• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irqdomain.h>
47 #include <asm/irqdomain.h>
48 #include <asm/apic.h>
49 #include <linux/irq.h>
50 #include <linux/msi.h>
51 #include <linux/hyperv.h>
52 #include <linux/refcount.h>
53 #include <asm/mshyperv.h>
54 
55 /*
56  * Protocol versions. The low word is the minor version, the high word the
57  * major version.
58  */
59 
60 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
61 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
62 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 
64 enum pci_protocol_version_t {
65 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
66 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
67 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
68 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
69 };
70 
71 #define CPU_AFFINITY_ALL	-1ULL
72 
73 /*
74  * Supported protocol versions in the order of probing - highest go
75  * first.
76  */
77 static enum pci_protocol_version_t pci_protocol_versions[] = {
78 	PCI_PROTOCOL_VERSION_1_4,
79 	PCI_PROTOCOL_VERSION_1_3,
80 	PCI_PROTOCOL_VERSION_1_2,
81 	PCI_PROTOCOL_VERSION_1_1,
82 };
83 
84 #define PCI_CONFIG_MMIO_LENGTH	0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91 
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94 
95 /*
96  * Message Types
97  */
98 
99 enum pci_message_type {
100 	/*
101 	 * Version 1.1
102 	 */
103 	PCI_MESSAGE_BASE                = 0x42490000,
104 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
105 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
106 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
107 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
109 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
110 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
111 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
112 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
113 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
114 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
115 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
116 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
117 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
118 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
119 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
120 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
121 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
122 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
123 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
124 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
125 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
126 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
127 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
128 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
129 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
130 	PCI_MESSAGE_MAXIMUM
131 };
132 
133 /*
134  * Structures defining the virtual PCI Express protocol.
135  */
136 
137 union pci_version {
138 	struct {
139 		u16 minor_version;
140 		u16 major_version;
141 	} parts;
142 	u32 version;
143 } __packed;
144 
145 /*
146  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
147  * which is all this driver does.  This representation is the one used in
148  * Windows, which is what is expected when sending this back and forth with
149  * the Hyper-V parent partition.
150  */
151 union win_slot_encoding {
152 	struct {
153 		u32	dev:5;
154 		u32	func:3;
155 		u32	reserved:24;
156 	} bits;
157 	u32 slot;
158 } __packed;
159 
160 /*
161  * Pretty much as defined in the PCI Specifications.
162  */
163 struct pci_function_description {
164 	u16	v_id;	/* vendor ID */
165 	u16	d_id;	/* device ID */
166 	u8	rev;
167 	u8	prog_intf;
168 	u8	subclass;
169 	u8	base_class;
170 	u32	subsystem_id;
171 	union win_slot_encoding win_slot;
172 	u32	ser;	/* serial number */
173 } __packed;
174 
175 enum pci_device_description_flags {
176 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
177 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
178 };
179 
180 struct pci_function_description2 {
181 	u16	v_id;	/* vendor ID */
182 	u16	d_id;	/* device ID */
183 	u8	rev;
184 	u8	prog_intf;
185 	u8	subclass;
186 	u8	base_class;
187 	u32	subsystem_id;
188 	union	win_slot_encoding win_slot;
189 	u32	ser;	/* serial number */
190 	u32	flags;
191 	u16	virtual_numa_node;
192 	u16	reserved;
193 } __packed;
194 
195 /**
196  * struct hv_msi_desc
197  * @vector:		IDT entry
198  * @delivery_mode:	As defined in Intel's Programmer's
199  *			Reference Manual, Volume 3, Chapter 8.
200  * @vector_count:	Number of contiguous entries in the
201  *			Interrupt Descriptor Table that are
202  *			occupied by this Message-Signaled
203  *			Interrupt. For "MSI", as first defined
204  *			in PCI 2.2, this can be between 1 and
205  *			32. For "MSI-X," as first defined in PCI
206  *			3.0, this must be 1, as each MSI-X table
207  *			entry would have its own descriptor.
208  * @reserved:		Empty space
209  * @cpu_mask:		All the target virtual processors.
210  */
211 struct hv_msi_desc {
212 	u8	vector;
213 	u8	delivery_mode;
214 	u16	vector_count;
215 	u32	reserved;
216 	u64	cpu_mask;
217 } __packed;
218 
219 /**
220  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
221  * @vector:		IDT entry
222  * @delivery_mode:	As defined in Intel's Programmer's
223  *			Reference Manual, Volume 3, Chapter 8.
224  * @vector_count:	Number of contiguous entries in the
225  *			Interrupt Descriptor Table that are
226  *			occupied by this Message-Signaled
227  *			Interrupt. For "MSI", as first defined
228  *			in PCI 2.2, this can be between 1 and
229  *			32. For "MSI-X," as first defined in PCI
230  *			3.0, this must be 1, as each MSI-X table
231  *			entry would have its own descriptor.
232  * @processor_count:	number of bits enabled in array.
233  * @processor_array:	All the target virtual processors.
234  */
235 struct hv_msi_desc2 {
236 	u8	vector;
237 	u8	delivery_mode;
238 	u16	vector_count;
239 	u16	processor_count;
240 	u16	processor_array[32];
241 } __packed;
242 
243 /*
244  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
245  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
246  *	'vector' field is larger to support bigger vector values. For ex: LPI
247  *	vectors on ARM.
248  */
249 struct hv_msi_desc3 {
250 	u32	vector;
251 	u8	delivery_mode;
252 	u8	reserved;
253 	u16	vector_count;
254 	u16	processor_count;
255 	u16	processor_array[32];
256 } __packed;
257 
258 /**
259  * struct tran_int_desc
260  * @reserved:		unused, padding
261  * @vector_count:	same as in hv_msi_desc
262  * @data:		This is the "data payload" value that is
263  *			written by the device when it generates
264  *			a message-signaled interrupt, either MSI
265  *			or MSI-X.
266  * @address:		This is the address to which the data
267  *			payload is written on interrupt
268  *			generation.
269  */
270 struct tran_int_desc {
271 	u16	reserved;
272 	u16	vector_count;
273 	u32	data;
274 	u64	address;
275 } __packed;
276 
277 /*
278  * A generic message format for virtual PCI.
279  * Specific message formats are defined later in the file.
280  */
281 
282 struct pci_message {
283 	u32 type;
284 } __packed;
285 
286 struct pci_child_message {
287 	struct pci_message message_type;
288 	union win_slot_encoding wslot;
289 } __packed;
290 
291 struct pci_incoming_message {
292 	struct vmpacket_descriptor hdr;
293 	struct pci_message message_type;
294 } __packed;
295 
296 struct pci_response {
297 	struct vmpacket_descriptor hdr;
298 	s32 status;			/* negative values are failures */
299 } __packed;
300 
301 struct pci_packet {
302 	void (*completion_func)(void *context, struct pci_response *resp,
303 				int resp_packet_size);
304 	void *compl_ctxt;
305 
306 	struct pci_message message[];
307 };
308 
309 /*
310  * Specific message types supporting the PCI protocol.
311  */
312 
313 /*
314  * Version negotiation message. Sent from the guest to the host.
315  * The guest is free to try different versions until the host
316  * accepts the version.
317  *
318  * pci_version: The protocol version requested.
319  * is_last_attempt: If TRUE, this is the last version guest will request.
320  * reservedz: Reserved field, set to zero.
321  */
322 
323 struct pci_version_request {
324 	struct pci_message message_type;
325 	u32 protocol_version;
326 } __packed;
327 
328 /*
329  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
330  * bus (PCI Express port) is ready for action.
331  */
332 
333 struct pci_bus_d0_entry {
334 	struct pci_message message_type;
335 	u32 reserved;
336 	u64 mmio_base;
337 } __packed;
338 
339 struct pci_bus_relations {
340 	struct pci_incoming_message incoming;
341 	u32 device_count;
342 	struct pci_function_description func[];
343 } __packed;
344 
345 struct pci_bus_relations2 {
346 	struct pci_incoming_message incoming;
347 	u32 device_count;
348 	struct pci_function_description2 func[];
349 } __packed;
350 
351 struct pci_q_res_req_response {
352 	struct vmpacket_descriptor hdr;
353 	s32 status;			/* negative values are failures */
354 	u32 probed_bar[PCI_STD_NUM_BARS];
355 } __packed;
356 
357 struct pci_set_power {
358 	struct pci_message message_type;
359 	union win_slot_encoding wslot;
360 	u32 power_state;		/* In Windows terms */
361 	u32 reserved;
362 } __packed;
363 
364 struct pci_set_power_response {
365 	struct vmpacket_descriptor hdr;
366 	s32 status;			/* negative values are failures */
367 	union win_slot_encoding wslot;
368 	u32 resultant_state;		/* In Windows terms */
369 	u32 reserved;
370 } __packed;
371 
372 struct pci_resources_assigned {
373 	struct pci_message message_type;
374 	union win_slot_encoding wslot;
375 	u8 memory_range[0x14][6];	/* not used here */
376 	u32 msi_descriptors;
377 	u32 reserved[4];
378 } __packed;
379 
380 struct pci_resources_assigned2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	u8 memory_range[0x14][6];	/* not used here */
384 	u32 msi_descriptor_count;
385 	u8 reserved[70];
386 } __packed;
387 
388 struct pci_create_interrupt {
389 	struct pci_message message_type;
390 	union win_slot_encoding wslot;
391 	struct hv_msi_desc int_desc;
392 } __packed;
393 
394 struct pci_create_int_response {
395 	struct pci_response response;
396 	u32 reserved;
397 	struct tran_int_desc int_desc;
398 } __packed;
399 
400 struct pci_create_interrupt2 {
401 	struct pci_message message_type;
402 	union win_slot_encoding wslot;
403 	struct hv_msi_desc2 int_desc;
404 } __packed;
405 
406 struct pci_create_interrupt3 {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	struct hv_msi_desc3 int_desc;
410 } __packed;
411 
412 struct pci_delete_interrupt {
413 	struct pci_message message_type;
414 	union win_slot_encoding wslot;
415 	struct tran_int_desc int_desc;
416 } __packed;
417 
418 /*
419  * Note: the VM must pass a valid block id, wslot and bytes_requested.
420  */
421 struct pci_read_block {
422 	struct pci_message message_type;
423 	u32 block_id;
424 	union win_slot_encoding wslot;
425 	u32 bytes_requested;
426 } __packed;
427 
428 struct pci_read_block_response {
429 	struct vmpacket_descriptor hdr;
430 	u32 status;
431 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
432 } __packed;
433 
434 /*
435  * Note: the VM must pass a valid block id, wslot and byte_count.
436  */
437 struct pci_write_block {
438 	struct pci_message message_type;
439 	u32 block_id;
440 	union win_slot_encoding wslot;
441 	u32 byte_count;
442 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
443 } __packed;
444 
445 struct pci_dev_inval_block {
446 	struct pci_incoming_message incoming;
447 	union win_slot_encoding wslot;
448 	u64 block_mask;
449 } __packed;
450 
451 struct pci_dev_incoming {
452 	struct pci_incoming_message incoming;
453 	union win_slot_encoding wslot;
454 } __packed;
455 
456 struct pci_eject_response {
457 	struct pci_message message_type;
458 	union win_slot_encoding wslot;
459 	u32 status;
460 } __packed;
461 
462 static int pci_ring_size = (4 * PAGE_SIZE);
463 
464 /*
465  * Driver specific state.
466  */
467 
468 enum hv_pcibus_state {
469 	hv_pcibus_init = 0,
470 	hv_pcibus_probed,
471 	hv_pcibus_installed,
472 	hv_pcibus_removing,
473 	hv_pcibus_maximum
474 };
475 
476 struct hv_pcibus_device {
477 #ifdef CONFIG_X86
478 	struct pci_sysdata sysdata;
479 #elif defined(CONFIG_ARM64)
480 	struct pci_config_window sysdata;
481 #endif
482 	struct pci_host_bridge *bridge;
483 	struct fwnode_handle *fwnode;
484 	/* Protocol version negotiated with the host */
485 	enum pci_protocol_version_t protocol_version;
486 
487 	struct mutex state_lock;
488 	enum hv_pcibus_state state;
489 
490 	struct hv_device *hdev;
491 	resource_size_t low_mmio_space;
492 	resource_size_t high_mmio_space;
493 	struct resource *mem_config;
494 	struct resource *low_mmio_res;
495 	struct resource *high_mmio_res;
496 	struct completion *survey_event;
497 	struct pci_bus *pci_bus;
498 	spinlock_t config_lock;	/* Avoid two threads writing index page */
499 	spinlock_t device_list_lock;	/* Protect lists below */
500 	void __iomem *cfg_addr;
501 
502 	struct list_head children;
503 	struct list_head dr_list;
504 
505 	struct msi_domain_info msi_info;
506 	struct irq_domain *irq_domain;
507 
508 	spinlock_t retarget_msi_interrupt_lock;
509 
510 	struct workqueue_struct *wq;
511 
512 	/* Highest slot of child device with resources allocated */
513 	int wslot_res_allocated;
514 
515 	/* hypercall arg, must not cross page boundary */
516 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
517 
518 	/*
519 	 * Don't put anything here: retarget_msi_interrupt_params must be last
520 	 */
521 };
522 
523 /*
524  * Tracks "Device Relations" messages from the host, which must be both
525  * processed in order and deferred so that they don't run in the context
526  * of the incoming packet callback.
527  */
528 struct hv_dr_work {
529 	struct work_struct wrk;
530 	struct hv_pcibus_device *bus;
531 };
532 
533 struct hv_pcidev_description {
534 	u16	v_id;	/* vendor ID */
535 	u16	d_id;	/* device ID */
536 	u8	rev;
537 	u8	prog_intf;
538 	u8	subclass;
539 	u8	base_class;
540 	u32	subsystem_id;
541 	union	win_slot_encoding win_slot;
542 	u32	ser;	/* serial number */
543 	u32	flags;
544 	u16	virtual_numa_node;
545 };
546 
547 struct hv_dr_state {
548 	struct list_head list_entry;
549 	u32 device_count;
550 	struct hv_pcidev_description func[];
551 };
552 
553 struct hv_pci_dev {
554 	/* List protected by pci_rescan_remove_lock */
555 	struct list_head list_entry;
556 	refcount_t refs;
557 	struct pci_slot *pci_slot;
558 	struct hv_pcidev_description desc;
559 	bool reported_missing;
560 	struct hv_pcibus_device *hbus;
561 	struct work_struct wrk;
562 
563 	void (*block_invalidate)(void *context, u64 block_mask);
564 	void *invalidate_context;
565 
566 	/*
567 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
568 	 * read it back, for each of the BAR offsets within config space.
569 	 */
570 	u32 probed_bar[PCI_STD_NUM_BARS];
571 };
572 
573 struct hv_pci_compl {
574 	struct completion host_event;
575 	s32 completion_status;
576 };
577 
578 static void hv_pci_onchannelcallback(void *context);
579 
580 /**
581  * hv_pci_generic_compl() - Invoked for a completion packet
582  * @context:		Set up by the sender of the packet.
583  * @resp:		The response packet
584  * @resp_packet_size:	Size in bytes of the packet
585  *
586  * This function is used to trigger an event and report status
587  * for any message for which the completion packet contains a
588  * status and nothing else.
589  */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)590 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
591 				 int resp_packet_size)
592 {
593 	struct hv_pci_compl *comp_pkt = context;
594 
595 	if (resp_packet_size >= offsetofend(struct pci_response, status))
596 		comp_pkt->completion_status = resp->status;
597 	else
598 		comp_pkt->completion_status = -1;
599 
600 	complete(&comp_pkt->host_event);
601 }
602 
603 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
604 						u32 wslot);
605 
get_pcichild(struct hv_pci_dev * hpdev)606 static void get_pcichild(struct hv_pci_dev *hpdev)
607 {
608 	refcount_inc(&hpdev->refs);
609 }
610 
put_pcichild(struct hv_pci_dev * hpdev)611 static void put_pcichild(struct hv_pci_dev *hpdev)
612 {
613 	if (refcount_dec_and_test(&hpdev->refs))
614 		kfree(hpdev);
615 }
616 
617 /*
618  * There is no good way to get notified from vmbus_onoffer_rescind(),
619  * so let's use polling here, since this is not a hot path.
620  */
wait_for_response(struct hv_device * hdev,struct completion * comp)621 static int wait_for_response(struct hv_device *hdev,
622 			     struct completion *comp)
623 {
624 	while (true) {
625 		if (hdev->channel->rescind) {
626 			dev_warn_once(&hdev->device, "The device is gone.\n");
627 			return -ENODEV;
628 		}
629 
630 		if (wait_for_completion_timeout(comp, HZ / 10))
631 			break;
632 	}
633 
634 	return 0;
635 }
636 
637 /**
638  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
639  * @devfn:	The Linux representation of PCI slot
640  *
641  * Windows uses a slightly different representation of PCI slot.
642  *
643  * Return: The Windows representation
644  */
devfn_to_wslot(int devfn)645 static u32 devfn_to_wslot(int devfn)
646 {
647 	union win_slot_encoding wslot;
648 
649 	wslot.slot = 0;
650 	wslot.bits.dev = PCI_SLOT(devfn);
651 	wslot.bits.func = PCI_FUNC(devfn);
652 
653 	return wslot.slot;
654 }
655 
656 /**
657  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
658  * @wslot:	The Windows representation of PCI slot
659  *
660  * Windows uses a slightly different representation of PCI slot.
661  *
662  * Return: The Linux representation
663  */
wslot_to_devfn(u32 wslot)664 static int wslot_to_devfn(u32 wslot)
665 {
666 	union win_slot_encoding slot_no;
667 
668 	slot_no.slot = wslot;
669 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
670 }
671 
672 /*
673  * PCI Configuration Space for these root PCI buses is implemented as a pair
674  * of pages in memory-mapped I/O space.  Writing to the first page chooses
675  * the PCI function being written or read.  Once the first page has been
676  * written to, the following page maps in the entire configuration space of
677  * the function.
678  */
679 
680 /**
681  * _hv_pcifront_read_config() - Internal PCI config read
682  * @hpdev:	The PCI driver's representation of the device
683  * @where:	Offset within config space
684  * @size:	Size of the transfer
685  * @val:	Pointer to the buffer receiving the data
686  */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)687 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
688 				     int size, u32 *val)
689 {
690 	unsigned long flags;
691 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
692 
693 	/*
694 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
695 	 */
696 	if (where + size <= PCI_COMMAND) {
697 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
698 	} else if (where >= PCI_CLASS_REVISION && where + size <=
699 		   PCI_CACHE_LINE_SIZE) {
700 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
701 		       PCI_CLASS_REVISION, size);
702 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
703 		   PCI_ROM_ADDRESS) {
704 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
705 		       PCI_SUBSYSTEM_VENDOR_ID, size);
706 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
707 		   PCI_CAPABILITY_LIST) {
708 		/* ROM BARs are unimplemented */
709 		*val = 0;
710 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
711 		   PCI_INTERRUPT_PIN) {
712 		/*
713 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
714 		 * because this front-end only supports message-signaled
715 		 * interrupts.
716 		 */
717 		*val = 0;
718 	} else if (where + size <= CFG_PAGE_SIZE) {
719 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
720 		/* Choose the function to be read. (See comment above) */
721 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
722 		/* Make sure the function was chosen before we start reading. */
723 		mb();
724 		/* Read from that function's config space. */
725 		switch (size) {
726 		case 1:
727 			*val = readb(addr);
728 			break;
729 		case 2:
730 			*val = readw(addr);
731 			break;
732 		default:
733 			*val = readl(addr);
734 			break;
735 		}
736 		/*
737 		 * Make sure the read was done before we release the spinlock
738 		 * allowing consecutive reads/writes.
739 		 */
740 		mb();
741 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
742 	} else {
743 		dev_err(&hpdev->hbus->hdev->device,
744 			"Attempt to read beyond a function's config space.\n");
745 	}
746 }
747 
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)748 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
749 {
750 	u16 ret;
751 	unsigned long flags;
752 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
753 			     PCI_VENDOR_ID;
754 
755 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
756 
757 	/* Choose the function to be read. (See comment above) */
758 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
759 	/* Make sure the function was chosen before we start reading. */
760 	mb();
761 	/* Read from that function's config space. */
762 	ret = readw(addr);
763 	/*
764 	 * mb() is not required here, because the spin_unlock_irqrestore()
765 	 * is a barrier.
766 	 */
767 
768 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
769 
770 	return ret;
771 }
772 
773 /**
774  * _hv_pcifront_write_config() - Internal PCI config write
775  * @hpdev:	The PCI driver's representation of the device
776  * @where:	Offset within config space
777  * @size:	Size of the transfer
778  * @val:	The data being transferred
779  */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)780 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
781 				      int size, u32 val)
782 {
783 	unsigned long flags;
784 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
785 
786 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
787 	    where + size <= PCI_CAPABILITY_LIST) {
788 		/* SSIDs and ROM BARs are read-only */
789 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
790 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
791 		/* Choose the function to be written. (See comment above) */
792 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
793 		/* Make sure the function was chosen before we start writing. */
794 		wmb();
795 		/* Write to that function's config space. */
796 		switch (size) {
797 		case 1:
798 			writeb(val, addr);
799 			break;
800 		case 2:
801 			writew(val, addr);
802 			break;
803 		default:
804 			writel(val, addr);
805 			break;
806 		}
807 		/*
808 		 * Make sure the write was done before we release the spinlock
809 		 * allowing consecutive reads/writes.
810 		 */
811 		mb();
812 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
813 	} else {
814 		dev_err(&hpdev->hbus->hdev->device,
815 			"Attempt to write beyond a function's config space.\n");
816 	}
817 }
818 
819 /**
820  * hv_pcifront_read_config() - Read configuration space
821  * @bus: PCI Bus structure
822  * @devfn: Device/function
823  * @where: Offset from base
824  * @size: Byte/word/dword
825  * @val: Value to be read
826  *
827  * Return: PCIBIOS_SUCCESSFUL on success
828  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
829  */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)830 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
831 				   int where, int size, u32 *val)
832 {
833 	struct hv_pcibus_device *hbus =
834 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
835 	struct hv_pci_dev *hpdev;
836 
837 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
838 	if (!hpdev)
839 		return PCIBIOS_DEVICE_NOT_FOUND;
840 
841 	_hv_pcifront_read_config(hpdev, where, size, val);
842 
843 	put_pcichild(hpdev);
844 	return PCIBIOS_SUCCESSFUL;
845 }
846 
847 /**
848  * hv_pcifront_write_config() - Write configuration space
849  * @bus: PCI Bus structure
850  * @devfn: Device/function
851  * @where: Offset from base
852  * @size: Byte/word/dword
853  * @val: Value to be written to device
854  *
855  * Return: PCIBIOS_SUCCESSFUL on success
856  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
857  */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)858 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
859 				    int where, int size, u32 val)
860 {
861 	struct hv_pcibus_device *hbus =
862 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
863 	struct hv_pci_dev *hpdev;
864 
865 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
866 	if (!hpdev)
867 		return PCIBIOS_DEVICE_NOT_FOUND;
868 
869 	_hv_pcifront_write_config(hpdev, where, size, val);
870 
871 	put_pcichild(hpdev);
872 	return PCIBIOS_SUCCESSFUL;
873 }
874 
875 /* PCIe operations */
876 static struct pci_ops hv_pcifront_ops = {
877 	.read  = hv_pcifront_read_config,
878 	.write = hv_pcifront_write_config,
879 };
880 
881 /*
882  * Paravirtual backchannel
883  *
884  * Hyper-V SR-IOV provides a backchannel mechanism in software for
885  * communication between a VF driver and a PF driver.  These
886  * "configuration blocks" are similar in concept to PCI configuration space,
887  * but instead of doing reads and writes in 32-bit chunks through a very slow
888  * path, packets of up to 128 bytes can be sent or received asynchronously.
889  *
890  * Nearly every SR-IOV device contains just such a communications channel in
891  * hardware, so using this one in software is usually optional.  Using the
892  * software channel, however, allows driver implementers to leverage software
893  * tools that fuzz the communications channel looking for vulnerabilities.
894  *
895  * The usage model for these packets puts the responsibility for reading or
896  * writing on the VF driver.  The VF driver sends a read or a write packet,
897  * indicating which "block" is being referred to by number.
898  *
899  * If the PF driver wishes to initiate communication, it can "invalidate" one or
900  * more of the first 64 blocks.  This invalidation is delivered via a callback
901  * supplied by the VF driver by this driver.
902  *
903  * No protocol is implied, except that supplied by the PF and VF drivers.
904  */
905 
906 struct hv_read_config_compl {
907 	struct hv_pci_compl comp_pkt;
908 	void *buf;
909 	unsigned int len;
910 	unsigned int bytes_returned;
911 };
912 
913 /**
914  * hv_pci_read_config_compl() - Invoked when a response packet
915  * for a read config block operation arrives.
916  * @context:		Identifies the read config operation
917  * @resp:		The response packet itself
918  * @resp_packet_size:	Size in bytes of the response packet
919  */
hv_pci_read_config_compl(void * context,struct pci_response * resp,int resp_packet_size)920 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
921 				     int resp_packet_size)
922 {
923 	struct hv_read_config_compl *comp = context;
924 	struct pci_read_block_response *read_resp =
925 		(struct pci_read_block_response *)resp;
926 	unsigned int data_len, hdr_len;
927 
928 	hdr_len = offsetof(struct pci_read_block_response, bytes);
929 	if (resp_packet_size < hdr_len) {
930 		comp->comp_pkt.completion_status = -1;
931 		goto out;
932 	}
933 
934 	data_len = resp_packet_size - hdr_len;
935 	if (data_len > 0 && read_resp->status == 0) {
936 		comp->bytes_returned = min(comp->len, data_len);
937 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
938 	} else {
939 		comp->bytes_returned = 0;
940 	}
941 
942 	comp->comp_pkt.completion_status = read_resp->status;
943 out:
944 	complete(&comp->comp_pkt.host_event);
945 }
946 
947 /**
948  * hv_read_config_block() - Sends a read config block request to
949  * the back-end driver running in the Hyper-V parent partition.
950  * @pdev:		The PCI driver's representation for this device.
951  * @buf:		Buffer into which the config block will be copied.
952  * @len:		Size in bytes of buf.
953  * @block_id:		Identifies the config block which has been requested.
954  * @bytes_returned:	Size which came back from the back-end driver.
955  *
956  * Return: 0 on success, -errno on failure
957  */
hv_read_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id,unsigned int * bytes_returned)958 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
959 				unsigned int len, unsigned int block_id,
960 				unsigned int *bytes_returned)
961 {
962 	struct hv_pcibus_device *hbus =
963 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
964 			     sysdata);
965 	struct {
966 		struct pci_packet pkt;
967 		char buf[sizeof(struct pci_read_block)];
968 	} pkt;
969 	struct hv_read_config_compl comp_pkt;
970 	struct pci_read_block *read_blk;
971 	int ret;
972 
973 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
974 		return -EINVAL;
975 
976 	init_completion(&comp_pkt.comp_pkt.host_event);
977 	comp_pkt.buf = buf;
978 	comp_pkt.len = len;
979 
980 	memset(&pkt, 0, sizeof(pkt));
981 	pkt.pkt.completion_func = hv_pci_read_config_compl;
982 	pkt.pkt.compl_ctxt = &comp_pkt;
983 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
984 	read_blk->message_type.type = PCI_READ_BLOCK;
985 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
986 	read_blk->block_id = block_id;
987 	read_blk->bytes_requested = len;
988 
989 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
990 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
991 			       VM_PKT_DATA_INBAND,
992 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
993 	if (ret)
994 		return ret;
995 
996 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
997 	if (ret)
998 		return ret;
999 
1000 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1001 	    comp_pkt.bytes_returned == 0) {
1002 		dev_err(&hbus->hdev->device,
1003 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1004 			comp_pkt.comp_pkt.completion_status,
1005 			comp_pkt.bytes_returned);
1006 		return -EIO;
1007 	}
1008 
1009 	*bytes_returned = comp_pkt.bytes_returned;
1010 	return 0;
1011 }
1012 
1013 /**
1014  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1015  * config block operation arrives.
1016  * @context:		Identifies the write config operation
1017  * @resp:		The response packet itself
1018  * @resp_packet_size:	Size in bytes of the response packet
1019  */
hv_pci_write_config_compl(void * context,struct pci_response * resp,int resp_packet_size)1020 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1021 				      int resp_packet_size)
1022 {
1023 	struct hv_pci_compl *comp_pkt = context;
1024 
1025 	comp_pkt->completion_status = resp->status;
1026 	complete(&comp_pkt->host_event);
1027 }
1028 
1029 /**
1030  * hv_write_config_block() - Sends a write config block request to the
1031  * back-end driver running in the Hyper-V parent partition.
1032  * @pdev:		The PCI driver's representation for this device.
1033  * @buf:		Buffer from which the config block will	be copied.
1034  * @len:		Size in bytes of buf.
1035  * @block_id:		Identifies the config block which is being written.
1036  *
1037  * Return: 0 on success, -errno on failure
1038  */
hv_write_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id)1039 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1040 				unsigned int len, unsigned int block_id)
1041 {
1042 	struct hv_pcibus_device *hbus =
1043 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1044 			     sysdata);
1045 	struct {
1046 		struct pci_packet pkt;
1047 		char buf[sizeof(struct pci_write_block)];
1048 		u32 reserved;
1049 	} pkt;
1050 	struct hv_pci_compl comp_pkt;
1051 	struct pci_write_block *write_blk;
1052 	u32 pkt_size;
1053 	int ret;
1054 
1055 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1056 		return -EINVAL;
1057 
1058 	init_completion(&comp_pkt.host_event);
1059 
1060 	memset(&pkt, 0, sizeof(pkt));
1061 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1062 	pkt.pkt.compl_ctxt = &comp_pkt;
1063 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1064 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1065 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1066 	write_blk->block_id = block_id;
1067 	write_blk->byte_count = len;
1068 	memcpy(write_blk->bytes, buf, len);
1069 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1070 	/*
1071 	 * This quirk is required on some hosts shipped around 2018, because
1072 	 * these hosts don't check the pkt_size correctly (new hosts have been
1073 	 * fixed since early 2019). The quirk is also safe on very old hosts
1074 	 * and new hosts, because, on them, what really matters is the length
1075 	 * specified in write_blk->byte_count.
1076 	 */
1077 	pkt_size += sizeof(pkt.reserved);
1078 
1079 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1080 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1081 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1082 	if (ret)
1083 		return ret;
1084 
1085 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1086 	if (ret)
1087 		return ret;
1088 
1089 	if (comp_pkt.completion_status != 0) {
1090 		dev_err(&hbus->hdev->device,
1091 			"Write Config Block failed: 0x%x\n",
1092 			comp_pkt.completion_status);
1093 		return -EIO;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /**
1100  * hv_register_block_invalidate() - Invoked when a config block invalidation
1101  * arrives from the back-end driver.
1102  * @pdev:		The PCI driver's representation for this device.
1103  * @context:		Identifies the device.
1104  * @block_invalidate:	Identifies all of the blocks being invalidated.
1105  *
1106  * Return: 0 on success, -errno on failure
1107  */
hv_register_block_invalidate(struct pci_dev * pdev,void * context,void (* block_invalidate)(void * context,u64 block_mask))1108 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1109 					void (*block_invalidate)(void *context,
1110 								 u64 block_mask))
1111 {
1112 	struct hv_pcibus_device *hbus =
1113 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1114 			     sysdata);
1115 	struct hv_pci_dev *hpdev;
1116 
1117 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1118 	if (!hpdev)
1119 		return -ENODEV;
1120 
1121 	hpdev->block_invalidate = block_invalidate;
1122 	hpdev->invalidate_context = context;
1123 
1124 	put_pcichild(hpdev);
1125 	return 0;
1126 
1127 }
1128 
1129 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)1130 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1131 			     struct tran_int_desc *int_desc)
1132 {
1133 	struct pci_delete_interrupt *int_pkt;
1134 	struct {
1135 		struct pci_packet pkt;
1136 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1137 	} ctxt;
1138 
1139 	if (!int_desc->vector_count) {
1140 		kfree(int_desc);
1141 		return;
1142 	}
1143 	memset(&ctxt, 0, sizeof(ctxt));
1144 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1145 	int_pkt->message_type.type =
1146 		PCI_DELETE_INTERRUPT_MESSAGE;
1147 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1148 	int_pkt->int_desc = *int_desc;
1149 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1150 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1151 	kfree(int_desc);
1152 }
1153 
1154 /**
1155  * hv_msi_free() - Free the MSI.
1156  * @domain:	The interrupt domain pointer
1157  * @info:	Extra MSI-related context
1158  * @irq:	Identifies the IRQ.
1159  *
1160  * The Hyper-V parent partition and hypervisor are tracking the
1161  * messages that are in use, keeping the interrupt redirection
1162  * table up to date.  This callback sends a message that frees
1163  * the IRT entry and related tracking nonsense.
1164  */
hv_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)1165 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1166 			unsigned int irq)
1167 {
1168 	struct hv_pcibus_device *hbus;
1169 	struct hv_pci_dev *hpdev;
1170 	struct pci_dev *pdev;
1171 	struct tran_int_desc *int_desc;
1172 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1173 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1174 
1175 	pdev = msi_desc_to_pci_dev(msi);
1176 	hbus = info->data;
1177 	int_desc = irq_data_get_irq_chip_data(irq_data);
1178 	if (!int_desc)
1179 		return;
1180 
1181 	irq_data->chip_data = NULL;
1182 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1183 	if (!hpdev) {
1184 		kfree(int_desc);
1185 		return;
1186 	}
1187 
1188 	hv_int_desc_free(hpdev, int_desc);
1189 	put_pcichild(hpdev);
1190 }
1191 
hv_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)1192 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1193 			   bool force)
1194 {
1195 	struct irq_data *parent = data->parent_data;
1196 
1197 	return parent->chip->irq_set_affinity(parent, dest, force);
1198 }
1199 
hv_irq_mask(struct irq_data * data)1200 static void hv_irq_mask(struct irq_data *data)
1201 {
1202 	pci_msi_mask_irq(data);
1203 }
1204 
hv_msi_get_int_vector(struct irq_data * data)1205 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
1206 {
1207 	struct irq_cfg *cfg = irqd_cfg(data);
1208 
1209 	return cfg->vector;
1210 }
1211 
hv_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)1212 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev,
1213 			  int nvec, msi_alloc_info_t *info)
1214 {
1215 	int ret = pci_msi_prepare(domain, dev, nvec, info);
1216 
1217 	/*
1218 	 * By using the interrupt remapper in the hypervisor IOMMU, contiguous
1219 	 * CPU vectors is not needed for multi-MSI
1220 	 */
1221 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1222 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1223 
1224 	return ret;
1225 }
1226 
1227 /**
1228  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1229  * affinity.
1230  * @data:	Describes the IRQ
1231  *
1232  * Build new a destination for the MSI and make a hypercall to
1233  * update the Interrupt Redirection Table. "Device Logical ID"
1234  * is built out of this PCI bus's instance GUID and the function
1235  * number of the device.
1236  */
hv_irq_unmask(struct irq_data * data)1237 static void hv_irq_unmask(struct irq_data *data)
1238 {
1239 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1240 	struct irq_cfg *cfg = irqd_cfg(data);
1241 	struct hv_retarget_device_interrupt *params;
1242 	struct tran_int_desc *int_desc;
1243 	struct hv_pcibus_device *hbus;
1244 	struct cpumask *dest;
1245 	cpumask_var_t tmp;
1246 	struct pci_bus *pbus;
1247 	struct pci_dev *pdev;
1248 	unsigned long flags;
1249 	u32 var_size = 0;
1250 	int cpu, nr_bank;
1251 	u64 res;
1252 
1253 	dest = irq_data_get_effective_affinity_mask(data);
1254 	pdev = msi_desc_to_pci_dev(msi_desc);
1255 	pbus = pdev->bus;
1256 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1257 	int_desc = data->chip_data;
1258 	if (!int_desc) {
1259 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
1260 			 __func__, data->irq);
1261 		return;
1262 	}
1263 
1264 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1265 
1266 	params = &hbus->retarget_msi_interrupt_params;
1267 	memset(params, 0, sizeof(*params));
1268 	params->partition_id = HV_PARTITION_ID_SELF;
1269 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1270 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
1271 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
1272 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1273 			   (hbus->hdev->dev_instance.b[4] << 16) |
1274 			   (hbus->hdev->dev_instance.b[7] << 8) |
1275 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1276 			   PCI_FUNC(pdev->devfn);
1277 	params->int_target.vector = cfg->vector;
1278 
1279 	/*
1280 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1281 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1282 	 * spurious interrupt storm. Not doing so does not seem to have a
1283 	 * negative effect (yet?).
1284 	 */
1285 
1286 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1287 		/*
1288 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1289 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1290 		 * with >64 VP support.
1291 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1292 		 * is not sufficient for this hypercall.
1293 		 */
1294 		params->int_target.flags |=
1295 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1296 
1297 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1298 			res = 1;
1299 			goto exit_unlock;
1300 		}
1301 
1302 		cpumask_and(tmp, dest, cpu_online_mask);
1303 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1304 		free_cpumask_var(tmp);
1305 
1306 		if (nr_bank <= 0) {
1307 			res = 1;
1308 			goto exit_unlock;
1309 		}
1310 
1311 		/*
1312 		 * var-sized hypercall, var-size starts after vp_mask (thus
1313 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1314 		 * does).
1315 		 */
1316 		var_size = 1 + nr_bank;
1317 	} else {
1318 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1319 			params->int_target.vp_mask |=
1320 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1321 		}
1322 	}
1323 
1324 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1325 			      params, NULL);
1326 
1327 exit_unlock:
1328 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1329 
1330 	/*
1331 	 * During hibernation, when a CPU is offlined, the kernel tries
1332 	 * to move the interrupt to the remaining CPUs that haven't
1333 	 * been offlined yet. In this case, the below hv_do_hypercall()
1334 	 * always fails since the vmbus channel has been closed:
1335 	 * refer to cpu_disable_common() -> fixup_irqs() ->
1336 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1337 	 *
1338 	 * Suppress the error message for hibernation because the failure
1339 	 * during hibernation does not matter (at this time all the devices
1340 	 * have been frozen). Note: the correct affinity info is still updated
1341 	 * into the irqdata data structure in migrate_one_irq() ->
1342 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1343 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1344 	 * the interrupt with the correct affinity.
1345 	 */
1346 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1347 		dev_err(&hbus->hdev->device,
1348 			"%s() failed: %#llx", __func__, res);
1349 
1350 	pci_msi_unmask_irq(data);
1351 }
1352 
1353 struct compose_comp_ctxt {
1354 	struct hv_pci_compl comp_pkt;
1355 	struct tran_int_desc int_desc;
1356 };
1357 
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1358 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1359 				 int resp_packet_size)
1360 {
1361 	struct compose_comp_ctxt *comp_pkt = context;
1362 	struct pci_create_int_response *int_resp =
1363 		(struct pci_create_int_response *)resp;
1364 
1365 	comp_pkt->comp_pkt.completion_status = resp->status;
1366 	comp_pkt->int_desc = int_resp->int_desc;
1367 	complete(&comp_pkt->comp_pkt.host_event);
1368 }
1369 
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,struct cpumask * affinity,u32 slot,u8 vector,u8 vector_count)1370 static u32 hv_compose_msi_req_v1(
1371 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1372 	u32 slot, u8 vector, u8 vector_count)
1373 {
1374 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1375 	int_pkt->wslot.slot = slot;
1376 	int_pkt->int_desc.vector = vector;
1377 	int_pkt->int_desc.vector_count = vector_count;
1378 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1379 
1380 	/*
1381 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1382 	 * hv_irq_unmask().
1383 	 */
1384 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1385 
1386 	return sizeof(*int_pkt);
1387 }
1388 
1389 /*
1390  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1391  * by subsequent retarget in hv_irq_unmask().
1392  */
hv_compose_msi_req_get_cpu(struct cpumask * affinity)1393 static int hv_compose_msi_req_get_cpu(struct cpumask *affinity)
1394 {
1395 	return cpumask_first_and(affinity, cpu_online_mask);
1396 }
1397 
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,struct cpumask * affinity,u32 slot,u8 vector,u8 vector_count)1398 static u32 hv_compose_msi_req_v2(
1399 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1400 	u32 slot, u8 vector, u8 vector_count)
1401 {
1402 	int cpu;
1403 
1404 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1405 	int_pkt->wslot.slot = slot;
1406 	int_pkt->int_desc.vector = vector;
1407 	int_pkt->int_desc.vector_count = vector_count;
1408 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1409 	cpu = hv_compose_msi_req_get_cpu(affinity);
1410 	int_pkt->int_desc.processor_array[0] =
1411 		hv_cpu_number_to_vp_number(cpu);
1412 	int_pkt->int_desc.processor_count = 1;
1413 
1414 	return sizeof(*int_pkt);
1415 }
1416 
hv_compose_msi_req_v3(struct pci_create_interrupt3 * int_pkt,struct cpumask * affinity,u32 slot,u32 vector,u8 vector_count)1417 static u32 hv_compose_msi_req_v3(
1418 	struct pci_create_interrupt3 *int_pkt, struct cpumask *affinity,
1419 	u32 slot, u32 vector, u8 vector_count)
1420 {
1421 	int cpu;
1422 
1423 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1424 	int_pkt->wslot.slot = slot;
1425 	int_pkt->int_desc.vector = vector;
1426 	int_pkt->int_desc.reserved = 0;
1427 	int_pkt->int_desc.vector_count = vector_count;
1428 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1429 	cpu = hv_compose_msi_req_get_cpu(affinity);
1430 	int_pkt->int_desc.processor_array[0] =
1431 		hv_cpu_number_to_vp_number(cpu);
1432 	int_pkt->int_desc.processor_count = 1;
1433 
1434 	return sizeof(*int_pkt);
1435 }
1436 
1437 /**
1438  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1439  * @data:	Everything about this MSI
1440  * @msg:	Buffer that is filled in by this function
1441  *
1442  * This function unpacks the IRQ looking for target CPU set, IDT
1443  * vector and mode and sends a message to the parent partition
1444  * asking for a mapping for that tuple in this partition.  The
1445  * response supplies a data value and address to which that data
1446  * should be written to trigger that interrupt.
1447  */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1448 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1449 {
1450 	struct hv_pcibus_device *hbus;
1451 	struct vmbus_channel *channel;
1452 	struct hv_pci_dev *hpdev;
1453 	struct pci_bus *pbus;
1454 	struct pci_dev *pdev;
1455 	struct cpumask *dest;
1456 	struct compose_comp_ctxt comp;
1457 	struct tran_int_desc *int_desc;
1458 	struct msi_desc *msi_desc;
1459 	u8 vector, vector_count;
1460 	struct {
1461 		struct pci_packet pci_pkt;
1462 		union {
1463 			struct pci_create_interrupt v1;
1464 			struct pci_create_interrupt2 v2;
1465 			struct pci_create_interrupt3 v3;
1466 		} int_pkts;
1467 	} __packed ctxt;
1468 
1469 	u32 size;
1470 	int ret;
1471 
1472 	/* Reuse the previous allocation */
1473 	if (data->chip_data) {
1474 		int_desc = data->chip_data;
1475 		msg->address_hi = int_desc->address >> 32;
1476 		msg->address_lo = int_desc->address & 0xffffffff;
1477 		msg->data = int_desc->data;
1478 		return;
1479 	}
1480 
1481 	msi_desc  = irq_data_get_msi_desc(data);
1482 	pdev = msi_desc_to_pci_dev(msi_desc);
1483 	dest = irq_data_get_effective_affinity_mask(data);
1484 	pbus = pdev->bus;
1485 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1486 	channel = hbus->hdev->channel;
1487 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1488 	if (!hpdev)
1489 		goto return_null_message;
1490 
1491 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1492 	if (!int_desc)
1493 		goto drop_reference;
1494 
1495 	if (!msi_desc->msi_attrib.is_msix && msi_desc->nvec_used > 1) {
1496 		/*
1497 		 * If this is not the first MSI of Multi MSI, we already have
1498 		 * a mapping.  Can exit early.
1499 		 */
1500 		if (msi_desc->irq != data->irq) {
1501 			data->chip_data = int_desc;
1502 			int_desc->address = msi_desc->msg.address_lo |
1503 					    (u64)msi_desc->msg.address_hi << 32;
1504 			int_desc->data = msi_desc->msg.data +
1505 					 (data->irq - msi_desc->irq);
1506 			msg->address_hi = msi_desc->msg.address_hi;
1507 			msg->address_lo = msi_desc->msg.address_lo;
1508 			msg->data = int_desc->data;
1509 			put_pcichild(hpdev);
1510 			return;
1511 		}
1512 		/*
1513 		 * The vector we select here is a dummy value.  The correct
1514 		 * value gets sent to the hypervisor in unmask().  This needs
1515 		 * to be aligned with the count, and also not zero.  Multi-msi
1516 		 * is powers of 2 up to 32, so 32 will always work here.
1517 		 */
1518 		vector = 32;
1519 		vector_count = msi_desc->nvec_used;
1520 	} else {
1521 		vector = hv_msi_get_int_vector(data);
1522 		vector_count = 1;
1523 	}
1524 
1525 	memset(&ctxt, 0, sizeof(ctxt));
1526 	init_completion(&comp.comp_pkt.host_event);
1527 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1528 	ctxt.pci_pkt.compl_ctxt = &comp;
1529 
1530 	switch (hbus->protocol_version) {
1531 	case PCI_PROTOCOL_VERSION_1_1:
1532 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1533 					dest,
1534 					hpdev->desc.win_slot.slot,
1535 					vector,
1536 					vector_count);
1537 		break;
1538 
1539 	case PCI_PROTOCOL_VERSION_1_2:
1540 	case PCI_PROTOCOL_VERSION_1_3:
1541 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1542 					dest,
1543 					hpdev->desc.win_slot.slot,
1544 					vector,
1545 					vector_count);
1546 		break;
1547 
1548 	case PCI_PROTOCOL_VERSION_1_4:
1549 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1550 					dest,
1551 					hpdev->desc.win_slot.slot,
1552 					vector,
1553 					vector_count);
1554 		break;
1555 
1556 	default:
1557 		/* As we only negotiate protocol versions known to this driver,
1558 		 * this path should never hit. However, this is it not a hot
1559 		 * path so we print a message to aid future updates.
1560 		 */
1561 		dev_err(&hbus->hdev->device,
1562 			"Unexpected vPCI protocol, update driver.");
1563 		goto free_int_desc;
1564 	}
1565 
1566 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1567 			       size, (unsigned long)&ctxt.pci_pkt,
1568 			       VM_PKT_DATA_INBAND,
1569 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1570 	if (ret) {
1571 		dev_err(&hbus->hdev->device,
1572 			"Sending request for interrupt failed: 0x%x",
1573 			comp.comp_pkt.completion_status);
1574 		goto free_int_desc;
1575 	}
1576 
1577 	/*
1578 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1579 	 * in the tasklet.
1580 	 */
1581 	tasklet_disable_in_atomic(&channel->callback_event);
1582 
1583 	/*
1584 	 * Since this function is called with IRQ locks held, can't
1585 	 * do normal wait for completion; instead poll.
1586 	 */
1587 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1588 		unsigned long flags;
1589 
1590 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1591 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1592 			dev_err_once(&hbus->hdev->device,
1593 				     "the device has gone\n");
1594 			goto enable_tasklet;
1595 		}
1596 
1597 		/*
1598 		 * Make sure that the ring buffer data structure doesn't get
1599 		 * freed while we dereference the ring buffer pointer.  Test
1600 		 * for the channel's onchannel_callback being NULL within a
1601 		 * sched_lock critical section.  See also the inline comments
1602 		 * in vmbus_reset_channel_cb().
1603 		 */
1604 		spin_lock_irqsave(&channel->sched_lock, flags);
1605 		if (unlikely(channel->onchannel_callback == NULL)) {
1606 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1607 			goto enable_tasklet;
1608 		}
1609 		hv_pci_onchannelcallback(hbus);
1610 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1611 
1612 		udelay(100);
1613 	}
1614 
1615 	tasklet_enable(&channel->callback_event);
1616 
1617 	if (comp.comp_pkt.completion_status < 0) {
1618 		dev_err(&hbus->hdev->device,
1619 			"Request for interrupt failed: 0x%x",
1620 			comp.comp_pkt.completion_status);
1621 		goto free_int_desc;
1622 	}
1623 
1624 	/*
1625 	 * Record the assignment so that this can be unwound later. Using
1626 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1627 	 * is already held.
1628 	 */
1629 	*int_desc = comp.int_desc;
1630 	data->chip_data = int_desc;
1631 
1632 	/* Pass up the result. */
1633 	msg->address_hi = comp.int_desc.address >> 32;
1634 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1635 	msg->data = comp.int_desc.data;
1636 
1637 	put_pcichild(hpdev);
1638 	return;
1639 
1640 enable_tasklet:
1641 	tasklet_enable(&channel->callback_event);
1642 free_int_desc:
1643 	kfree(int_desc);
1644 drop_reference:
1645 	put_pcichild(hpdev);
1646 return_null_message:
1647 	msg->address_hi = 0;
1648 	msg->address_lo = 0;
1649 	msg->data = 0;
1650 }
1651 
1652 /* HW Interrupt Chip Descriptor */
1653 static struct irq_chip hv_msi_irq_chip = {
1654 	.name			= "Hyper-V PCIe MSI",
1655 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1656 	.irq_set_affinity	= hv_set_affinity,
1657 	.irq_ack		= irq_chip_ack_parent,
1658 	.irq_mask		= hv_irq_mask,
1659 	.irq_unmask		= hv_irq_unmask,
1660 };
1661 
1662 static struct msi_domain_ops hv_msi_ops = {
1663 	.msi_prepare	= hv_msi_prepare,
1664 	.msi_free	= hv_msi_free,
1665 };
1666 
1667 /**
1668  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1669  * @hbus:	The root PCI bus
1670  *
1671  * This function creates an IRQ domain which will be used for
1672  * interrupts from devices that have been passed through.  These
1673  * devices only support MSI and MSI-X, not line-based interrupts
1674  * or simulations of line-based interrupts through PCIe's
1675  * fabric-layer messages.  Because interrupts are remapped, we
1676  * can support multi-message MSI here.
1677  *
1678  * Return: '0' on success and error value on failure
1679  */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)1680 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1681 {
1682 	hbus->msi_info.chip = &hv_msi_irq_chip;
1683 	hbus->msi_info.ops = &hv_msi_ops;
1684 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1685 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1686 		MSI_FLAG_PCI_MSIX);
1687 	hbus->msi_info.handler = handle_edge_irq;
1688 	hbus->msi_info.handler_name = "edge";
1689 	hbus->msi_info.data = hbus;
1690 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
1691 						     &hbus->msi_info,
1692 						     x86_vector_domain);
1693 	if (!hbus->irq_domain) {
1694 		dev_err(&hbus->hdev->device,
1695 			"Failed to build an MSI IRQ domain\n");
1696 		return -ENODEV;
1697 	}
1698 
1699 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * get_bar_size() - Get the address space consumed by a BAR
1706  * @bar_val:	Value that a BAR returned after -1 was written
1707  *              to it.
1708  *
1709  * This function returns the size of the BAR, rounded up to 1
1710  * page.  It has to be rounded up because the hypervisor's page
1711  * table entry that maps the BAR into the VM can't specify an
1712  * offset within a page.  The invariant is that the hypervisor
1713  * must place any BARs of smaller than page length at the
1714  * beginning of a page.
1715  *
1716  * Return:	Size in bytes of the consumed MMIO space.
1717  */
get_bar_size(u64 bar_val)1718 static u64 get_bar_size(u64 bar_val)
1719 {
1720 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1721 			PAGE_SIZE);
1722 }
1723 
1724 /**
1725  * survey_child_resources() - Total all MMIO requirements
1726  * @hbus:	Root PCI bus, as understood by this driver
1727  */
survey_child_resources(struct hv_pcibus_device * hbus)1728 static void survey_child_resources(struct hv_pcibus_device *hbus)
1729 {
1730 	struct hv_pci_dev *hpdev;
1731 	resource_size_t bar_size = 0;
1732 	unsigned long flags;
1733 	struct completion *event;
1734 	u64 bar_val;
1735 	int i;
1736 
1737 	/* If nobody is waiting on the answer, don't compute it. */
1738 	event = xchg(&hbus->survey_event, NULL);
1739 	if (!event)
1740 		return;
1741 
1742 	/* If the answer has already been computed, go with it. */
1743 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1744 		complete(event);
1745 		return;
1746 	}
1747 
1748 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1749 
1750 	/*
1751 	 * Due to an interesting quirk of the PCI spec, all memory regions
1752 	 * for a child device are a power of 2 in size and aligned in memory,
1753 	 * so it's sufficient to just add them up without tracking alignment.
1754 	 */
1755 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1756 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1757 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1758 				dev_err(&hbus->hdev->device,
1759 					"There's an I/O BAR in this list!\n");
1760 
1761 			if (hpdev->probed_bar[i] != 0) {
1762 				/*
1763 				 * A probed BAR has all the upper bits set that
1764 				 * can be changed.
1765 				 */
1766 
1767 				bar_val = hpdev->probed_bar[i];
1768 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1769 					bar_val |=
1770 					((u64)hpdev->probed_bar[++i] << 32);
1771 				else
1772 					bar_val |= 0xffffffff00000000ULL;
1773 
1774 				bar_size = get_bar_size(bar_val);
1775 
1776 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1777 					hbus->high_mmio_space += bar_size;
1778 				else
1779 					hbus->low_mmio_space += bar_size;
1780 			}
1781 		}
1782 	}
1783 
1784 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1785 	complete(event);
1786 }
1787 
1788 /**
1789  * prepopulate_bars() - Fill in BARs with defaults
1790  * @hbus:	Root PCI bus, as understood by this driver
1791  *
1792  * The core PCI driver code seems much, much happier if the BARs
1793  * for a device have values upon first scan. So fill them in.
1794  * The algorithm below works down from large sizes to small,
1795  * attempting to pack the assignments optimally. The assumption,
1796  * enforced in other parts of the code, is that the beginning of
1797  * the memory-mapped I/O space will be aligned on the largest
1798  * BAR size.
1799  */
prepopulate_bars(struct hv_pcibus_device * hbus)1800 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1801 {
1802 	resource_size_t high_size = 0;
1803 	resource_size_t low_size = 0;
1804 	resource_size_t high_base = 0;
1805 	resource_size_t low_base = 0;
1806 	resource_size_t bar_size;
1807 	struct hv_pci_dev *hpdev;
1808 	unsigned long flags;
1809 	u64 bar_val;
1810 	u32 command;
1811 	bool high;
1812 	int i;
1813 
1814 	if (hbus->low_mmio_space) {
1815 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1816 		low_base = hbus->low_mmio_res->start;
1817 	}
1818 
1819 	if (hbus->high_mmio_space) {
1820 		high_size = 1ULL <<
1821 			(63 - __builtin_clzll(hbus->high_mmio_space));
1822 		high_base = hbus->high_mmio_res->start;
1823 	}
1824 
1825 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1826 
1827 	/*
1828 	 * Clear the memory enable bit, in case it's already set. This occurs
1829 	 * in the suspend path of hibernation, where the device is suspended,
1830 	 * resumed and suspended again: see hibernation_snapshot() and
1831 	 * hibernation_platform_enter().
1832 	 *
1833 	 * If the memory enable bit is already set, Hyper-V silently ignores
1834 	 * the below BAR updates, and the related PCI device driver can not
1835 	 * work, because reading from the device register(s) always returns
1836 	 * 0xFFFFFFFF.
1837 	 */
1838 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1839 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1840 		command &= ~PCI_COMMAND_MEMORY;
1841 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1842 	}
1843 
1844 	/* Pick addresses for the BARs. */
1845 	do {
1846 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1847 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1848 				bar_val = hpdev->probed_bar[i];
1849 				if (bar_val == 0)
1850 					continue;
1851 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1852 				if (high) {
1853 					bar_val |=
1854 						((u64)hpdev->probed_bar[i + 1]
1855 						 << 32);
1856 				} else {
1857 					bar_val |= 0xffffffffULL << 32;
1858 				}
1859 				bar_size = get_bar_size(bar_val);
1860 				if (high) {
1861 					if (high_size != bar_size) {
1862 						i++;
1863 						continue;
1864 					}
1865 					_hv_pcifront_write_config(hpdev,
1866 						PCI_BASE_ADDRESS_0 + (4 * i),
1867 						4,
1868 						(u32)(high_base & 0xffffff00));
1869 					i++;
1870 					_hv_pcifront_write_config(hpdev,
1871 						PCI_BASE_ADDRESS_0 + (4 * i),
1872 						4, (u32)(high_base >> 32));
1873 					high_base += bar_size;
1874 				} else {
1875 					if (low_size != bar_size)
1876 						continue;
1877 					_hv_pcifront_write_config(hpdev,
1878 						PCI_BASE_ADDRESS_0 + (4 * i),
1879 						4,
1880 						(u32)(low_base & 0xffffff00));
1881 					low_base += bar_size;
1882 				}
1883 			}
1884 			if (high_size <= 1 && low_size <= 1) {
1885 				/* Set the memory enable bit. */
1886 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1887 							 &command);
1888 				command |= PCI_COMMAND_MEMORY;
1889 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1890 							  command);
1891 				break;
1892 			}
1893 		}
1894 
1895 		high_size >>= 1;
1896 		low_size >>= 1;
1897 	}  while (high_size || low_size);
1898 
1899 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1900 }
1901 
1902 /*
1903  * Assign entries in sysfs pci slot directory.
1904  *
1905  * Note that this function does not need to lock the children list
1906  * because it is called from pci_devices_present_work which
1907  * is serialized with hv_eject_device_work because they are on the
1908  * same ordered workqueue. Therefore hbus->children list will not change
1909  * even when pci_create_slot sleeps.
1910  */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)1911 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1912 {
1913 	struct hv_pci_dev *hpdev;
1914 	char name[SLOT_NAME_SIZE];
1915 	int slot_nr;
1916 
1917 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1918 		if (hpdev->pci_slot)
1919 			continue;
1920 
1921 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1922 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1923 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
1924 					  name, NULL);
1925 		if (IS_ERR(hpdev->pci_slot)) {
1926 			pr_warn("pci_create slot %s failed\n", name);
1927 			hpdev->pci_slot = NULL;
1928 		}
1929 	}
1930 }
1931 
1932 /*
1933  * Remove entries in sysfs pci slot directory.
1934  */
hv_pci_remove_slots(struct hv_pcibus_device * hbus)1935 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1936 {
1937 	struct hv_pci_dev *hpdev;
1938 
1939 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1940 		if (!hpdev->pci_slot)
1941 			continue;
1942 		pci_destroy_slot(hpdev->pci_slot);
1943 		hpdev->pci_slot = NULL;
1944 	}
1945 }
1946 
1947 /*
1948  * Set NUMA node for the devices on the bus
1949  */
hv_pci_assign_numa_node(struct hv_pcibus_device * hbus)1950 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1951 {
1952 	struct pci_dev *dev;
1953 	struct pci_bus *bus = hbus->bridge->bus;
1954 	struct hv_pci_dev *hv_dev;
1955 
1956 	list_for_each_entry(dev, &bus->devices, bus_list) {
1957 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1958 		if (!hv_dev)
1959 			continue;
1960 
1961 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
1962 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
1963 			/*
1964 			 * The kernel may boot with some NUMA nodes offline
1965 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
1966 			 * "numa=off". In those cases, adjust the host provided
1967 			 * NUMA node to a valid NUMA node used by the kernel.
1968 			 */
1969 			set_dev_node(&dev->dev,
1970 				     numa_map_to_online_node(
1971 					     hv_dev->desc.virtual_numa_node));
1972 
1973 		put_pcichild(hv_dev);
1974 	}
1975 }
1976 
1977 /**
1978  * create_root_hv_pci_bus() - Expose a new root PCI bus
1979  * @hbus:	Root PCI bus, as understood by this driver
1980  *
1981  * Return: 0 on success, -errno on failure
1982  */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)1983 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1984 {
1985 	int error;
1986 	struct pci_host_bridge *bridge = hbus->bridge;
1987 
1988 	bridge->dev.parent = &hbus->hdev->device;
1989 	bridge->sysdata = &hbus->sysdata;
1990 	bridge->ops = &hv_pcifront_ops;
1991 
1992 	error = pci_scan_root_bus_bridge(bridge);
1993 	if (error)
1994 		return error;
1995 
1996 	pci_lock_rescan_remove();
1997 	hv_pci_assign_numa_node(hbus);
1998 	pci_bus_assign_resources(bridge->bus);
1999 	hv_pci_assign_slots(hbus);
2000 	pci_bus_add_devices(bridge->bus);
2001 	pci_unlock_rescan_remove();
2002 	hbus->state = hv_pcibus_installed;
2003 	return 0;
2004 }
2005 
2006 struct q_res_req_compl {
2007 	struct completion host_event;
2008 	struct hv_pci_dev *hpdev;
2009 };
2010 
2011 /**
2012  * q_resource_requirements() - Query Resource Requirements
2013  * @context:		The completion context.
2014  * @resp:		The response that came from the host.
2015  * @resp_packet_size:	The size in bytes of resp.
2016  *
2017  * This function is invoked on completion of a Query Resource
2018  * Requirements packet.
2019  */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)2020 static void q_resource_requirements(void *context, struct pci_response *resp,
2021 				    int resp_packet_size)
2022 {
2023 	struct q_res_req_compl *completion = context;
2024 	struct pci_q_res_req_response *q_res_req =
2025 		(struct pci_q_res_req_response *)resp;
2026 	int i;
2027 
2028 	if (resp->status < 0) {
2029 		dev_err(&completion->hpdev->hbus->hdev->device,
2030 			"query resource requirements failed: %x\n",
2031 			resp->status);
2032 	} else {
2033 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2034 			completion->hpdev->probed_bar[i] =
2035 				q_res_req->probed_bar[i];
2036 		}
2037 	}
2038 
2039 	complete(&completion->host_event);
2040 }
2041 
2042 /**
2043  * new_pcichild_device() - Create a new child device
2044  * @hbus:	The internal struct tracking this root PCI bus.
2045  * @desc:	The information supplied so far from the host
2046  *              about the device.
2047  *
2048  * This function creates the tracking structure for a new child
2049  * device and kicks off the process of figuring out what it is.
2050  *
2051  * Return: Pointer to the new tracking struct
2052  */
new_pcichild_device(struct hv_pcibus_device * hbus,struct hv_pcidev_description * desc)2053 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2054 		struct hv_pcidev_description *desc)
2055 {
2056 	struct hv_pci_dev *hpdev;
2057 	struct pci_child_message *res_req;
2058 	struct q_res_req_compl comp_pkt;
2059 	struct {
2060 		struct pci_packet init_packet;
2061 		u8 buffer[sizeof(struct pci_child_message)];
2062 	} pkt;
2063 	unsigned long flags;
2064 	int ret;
2065 
2066 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2067 	if (!hpdev)
2068 		return NULL;
2069 
2070 	hpdev->hbus = hbus;
2071 
2072 	memset(&pkt, 0, sizeof(pkt));
2073 	init_completion(&comp_pkt.host_event);
2074 	comp_pkt.hpdev = hpdev;
2075 	pkt.init_packet.compl_ctxt = &comp_pkt;
2076 	pkt.init_packet.completion_func = q_resource_requirements;
2077 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2078 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2079 	res_req->wslot.slot = desc->win_slot.slot;
2080 
2081 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2082 			       sizeof(struct pci_child_message),
2083 			       (unsigned long)&pkt.init_packet,
2084 			       VM_PKT_DATA_INBAND,
2085 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2086 	if (ret)
2087 		goto error;
2088 
2089 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2090 		goto error;
2091 
2092 	hpdev->desc = *desc;
2093 	refcount_set(&hpdev->refs, 1);
2094 	get_pcichild(hpdev);
2095 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2096 
2097 	list_add_tail(&hpdev->list_entry, &hbus->children);
2098 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2099 	return hpdev;
2100 
2101 error:
2102 	kfree(hpdev);
2103 	return NULL;
2104 }
2105 
2106 /**
2107  * get_pcichild_wslot() - Find device from slot
2108  * @hbus:	Root PCI bus, as understood by this driver
2109  * @wslot:	Location on the bus
2110  *
2111  * This function looks up a PCI device and returns the internal
2112  * representation of it.  It acquires a reference on it, so that
2113  * the device won't be deleted while somebody is using it.  The
2114  * caller is responsible for calling put_pcichild() to release
2115  * this reference.
2116  *
2117  * Return:	Internal representation of a PCI device
2118  */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)2119 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2120 					     u32 wslot)
2121 {
2122 	unsigned long flags;
2123 	struct hv_pci_dev *iter, *hpdev = NULL;
2124 
2125 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2126 	list_for_each_entry(iter, &hbus->children, list_entry) {
2127 		if (iter->desc.win_slot.slot == wslot) {
2128 			hpdev = iter;
2129 			get_pcichild(hpdev);
2130 			break;
2131 		}
2132 	}
2133 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2134 
2135 	return hpdev;
2136 }
2137 
2138 /**
2139  * pci_devices_present_work() - Handle new list of child devices
2140  * @work:	Work struct embedded in struct hv_dr_work
2141  *
2142  * "Bus Relations" is the Windows term for "children of this
2143  * bus."  The terminology is preserved here for people trying to
2144  * debug the interaction between Hyper-V and Linux.  This
2145  * function is called when the parent partition reports a list
2146  * of functions that should be observed under this PCI Express
2147  * port (bus).
2148  *
2149  * This function updates the list, and must tolerate being
2150  * called multiple times with the same information.  The typical
2151  * number of child devices is one, with very atypical cases
2152  * involving three or four, so the algorithms used here can be
2153  * simple and inefficient.
2154  *
2155  * It must also treat the omission of a previously observed device as
2156  * notification that the device no longer exists.
2157  *
2158  * Note that this function is serialized with hv_eject_device_work(),
2159  * because both are pushed to the ordered workqueue hbus->wq.
2160  */
pci_devices_present_work(struct work_struct * work)2161 static void pci_devices_present_work(struct work_struct *work)
2162 {
2163 	u32 child_no;
2164 	bool found;
2165 	struct hv_pcidev_description *new_desc;
2166 	struct hv_pci_dev *hpdev;
2167 	struct hv_pcibus_device *hbus;
2168 	struct list_head removed;
2169 	struct hv_dr_work *dr_wrk;
2170 	struct hv_dr_state *dr = NULL;
2171 	unsigned long flags;
2172 
2173 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2174 	hbus = dr_wrk->bus;
2175 	kfree(dr_wrk);
2176 
2177 	INIT_LIST_HEAD(&removed);
2178 
2179 	/* Pull this off the queue and process it if it was the last one. */
2180 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2181 	while (!list_empty(&hbus->dr_list)) {
2182 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2183 				      list_entry);
2184 		list_del(&dr->list_entry);
2185 
2186 		/* Throw this away if the list still has stuff in it. */
2187 		if (!list_empty(&hbus->dr_list)) {
2188 			kfree(dr);
2189 			continue;
2190 		}
2191 	}
2192 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2193 
2194 	if (!dr)
2195 		return;
2196 
2197 	mutex_lock(&hbus->state_lock);
2198 
2199 	/* First, mark all existing children as reported missing. */
2200 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2201 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2202 		hpdev->reported_missing = true;
2203 	}
2204 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2205 
2206 	/* Next, add back any reported devices. */
2207 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2208 		found = false;
2209 		new_desc = &dr->func[child_no];
2210 
2211 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2212 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2213 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2214 			    (hpdev->desc.v_id == new_desc->v_id) &&
2215 			    (hpdev->desc.d_id == new_desc->d_id) &&
2216 			    (hpdev->desc.ser == new_desc->ser)) {
2217 				hpdev->reported_missing = false;
2218 				found = true;
2219 			}
2220 		}
2221 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2222 
2223 		if (!found) {
2224 			hpdev = new_pcichild_device(hbus, new_desc);
2225 			if (!hpdev)
2226 				dev_err(&hbus->hdev->device,
2227 					"couldn't record a child device.\n");
2228 		}
2229 	}
2230 
2231 	/* Move missing children to a list on the stack. */
2232 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2233 	do {
2234 		found = false;
2235 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2236 			if (hpdev->reported_missing) {
2237 				found = true;
2238 				put_pcichild(hpdev);
2239 				list_move_tail(&hpdev->list_entry, &removed);
2240 				break;
2241 			}
2242 		}
2243 	} while (found);
2244 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2245 
2246 	/* Delete everything that should no longer exist. */
2247 	while (!list_empty(&removed)) {
2248 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2249 					 list_entry);
2250 		list_del(&hpdev->list_entry);
2251 
2252 		if (hpdev->pci_slot)
2253 			pci_destroy_slot(hpdev->pci_slot);
2254 
2255 		put_pcichild(hpdev);
2256 	}
2257 
2258 	switch (hbus->state) {
2259 	case hv_pcibus_installed:
2260 		/*
2261 		 * Tell the core to rescan bus
2262 		 * because there may have been changes.
2263 		 */
2264 		pci_lock_rescan_remove();
2265 		pci_scan_child_bus(hbus->bridge->bus);
2266 		hv_pci_assign_numa_node(hbus);
2267 		hv_pci_assign_slots(hbus);
2268 		pci_unlock_rescan_remove();
2269 		break;
2270 
2271 	case hv_pcibus_init:
2272 	case hv_pcibus_probed:
2273 		survey_child_resources(hbus);
2274 		break;
2275 
2276 	default:
2277 		break;
2278 	}
2279 
2280 	mutex_unlock(&hbus->state_lock);
2281 
2282 	kfree(dr);
2283 }
2284 
2285 /**
2286  * hv_pci_start_relations_work() - Queue work to start device discovery
2287  * @hbus:	Root PCI bus, as understood by this driver
2288  * @dr:		The list of children returned from host
2289  *
2290  * Return:  0 on success, -errno on failure
2291  */
hv_pci_start_relations_work(struct hv_pcibus_device * hbus,struct hv_dr_state * dr)2292 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2293 				       struct hv_dr_state *dr)
2294 {
2295 	struct hv_dr_work *dr_wrk;
2296 	unsigned long flags;
2297 	bool pending_dr;
2298 
2299 	if (hbus->state == hv_pcibus_removing) {
2300 		dev_info(&hbus->hdev->device,
2301 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2302 		return -ENOENT;
2303 	}
2304 
2305 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2306 	if (!dr_wrk)
2307 		return -ENOMEM;
2308 
2309 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2310 	dr_wrk->bus = hbus;
2311 
2312 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2313 	/*
2314 	 * If pending_dr is true, we have already queued a work,
2315 	 * which will see the new dr. Otherwise, we need to
2316 	 * queue a new work.
2317 	 */
2318 	pending_dr = !list_empty(&hbus->dr_list);
2319 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2320 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2321 
2322 	if (pending_dr)
2323 		kfree(dr_wrk);
2324 	else
2325 		queue_work(hbus->wq, &dr_wrk->wrk);
2326 
2327 	return 0;
2328 }
2329 
2330 /**
2331  * hv_pci_devices_present() - Handle list of new children
2332  * @hbus:      Root PCI bus, as understood by this driver
2333  * @relations: Packet from host listing children
2334  *
2335  * Process a new list of devices on the bus. The list of devices is
2336  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2337  * whenever a new list of devices for this bus appears.
2338  */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)2339 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2340 				   struct pci_bus_relations *relations)
2341 {
2342 	struct hv_dr_state *dr;
2343 	int i;
2344 
2345 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2346 		     GFP_NOWAIT);
2347 	if (!dr)
2348 		return;
2349 
2350 	dr->device_count = relations->device_count;
2351 	for (i = 0; i < dr->device_count; i++) {
2352 		dr->func[i].v_id = relations->func[i].v_id;
2353 		dr->func[i].d_id = relations->func[i].d_id;
2354 		dr->func[i].rev = relations->func[i].rev;
2355 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2356 		dr->func[i].subclass = relations->func[i].subclass;
2357 		dr->func[i].base_class = relations->func[i].base_class;
2358 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2359 		dr->func[i].win_slot = relations->func[i].win_slot;
2360 		dr->func[i].ser = relations->func[i].ser;
2361 	}
2362 
2363 	if (hv_pci_start_relations_work(hbus, dr))
2364 		kfree(dr);
2365 }
2366 
2367 /**
2368  * hv_pci_devices_present2() - Handle list of new children
2369  * @hbus:	Root PCI bus, as understood by this driver
2370  * @relations:	Packet from host listing children
2371  *
2372  * This function is the v2 version of hv_pci_devices_present()
2373  */
hv_pci_devices_present2(struct hv_pcibus_device * hbus,struct pci_bus_relations2 * relations)2374 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2375 				    struct pci_bus_relations2 *relations)
2376 {
2377 	struct hv_dr_state *dr;
2378 	int i;
2379 
2380 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2381 		     GFP_NOWAIT);
2382 	if (!dr)
2383 		return;
2384 
2385 	dr->device_count = relations->device_count;
2386 	for (i = 0; i < dr->device_count; i++) {
2387 		dr->func[i].v_id = relations->func[i].v_id;
2388 		dr->func[i].d_id = relations->func[i].d_id;
2389 		dr->func[i].rev = relations->func[i].rev;
2390 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2391 		dr->func[i].subclass = relations->func[i].subclass;
2392 		dr->func[i].base_class = relations->func[i].base_class;
2393 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2394 		dr->func[i].win_slot = relations->func[i].win_slot;
2395 		dr->func[i].ser = relations->func[i].ser;
2396 		dr->func[i].flags = relations->func[i].flags;
2397 		dr->func[i].virtual_numa_node =
2398 			relations->func[i].virtual_numa_node;
2399 	}
2400 
2401 	if (hv_pci_start_relations_work(hbus, dr))
2402 		kfree(dr);
2403 }
2404 
2405 /**
2406  * hv_eject_device_work() - Asynchronously handles ejection
2407  * @work:	Work struct embedded in internal device struct
2408  *
2409  * This function handles ejecting a device.  Windows will
2410  * attempt to gracefully eject a device, waiting 60 seconds to
2411  * hear back from the guest OS that this completed successfully.
2412  * If this timer expires, the device will be forcibly removed.
2413  */
hv_eject_device_work(struct work_struct * work)2414 static void hv_eject_device_work(struct work_struct *work)
2415 {
2416 	struct pci_eject_response *ejct_pkt;
2417 	struct hv_pcibus_device *hbus;
2418 	struct hv_pci_dev *hpdev;
2419 	struct pci_dev *pdev;
2420 	unsigned long flags;
2421 	int wslot;
2422 	struct {
2423 		struct pci_packet pkt;
2424 		u8 buffer[sizeof(struct pci_eject_response)];
2425 	} ctxt;
2426 
2427 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2428 	hbus = hpdev->hbus;
2429 
2430 	mutex_lock(&hbus->state_lock);
2431 
2432 	/*
2433 	 * Ejection can come before or after the PCI bus has been set up, so
2434 	 * attempt to find it and tear down the bus state, if it exists.  This
2435 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2436 	 * because hbus->bridge->bus may not exist yet.
2437 	 */
2438 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2439 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2440 	if (pdev) {
2441 		pci_lock_rescan_remove();
2442 		pci_stop_and_remove_bus_device(pdev);
2443 		pci_dev_put(pdev);
2444 		pci_unlock_rescan_remove();
2445 	}
2446 
2447 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2448 	list_del(&hpdev->list_entry);
2449 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2450 
2451 	if (hpdev->pci_slot)
2452 		pci_destroy_slot(hpdev->pci_slot);
2453 
2454 	memset(&ctxt, 0, sizeof(ctxt));
2455 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2456 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2457 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2458 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2459 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2460 			 VM_PKT_DATA_INBAND, 0);
2461 
2462 	/* For the get_pcichild() in hv_pci_eject_device() */
2463 	put_pcichild(hpdev);
2464 	/* For the two refs got in new_pcichild_device() */
2465 	put_pcichild(hpdev);
2466 	put_pcichild(hpdev);
2467 	/* hpdev has been freed. Do not use it any more. */
2468 
2469 	mutex_unlock(&hbus->state_lock);
2470 }
2471 
2472 /**
2473  * hv_pci_eject_device() - Handles device ejection
2474  * @hpdev:	Internal device tracking struct
2475  *
2476  * This function is invoked when an ejection packet arrives.  It
2477  * just schedules work so that we don't re-enter the packet
2478  * delivery code handling the ejection.
2479  */
hv_pci_eject_device(struct hv_pci_dev * hpdev)2480 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2481 {
2482 	struct hv_pcibus_device *hbus = hpdev->hbus;
2483 	struct hv_device *hdev = hbus->hdev;
2484 
2485 	if (hbus->state == hv_pcibus_removing) {
2486 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2487 		return;
2488 	}
2489 
2490 	get_pcichild(hpdev);
2491 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2492 	queue_work(hbus->wq, &hpdev->wrk);
2493 }
2494 
2495 /**
2496  * hv_pci_onchannelcallback() - Handles incoming packets
2497  * @context:	Internal bus tracking struct
2498  *
2499  * This function is invoked whenever the host sends a packet to
2500  * this channel (which is private to this root PCI bus).
2501  */
hv_pci_onchannelcallback(void * context)2502 static void hv_pci_onchannelcallback(void *context)
2503 {
2504 	const int packet_size = 0x100;
2505 	int ret;
2506 	struct hv_pcibus_device *hbus = context;
2507 	u32 bytes_recvd;
2508 	u64 req_id;
2509 	struct vmpacket_descriptor *desc;
2510 	unsigned char *buffer;
2511 	int bufferlen = packet_size;
2512 	struct pci_packet *comp_packet;
2513 	struct pci_response *response;
2514 	struct pci_incoming_message *new_message;
2515 	struct pci_bus_relations *bus_rel;
2516 	struct pci_bus_relations2 *bus_rel2;
2517 	struct pci_dev_inval_block *inval;
2518 	struct pci_dev_incoming *dev_message;
2519 	struct hv_pci_dev *hpdev;
2520 
2521 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2522 	if (!buffer)
2523 		return;
2524 
2525 	while (1) {
2526 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2527 					   bufferlen, &bytes_recvd, &req_id);
2528 
2529 		if (ret == -ENOBUFS) {
2530 			kfree(buffer);
2531 			/* Handle large packet */
2532 			bufferlen = bytes_recvd;
2533 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2534 			if (!buffer)
2535 				return;
2536 			continue;
2537 		}
2538 
2539 		/* Zero length indicates there are no more packets. */
2540 		if (ret || !bytes_recvd)
2541 			break;
2542 
2543 		/*
2544 		 * All incoming packets must be at least as large as a
2545 		 * response.
2546 		 */
2547 		if (bytes_recvd <= sizeof(struct pci_response))
2548 			continue;
2549 		desc = (struct vmpacket_descriptor *)buffer;
2550 
2551 		switch (desc->type) {
2552 		case VM_PKT_COMP:
2553 
2554 			/*
2555 			 * The host is trusted, and thus it's safe to interpret
2556 			 * this transaction ID as a pointer.
2557 			 */
2558 			comp_packet = (struct pci_packet *)req_id;
2559 			response = (struct pci_response *)buffer;
2560 			comp_packet->completion_func(comp_packet->compl_ctxt,
2561 						     response,
2562 						     bytes_recvd);
2563 			break;
2564 
2565 		case VM_PKT_DATA_INBAND:
2566 
2567 			new_message = (struct pci_incoming_message *)buffer;
2568 			switch (new_message->message_type.type) {
2569 			case PCI_BUS_RELATIONS:
2570 
2571 				bus_rel = (struct pci_bus_relations *)buffer;
2572 				if (bytes_recvd <
2573 					struct_size(bus_rel, func,
2574 						    bus_rel->device_count)) {
2575 					dev_err(&hbus->hdev->device,
2576 						"bus relations too small\n");
2577 					break;
2578 				}
2579 
2580 				hv_pci_devices_present(hbus, bus_rel);
2581 				break;
2582 
2583 			case PCI_BUS_RELATIONS2:
2584 
2585 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2586 				if (bytes_recvd <
2587 					struct_size(bus_rel2, func,
2588 						    bus_rel2->device_count)) {
2589 					dev_err(&hbus->hdev->device,
2590 						"bus relations v2 too small\n");
2591 					break;
2592 				}
2593 
2594 				hv_pci_devices_present2(hbus, bus_rel2);
2595 				break;
2596 
2597 			case PCI_EJECT:
2598 
2599 				dev_message = (struct pci_dev_incoming *)buffer;
2600 				hpdev = get_pcichild_wslot(hbus,
2601 						      dev_message->wslot.slot);
2602 				if (hpdev) {
2603 					hv_pci_eject_device(hpdev);
2604 					put_pcichild(hpdev);
2605 				}
2606 				break;
2607 
2608 			case PCI_INVALIDATE_BLOCK:
2609 
2610 				inval = (struct pci_dev_inval_block *)buffer;
2611 				hpdev = get_pcichild_wslot(hbus,
2612 							   inval->wslot.slot);
2613 				if (hpdev) {
2614 					if (hpdev->block_invalidate) {
2615 						hpdev->block_invalidate(
2616 						    hpdev->invalidate_context,
2617 						    inval->block_mask);
2618 					}
2619 					put_pcichild(hpdev);
2620 				}
2621 				break;
2622 
2623 			default:
2624 				dev_warn(&hbus->hdev->device,
2625 					"Unimplemented protocol message %x\n",
2626 					new_message->message_type.type);
2627 				break;
2628 			}
2629 			break;
2630 
2631 		default:
2632 			dev_err(&hbus->hdev->device,
2633 				"unhandled packet type %d, tid %llx len %d\n",
2634 				desc->type, req_id, bytes_recvd);
2635 			break;
2636 		}
2637 	}
2638 
2639 	kfree(buffer);
2640 }
2641 
2642 /**
2643  * hv_pci_protocol_negotiation() - Set up protocol
2644  * @hdev:		VMBus's tracking struct for this root PCI bus.
2645  * @version:		Array of supported channel protocol versions in
2646  *			the order of probing - highest go first.
2647  * @num_version:	Number of elements in the version array.
2648  *
2649  * This driver is intended to support running on Windows 10
2650  * (server) and later versions. It will not run on earlier
2651  * versions, as they assume that many of the operations which
2652  * Linux needs accomplished with a spinlock held were done via
2653  * asynchronous messaging via VMBus.  Windows 10 increases the
2654  * surface area of PCI emulation so that these actions can take
2655  * place by suspending a virtual processor for their duration.
2656  *
2657  * This function negotiates the channel protocol version,
2658  * failing if the host doesn't support the necessary protocol
2659  * level.
2660  */
hv_pci_protocol_negotiation(struct hv_device * hdev,enum pci_protocol_version_t version[],int num_version)2661 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2662 				       enum pci_protocol_version_t version[],
2663 				       int num_version)
2664 {
2665 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2666 	struct pci_version_request *version_req;
2667 	struct hv_pci_compl comp_pkt;
2668 	struct pci_packet *pkt;
2669 	int ret;
2670 	int i;
2671 
2672 	/*
2673 	 * Initiate the handshake with the host and negotiate
2674 	 * a version that the host can support. We start with the
2675 	 * highest version number and go down if the host cannot
2676 	 * support it.
2677 	 */
2678 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2679 	if (!pkt)
2680 		return -ENOMEM;
2681 
2682 	init_completion(&comp_pkt.host_event);
2683 	pkt->completion_func = hv_pci_generic_compl;
2684 	pkt->compl_ctxt = &comp_pkt;
2685 	version_req = (struct pci_version_request *)&pkt->message;
2686 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2687 
2688 	for (i = 0; i < num_version; i++) {
2689 		version_req->protocol_version = version[i];
2690 		ret = vmbus_sendpacket(hdev->channel, version_req,
2691 				sizeof(struct pci_version_request),
2692 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2693 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2694 		if (!ret)
2695 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2696 
2697 		if (ret) {
2698 			dev_err(&hdev->device,
2699 				"PCI Pass-through VSP failed to request version: %d",
2700 				ret);
2701 			goto exit;
2702 		}
2703 
2704 		if (comp_pkt.completion_status >= 0) {
2705 			hbus->protocol_version = version[i];
2706 			dev_info(&hdev->device,
2707 				"PCI VMBus probing: Using version %#x\n",
2708 				hbus->protocol_version);
2709 			goto exit;
2710 		}
2711 
2712 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2713 			dev_err(&hdev->device,
2714 				"PCI Pass-through VSP failed version request: %#x",
2715 				comp_pkt.completion_status);
2716 			ret = -EPROTO;
2717 			goto exit;
2718 		}
2719 
2720 		reinit_completion(&comp_pkt.host_event);
2721 	}
2722 
2723 	dev_err(&hdev->device,
2724 		"PCI pass-through VSP failed to find supported version");
2725 	ret = -EPROTO;
2726 
2727 exit:
2728 	kfree(pkt);
2729 	return ret;
2730 }
2731 
2732 /**
2733  * hv_pci_free_bridge_windows() - Release memory regions for the
2734  * bus
2735  * @hbus:	Root PCI bus, as understood by this driver
2736  */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)2737 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2738 {
2739 	/*
2740 	 * Set the resources back to the way they looked when they
2741 	 * were allocated by setting IORESOURCE_BUSY again.
2742 	 */
2743 
2744 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2745 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2746 		vmbus_free_mmio(hbus->low_mmio_res->start,
2747 				resource_size(hbus->low_mmio_res));
2748 	}
2749 
2750 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2751 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2752 		vmbus_free_mmio(hbus->high_mmio_res->start,
2753 				resource_size(hbus->high_mmio_res));
2754 	}
2755 }
2756 
2757 /**
2758  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2759  * for the bus
2760  * @hbus:	Root PCI bus, as understood by this driver
2761  *
2762  * This function calls vmbus_allocate_mmio(), which is itself a
2763  * bit of a compromise.  Ideally, we might change the pnp layer
2764  * in the kernel such that it comprehends either PCI devices
2765  * which are "grandchildren of ACPI," with some intermediate bus
2766  * node (in this case, VMBus) or change it such that it
2767  * understands VMBus.  The pnp layer, however, has been declared
2768  * deprecated, and not subject to change.
2769  *
2770  * The workaround, implemented here, is to ask VMBus to allocate
2771  * MMIO space for this bus.  VMBus itself knows which ranges are
2772  * appropriate by looking at its own ACPI objects.  Then, after
2773  * these ranges are claimed, they're modified to look like they
2774  * would have looked if the ACPI and pnp code had allocated
2775  * bridge windows.  These descriptors have to exist in this form
2776  * in order to satisfy the code which will get invoked when the
2777  * endpoint PCI function driver calls request_mem_region() or
2778  * request_mem_region_exclusive().
2779  *
2780  * Return: 0 on success, -errno on failure
2781  */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)2782 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2783 {
2784 	resource_size_t align;
2785 	int ret;
2786 
2787 	if (hbus->low_mmio_space) {
2788 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2789 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2790 					  (u64)(u32)0xffffffff,
2791 					  hbus->low_mmio_space,
2792 					  align, false);
2793 		if (ret) {
2794 			dev_err(&hbus->hdev->device,
2795 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2796 				hbus->low_mmio_space);
2797 			return ret;
2798 		}
2799 
2800 		/* Modify this resource to become a bridge window. */
2801 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2802 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2803 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
2804 	}
2805 
2806 	if (hbus->high_mmio_space) {
2807 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2808 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2809 					  0x100000000, -1,
2810 					  hbus->high_mmio_space, align,
2811 					  false);
2812 		if (ret) {
2813 			dev_err(&hbus->hdev->device,
2814 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2815 				hbus->high_mmio_space);
2816 			goto release_low_mmio;
2817 		}
2818 
2819 		/* Modify this resource to become a bridge window. */
2820 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2821 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2822 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
2823 	}
2824 
2825 	return 0;
2826 
2827 release_low_mmio:
2828 	if (hbus->low_mmio_res) {
2829 		vmbus_free_mmio(hbus->low_mmio_res->start,
2830 				resource_size(hbus->low_mmio_res));
2831 	}
2832 
2833 	return ret;
2834 }
2835 
2836 /**
2837  * hv_allocate_config_window() - Find MMIO space for PCI Config
2838  * @hbus:	Root PCI bus, as understood by this driver
2839  *
2840  * This function claims memory-mapped I/O space for accessing
2841  * configuration space for the functions on this bus.
2842  *
2843  * Return: 0 on success, -errno on failure
2844  */
hv_allocate_config_window(struct hv_pcibus_device * hbus)2845 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2846 {
2847 	int ret;
2848 
2849 	/*
2850 	 * Set up a region of MMIO space to use for accessing configuration
2851 	 * space.
2852 	 */
2853 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2854 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2855 	if (ret)
2856 		return ret;
2857 
2858 	/*
2859 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2860 	 * resource claims (those which cannot be overlapped) and the ranges
2861 	 * which are valid for the children of this bus, which are intended
2862 	 * to be overlapped by those children.  Set the flag on this claim
2863 	 * meaning that this region can't be overlapped.
2864 	 */
2865 
2866 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2867 
2868 	return 0;
2869 }
2870 
hv_free_config_window(struct hv_pcibus_device * hbus)2871 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2872 {
2873 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2874 }
2875 
2876 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2877 
2878 /**
2879  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2880  * @hdev:	VMBus's tracking struct for this root PCI bus
2881  *
2882  * Return: 0 on success, -errno on failure
2883  */
hv_pci_enter_d0(struct hv_device * hdev)2884 static int hv_pci_enter_d0(struct hv_device *hdev)
2885 {
2886 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2887 	struct pci_bus_d0_entry *d0_entry;
2888 	struct hv_pci_compl comp_pkt;
2889 	struct pci_packet *pkt;
2890 	bool retry = true;
2891 	int ret;
2892 
2893 enter_d0_retry:
2894 	/*
2895 	 * Tell the host that the bus is ready to use, and moved into the
2896 	 * powered-on state.  This includes telling the host which region
2897 	 * of memory-mapped I/O space has been chosen for configuration space
2898 	 * access.
2899 	 */
2900 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2901 	if (!pkt)
2902 		return -ENOMEM;
2903 
2904 	init_completion(&comp_pkt.host_event);
2905 	pkt->completion_func = hv_pci_generic_compl;
2906 	pkt->compl_ctxt = &comp_pkt;
2907 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2908 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2909 	d0_entry->mmio_base = hbus->mem_config->start;
2910 
2911 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2912 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2913 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2914 	if (!ret)
2915 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2916 
2917 	if (ret)
2918 		goto exit;
2919 
2920 	/*
2921 	 * In certain case (Kdump) the pci device of interest was
2922 	 * not cleanly shut down and resource is still held on host
2923 	 * side, the host could return invalid device status.
2924 	 * We need to explicitly request host to release the resource
2925 	 * and try to enter D0 again.
2926 	 */
2927 	if (comp_pkt.completion_status < 0 && retry) {
2928 		retry = false;
2929 
2930 		dev_err(&hdev->device, "Retrying D0 Entry\n");
2931 
2932 		/*
2933 		 * Hv_pci_bus_exit() calls hv_send_resource_released()
2934 		 * to free up resources of its child devices.
2935 		 * In the kdump kernel we need to set the
2936 		 * wslot_res_allocated to 255 so it scans all child
2937 		 * devices to release resources allocated in the
2938 		 * normal kernel before panic happened.
2939 		 */
2940 		hbus->wslot_res_allocated = 255;
2941 
2942 		ret = hv_pci_bus_exit(hdev, true);
2943 
2944 		if (ret == 0) {
2945 			kfree(pkt);
2946 			goto enter_d0_retry;
2947 		}
2948 		dev_err(&hdev->device,
2949 			"Retrying D0 failed with ret %d\n", ret);
2950 	}
2951 
2952 	if (comp_pkt.completion_status < 0) {
2953 		dev_err(&hdev->device,
2954 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2955 			comp_pkt.completion_status);
2956 		ret = -EPROTO;
2957 		goto exit;
2958 	}
2959 
2960 	ret = 0;
2961 
2962 exit:
2963 	kfree(pkt);
2964 	return ret;
2965 }
2966 
2967 /**
2968  * hv_pci_query_relations() - Ask host to send list of child
2969  * devices
2970  * @hdev:	VMBus's tracking struct for this root PCI bus
2971  *
2972  * Return: 0 on success, -errno on failure
2973  */
hv_pci_query_relations(struct hv_device * hdev)2974 static int hv_pci_query_relations(struct hv_device *hdev)
2975 {
2976 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2977 	struct pci_message message;
2978 	struct completion comp;
2979 	int ret;
2980 
2981 	/* Ask the host to send along the list of child devices */
2982 	init_completion(&comp);
2983 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2984 		return -ENOTEMPTY;
2985 
2986 	memset(&message, 0, sizeof(message));
2987 	message.type = PCI_QUERY_BUS_RELATIONS;
2988 
2989 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2990 			       0, VM_PKT_DATA_INBAND, 0);
2991 	if (!ret)
2992 		ret = wait_for_response(hdev, &comp);
2993 
2994 	/*
2995 	 * In the case of fast device addition/removal, it's possible that
2996 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
2997 	 * already got a PCI_BUS_RELATIONS* message from the host and the
2998 	 * channel callback already scheduled a work to hbus->wq, which can be
2999 	 * running pci_devices_present_work() -> survey_child_resources() ->
3000 	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3001 	 * exits and the stack variable 'comp' is no longer valid; as a result,
3002 	 * a hang or a page fault may happen when the complete() calls
3003 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3004 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3005 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3006 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3007 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3008 	 * channel->rescind = true.
3009 	 */
3010 	flush_workqueue(hbus->wq);
3011 
3012 	return ret;
3013 }
3014 
3015 /**
3016  * hv_send_resources_allocated() - Report local resource choices
3017  * @hdev:	VMBus's tracking struct for this root PCI bus
3018  *
3019  * The host OS is expecting to be sent a request as a message
3020  * which contains all the resources that the device will use.
3021  * The response contains those same resources, "translated"
3022  * which is to say, the values which should be used by the
3023  * hardware, when it delivers an interrupt.  (MMIO resources are
3024  * used in local terms.)  This is nice for Windows, and lines up
3025  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3026  * is deeply expecting to scan an emulated PCI configuration
3027  * space.  So this message is sent here only to drive the state
3028  * machine on the host forward.
3029  *
3030  * Return: 0 on success, -errno on failure
3031  */
hv_send_resources_allocated(struct hv_device * hdev)3032 static int hv_send_resources_allocated(struct hv_device *hdev)
3033 {
3034 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3035 	struct pci_resources_assigned *res_assigned;
3036 	struct pci_resources_assigned2 *res_assigned2;
3037 	struct hv_pci_compl comp_pkt;
3038 	struct hv_pci_dev *hpdev;
3039 	struct pci_packet *pkt;
3040 	size_t size_res;
3041 	int wslot;
3042 	int ret;
3043 
3044 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3045 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3046 
3047 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3048 	if (!pkt)
3049 		return -ENOMEM;
3050 
3051 	ret = 0;
3052 
3053 	for (wslot = 0; wslot < 256; wslot++) {
3054 		hpdev = get_pcichild_wslot(hbus, wslot);
3055 		if (!hpdev)
3056 			continue;
3057 
3058 		memset(pkt, 0, sizeof(*pkt) + size_res);
3059 		init_completion(&comp_pkt.host_event);
3060 		pkt->completion_func = hv_pci_generic_compl;
3061 		pkt->compl_ctxt = &comp_pkt;
3062 
3063 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3064 			res_assigned =
3065 				(struct pci_resources_assigned *)&pkt->message;
3066 			res_assigned->message_type.type =
3067 				PCI_RESOURCES_ASSIGNED;
3068 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3069 		} else {
3070 			res_assigned2 =
3071 				(struct pci_resources_assigned2 *)&pkt->message;
3072 			res_assigned2->message_type.type =
3073 				PCI_RESOURCES_ASSIGNED2;
3074 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3075 		}
3076 		put_pcichild(hpdev);
3077 
3078 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3079 				size_res, (unsigned long)pkt,
3080 				VM_PKT_DATA_INBAND,
3081 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3082 		if (!ret)
3083 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3084 		if (ret)
3085 			break;
3086 
3087 		if (comp_pkt.completion_status < 0) {
3088 			ret = -EPROTO;
3089 			dev_err(&hdev->device,
3090 				"resource allocated returned 0x%x",
3091 				comp_pkt.completion_status);
3092 			break;
3093 		}
3094 
3095 		hbus->wslot_res_allocated = wslot;
3096 	}
3097 
3098 	kfree(pkt);
3099 	return ret;
3100 }
3101 
3102 /**
3103  * hv_send_resources_released() - Report local resources
3104  * released
3105  * @hdev:	VMBus's tracking struct for this root PCI bus
3106  *
3107  * Return: 0 on success, -errno on failure
3108  */
hv_send_resources_released(struct hv_device * hdev)3109 static int hv_send_resources_released(struct hv_device *hdev)
3110 {
3111 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3112 	struct pci_child_message pkt;
3113 	struct hv_pci_dev *hpdev;
3114 	int wslot;
3115 	int ret;
3116 
3117 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3118 		hpdev = get_pcichild_wslot(hbus, wslot);
3119 		if (!hpdev)
3120 			continue;
3121 
3122 		memset(&pkt, 0, sizeof(pkt));
3123 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3124 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3125 
3126 		put_pcichild(hpdev);
3127 
3128 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3129 				       VM_PKT_DATA_INBAND, 0);
3130 		if (ret)
3131 			return ret;
3132 
3133 		hbus->wslot_res_allocated = wslot - 1;
3134 	}
3135 
3136 	hbus->wslot_res_allocated = -1;
3137 
3138 	return 0;
3139 }
3140 
3141 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3142 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3143 
3144 /*
3145  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3146  * as invalid for passthrough PCI devices of this driver.
3147  */
3148 #define HVPCI_DOM_INVALID 0
3149 
3150 /**
3151  * hv_get_dom_num() - Get a valid PCI domain number
3152  * Check if the PCI domain number is in use, and return another number if
3153  * it is in use.
3154  *
3155  * @dom: Requested domain number
3156  *
3157  * return: domain number on success, HVPCI_DOM_INVALID on failure
3158  */
hv_get_dom_num(u16 dom)3159 static u16 hv_get_dom_num(u16 dom)
3160 {
3161 	unsigned int i;
3162 
3163 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3164 		return dom;
3165 
3166 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3167 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3168 			return i;
3169 	}
3170 
3171 	return HVPCI_DOM_INVALID;
3172 }
3173 
3174 /**
3175  * hv_put_dom_num() - Mark the PCI domain number as free
3176  * @dom: Domain number to be freed
3177  */
hv_put_dom_num(u16 dom)3178 static void hv_put_dom_num(u16 dom)
3179 {
3180 	clear_bit(dom, hvpci_dom_map);
3181 }
3182 
3183 /**
3184  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3185  * @hdev:	VMBus's tracking struct for this root PCI bus
3186  * @dev_id:	Identifies the device itself
3187  *
3188  * Return: 0 on success, -errno on failure
3189  */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)3190 static int hv_pci_probe(struct hv_device *hdev,
3191 			const struct hv_vmbus_device_id *dev_id)
3192 {
3193 	struct pci_host_bridge *bridge;
3194 	struct hv_pcibus_device *hbus;
3195 	u16 dom_req, dom;
3196 	char *name;
3197 	int ret;
3198 
3199 	/*
3200 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3201 	 * hv_irq_unmask(). Those must not cross a page boundary.
3202 	 */
3203 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3204 
3205 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3206 	if (!bridge)
3207 		return -ENOMEM;
3208 
3209 	/*
3210 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3211 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3212 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3213 	 * alignment of hbus is important because hbus's field
3214 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3215 	 *
3216 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3217 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3218 	 * hence kmemleak reports the pointer contained in the hbus buffer
3219 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3220 	 * is tracked by hbus->children) as memory leak (false positive).
3221 	 *
3222 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3223 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3224 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3225 	 * kmemleak to track and scan the hbus buffer.
3226 	 */
3227 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3228 	if (!hbus)
3229 		return -ENOMEM;
3230 
3231 	hbus->bridge = bridge;
3232 	mutex_init(&hbus->state_lock);
3233 	hbus->state = hv_pcibus_init;
3234 	hbus->wslot_res_allocated = -1;
3235 
3236 	/*
3237 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3238 	 * specs. Pull it from the instance ID, to get something usually
3239 	 * unique. In rare cases of collision, we will find out another number
3240 	 * not in use.
3241 	 *
3242 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3243 	 * together with this guest driver can guarantee that (1) The only
3244 	 * domain used by Gen1 VMs for something that looks like a physical
3245 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3246 	 * (2) There will be no overlap between domains (after fixing possible
3247 	 * collisions) in the same VM.
3248 	 */
3249 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3250 	dom = hv_get_dom_num(dom_req);
3251 
3252 	if (dom == HVPCI_DOM_INVALID) {
3253 		dev_err(&hdev->device,
3254 			"Unable to use dom# 0x%hx or other numbers", dom_req);
3255 		ret = -EINVAL;
3256 		goto free_bus;
3257 	}
3258 
3259 	if (dom != dom_req)
3260 		dev_info(&hdev->device,
3261 			 "PCI dom# 0x%hx has collision, using 0x%hx",
3262 			 dom_req, dom);
3263 
3264 	hbus->bridge->domain_nr = dom;
3265 #ifdef CONFIG_X86
3266 	hbus->sysdata.domain = dom;
3267 #elif defined(CONFIG_ARM64)
3268 	/*
3269 	 * Set the PCI bus parent to be the corresponding VMbus
3270 	 * device. Then the VMbus device will be assigned as the
3271 	 * ACPI companion in pcibios_root_bridge_prepare() and
3272 	 * pci_dma_configure() will propagate device coherence
3273 	 * information to devices created on the bus.
3274 	 */
3275 	hbus->sysdata.parent = hdev->device.parent;
3276 #endif
3277 
3278 	hbus->hdev = hdev;
3279 	INIT_LIST_HEAD(&hbus->children);
3280 	INIT_LIST_HEAD(&hbus->dr_list);
3281 	spin_lock_init(&hbus->config_lock);
3282 	spin_lock_init(&hbus->device_list_lock);
3283 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3284 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3285 					   hbus->bridge->domain_nr);
3286 	if (!hbus->wq) {
3287 		ret = -ENOMEM;
3288 		goto free_dom;
3289 	}
3290 
3291 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3292 			 hv_pci_onchannelcallback, hbus);
3293 	if (ret)
3294 		goto destroy_wq;
3295 
3296 	hv_set_drvdata(hdev, hbus);
3297 
3298 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3299 					  ARRAY_SIZE(pci_protocol_versions));
3300 	if (ret)
3301 		goto close;
3302 
3303 	ret = hv_allocate_config_window(hbus);
3304 	if (ret)
3305 		goto close;
3306 
3307 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3308 				 PCI_CONFIG_MMIO_LENGTH);
3309 	if (!hbus->cfg_addr) {
3310 		dev_err(&hdev->device,
3311 			"Unable to map a virtual address for config space\n");
3312 		ret = -ENOMEM;
3313 		goto free_config;
3314 	}
3315 
3316 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3317 	if (!name) {
3318 		ret = -ENOMEM;
3319 		goto unmap;
3320 	}
3321 
3322 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3323 	kfree(name);
3324 	if (!hbus->fwnode) {
3325 		ret = -ENOMEM;
3326 		goto unmap;
3327 	}
3328 
3329 	ret = hv_pcie_init_irq_domain(hbus);
3330 	if (ret)
3331 		goto free_fwnode;
3332 
3333 	ret = hv_pci_query_relations(hdev);
3334 	if (ret)
3335 		goto free_irq_domain;
3336 
3337 	mutex_lock(&hbus->state_lock);
3338 
3339 	ret = hv_pci_enter_d0(hdev);
3340 	if (ret)
3341 		goto release_state_lock;
3342 
3343 	ret = hv_pci_allocate_bridge_windows(hbus);
3344 	if (ret)
3345 		goto exit_d0;
3346 
3347 	ret = hv_send_resources_allocated(hdev);
3348 	if (ret)
3349 		goto free_windows;
3350 
3351 	prepopulate_bars(hbus);
3352 
3353 	hbus->state = hv_pcibus_probed;
3354 
3355 	ret = create_root_hv_pci_bus(hbus);
3356 	if (ret)
3357 		goto free_windows;
3358 
3359 	mutex_unlock(&hbus->state_lock);
3360 	return 0;
3361 
3362 free_windows:
3363 	hv_pci_free_bridge_windows(hbus);
3364 exit_d0:
3365 	(void) hv_pci_bus_exit(hdev, true);
3366 release_state_lock:
3367 	mutex_unlock(&hbus->state_lock);
3368 free_irq_domain:
3369 	irq_domain_remove(hbus->irq_domain);
3370 free_fwnode:
3371 	irq_domain_free_fwnode(hbus->fwnode);
3372 unmap:
3373 	iounmap(hbus->cfg_addr);
3374 free_config:
3375 	hv_free_config_window(hbus);
3376 close:
3377 	vmbus_close(hdev->channel);
3378 destroy_wq:
3379 	destroy_workqueue(hbus->wq);
3380 free_dom:
3381 	hv_put_dom_num(hbus->bridge->domain_nr);
3382 free_bus:
3383 	kfree(hbus);
3384 	return ret;
3385 }
3386 
hv_pci_bus_exit(struct hv_device * hdev,bool keep_devs)3387 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3388 {
3389 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3390 	struct {
3391 		struct pci_packet teardown_packet;
3392 		u8 buffer[sizeof(struct pci_message)];
3393 	} pkt;
3394 	struct hv_pci_compl comp_pkt;
3395 	struct hv_pci_dev *hpdev, *tmp;
3396 	unsigned long flags;
3397 	int ret;
3398 
3399 	/*
3400 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3401 	 * access the per-channel ringbuffer any longer.
3402 	 */
3403 	if (hdev->channel->rescind)
3404 		return 0;
3405 
3406 	if (!keep_devs) {
3407 		struct list_head removed;
3408 
3409 		/* Move all present children to the list on stack */
3410 		INIT_LIST_HEAD(&removed);
3411 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3412 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3413 			list_move_tail(&hpdev->list_entry, &removed);
3414 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3415 
3416 		/* Remove all children in the list */
3417 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3418 			list_del(&hpdev->list_entry);
3419 			if (hpdev->pci_slot)
3420 				pci_destroy_slot(hpdev->pci_slot);
3421 			/* For the two refs got in new_pcichild_device() */
3422 			put_pcichild(hpdev);
3423 			put_pcichild(hpdev);
3424 		}
3425 	}
3426 
3427 	ret = hv_send_resources_released(hdev);
3428 	if (ret) {
3429 		dev_err(&hdev->device,
3430 			"Couldn't send resources released packet(s)\n");
3431 		return ret;
3432 	}
3433 
3434 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3435 	init_completion(&comp_pkt.host_event);
3436 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3437 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3438 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3439 
3440 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3441 			       sizeof(struct pci_message),
3442 			       (unsigned long)&pkt.teardown_packet,
3443 			       VM_PKT_DATA_INBAND,
3444 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3445 	if (ret)
3446 		return ret;
3447 
3448 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3449 		return -ETIMEDOUT;
3450 
3451 	return 0;
3452 }
3453 
3454 /**
3455  * hv_pci_remove() - Remove routine for this VMBus channel
3456  * @hdev:	VMBus's tracking struct for this root PCI bus
3457  *
3458  * Return: 0 on success, -errno on failure
3459  */
hv_pci_remove(struct hv_device * hdev)3460 static int hv_pci_remove(struct hv_device *hdev)
3461 {
3462 	struct hv_pcibus_device *hbus;
3463 	int ret;
3464 
3465 	hbus = hv_get_drvdata(hdev);
3466 	if (hbus->state == hv_pcibus_installed) {
3467 		tasklet_disable(&hdev->channel->callback_event);
3468 		hbus->state = hv_pcibus_removing;
3469 		tasklet_enable(&hdev->channel->callback_event);
3470 		destroy_workqueue(hbus->wq);
3471 		hbus->wq = NULL;
3472 		/*
3473 		 * At this point, no work is running or can be scheduled
3474 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3475 		 * or hv_pci_eject_device(), it's safe to proceed.
3476 		 */
3477 
3478 		/* Remove the bus from PCI's point of view. */
3479 		pci_lock_rescan_remove();
3480 		pci_stop_root_bus(hbus->bridge->bus);
3481 		hv_pci_remove_slots(hbus);
3482 		pci_remove_root_bus(hbus->bridge->bus);
3483 		pci_unlock_rescan_remove();
3484 	}
3485 
3486 	ret = hv_pci_bus_exit(hdev, false);
3487 
3488 	vmbus_close(hdev->channel);
3489 
3490 	iounmap(hbus->cfg_addr);
3491 	hv_free_config_window(hbus);
3492 	hv_pci_free_bridge_windows(hbus);
3493 	irq_domain_remove(hbus->irq_domain);
3494 	irq_domain_free_fwnode(hbus->fwnode);
3495 
3496 	hv_put_dom_num(hbus->bridge->domain_nr);
3497 
3498 	kfree(hbus);
3499 	return ret;
3500 }
3501 
hv_pci_suspend(struct hv_device * hdev)3502 static int hv_pci_suspend(struct hv_device *hdev)
3503 {
3504 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3505 	enum hv_pcibus_state old_state;
3506 	int ret;
3507 
3508 	/*
3509 	 * hv_pci_suspend() must make sure there are no pending work items
3510 	 * before calling vmbus_close(), since it runs in a process context
3511 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3512 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3513 	 * context, can be still running concurrently and scheduling new work
3514 	 * items onto hbus->wq in hv_pci_devices_present() and
3515 	 * hv_pci_eject_device(), and the work item handlers can access the
3516 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3517 	 * the work item handler pci_devices_present_work() ->
3518 	 * new_pcichild_device() writes to the vmbus channel.
3519 	 *
3520 	 * To eliminate the race, hv_pci_suspend() disables the channel
3521 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3522 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3523 	 * it knows that no new work item can be scheduled, and then it flushes
3524 	 * hbus->wq and safely closes the vmbus channel.
3525 	 */
3526 	tasklet_disable(&hdev->channel->callback_event);
3527 
3528 	/* Change the hbus state to prevent new work items. */
3529 	old_state = hbus->state;
3530 	if (hbus->state == hv_pcibus_installed)
3531 		hbus->state = hv_pcibus_removing;
3532 
3533 	tasklet_enable(&hdev->channel->callback_event);
3534 
3535 	if (old_state != hv_pcibus_installed)
3536 		return -EINVAL;
3537 
3538 	flush_workqueue(hbus->wq);
3539 
3540 	ret = hv_pci_bus_exit(hdev, true);
3541 	if (ret)
3542 		return ret;
3543 
3544 	vmbus_close(hdev->channel);
3545 
3546 	return 0;
3547 }
3548 
hv_pci_restore_msi_msg(struct pci_dev * pdev,void * arg)3549 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3550 {
3551 	struct msi_desc *entry;
3552 	struct irq_data *irq_data;
3553 
3554 	for_each_pci_msi_entry(entry, pdev) {
3555 		irq_data = irq_get_irq_data(entry->irq);
3556 		if (WARN_ON_ONCE(!irq_data))
3557 			return -EINVAL;
3558 
3559 		hv_compose_msi_msg(irq_data, &entry->msg);
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3567  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3568  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3569  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3570  * Table entries.
3571  */
hv_pci_restore_msi_state(struct hv_pcibus_device * hbus)3572 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3573 {
3574 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3575 }
3576 
hv_pci_resume(struct hv_device * hdev)3577 static int hv_pci_resume(struct hv_device *hdev)
3578 {
3579 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3580 	enum pci_protocol_version_t version[1];
3581 	int ret;
3582 
3583 	hbus->state = hv_pcibus_init;
3584 
3585 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3586 			 hv_pci_onchannelcallback, hbus);
3587 	if (ret)
3588 		return ret;
3589 
3590 	/* Only use the version that was in use before hibernation. */
3591 	version[0] = hbus->protocol_version;
3592 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3593 	if (ret)
3594 		goto out;
3595 
3596 	ret = hv_pci_query_relations(hdev);
3597 	if (ret)
3598 		goto out;
3599 
3600 	mutex_lock(&hbus->state_lock);
3601 
3602 	ret = hv_pci_enter_d0(hdev);
3603 	if (ret)
3604 		goto release_state_lock;
3605 
3606 	ret = hv_send_resources_allocated(hdev);
3607 	if (ret)
3608 		goto release_state_lock;
3609 
3610 	prepopulate_bars(hbus);
3611 
3612 	hv_pci_restore_msi_state(hbus);
3613 
3614 	hbus->state = hv_pcibus_installed;
3615 	mutex_unlock(&hbus->state_lock);
3616 	return 0;
3617 
3618 release_state_lock:
3619 	mutex_unlock(&hbus->state_lock);
3620 out:
3621 	vmbus_close(hdev->channel);
3622 	return ret;
3623 }
3624 
3625 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3626 	/* PCI Pass-through Class ID */
3627 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3628 	{ HV_PCIE_GUID, },
3629 	{ },
3630 };
3631 
3632 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3633 
3634 static struct hv_driver hv_pci_drv = {
3635 	.name		= "hv_pci",
3636 	.id_table	= hv_pci_id_table,
3637 	.probe		= hv_pci_probe,
3638 	.remove		= hv_pci_remove,
3639 	.suspend	= hv_pci_suspend,
3640 	.resume		= hv_pci_resume,
3641 };
3642 
exit_hv_pci_drv(void)3643 static void __exit exit_hv_pci_drv(void)
3644 {
3645 	vmbus_driver_unregister(&hv_pci_drv);
3646 
3647 	hvpci_block_ops.read_block = NULL;
3648 	hvpci_block_ops.write_block = NULL;
3649 	hvpci_block_ops.reg_blk_invalidate = NULL;
3650 }
3651 
init_hv_pci_drv(void)3652 static int __init init_hv_pci_drv(void)
3653 {
3654 	if (!hv_is_hyperv_initialized())
3655 		return -ENODEV;
3656 
3657 	/* Set the invalid domain number's bit, so it will not be used */
3658 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3659 
3660 	/* Initialize PCI block r/w interface */
3661 	hvpci_block_ops.read_block = hv_read_config_block;
3662 	hvpci_block_ops.write_block = hv_write_config_block;
3663 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3664 
3665 	return vmbus_driver_register(&hv_pci_drv);
3666 }
3667 
3668 module_init(init_hv_pci_drv);
3669 module_exit(exit_hv_pci_drv);
3670 
3671 MODULE_DESCRIPTION("Hyper-V PCI");
3672 MODULE_LICENSE("GPL v2");
3673