
2352 pr_err("malformed address passed: %s:%s\n",
2353 opts->traddr, opts->trsvcid);
2354 goto out_free_ctrl;
2355 }
2356
2357 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2358 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2359 opts->host_traddr, NULL, &ctrl->src_addr);
2360 if (ret) {
2361 pr_err("malformed src address passed: %s\n",
2362 opts->host_traddr);
2363 goto out_free_ctrl;
2364 }
2365 }
2366
2367 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2368 ret = -EALREADY;
2369 goto out_free_ctrl;
2370 }
2371
2372 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2373 nvme_rdma_reconnect_ctrl_work);
2374 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2375 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2376
2377 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2378 opts->nr_poll_queues + 1;
2379 ctrl->ctrl.sqsize = opts->queue_size - 1;
2380 ctrl->ctrl.kato = opts->kato;
2381
2382 ret = -ENOMEM;
2383 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2384 GFP_KERNEL);
2385 if (!ctrl->queues)
2386 goto out_free_ctrl;
2387
2388 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2389 0 /* no quirks, we're perfect! */);
2390 if (ret)
2391 goto out_kfree_queues;
2392
2393 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2394 WARN_ON_ONCE(!changed);
2395
2396 ret = nvme_rdma_setup_ctrl(ctrl, true);
2397 if (ret)
2398 goto out_uninit_ctrl;
2399
2400 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2401 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2402
2403 mutex_lock(&nvme_rdma_ctrl_mutex);
2404 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2405 mutex_unlock(&nvme_rdma_ctrl_mutex);
2406
2407 return &ctrl->ctrl;
2408
2409 out_uninit_ctrl:
2410 nvme_uninit_ctrl(&ctrl->ctrl);
2411 nvme_put_ctrl(&ctrl->ctrl);
2412 if (ret > 0)
2413 ret = -EIO;
2414 return ERR_PTR(ret);
2415 out_kfree_queues:
2416 kfree(ctrl->queues);
2417 out_free_ctrl:
2418 kfree(ctrl);
2419 return ERR_PTR(ret);
2420 }
2421
2422 static struct nvmf_transport_ops nvme_rdma_transport = {
2423 .name = "rdma",
2424 .module = THIS_MODULE,
2425 .required_opts = NVMF_OPT_TRADDR,
2426 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2427 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2428 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2429 NVMF_OPT_TOS,
2430 .create_ctrl = nvme_rdma_create_ctrl,
2431 };
2432
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2433 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2434 {
2435 struct nvme_rdma_ctrl *ctrl;
2436 struct nvme_rdma_device *ndev;
2437 bool found = false;
2438
2439 mutex_lock(&device_list_mutex);
2440 list_for_each_entry(ndev, &device_list, entry) {
2441 if (ndev->dev == ib_device) {
2442 found = true;
2443 break;
2444 }
2445 }
2446 mutex_unlock(&device_list_mutex);
2447
2448 if (!found)
2449 return;
2450
2451 /* Delete all controllers using this device */
2452 mutex_lock(&nvme_rdma_ctrl_mutex);
2453 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2454 if (ctrl->device->dev != ib_device)
2455 continue;
2456 nvme_delete_ctrl(&ctrl->ctrl);
2457 }
2458 mutex_unlock(&nvme_rdma_ctrl_mutex);
2459
2460 flush_workqueue(nvme_delete_wq);
2461 }
2462
2463 static struct ib_client nvme_rdma_ib_client = {
2464 .name = "nvme_rdma",
2465 .remove = nvme_rdma_remove_one
2466 };
2467
nvme_rdma_init_module(void)2468 static int __init nvme_rdma_init_module(void)
2469 {
2470 int ret;
2471
2472 ret = ib_register_client(&nvme_rdma_ib_client);
2473 if (ret)
2474 return ret;
2475
2476 ret = nvmf_register_transport(&nvme_rdma_transport);
2477 if (ret)
2478 goto err_unreg_client;
2479
2480 return 0;
2481
2482 err_unreg_client:
2483 ib_unregister_client(&nvme_rdma_ib_client);
2484 return ret;
2485 }
2486
nvme_rdma_cleanup_module(void)2487 static void __exit nvme_rdma_cleanup_module(void)
2488 {
2489 struct nvme_rdma_ctrl *ctrl;
2490
2491 nvmf_unregister_transport(&nvme_rdma_transport);
2492 ib_unregister_client(&nvme_rdma_ib_client);
2493
2494 mutex_lock(&nvme_rdma_ctrl_mutex);
2495 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2496 nvme_delete_ctrl(&ctrl->ctrl);
2497 mutex_unlock(&nvme_rdma_ctrl_mutex);
2498 flush_workqueue(nvme_delete_wq);
2499 }
2500
2501 module_init(nvme_rdma_init_module);
2502 module_exit(nvme_rdma_cleanup_module);
2503
2504 MODULE_LICENSE("GPL v2");
2505