1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 *
17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18 *
19 */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
159 */
160 static struct board_type products[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access},
162 {0x40800E11, "Smart Array 5i", &SA5B_access},
163 {0x40820E11, "Smart Array 532", &SA5B_access},
164 {0x40830E11, "Smart Array 5312", &SA5B_access},
165 {0x409A0E11, "Smart Array 641", &SA5A_access},
166 {0x409B0E11, "Smart Array 642", &SA5A_access},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 {0x40910E11, "Smart Array 6i", &SA5A_access},
170 {0x3225103C, "Smart Array P600", &SA5A_access},
171 {0x3223103C, "Smart Array P800", &SA5A_access},
172 {0x3234103C, "Smart Array P400", &SA5A_access},
173 {0x3235103C, "Smart Array P400i", &SA5A_access},
174 {0x3211103C, "Smart Array E200i", &SA5A_access},
175 {0x3212103C, "Smart Array E200", &SA5A_access},
176 {0x3213103C, "Smart Array E200i", &SA5A_access},
177 {0x3214103C, "Smart Array E200i", &SA5A_access},
178 {0x3215103C, "Smart Array E200i", &SA5A_access},
179 {0x3237103C, "Smart Array E500", &SA5A_access},
180 {0x323D103C, "Smart Array P700m", &SA5A_access},
181 {0x3241103C, "Smart Array P212", &SA5_access},
182 {0x3243103C, "Smart Array P410", &SA5_access},
183 {0x3245103C, "Smart Array P410i", &SA5_access},
184 {0x3247103C, "Smart Array P411", &SA5_access},
185 {0x3249103C, "Smart Array P812", &SA5_access},
186 {0x324A103C, "Smart Array P712m", &SA5_access},
187 {0x324B103C, "Smart Array P711m", &SA5_access},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access},
190 {0x3351103C, "Smart Array P420", &SA5_access},
191 {0x3352103C, "Smart Array P421", &SA5_access},
192 {0x3353103C, "Smart Array P822", &SA5_access},
193 {0x3354103C, "Smart Array P420i", &SA5_access},
194 {0x3355103C, "Smart Array P220i", &SA5_access},
195 {0x3356103C, "Smart Array P721m", &SA5_access},
196 {0x1920103C, "Smart Array P430i", &SA5_access},
197 {0x1921103C, "Smart Array P830i", &SA5_access},
198 {0x1922103C, "Smart Array P430", &SA5_access},
199 {0x1923103C, "Smart Array P431", &SA5_access},
200 {0x1924103C, "Smart Array P830", &SA5_access},
201 {0x1925103C, "Smart Array P831", &SA5_access},
202 {0x1926103C, "Smart Array P731m", &SA5_access},
203 {0x1928103C, "Smart Array P230i", &SA5_access},
204 {0x1929103C, "Smart Array P530", &SA5_access},
205 {0x21BD103C, "Smart Array P244br", &SA5_access},
206 {0x21BE103C, "Smart Array P741m", &SA5_access},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access},
210 {0x21C2103C, "Smart Array P440", &SA5_access},
211 {0x21C3103C, "Smart Array P441", &SA5_access},
212 {0x21C4103C, "Smart Array", &SA5_access},
213 {0x21C5103C, "Smart Array P841", &SA5_access},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access},
215 {0x21C7103C, "Smart HBA H240", &SA5_access},
216 {0x21C8103C, "Smart HBA H241", &SA5_access},
217 {0x21C9103C, "Smart Array", &SA5_access},
218 {0x21CA103C, "Smart Array P246br", &SA5_access},
219 {0x21CB103C, "Smart Array P840", &SA5_access},
220 {0x21CC103C, "Smart Array", &SA5_access},
221 {0x21CD103C, "Smart Array", &SA5_access},
222 {0x21CE103C, "Smart HBA", &SA5_access},
223 {0x05809005, "SmartHBA-SA", &SA5_access},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 unsigned char lunaddr[],
310 int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 struct hpsa_scsi_dev_t *dev,
333 unsigned char *scsi3addr);
334
sdev_to_hba(struct scsi_device * sdev)335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 unsigned long *priv = shost_priv(sdev->host);
338 return (struct ctlr_info *) *priv;
339 }
340
shost_to_hba(struct Scsi_Host * sh)341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 unsigned long *priv = shost_priv(sh);
344 return (struct ctlr_info *) *priv;
345 }
346
hpsa_is_cmd_idle(struct CommandList * c)347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
decode_sense_data(const u8 * sense_data,int sense_data_len,u8 * sense_key,u8 * asc,u8 * ascq)353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 struct scsi_sense_hdr sshdr;
357 bool rc;
358
359 *sense_key = -1;
360 *asc = -1;
361 *ascq = -1;
362
363 if (sense_data_len < 1)
364 return;
365
366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 if (rc) {
368 *sense_key = sshdr.sense_key;
369 *asc = sshdr.asc;
370 *ascq = sshdr.ascq;
371 }
372 }
373
check_for_unit_attention(struct ctlr_info * h,struct CommandList * c)374 static int check_for_unit_attention(struct ctlr_info *h,
375 struct CommandList *c)
376 {
377 u8 sense_key, asc, ascq;
378 int sense_len;
379
380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 sense_len = sizeof(c->err_info->SenseInfo);
382 else
383 sense_len = c->err_info->SenseLen;
384
385 decode_sense_data(c->err_info->SenseInfo, sense_len,
386 &sense_key, &asc, &ascq);
387 if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 return 0;
389
390 switch (asc) {
391 case STATE_CHANGED:
392 dev_warn(&h->pdev->dev,
393 "%s: a state change detected, command retried\n",
394 h->devname);
395 break;
396 case LUN_FAILED:
397 dev_warn(&h->pdev->dev,
398 "%s: LUN failure detected\n", h->devname);
399 break;
400 case REPORT_LUNS_CHANGED:
401 dev_warn(&h->pdev->dev,
402 "%s: report LUN data changed\n", h->devname);
403 /*
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
406 */
407 break;
408 case POWER_OR_RESET:
409 dev_warn(&h->pdev->dev,
410 "%s: a power on or device reset detected\n",
411 h->devname);
412 break;
413 case UNIT_ATTENTION_CLEARED:
414 dev_warn(&h->pdev->dev,
415 "%s: unit attention cleared by another initiator\n",
416 h->devname);
417 break;
418 default:
419 dev_warn(&h->pdev->dev,
420 "%s: unknown unit attention detected\n",
421 h->devname);
422 break;
423 }
424 return 1;
425 }
426
check_for_busy(struct ctlr_info * h,struct CommandList * c)427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 return 0;
433 dev_warn(&h->pdev->dev, HPSA "device busy");
434 return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
host_show_lockup_detected(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t host_show_lockup_detected(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 int ld;
442 struct ctlr_info *h;
443 struct Scsi_Host *shost = class_to_shost(dev);
444
445 h = shost_to_hba(shost);
446 ld = lockup_detected(h);
447
448 return sprintf(buf, "ld=%d\n", ld);
449 }
450
host_store_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 int status, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
459
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &status) != 1)
466 return -EINVAL;
467 h = shost_to_hba(shost);
468 h->acciopath_status = !!status;
469 dev_warn(&h->pdev->dev,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h->acciopath_status ? "enabled" : "disabled");
472 return count;
473 }
474
host_store_raid_offload_debug(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
478 {
479 int debug_level, len;
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 char tmpbuf[10];
483
484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 return -EACCES;
486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 strncpy(tmpbuf, buf, len);
488 tmpbuf[len] = '\0';
489 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 return -EINVAL;
491 if (debug_level < 0)
492 debug_level = 0;
493 h = shost_to_hba(shost);
494 h->raid_offload_debug = debug_level;
495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 h->raid_offload_debug);
497 return count;
498 }
499
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)500 static ssize_t host_store_rescan(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count)
503 {
504 struct ctlr_info *h;
505 struct Scsi_Host *shost = class_to_shost(dev);
506 h = shost_to_hba(shost);
507 hpsa_scan_start(h->scsi_host);
508 return count;
509 }
510
hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t * device)511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 device->offload_enabled = 0;
514 device->offload_to_be_enabled = 0;
515 }
516
host_show_firmware_revision(struct device * dev,struct device_attribute * attr,char * buf)517 static ssize_t host_show_firmware_revision(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct ctlr_info *h;
521 struct Scsi_Host *shost = class_to_shost(dev);
522 unsigned char *fwrev;
523
524 h = shost_to_hba(shost);
525 if (!h->hba_inquiry_data)
526 return 0;
527 fwrev = &h->hba_inquiry_data[32];
528 return snprintf(buf, 20, "%c%c%c%c\n",
529 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
host_show_commands_outstanding(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct Scsi_Host *shost = class_to_shost(dev);
536 struct ctlr_info *h = shost_to_hba(shost);
537
538 return snprintf(buf, 20, "%d\n",
539 atomic_read(&h->commands_outstanding));
540 }
541
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t host_show_transport_mode(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct ctlr_info *h;
546 struct Scsi_Host *shost = class_to_shost(dev);
547
548 h = shost_to_hba(shost);
549 return snprintf(buf, 20, "%s\n",
550 h->transMethod & CFGTBL_Trans_Performant ?
551 "performant" : "simple");
552 }
553
host_show_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct ctlr_info *h;
558 struct Scsi_Host *shost = class_to_shost(dev);
559
560 h = shost_to_hba(shost);
561 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 (h->acciopath_status == 1) ? "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 0x324a103C, /* Smart Array P712m */
568 0x324b103C, /* Smart Array P711m */
569 0x3223103C, /* Smart Array P800 */
570 0x3234103C, /* Smart Array P400 */
571 0x3235103C, /* Smart Array P400i */
572 0x3211103C, /* Smart Array E200i */
573 0x3212103C, /* Smart Array E200 */
574 0x3213103C, /* Smart Array E200i */
575 0x3214103C, /* Smart Array E200i */
576 0x3215103C, /* Smart Array E200i */
577 0x3237103C, /* Smart Array E500 */
578 0x323D103C, /* Smart Array P700m */
579 0x40800E11, /* Smart Array 5i */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 0x40700E11, /* Smart Array 5300 */
583 0x40820E11, /* Smart Array 532 */
584 0x40830E11, /* Smart Array 5312 */
585 0x409A0E11, /* Smart Array 641 */
586 0x409B0E11, /* Smart Array 642 */
587 0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 0x40800E11, /* Smart Array 5i */
593 0x40700E11, /* Smart Array 5300 */
594 0x40820E11, /* Smart Array 532 */
595 0x40830E11, /* Smart Array 5312 */
596 0x409A0E11, /* Smart Array 641 */
597 0x409B0E11, /* Smart Array 642 */
598 0x40910E11, /* Smart Array 6i */
599 /* Exclude 640x boards. These are two pci devices in one slot
600 * which share a battery backed cache module. One controls the
601 * cache, the other accesses the cache through the one that controls
602 * it. If we reset the one controlling the cache, the other will
603 * likely not be happy. Just forbid resetting this conjoined mess.
604 * The 640x isn't really supported by hpsa anyway.
605 */
606 0x409C0E11, /* Smart Array 6400 */
607 0x409D0E11, /* Smart Array 6400 EM */
608 };
609
board_id_in_array(u32 a[],int nelems,u32 board_id)610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 int i;
613
614 for (i = 0; i < nelems; i++)
615 if (a[i] == board_id)
616 return 1;
617 return 0;
618 }
619
ctlr_is_hard_resettable(u32 board_id)620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 return !board_id_in_array(unresettable_controller,
623 ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
ctlr_is_soft_resettable(u32 board_id)626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 return !board_id_in_array(soft_unresettable_controller,
629 ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
ctlr_is_resettable(u32 board_id)632 static int ctlr_is_resettable(u32 board_id)
633 {
634 return ctlr_is_hard_resettable(board_id) ||
635 ctlr_is_soft_resettable(board_id);
636 }
637
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)638 static ssize_t host_show_resettable(struct device *dev,
639 struct device_attribute *attr, char *buf)
640 {
641 struct ctlr_info *h;
642 struct Scsi_Host *shost = class_to_shost(dev);
643
644 h = shost_to_hba(shost);
645 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
is_logical_dev_addr_mode(unsigned char scsi3addr[])648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0 0
657 #define HPSA_RAID_4 1
658 #define HPSA_RAID_1 2 /* also used for RAID 10 */
659 #define HPSA_RAID_5 3 /* also used for RAID 50 */
660 #define HPSA_RAID_51 4
661 #define HPSA_RAID_6 5 /* also used for RAID 60 */
662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
is_logical_device(struct hpsa_scsi_dev_t * device)666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 return !device->physical_device;
669 }
670
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)671 static ssize_t raid_level_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673 {
674 ssize_t l = 0;
675 unsigned char rlevel;
676 struct ctlr_info *h;
677 struct scsi_device *sdev;
678 struct hpsa_scsi_dev_t *hdev;
679 unsigned long flags;
680
681 sdev = to_scsi_device(dev);
682 h = sdev_to_hba(sdev);
683 spin_lock_irqsave(&h->lock, flags);
684 hdev = sdev->hostdata;
685 if (!hdev) {
686 spin_unlock_irqrestore(&h->lock, flags);
687 return -ENODEV;
688 }
689
690 /* Is this even a logical drive? */
691 if (!is_logical_device(hdev)) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 return l;
695 }
696
697 rlevel = hdev->raid_level;
698 spin_unlock_irqrestore(&h->lock, flags);
699 if (rlevel > RAID_UNKNOWN)
700 rlevel = RAID_UNKNOWN;
701 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 return l;
703 }
704
lunid_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t lunid_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707 {
708 struct ctlr_info *h;
709 struct scsi_device *sdev;
710 struct hpsa_scsi_dev_t *hdev;
711 unsigned long flags;
712 unsigned char lunid[8];
713
714 sdev = to_scsi_device(dev);
715 h = sdev_to_hba(sdev);
716 spin_lock_irqsave(&h->lock, flags);
717 hdev = sdev->hostdata;
718 if (!hdev) {
719 spin_unlock_irqrestore(&h->lock, flags);
720 return -ENODEV;
721 }
722 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 spin_unlock_irqrestore(&h->lock, flags);
724 return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t unique_id_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct ctlr_info *h;
731 struct scsi_device *sdev;
732 struct hpsa_scsi_dev_t *hdev;
733 unsigned long flags;
734 unsigned char sn[16];
735
736 sdev = to_scsi_device(dev);
737 h = sdev_to_hba(sdev);
738 spin_lock_irqsave(&h->lock, flags);
739 hdev = sdev->hostdata;
740 if (!hdev) {
741 spin_unlock_irqrestore(&h->lock, flags);
742 return -ENODEV;
743 }
744 memcpy(sn, hdev->device_id, sizeof(sn));
745 spin_unlock_irqrestore(&h->lock, flags);
746 return snprintf(buf, 16 * 2 + 2,
747 "%02X%02X%02X%02X%02X%02X%02X%02X"
748 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 sn[0], sn[1], sn[2], sn[3],
750 sn[4], sn[5], sn[6], sn[7],
751 sn[8], sn[9], sn[10], sn[11],
752 sn[12], sn[13], sn[14], sn[15]);
753 }
754
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t sas_address_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757 {
758 struct ctlr_info *h;
759 struct scsi_device *sdev;
760 struct hpsa_scsi_dev_t *hdev;
761 unsigned long flags;
762 u64 sas_address;
763
764 sdev = to_scsi_device(dev);
765 h = sdev_to_hba(sdev);
766 spin_lock_irqsave(&h->lock, flags);
767 hdev = sdev->hostdata;
768 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 spin_unlock_irqrestore(&h->lock, flags);
770 return -ENODEV;
771 }
772 sas_address = hdev->sas_address;
773 spin_unlock_irqrestore(&h->lock, flags);
774
775 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
host_show_hp_ssd_smart_path_enabled(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 struct device_attribute *attr, char *buf)
780 {
781 struct ctlr_info *h;
782 struct scsi_device *sdev;
783 struct hpsa_scsi_dev_t *hdev;
784 unsigned long flags;
785 int offload_enabled;
786
787 sdev = to_scsi_device(dev);
788 h = sdev_to_hba(sdev);
789 spin_lock_irqsave(&h->lock, flags);
790 hdev = sdev->hostdata;
791 if (!hdev) {
792 spin_unlock_irqrestore(&h->lock, flags);
793 return -ENODEV;
794 }
795 offload_enabled = hdev->offload_enabled;
796 spin_unlock_irqrestore(&h->lock, flags);
797
798 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 return snprintf(buf, 20, "%d\n", offload_enabled);
800 else
801 return snprintf(buf, 40, "%s\n",
802 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
path_info_show(struct device * dev,struct device_attribute * attr,char * buf)806 static ssize_t path_info_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808 {
809 struct ctlr_info *h;
810 struct scsi_device *sdev;
811 struct hpsa_scsi_dev_t *hdev;
812 unsigned long flags;
813 int i;
814 int output_len = 0;
815 u8 box;
816 u8 bay;
817 u8 path_map_index = 0;
818 char *active;
819 unsigned char phys_connector[2];
820
821 sdev = to_scsi_device(dev);
822 h = sdev_to_hba(sdev);
823 spin_lock_irqsave(&h->devlock, flags);
824 hdev = sdev->hostdata;
825 if (!hdev) {
826 spin_unlock_irqrestore(&h->devlock, flags);
827 return -ENODEV;
828 }
829
830 bay = hdev->bay;
831 for (i = 0; i < MAX_PATHS; i++) {
832 path_map_index = 1<<i;
833 if (i == hdev->active_path_index)
834 active = "Active";
835 else if (hdev->path_map & path_map_index)
836 active = "Inactive";
837 else
838 continue;
839
840 output_len += scnprintf(buf + output_len,
841 PAGE_SIZE - output_len,
842 "[%d:%d:%d:%d] %20.20s ",
843 h->scsi_host->host_no,
844 hdev->bus, hdev->target, hdev->lun,
845 scsi_device_type(hdev->devtype));
846
847 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 output_len += scnprintf(buf + output_len,
849 PAGE_SIZE - output_len,
850 "%s\n", active);
851 continue;
852 }
853
854 box = hdev->box[i];
855 memcpy(&phys_connector, &hdev->phys_connector[i],
856 sizeof(phys_connector));
857 if (phys_connector[0] < '0')
858 phys_connector[0] = '0';
859 if (phys_connector[1] < '0')
860 phys_connector[1] = '0';
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "PORT: %.2s ",
864 phys_connector);
865 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 hdev->expose_device) {
867 if (box == 0 || box == 0xFF) {
868 output_len += scnprintf(buf + output_len,
869 PAGE_SIZE - output_len,
870 "BAY: %hhu %s\n",
871 bay, active);
872 } else {
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len,
875 "BOX: %hhu BAY: %hhu %s\n",
876 box, bay, active);
877 }
878 } else if (box != 0 && box != 0xFF) {
879 output_len += scnprintf(buf + output_len,
880 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 box, active);
882 } else
883 output_len += scnprintf(buf + output_len,
884 PAGE_SIZE - output_len, "%s\n", active);
885 }
886
887 spin_unlock_irqrestore(&h->devlock, flags);
888 return output_len;
889 }
890
host_show_ctlr_num(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t host_show_ctlr_num(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct ctlr_info *h;
895 struct Scsi_Host *shost = class_to_shost(dev);
896
897 h = shost_to_hba(shost);
898 return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
host_show_legacy_board(struct device * dev,struct device_attribute * attr,char * buf)901 static ssize_t host_show_legacy_board(struct device *dev,
902 struct device_attribute *attr, char *buf)
903 {
904 struct ctlr_info *h;
905 struct Scsi_Host *shost = class_to_shost(dev);
906
907 h = shost_to_hba(shost);
908 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 host_show_hp_ssd_smart_path_status,
921 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 host_show_legacy_board, NULL);
938
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940 &dev_attr_raid_level,
941 &dev_attr_lunid,
942 &dev_attr_unique_id,
943 &dev_attr_hp_ssd_smart_path_enabled,
944 &dev_attr_path_info,
945 &dev_attr_sas_address,
946 NULL,
947 };
948
949 static struct device_attribute *hpsa_shost_attrs[] = {
950 &dev_attr_rescan,
951 &dev_attr_firmware_revision,
952 &dev_attr_commands_outstanding,
953 &dev_attr_transport_mode,
954 &dev_attr_resettable,
955 &dev_attr_hp_ssd_smart_path_status,
956 &dev_attr_raid_offload_debug,
957 &dev_attr_lockup_detected,
958 &dev_attr_ctlr_num,
959 &dev_attr_legacy_board,
960 NULL,
961 };
962
963 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
964 HPSA_MAX_CONCURRENT_PASSTHRUS)
965
966 static struct scsi_host_template hpsa_driver_template = {
967 .module = THIS_MODULE,
968 .name = HPSA,
969 .proc_name = HPSA,
970 .queuecommand = hpsa_scsi_queue_command,
971 .scan_start = hpsa_scan_start,
972 .scan_finished = hpsa_scan_finished,
973 .change_queue_depth = hpsa_change_queue_depth,
974 .this_id = -1,
975 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
976 .ioctl = hpsa_ioctl,
977 .slave_alloc = hpsa_slave_alloc,
978 .slave_configure = hpsa_slave_configure,
979 .slave_destroy = hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981 .compat_ioctl = hpsa_compat_ioctl,
982 #endif
983 .sdev_attrs = hpsa_sdev_attrs,
984 .shost_attrs = hpsa_shost_attrs,
985 .max_sectors = 2048,
986 .no_write_same = 1,
987 };
988
next_command(struct ctlr_info * h,u8 q)989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991 u32 a;
992 struct reply_queue_buffer *rq = &h->reply_queue[q];
993
994 if (h->transMethod & CFGTBL_Trans_io_accel1)
995 return h->access.command_completed(h, q);
996
997 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998 return h->access.command_completed(h, q);
999
1000 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001 a = rq->head[rq->current_entry];
1002 rq->current_entry++;
1003 atomic_dec(&h->commands_outstanding);
1004 } else {
1005 a = FIFO_EMPTY;
1006 }
1007 /* Check for wraparound */
1008 if (rq->current_entry == h->max_commands) {
1009 rq->current_entry = 0;
1010 rq->wraparound ^= 1;
1011 }
1012 return a;
1013 }
1014
1015 /*
1016 * There are some special bits in the bus address of the
1017 * command that we have to set for the controller to know
1018 * how to process the command:
1019 *
1020 * Normal performant mode:
1021 * bit 0: 1 means performant mode, 0 means simple mode.
1022 * bits 1-3 = block fetch table entry
1023 * bits 4-6 = command type (== 0)
1024 *
1025 * ioaccel1 mode:
1026 * bit 0 = "performant mode" bit.
1027 * bits 1-3 = block fetch table entry
1028 * bits 4-6 = command type (== 110)
1029 * (command type is needed because ioaccel1 mode
1030 * commands are submitted through the same register as normal
1031 * mode commands, so this is how the controller knows whether
1032 * the command is normal mode or ioaccel1 mode.)
1033 *
1034 * ioaccel2 mode:
1035 * bit 0 = "performant mode" bit.
1036 * bits 1-4 = block fetch table entry (note extra bit)
1037 * bits 4-6 = not needed, because ioaccel2 mode has
1038 * a separate special register for submitting commands.
1039 */
1040
1041 /*
1042 * set_performant_mode: Modify the tag for cciss performant
1043 * set bit 0 for pull model, bits 3-1 for block fetch
1044 * register number
1045 */
1046 #define DEFAULT_REPLY_QUEUE (-1)
set_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048 int reply_queue)
1049 {
1050 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052 if (unlikely(!h->msix_vectors))
1053 return;
1054 c->Header.ReplyQueue = reply_queue;
1055 }
1056 }
1057
set_ioaccel1_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059 struct CommandList *c,
1060 int reply_queue)
1061 {
1062 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064 /*
1065 * Tell the controller to post the reply to the queue for this
1066 * processor. This seems to give the best I/O throughput.
1067 */
1068 cp->ReplyQueue = reply_queue;
1069 /*
1070 * Set the bits in the address sent down to include:
1071 * - performant mode bit (bit 0)
1072 * - pull count (bits 1-3)
1073 * - command type (bits 4-6)
1074 */
1075 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076 IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078
set_ioaccel2_tmf_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080 struct CommandList *c,
1081 int reply_queue)
1082 {
1083 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084 &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086 /* Tell the controller to post the reply to the queue for this
1087 * processor. This seems to give the best I/O throughput.
1088 */
1089 cp->reply_queue = reply_queue;
1090 /* Set the bits in the address sent down to include:
1091 * - performant mode bit not used in ioaccel mode 2
1092 * - pull count (bits 0-3)
1093 * - command type isn't needed for ioaccel2
1094 */
1095 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097
set_ioaccel2_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099 struct CommandList *c,
1100 int reply_queue)
1101 {
1102 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104 /*
1105 * Tell the controller to post the reply to the queue for this
1106 * processor. This seems to give the best I/O throughput.
1107 */
1108 cp->reply_queue = reply_queue;
1109 /*
1110 * Set the bits in the address sent down to include:
1111 * - performant mode bit not used in ioaccel mode 2
1112 * - pull count (bits 0-3)
1113 * - command type isn't needed for ioaccel2
1114 */
1115 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117
is_firmware_flash_cmd(u8 * cdb)1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122
1123 /*
1124 * During firmware flash, the heartbeat register may not update as frequently
1125 * as it should. So we dial down lockup detection during firmware flash. and
1126 * dial it back up when firmware flash completes.
1127 */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
dial_down_lockup_detection_during_fw_flash(struct ctlr_info * h,struct CommandList * c)1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132 struct CommandList *c)
1133 {
1134 if (!is_firmware_flash_cmd(c->Request.CDB))
1135 return;
1136 atomic_inc(&h->firmware_flash_in_progress);
1137 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139
dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info * h,struct CommandList * c)1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141 struct CommandList *c)
1142 {
1143 if (is_firmware_flash_cmd(c->Request.CDB) &&
1144 atomic_dec_and_test(&h->firmware_flash_in_progress))
1145 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147
__enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c,int reply_queue)1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149 struct CommandList *c, int reply_queue)
1150 {
1151 dial_down_lockup_detection_during_fw_flash(h, c);
1152 atomic_inc(&h->commands_outstanding);
1153 /*
1154 * Check to see if the command is being retried.
1155 */
1156 if (c->device && !c->retry_pending)
1157 atomic_inc(&c->device->commands_outstanding);
1158
1159 reply_queue = h->reply_map[raw_smp_processor_id()];
1160 switch (c->cmd_type) {
1161 case CMD_IOACCEL1:
1162 set_ioaccel1_performant_mode(h, c, reply_queue);
1163 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 break;
1165 case CMD_IOACCEL2:
1166 set_ioaccel2_performant_mode(h, c, reply_queue);
1167 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 break;
1169 case IOACCEL2_TMF:
1170 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 break;
1173 default:
1174 set_performant_mode(h, c, reply_queue);
1175 h->access.submit_command(h, c);
1176 }
1177 }
1178
enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c)1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1182 }
1183
is_hba_lunid(unsigned char scsi3addr[])1184 static inline int is_hba_lunid(unsigned char scsi3addr[])
1185 {
1186 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1187 }
1188
is_scsi_rev_5(struct ctlr_info * h)1189 static inline int is_scsi_rev_5(struct ctlr_info *h)
1190 {
1191 if (!h->hba_inquiry_data)
1192 return 0;
1193 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1194 return 1;
1195 return 0;
1196 }
1197
hpsa_find_target_lun(struct ctlr_info * h,unsigned char scsi3addr[],int bus,int * target,int * lun)1198 static int hpsa_find_target_lun(struct ctlr_info *h,
1199 unsigned char scsi3addr[], int bus, int *target, int *lun)
1200 {
1201 /* finds an unused bus, target, lun for a new physical device
1202 * assumes h->devlock is held
1203 */
1204 int i, found = 0;
1205 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1206
1207 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1208
1209 for (i = 0; i < h->ndevices; i++) {
1210 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1211 __set_bit(h->dev[i]->target, lun_taken);
1212 }
1213
1214 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1215 if (i < HPSA_MAX_DEVICES) {
1216 /* *bus = 1; */
1217 *target = i;
1218 *lun = 0;
1219 found = 1;
1220 }
1221 return !found;
1222 }
1223
hpsa_show_dev_msg(const char * level,struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,char * description)1224 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1225 struct hpsa_scsi_dev_t *dev, char *description)
1226 {
1227 #define LABEL_SIZE 25
1228 char label[LABEL_SIZE];
1229
1230 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1231 return;
1232
1233 switch (dev->devtype) {
1234 case TYPE_RAID:
1235 snprintf(label, LABEL_SIZE, "controller");
1236 break;
1237 case TYPE_ENCLOSURE:
1238 snprintf(label, LABEL_SIZE, "enclosure");
1239 break;
1240 case TYPE_DISK:
1241 case TYPE_ZBC:
1242 if (dev->external)
1243 snprintf(label, LABEL_SIZE, "external");
1244 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1245 snprintf(label, LABEL_SIZE, "%s",
1246 raid_label[PHYSICAL_DRIVE]);
1247 else
1248 snprintf(label, LABEL_SIZE, "RAID-%s",
1249 dev->raid_level > RAID_UNKNOWN ? "?" :
1250 raid_label[dev->raid_level]);
1251 break;
1252 case TYPE_ROM:
1253 snprintf(label, LABEL_SIZE, "rom");
1254 break;
1255 case TYPE_TAPE:
1256 snprintf(label, LABEL_SIZE, "tape");
1257 break;
1258 case TYPE_MEDIUM_CHANGER:
1259 snprintf(label, LABEL_SIZE, "changer");
1260 break;
1261 default:
1262 snprintf(label, LABEL_SIZE, "UNKNOWN");
1263 break;
1264 }
1265
1266 dev_printk(level, &h->pdev->dev,
1267 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1268 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1269 description,
1270 scsi_device_type(dev->devtype),
1271 dev->vendor,
1272 dev->model,
1273 label,
1274 dev->offload_config ? '+' : '-',
1275 dev->offload_to_be_enabled ? '+' : '-',
1276 dev->expose_device);
1277 }
1278
1279 /* Add an entry into h->dev[] array. */
hpsa_scsi_add_entry(struct ctlr_info * h,struct hpsa_scsi_dev_t * device,struct hpsa_scsi_dev_t * added[],int * nadded)1280 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1281 struct hpsa_scsi_dev_t *device,
1282 struct hpsa_scsi_dev_t *added[], int *nadded)
1283 {
1284 /* assumes h->devlock is held */
1285 int n = h->ndevices;
1286 int i;
1287 unsigned char addr1[8], addr2[8];
1288 struct hpsa_scsi_dev_t *sd;
1289
1290 if (n >= HPSA_MAX_DEVICES) {
1291 dev_err(&h->pdev->dev, "too many devices, some will be "
1292 "inaccessible.\n");
1293 return -1;
1294 }
1295
1296 /* physical devices do not have lun or target assigned until now. */
1297 if (device->lun != -1)
1298 /* Logical device, lun is already assigned. */
1299 goto lun_assigned;
1300
1301 /* If this device a non-zero lun of a multi-lun device
1302 * byte 4 of the 8-byte LUN addr will contain the logical
1303 * unit no, zero otherwise.
1304 */
1305 if (device->scsi3addr[4] == 0) {
1306 /* This is not a non-zero lun of a multi-lun device */
1307 if (hpsa_find_target_lun(h, device->scsi3addr,
1308 device->bus, &device->target, &device->lun) != 0)
1309 return -1;
1310 goto lun_assigned;
1311 }
1312
1313 /* This is a non-zero lun of a multi-lun device.
1314 * Search through our list and find the device which
1315 * has the same 8 byte LUN address, excepting byte 4 and 5.
1316 * Assign the same bus and target for this new LUN.
1317 * Use the logical unit number from the firmware.
1318 */
1319 memcpy(addr1, device->scsi3addr, 8);
1320 addr1[4] = 0;
1321 addr1[5] = 0;
1322 for (i = 0; i < n; i++) {
1323 sd = h->dev[i];
1324 memcpy(addr2, sd->scsi3addr, 8);
1325 addr2[4] = 0;
1326 addr2[5] = 0;
1327 /* differ only in byte 4 and 5? */
1328 if (memcmp(addr1, addr2, 8) == 0) {
1329 device->bus = sd->bus;
1330 device->target = sd->target;
1331 device->lun = device->scsi3addr[4];
1332 break;
1333 }
1334 }
1335 if (device->lun == -1) {
1336 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1337 " suspect firmware bug or unsupported hardware "
1338 "configuration.\n");
1339 return -1;
1340 }
1341
1342 lun_assigned:
1343
1344 h->dev[n] = device;
1345 h->ndevices++;
1346 added[*nadded] = device;
1347 (*nadded)++;
1348 hpsa_show_dev_msg(KERN_INFO, h, device,
1349 device->expose_device ? "added" : "masked");
1350 return 0;
1351 }
1352
1353 /*
1354 * Called during a scan operation.
1355 *
1356 * Update an entry in h->dev[] array.
1357 */
hpsa_scsi_update_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry)1358 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1359 int entry, struct hpsa_scsi_dev_t *new_entry)
1360 {
1361 /* assumes h->devlock is held */
1362 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1363
1364 /* Raid level changed. */
1365 h->dev[entry]->raid_level = new_entry->raid_level;
1366
1367 /*
1368 * ioacccel_handle may have changed for a dual domain disk
1369 */
1370 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371
1372 /* Raid offload parameters changed. Careful about the ordering. */
1373 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1374 /*
1375 * if drive is newly offload_enabled, we want to copy the
1376 * raid map data first. If previously offload_enabled and
1377 * offload_config were set, raid map data had better be
1378 * the same as it was before. If raid map data has changed
1379 * then it had better be the case that
1380 * h->dev[entry]->offload_enabled is currently 0.
1381 */
1382 h->dev[entry]->raid_map = new_entry->raid_map;
1383 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 }
1385 if (new_entry->offload_to_be_enabled) {
1386 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1388 }
1389 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1390 h->dev[entry]->offload_config = new_entry->offload_config;
1391 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1392 h->dev[entry]->queue_depth = new_entry->queue_depth;
1393
1394 /*
1395 * We can turn off ioaccel offload now, but need to delay turning
1396 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1397 * can't do that until all the devices are updated.
1398 */
1399 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1400
1401 /*
1402 * turn ioaccel off immediately if told to do so.
1403 */
1404 if (!new_entry->offload_to_be_enabled)
1405 h->dev[entry]->offload_enabled = 0;
1406
1407 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1408 }
1409
1410 /* Replace an entry from h->dev[] array. */
hpsa_scsi_replace_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry,struct hpsa_scsi_dev_t * added[],int * nadded,struct hpsa_scsi_dev_t * removed[],int * nremoved)1411 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1412 int entry, struct hpsa_scsi_dev_t *new_entry,
1413 struct hpsa_scsi_dev_t *added[], int *nadded,
1414 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1415 {
1416 /* assumes h->devlock is held */
1417 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418 removed[*nremoved] = h->dev[entry];
1419 (*nremoved)++;
1420
1421 /*
1422 * New physical devices won't have target/lun assigned yet
1423 * so we need to preserve the values in the slot we are replacing.
1424 */
1425 if (new_entry->target == -1) {
1426 new_entry->target = h->dev[entry]->target;
1427 new_entry->lun = h->dev[entry]->lun;
1428 }
1429
1430 h->dev[entry] = new_entry;
1431 added[*nadded] = new_entry;
1432 (*nadded)++;
1433
1434 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1435 }
1436
1437 /* Remove an entry from h->dev[] array. */
hpsa_scsi_remove_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * removed[],int * nremoved)1438 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1439 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1440 {
1441 /* assumes h->devlock is held */
1442 int i;
1443 struct hpsa_scsi_dev_t *sd;
1444
1445 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1446
1447 sd = h->dev[entry];
1448 removed[*nremoved] = h->dev[entry];
1449 (*nremoved)++;
1450
1451 for (i = entry; i < h->ndevices-1; i++)
1452 h->dev[i] = h->dev[i+1];
1453 h->ndevices--;
1454 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1455 }
1456
1457 #define SCSI3ADDR_EQ(a, b) ( \
1458 (a)[7] == (b)[7] && \
1459 (a)[6] == (b)[6] && \
1460 (a)[5] == (b)[5] && \
1461 (a)[4] == (b)[4] && \
1462 (a)[3] == (b)[3] && \
1463 (a)[2] == (b)[2] && \
1464 (a)[1] == (b)[1] && \
1465 (a)[0] == (b)[0])
1466
fixup_botched_add(struct ctlr_info * h,struct hpsa_scsi_dev_t * added)1467 static void fixup_botched_add(struct ctlr_info *h,
1468 struct hpsa_scsi_dev_t *added)
1469 {
1470 /* called when scsi_add_device fails in order to re-adjust
1471 * h->dev[] to match the mid layer's view.
1472 */
1473 unsigned long flags;
1474 int i, j;
1475
1476 spin_lock_irqsave(&h->lock, flags);
1477 for (i = 0; i < h->ndevices; i++) {
1478 if (h->dev[i] == added) {
1479 for (j = i; j < h->ndevices-1; j++)
1480 h->dev[j] = h->dev[j+1];
1481 h->ndevices--;
1482 break;
1483 }
1484 }
1485 spin_unlock_irqrestore(&h->lock, flags);
1486 kfree(added);
1487 }
1488
device_is_the_same(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1489 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1490 struct hpsa_scsi_dev_t *dev2)
1491 {
1492 /* we compare everything except lun and target as these
1493 * are not yet assigned. Compare parts likely
1494 * to differ first
1495 */
1496 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1497 sizeof(dev1->scsi3addr)) != 0)
1498 return 0;
1499 if (memcmp(dev1->device_id, dev2->device_id,
1500 sizeof(dev1->device_id)) != 0)
1501 return 0;
1502 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1503 return 0;
1504 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1505 return 0;
1506 if (dev1->devtype != dev2->devtype)
1507 return 0;
1508 if (dev1->bus != dev2->bus)
1509 return 0;
1510 return 1;
1511 }
1512
device_updated(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1513 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1514 struct hpsa_scsi_dev_t *dev2)
1515 {
1516 /* Device attributes that can change, but don't mean
1517 * that the device is a different device, nor that the OS
1518 * needs to be told anything about the change.
1519 */
1520 if (dev1->raid_level != dev2->raid_level)
1521 return 1;
1522 if (dev1->offload_config != dev2->offload_config)
1523 return 1;
1524 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1525 return 1;
1526 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1527 if (dev1->queue_depth != dev2->queue_depth)
1528 return 1;
1529 /*
1530 * This can happen for dual domain devices. An active
1531 * path change causes the ioaccel handle to change
1532 *
1533 * for example note the handle differences between p0 and p1
1534 * Device WWN ,WWN hash,Handle
1535 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1536 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1537 */
1538 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1539 return 1;
1540 return 0;
1541 }
1542
1543 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1544 * and return needle location in *index. If scsi3addr matches, but not
1545 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1546 * location in *index.
1547 * In the case of a minor device attribute change, such as RAID level, just
1548 * return DEVICE_UPDATED, along with the updated device's location in index.
1549 * If needle not found, return DEVICE_NOT_FOUND.
1550 */
hpsa_scsi_find_entry(struct hpsa_scsi_dev_t * needle,struct hpsa_scsi_dev_t * haystack[],int haystack_size,int * index)1551 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1552 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1553 int *index)
1554 {
1555 int i;
1556 #define DEVICE_NOT_FOUND 0
1557 #define DEVICE_CHANGED 1
1558 #define DEVICE_SAME 2
1559 #define DEVICE_UPDATED 3
1560 if (needle == NULL)
1561 return DEVICE_NOT_FOUND;
1562
1563 for (i = 0; i < haystack_size; i++) {
1564 if (haystack[i] == NULL) /* previously removed. */
1565 continue;
1566 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1567 *index = i;
1568 if (device_is_the_same(needle, haystack[i])) {
1569 if (device_updated(needle, haystack[i]))
1570 return DEVICE_UPDATED;
1571 return DEVICE_SAME;
1572 } else {
1573 /* Keep offline devices offline */
1574 if (needle->volume_offline)
1575 return DEVICE_NOT_FOUND;
1576 return DEVICE_CHANGED;
1577 }
1578 }
1579 }
1580 *index = -1;
1581 return DEVICE_NOT_FOUND;
1582 }
1583
hpsa_monitor_offline_device(struct ctlr_info * h,unsigned char scsi3addr[])1584 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1585 unsigned char scsi3addr[])
1586 {
1587 struct offline_device_entry *device;
1588 unsigned long flags;
1589
1590 /* Check to see if device is already on the list */
1591 spin_lock_irqsave(&h->offline_device_lock, flags);
1592 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1593 if (memcmp(device->scsi3addr, scsi3addr,
1594 sizeof(device->scsi3addr)) == 0) {
1595 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1596 return;
1597 }
1598 }
1599 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600
1601 /* Device is not on the list, add it. */
1602 device = kmalloc(sizeof(*device), GFP_KERNEL);
1603 if (!device)
1604 return;
1605
1606 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1607 spin_lock_irqsave(&h->offline_device_lock, flags);
1608 list_add_tail(&device->offline_list, &h->offline_device_list);
1609 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1610 }
1611
1612 /* Print a message explaining various offline volume states */
hpsa_show_volume_status(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd)1613 static void hpsa_show_volume_status(struct ctlr_info *h,
1614 struct hpsa_scsi_dev_t *sd)
1615 {
1616 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1617 dev_info(&h->pdev->dev,
1618 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1619 h->scsi_host->host_no,
1620 sd->bus, sd->target, sd->lun);
1621 switch (sd->volume_offline) {
1622 case HPSA_LV_OK:
1623 break;
1624 case HPSA_LV_UNDERGOING_ERASE:
1625 dev_info(&h->pdev->dev,
1626 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1627 h->scsi_host->host_no,
1628 sd->bus, sd->target, sd->lun);
1629 break;
1630 case HPSA_LV_NOT_AVAILABLE:
1631 dev_info(&h->pdev->dev,
1632 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1633 h->scsi_host->host_no,
1634 sd->bus, sd->target, sd->lun);
1635 break;
1636 case HPSA_LV_UNDERGOING_RPI:
1637 dev_info(&h->pdev->dev,
1638 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1639 h->scsi_host->host_no,
1640 sd->bus, sd->target, sd->lun);
1641 break;
1642 case HPSA_LV_PENDING_RPI:
1643 dev_info(&h->pdev->dev,
1644 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1645 h->scsi_host->host_no,
1646 sd->bus, sd->target, sd->lun);
1647 break;
1648 case HPSA_LV_ENCRYPTED_NO_KEY:
1649 dev_info(&h->pdev->dev,
1650 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1651 h->scsi_host->host_no,
1652 sd->bus, sd->target, sd->lun);
1653 break;
1654 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1655 dev_info(&h->pdev->dev,
1656 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1657 h->scsi_host->host_no,
1658 sd->bus, sd->target, sd->lun);
1659 break;
1660 case HPSA_LV_UNDERGOING_ENCRYPTION:
1661 dev_info(&h->pdev->dev,
1662 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1663 h->scsi_host->host_no,
1664 sd->bus, sd->target, sd->lun);
1665 break;
1666 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1667 dev_info(&h->pdev->dev,
1668 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1669 h->scsi_host->host_no,
1670 sd->bus, sd->target, sd->lun);
1671 break;
1672 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1673 dev_info(&h->pdev->dev,
1674 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1675 h->scsi_host->host_no,
1676 sd->bus, sd->target, sd->lun);
1677 break;
1678 case HPSA_LV_PENDING_ENCRYPTION:
1679 dev_info(&h->pdev->dev,
1680 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1681 h->scsi_host->host_no,
1682 sd->bus, sd->target, sd->lun);
1683 break;
1684 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1685 dev_info(&h->pdev->dev,
1686 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1687 h->scsi_host->host_no,
1688 sd->bus, sd->target, sd->lun);
1689 break;
1690 }
1691 }
1692
1693 /*
1694 * Figure the list of physical drive pointers for a logical drive with
1695 * raid offload configured.
1696 */
hpsa_figure_phys_disk_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices,struct hpsa_scsi_dev_t * logical_drive)1697 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1698 struct hpsa_scsi_dev_t *dev[], int ndevices,
1699 struct hpsa_scsi_dev_t *logical_drive)
1700 {
1701 struct raid_map_data *map = &logical_drive->raid_map;
1702 struct raid_map_disk_data *dd = &map->data[0];
1703 int i, j;
1704 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1705 le16_to_cpu(map->metadata_disks_per_row);
1706 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1707 le16_to_cpu(map->layout_map_count) *
1708 total_disks_per_row;
1709 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1710 total_disks_per_row;
1711 int qdepth;
1712
1713 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1714 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1715
1716 logical_drive->nphysical_disks = nraid_map_entries;
1717
1718 qdepth = 0;
1719 for (i = 0; i < nraid_map_entries; i++) {
1720 logical_drive->phys_disk[i] = NULL;
1721 if (!logical_drive->offload_config)
1722 continue;
1723 for (j = 0; j < ndevices; j++) {
1724 if (dev[j] == NULL)
1725 continue;
1726 if (dev[j]->devtype != TYPE_DISK &&
1727 dev[j]->devtype != TYPE_ZBC)
1728 continue;
1729 if (is_logical_device(dev[j]))
1730 continue;
1731 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1732 continue;
1733
1734 logical_drive->phys_disk[i] = dev[j];
1735 if (i < nphys_disk)
1736 qdepth = min(h->nr_cmds, qdepth +
1737 logical_drive->phys_disk[i]->queue_depth);
1738 break;
1739 }
1740
1741 /*
1742 * This can happen if a physical drive is removed and
1743 * the logical drive is degraded. In that case, the RAID
1744 * map data will refer to a physical disk which isn't actually
1745 * present. And in that case offload_enabled should already
1746 * be 0, but we'll turn it off here just in case
1747 */
1748 if (!logical_drive->phys_disk[i]) {
1749 dev_warn(&h->pdev->dev,
1750 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1751 __func__,
1752 h->scsi_host->host_no, logical_drive->bus,
1753 logical_drive->target, logical_drive->lun);
1754 hpsa_turn_off_ioaccel_for_device(logical_drive);
1755 logical_drive->queue_depth = 8;
1756 }
1757 }
1758 if (nraid_map_entries)
1759 /*
1760 * This is correct for reads, too high for full stripe writes,
1761 * way too high for partial stripe writes
1762 */
1763 logical_drive->queue_depth = qdepth;
1764 else {
1765 if (logical_drive->external)
1766 logical_drive->queue_depth = EXTERNAL_QD;
1767 else
1768 logical_drive->queue_depth = h->nr_cmds;
1769 }
1770 }
1771
hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices)1772 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1773 struct hpsa_scsi_dev_t *dev[], int ndevices)
1774 {
1775 int i;
1776
1777 for (i = 0; i < ndevices; i++) {
1778 if (dev[i] == NULL)
1779 continue;
1780 if (dev[i]->devtype != TYPE_DISK &&
1781 dev[i]->devtype != TYPE_ZBC)
1782 continue;
1783 if (!is_logical_device(dev[i]))
1784 continue;
1785
1786 /*
1787 * If offload is currently enabled, the RAID map and
1788 * phys_disk[] assignment *better* not be changing
1789 * because we would be changing ioaccel phsy_disk[] pointers
1790 * on a ioaccel volume processing I/O requests.
1791 *
1792 * If an ioaccel volume status changed, initially because it was
1793 * re-configured and thus underwent a transformation, or
1794 * a drive failed, we would have received a state change
1795 * request and ioaccel should have been turned off. When the
1796 * transformation completes, we get another state change
1797 * request to turn ioaccel back on. In this case, we need
1798 * to update the ioaccel information.
1799 *
1800 * Thus: If it is not currently enabled, but will be after
1801 * the scan completes, make sure the ioaccel pointers
1802 * are up to date.
1803 */
1804
1805 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1806 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1807 }
1808 }
1809
hpsa_add_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1810 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1811 {
1812 int rc = 0;
1813
1814 if (!h->scsi_host)
1815 return 1;
1816
1817 if (is_logical_device(device)) /* RAID */
1818 rc = scsi_add_device(h->scsi_host, device->bus,
1819 device->target, device->lun);
1820 else /* HBA */
1821 rc = hpsa_add_sas_device(h->sas_host, device);
1822
1823 return rc;
1824 }
1825
hpsa_find_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev)1826 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1827 struct hpsa_scsi_dev_t *dev)
1828 {
1829 int i;
1830 int count = 0;
1831
1832 for (i = 0; i < h->nr_cmds; i++) {
1833 struct CommandList *c = h->cmd_pool + i;
1834 int refcount = atomic_inc_return(&c->refcount);
1835
1836 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1837 dev->scsi3addr)) {
1838 unsigned long flags;
1839
1840 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1841 if (!hpsa_is_cmd_idle(c))
1842 ++count;
1843 spin_unlock_irqrestore(&h->lock, flags);
1844 }
1845
1846 cmd_free(h, c);
1847 }
1848
1849 return count;
1850 }
1851
1852 #define NUM_WAIT 20
hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1853 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1854 struct hpsa_scsi_dev_t *device)
1855 {
1856 int cmds = 0;
1857 int waits = 0;
1858 int num_wait = NUM_WAIT;
1859
1860 if (device->external)
1861 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1862
1863 while (1) {
1864 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1865 if (cmds == 0)
1866 break;
1867 if (++waits > num_wait)
1868 break;
1869 msleep(1000);
1870 }
1871
1872 if (waits > num_wait) {
1873 dev_warn(&h->pdev->dev,
1874 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1875 __func__,
1876 h->scsi_host->host_no,
1877 device->bus, device->target, device->lun, cmds);
1878 }
1879 }
1880
hpsa_remove_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1881 static void hpsa_remove_device(struct ctlr_info *h,
1882 struct hpsa_scsi_dev_t *device)
1883 {
1884 struct scsi_device *sdev = NULL;
1885
1886 if (!h->scsi_host)
1887 return;
1888
1889 /*
1890 * Allow for commands to drain
1891 */
1892 device->removed = 1;
1893 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1894
1895 if (is_logical_device(device)) { /* RAID */
1896 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1897 device->target, device->lun);
1898 if (sdev) {
1899 scsi_remove_device(sdev);
1900 scsi_device_put(sdev);
1901 } else {
1902 /*
1903 * We don't expect to get here. Future commands
1904 * to this device will get a selection timeout as
1905 * if the device were gone.
1906 */
1907 hpsa_show_dev_msg(KERN_WARNING, h, device,
1908 "didn't find device for removal.");
1909 }
1910 } else { /* HBA */
1911
1912 hpsa_remove_sas_device(device);
1913 }
1914 }
1915
adjust_hpsa_scsi_table(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd[],int nsds)1916 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1917 struct hpsa_scsi_dev_t *sd[], int nsds)
1918 {
1919 /* sd contains scsi3 addresses and devtypes, and inquiry
1920 * data. This function takes what's in sd to be the current
1921 * reality and updates h->dev[] to reflect that reality.
1922 */
1923 int i, entry, device_change, changes = 0;
1924 struct hpsa_scsi_dev_t *csd;
1925 unsigned long flags;
1926 struct hpsa_scsi_dev_t **added, **removed;
1927 int nadded, nremoved;
1928
1929 /*
1930 * A reset can cause a device status to change
1931 * re-schedule the scan to see what happened.
1932 */
1933 spin_lock_irqsave(&h->reset_lock, flags);
1934 if (h->reset_in_progress) {
1935 h->drv_req_rescan = 1;
1936 spin_unlock_irqrestore(&h->reset_lock, flags);
1937 return;
1938 }
1939 spin_unlock_irqrestore(&h->reset_lock, flags);
1940
1941 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1942 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1943
1944 if (!added || !removed) {
1945 dev_warn(&h->pdev->dev, "out of memory in "
1946 "adjust_hpsa_scsi_table\n");
1947 goto free_and_out;
1948 }
1949
1950 spin_lock_irqsave(&h->devlock, flags);
1951
1952 /* find any devices in h->dev[] that are not in
1953 * sd[] and remove them from h->dev[], and for any
1954 * devices which have changed, remove the old device
1955 * info and add the new device info.
1956 * If minor device attributes change, just update
1957 * the existing device structure.
1958 */
1959 i = 0;
1960 nremoved = 0;
1961 nadded = 0;
1962 while (i < h->ndevices) {
1963 csd = h->dev[i];
1964 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1965 if (device_change == DEVICE_NOT_FOUND) {
1966 changes++;
1967 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1968 continue; /* remove ^^^, hence i not incremented */
1969 } else if (device_change == DEVICE_CHANGED) {
1970 changes++;
1971 hpsa_scsi_replace_entry(h, i, sd[entry],
1972 added, &nadded, removed, &nremoved);
1973 /* Set it to NULL to prevent it from being freed
1974 * at the bottom of hpsa_update_scsi_devices()
1975 */
1976 sd[entry] = NULL;
1977 } else if (device_change == DEVICE_UPDATED) {
1978 hpsa_scsi_update_entry(h, i, sd[entry]);
1979 }
1980 i++;
1981 }
1982
1983 /* Now, make sure every device listed in sd[] is also
1984 * listed in h->dev[], adding them if they aren't found
1985 */
1986
1987 for (i = 0; i < nsds; i++) {
1988 if (!sd[i]) /* if already added above. */
1989 continue;
1990
1991 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1992 * as the SCSI mid-layer does not handle such devices well.
1993 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1994 * at 160Hz, and prevents the system from coming up.
1995 */
1996 if (sd[i]->volume_offline) {
1997 hpsa_show_volume_status(h, sd[i]);
1998 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1999 continue;
2000 }
2001
2002 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2003 h->ndevices, &entry);
2004 if (device_change == DEVICE_NOT_FOUND) {
2005 changes++;
2006 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2007 break;
2008 sd[i] = NULL; /* prevent from being freed later. */
2009 } else if (device_change == DEVICE_CHANGED) {
2010 /* should never happen... */
2011 changes++;
2012 dev_warn(&h->pdev->dev,
2013 "device unexpectedly changed.\n");
2014 /* but if it does happen, we just ignore that device */
2015 }
2016 }
2017 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2018
2019 /*
2020 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2021 * any logical drives that need it enabled.
2022 *
2023 * The raid map should be current by now.
2024 *
2025 * We are updating the device list used for I/O requests.
2026 */
2027 for (i = 0; i < h->ndevices; i++) {
2028 if (h->dev[i] == NULL)
2029 continue;
2030 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2031 }
2032
2033 spin_unlock_irqrestore(&h->devlock, flags);
2034
2035 /* Monitor devices which are in one of several NOT READY states to be
2036 * brought online later. This must be done without holding h->devlock,
2037 * so don't touch h->dev[]
2038 */
2039 for (i = 0; i < nsds; i++) {
2040 if (!sd[i]) /* if already added above. */
2041 continue;
2042 if (sd[i]->volume_offline)
2043 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2044 }
2045
2046 /* Don't notify scsi mid layer of any changes the first time through
2047 * (or if there are no changes) scsi_scan_host will do it later the
2048 * first time through.
2049 */
2050 if (!changes)
2051 goto free_and_out;
2052
2053 /* Notify scsi mid layer of any removed devices */
2054 for (i = 0; i < nremoved; i++) {
2055 if (removed[i] == NULL)
2056 continue;
2057 if (removed[i]->expose_device)
2058 hpsa_remove_device(h, removed[i]);
2059 kfree(removed[i]);
2060 removed[i] = NULL;
2061 }
2062
2063 /* Notify scsi mid layer of any added devices */
2064 for (i = 0; i < nadded; i++) {
2065 int rc = 0;
2066
2067 if (added[i] == NULL)
2068 continue;
2069 if (!(added[i]->expose_device))
2070 continue;
2071 rc = hpsa_add_device(h, added[i]);
2072 if (!rc)
2073 continue;
2074 dev_warn(&h->pdev->dev,
2075 "addition failed %d, device not added.", rc);
2076 /* now we have to remove it from h->dev,
2077 * since it didn't get added to scsi mid layer
2078 */
2079 fixup_botched_add(h, added[i]);
2080 h->drv_req_rescan = 1;
2081 }
2082
2083 free_and_out:
2084 kfree(added);
2085 kfree(removed);
2086 }
2087
2088 /*
2089 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2090 * Assume's h->devlock is held.
2091 */
lookup_hpsa_scsi_dev(struct ctlr_info * h,int bus,int target,int lun)2092 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2093 int bus, int target, int lun)
2094 {
2095 int i;
2096 struct hpsa_scsi_dev_t *sd;
2097
2098 for (i = 0; i < h->ndevices; i++) {
2099 sd = h->dev[i];
2100 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2101 return sd;
2102 }
2103 return NULL;
2104 }
2105
hpsa_slave_alloc(struct scsi_device * sdev)2106 static int hpsa_slave_alloc(struct scsi_device *sdev)
2107 {
2108 struct hpsa_scsi_dev_t *sd = NULL;
2109 unsigned long flags;
2110 struct ctlr_info *h;
2111
2112 h = sdev_to_hba(sdev);
2113 spin_lock_irqsave(&h->devlock, flags);
2114 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2115 struct scsi_target *starget;
2116 struct sas_rphy *rphy;
2117
2118 starget = scsi_target(sdev);
2119 rphy = target_to_rphy(starget);
2120 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2121 if (sd) {
2122 sd->target = sdev_id(sdev);
2123 sd->lun = sdev->lun;
2124 }
2125 }
2126 if (!sd)
2127 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2128 sdev_id(sdev), sdev->lun);
2129
2130 if (sd && sd->expose_device) {
2131 atomic_set(&sd->ioaccel_cmds_out, 0);
2132 sdev->hostdata = sd;
2133 } else
2134 sdev->hostdata = NULL;
2135 spin_unlock_irqrestore(&h->devlock, flags);
2136 return 0;
2137 }
2138
2139 /* configure scsi device based on internal per-device structure */
2140 #define CTLR_TIMEOUT (120 * HZ)
hpsa_slave_configure(struct scsi_device * sdev)2141 static int hpsa_slave_configure(struct scsi_device *sdev)
2142 {
2143 struct hpsa_scsi_dev_t *sd;
2144 int queue_depth;
2145
2146 sd = sdev->hostdata;
2147 sdev->no_uld_attach = !sd || !sd->expose_device;
2148
2149 if (sd) {
2150 sd->was_removed = 0;
2151 queue_depth = sd->queue_depth != 0 ?
2152 sd->queue_depth : sdev->host->can_queue;
2153 if (sd->external) {
2154 queue_depth = EXTERNAL_QD;
2155 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2156 blk_queue_rq_timeout(sdev->request_queue,
2157 HPSA_EH_PTRAID_TIMEOUT);
2158 }
2159 if (is_hba_lunid(sd->scsi3addr)) {
2160 sdev->eh_timeout = CTLR_TIMEOUT;
2161 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2162 }
2163 } else {
2164 queue_depth = sdev->host->can_queue;
2165 }
2166
2167 scsi_change_queue_depth(sdev, queue_depth);
2168
2169 return 0;
2170 }
2171
hpsa_slave_destroy(struct scsi_device * sdev)2172 static void hpsa_slave_destroy(struct scsi_device *sdev)
2173 {
2174 struct hpsa_scsi_dev_t *hdev = NULL;
2175
2176 hdev = sdev->hostdata;
2177
2178 if (hdev)
2179 hdev->was_removed = 1;
2180 }
2181
hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2182 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2183 {
2184 int i;
2185
2186 if (!h->ioaccel2_cmd_sg_list)
2187 return;
2188 for (i = 0; i < h->nr_cmds; i++) {
2189 kfree(h->ioaccel2_cmd_sg_list[i]);
2190 h->ioaccel2_cmd_sg_list[i] = NULL;
2191 }
2192 kfree(h->ioaccel2_cmd_sg_list);
2193 h->ioaccel2_cmd_sg_list = NULL;
2194 }
2195
hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2196 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2197 {
2198 int i;
2199
2200 if (h->chainsize <= 0)
2201 return 0;
2202
2203 h->ioaccel2_cmd_sg_list =
2204 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2205 GFP_KERNEL);
2206 if (!h->ioaccel2_cmd_sg_list)
2207 return -ENOMEM;
2208 for (i = 0; i < h->nr_cmds; i++) {
2209 h->ioaccel2_cmd_sg_list[i] =
2210 kmalloc_array(h->maxsgentries,
2211 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2212 GFP_KERNEL);
2213 if (!h->ioaccel2_cmd_sg_list[i])
2214 goto clean;
2215 }
2216 return 0;
2217
2218 clean:
2219 hpsa_free_ioaccel2_sg_chain_blocks(h);
2220 return -ENOMEM;
2221 }
2222
hpsa_free_sg_chain_blocks(struct ctlr_info * h)2223 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2224 {
2225 int i;
2226
2227 if (!h->cmd_sg_list)
2228 return;
2229 for (i = 0; i < h->nr_cmds; i++) {
2230 kfree(h->cmd_sg_list[i]);
2231 h->cmd_sg_list[i] = NULL;
2232 }
2233 kfree(h->cmd_sg_list);
2234 h->cmd_sg_list = NULL;
2235 }
2236
hpsa_alloc_sg_chain_blocks(struct ctlr_info * h)2237 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2238 {
2239 int i;
2240
2241 if (h->chainsize <= 0)
2242 return 0;
2243
2244 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2245 GFP_KERNEL);
2246 if (!h->cmd_sg_list)
2247 return -ENOMEM;
2248
2249 for (i = 0; i < h->nr_cmds; i++) {
2250 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2251 sizeof(*h->cmd_sg_list[i]),
2252 GFP_KERNEL);
2253 if (!h->cmd_sg_list[i])
2254 goto clean;
2255
2256 }
2257 return 0;
2258
2259 clean:
2260 hpsa_free_sg_chain_blocks(h);
2261 return -ENOMEM;
2262 }
2263
hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp,struct CommandList * c)2264 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2265 struct io_accel2_cmd *cp, struct CommandList *c)
2266 {
2267 struct ioaccel2_sg_element *chain_block;
2268 u64 temp64;
2269 u32 chain_size;
2270
2271 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2272 chain_size = le32_to_cpu(cp->sg[0].length);
2273 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2274 DMA_TO_DEVICE);
2275 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2276 /* prevent subsequent unmapping */
2277 cp->sg->address = 0;
2278 return -1;
2279 }
2280 cp->sg->address = cpu_to_le64(temp64);
2281 return 0;
2282 }
2283
hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp)2284 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2285 struct io_accel2_cmd *cp)
2286 {
2287 struct ioaccel2_sg_element *chain_sg;
2288 u64 temp64;
2289 u32 chain_size;
2290
2291 chain_sg = cp->sg;
2292 temp64 = le64_to_cpu(chain_sg->address);
2293 chain_size = le32_to_cpu(cp->sg[0].length);
2294 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2295 }
2296
hpsa_map_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2297 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2298 struct CommandList *c)
2299 {
2300 struct SGDescriptor *chain_sg, *chain_block;
2301 u64 temp64;
2302 u32 chain_len;
2303
2304 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2305 chain_block = h->cmd_sg_list[c->cmdindex];
2306 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2307 chain_len = sizeof(*chain_sg) *
2308 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2309 chain_sg->Len = cpu_to_le32(chain_len);
2310 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2311 DMA_TO_DEVICE);
2312 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2313 /* prevent subsequent unmapping */
2314 chain_sg->Addr = cpu_to_le64(0);
2315 return -1;
2316 }
2317 chain_sg->Addr = cpu_to_le64(temp64);
2318 return 0;
2319 }
2320
hpsa_unmap_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2321 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2322 struct CommandList *c)
2323 {
2324 struct SGDescriptor *chain_sg;
2325
2326 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2327 return;
2328
2329 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2330 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2331 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2332 }
2333
2334
2335 /* Decode the various types of errors on ioaccel2 path.
2336 * Return 1 for any error that should generate a RAID path retry.
2337 * Return 0 for errors that don't require a RAID path retry.
2338 */
handle_ioaccel_mode2_error(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct io_accel2_cmd * c2,struct hpsa_scsi_dev_t * dev)2339 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2340 struct CommandList *c,
2341 struct scsi_cmnd *cmd,
2342 struct io_accel2_cmd *c2,
2343 struct hpsa_scsi_dev_t *dev)
2344 {
2345 int data_len;
2346 int retry = 0;
2347 u32 ioaccel2_resid = 0;
2348
2349 switch (c2->error_data.serv_response) {
2350 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2351 switch (c2->error_data.status) {
2352 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2353 if (cmd)
2354 cmd->result = 0;
2355 break;
2356 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2357 cmd->result |= SAM_STAT_CHECK_CONDITION;
2358 if (c2->error_data.data_present !=
2359 IOACCEL2_SENSE_DATA_PRESENT) {
2360 memset(cmd->sense_buffer, 0,
2361 SCSI_SENSE_BUFFERSIZE);
2362 break;
2363 }
2364 /* copy the sense data */
2365 data_len = c2->error_data.sense_data_len;
2366 if (data_len > SCSI_SENSE_BUFFERSIZE)
2367 data_len = SCSI_SENSE_BUFFERSIZE;
2368 if (data_len > sizeof(c2->error_data.sense_data_buff))
2369 data_len =
2370 sizeof(c2->error_data.sense_data_buff);
2371 memcpy(cmd->sense_buffer,
2372 c2->error_data.sense_data_buff, data_len);
2373 retry = 1;
2374 break;
2375 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2376 retry = 1;
2377 break;
2378 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2379 retry = 1;
2380 break;
2381 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2382 retry = 1;
2383 break;
2384 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2385 retry = 1;
2386 break;
2387 default:
2388 retry = 1;
2389 break;
2390 }
2391 break;
2392 case IOACCEL2_SERV_RESPONSE_FAILURE:
2393 switch (c2->error_data.status) {
2394 case IOACCEL2_STATUS_SR_IO_ERROR:
2395 case IOACCEL2_STATUS_SR_IO_ABORTED:
2396 case IOACCEL2_STATUS_SR_OVERRUN:
2397 retry = 1;
2398 break;
2399 case IOACCEL2_STATUS_SR_UNDERRUN:
2400 cmd->result = (DID_OK << 16); /* host byte */
2401 ioaccel2_resid = get_unaligned_le32(
2402 &c2->error_data.resid_cnt[0]);
2403 scsi_set_resid(cmd, ioaccel2_resid);
2404 break;
2405 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2406 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2407 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2408 /*
2409 * Did an HBA disk disappear? We will eventually
2410 * get a state change event from the controller but
2411 * in the meantime, we need to tell the OS that the
2412 * HBA disk is no longer there and stop I/O
2413 * from going down. This allows the potential re-insert
2414 * of the disk to get the same device node.
2415 */
2416 if (dev->physical_device && dev->expose_device) {
2417 cmd->result = DID_NO_CONNECT << 16;
2418 dev->removed = 1;
2419 h->drv_req_rescan = 1;
2420 dev_warn(&h->pdev->dev,
2421 "%s: device is gone!\n", __func__);
2422 } else
2423 /*
2424 * Retry by sending down the RAID path.
2425 * We will get an event from ctlr to
2426 * trigger rescan regardless.
2427 */
2428 retry = 1;
2429 break;
2430 default:
2431 retry = 1;
2432 }
2433 break;
2434 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2435 break;
2436 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2437 break;
2438 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2439 retry = 1;
2440 break;
2441 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2442 break;
2443 default:
2444 retry = 1;
2445 break;
2446 }
2447
2448 if (dev->in_reset)
2449 retry = 0;
2450
2451 return retry; /* retry on raid path? */
2452 }
2453
hpsa_cmd_resolve_events(struct ctlr_info * h,struct CommandList * c)2454 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2455 struct CommandList *c)
2456 {
2457 struct hpsa_scsi_dev_t *dev = c->device;
2458
2459 /*
2460 * Reset c->scsi_cmd here so that the reset handler will know
2461 * this command has completed. Then, check to see if the handler is
2462 * waiting for this command, and, if so, wake it.
2463 */
2464 c->scsi_cmd = SCSI_CMD_IDLE;
2465 mb(); /* Declare command idle before checking for pending events. */
2466 if (dev) {
2467 atomic_dec(&dev->commands_outstanding);
2468 if (dev->in_reset &&
2469 atomic_read(&dev->commands_outstanding) <= 0)
2470 wake_up_all(&h->event_sync_wait_queue);
2471 }
2472 }
2473
hpsa_cmd_resolve_and_free(struct ctlr_info * h,struct CommandList * c)2474 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2475 struct CommandList *c)
2476 {
2477 hpsa_cmd_resolve_events(h, c);
2478 cmd_tagged_free(h, c);
2479 }
2480
hpsa_cmd_free_and_done(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd)2481 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2482 struct CommandList *c, struct scsi_cmnd *cmd)
2483 {
2484 hpsa_cmd_resolve_and_free(h, c);
2485 if (cmd && cmd->scsi_done)
2486 cmd->scsi_done(cmd);
2487 }
2488
hpsa_retry_cmd(struct ctlr_info * h,struct CommandList * c)2489 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2490 {
2491 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2492 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2493 }
2494
process_ioaccel2_completion(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)2495 static void process_ioaccel2_completion(struct ctlr_info *h,
2496 struct CommandList *c, struct scsi_cmnd *cmd,
2497 struct hpsa_scsi_dev_t *dev)
2498 {
2499 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2500
2501 /* check for good status */
2502 if (likely(c2->error_data.serv_response == 0 &&
2503 c2->error_data.status == 0)) {
2504 cmd->result = 0;
2505 return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /*
2509 * Any RAID offload error results in retry which will use
2510 * the normal I/O path so the controller can handle whatever is
2511 * wrong.
2512 */
2513 if (is_logical_device(dev) &&
2514 c2->error_data.serv_response ==
2515 IOACCEL2_SERV_RESPONSE_FAILURE) {
2516 if (c2->error_data.status ==
2517 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2518 hpsa_turn_off_ioaccel_for_device(dev);
2519 }
2520
2521 if (dev->in_reset) {
2522 cmd->result = DID_RESET << 16;
2523 return hpsa_cmd_free_and_done(h, c, cmd);
2524 }
2525
2526 return hpsa_retry_cmd(h, c);
2527 }
2528
2529 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2530 return hpsa_retry_cmd(h, c);
2531
2532 return hpsa_cmd_free_and_done(h, c, cmd);
2533 }
2534
2535 /* Returns 0 on success, < 0 otherwise. */
hpsa_evaluate_tmf_status(struct ctlr_info * h,struct CommandList * cp)2536 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2537 struct CommandList *cp)
2538 {
2539 u8 tmf_status = cp->err_info->ScsiStatus;
2540
2541 switch (tmf_status) {
2542 case CISS_TMF_COMPLETE:
2543 /*
2544 * CISS_TMF_COMPLETE never happens, instead,
2545 * ei->CommandStatus == 0 for this case.
2546 */
2547 case CISS_TMF_SUCCESS:
2548 return 0;
2549 case CISS_TMF_INVALID_FRAME:
2550 case CISS_TMF_NOT_SUPPORTED:
2551 case CISS_TMF_FAILED:
2552 case CISS_TMF_WRONG_LUN:
2553 case CISS_TMF_OVERLAPPED_TAG:
2554 break;
2555 default:
2556 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2557 tmf_status);
2558 break;
2559 }
2560 return -tmf_status;
2561 }
2562
complete_scsi_command(struct CommandList * cp)2563 static void complete_scsi_command(struct CommandList *cp)
2564 {
2565 struct scsi_cmnd *cmd;
2566 struct ctlr_info *h;
2567 struct ErrorInfo *ei;
2568 struct hpsa_scsi_dev_t *dev;
2569 struct io_accel2_cmd *c2;
2570
2571 u8 sense_key;
2572 u8 asc; /* additional sense code */
2573 u8 ascq; /* additional sense code qualifier */
2574 unsigned long sense_data_size;
2575
2576 ei = cp->err_info;
2577 cmd = cp->scsi_cmd;
2578 h = cp->h;
2579
2580 if (!cmd->device) {
2581 cmd->result = DID_NO_CONNECT << 16;
2582 return hpsa_cmd_free_and_done(h, cp, cmd);
2583 }
2584
2585 dev = cmd->device->hostdata;
2586 if (!dev) {
2587 cmd->result = DID_NO_CONNECT << 16;
2588 return hpsa_cmd_free_and_done(h, cp, cmd);
2589 }
2590 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2591
2592 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2593 if ((cp->cmd_type == CMD_SCSI) &&
2594 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2595 hpsa_unmap_sg_chain_block(h, cp);
2596
2597 if ((cp->cmd_type == CMD_IOACCEL2) &&
2598 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2599 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2600
2601 cmd->result = (DID_OK << 16); /* host byte */
2602
2603 /* SCSI command has already been cleaned up in SML */
2604 if (dev->was_removed) {
2605 hpsa_cmd_resolve_and_free(h, cp);
2606 return;
2607 }
2608
2609 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610 if (dev->physical_device && dev->expose_device &&
2611 dev->removed) {
2612 cmd->result = DID_NO_CONNECT << 16;
2613 return hpsa_cmd_free_and_done(h, cp, cmd);
2614 }
2615 if (likely(cp->phys_disk != NULL))
2616 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617 }
2618
2619 /*
2620 * We check for lockup status here as it may be set for
2621 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622 * fail_all_oustanding_cmds()
2623 */
2624 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625 /* DID_NO_CONNECT will prevent a retry */
2626 cmd->result = DID_NO_CONNECT << 16;
2627 return hpsa_cmd_free_and_done(h, cp, cmd);
2628 }
2629
2630 if (cp->cmd_type == CMD_IOACCEL2)
2631 return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633 scsi_set_resid(cmd, ei->ResidualCnt);
2634 if (ei->CommandStatus == 0)
2635 return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637 /* For I/O accelerator commands, copy over some fields to the normal
2638 * CISS header used below for error handling.
2639 */
2640 if (cp->cmd_type == CMD_IOACCEL1) {
2641 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642 cp->Header.SGList = scsi_sg_count(cmd);
2643 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646 cp->Header.tag = c->tag;
2647 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650 /* Any RAID offload error results in retry which will use
2651 * the normal I/O path so the controller can handle whatever's
2652 * wrong.
2653 */
2654 if (is_logical_device(dev)) {
2655 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656 dev->offload_enabled = 0;
2657 return hpsa_retry_cmd(h, cp);
2658 }
2659 }
2660
2661 /* an error has occurred */
2662 switch (ei->CommandStatus) {
2663
2664 case CMD_TARGET_STATUS:
2665 cmd->result |= ei->ScsiStatus;
2666 /* copy the sense data */
2667 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669 else
2670 sense_data_size = sizeof(ei->SenseInfo);
2671 if (ei->SenseLen < sense_data_size)
2672 sense_data_size = ei->SenseLen;
2673 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674 if (ei->ScsiStatus)
2675 decode_sense_data(ei->SenseInfo, sense_data_size,
2676 &sense_key, &asc, &ascq);
2677 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678 switch (sense_key) {
2679 case ABORTED_COMMAND:
2680 cmd->result |= DID_SOFT_ERROR << 16;
2681 break;
2682 case UNIT_ATTENTION:
2683 if (asc == 0x3F && ascq == 0x0E)
2684 h->drv_req_rescan = 1;
2685 break;
2686 case ILLEGAL_REQUEST:
2687 if (asc == 0x25 && ascq == 0x00) {
2688 dev->removed = 1;
2689 cmd->result = DID_NO_CONNECT << 16;
2690 }
2691 break;
2692 }
2693 break;
2694 }
2695 /* Problem was not a check condition
2696 * Pass it up to the upper layers...
2697 */
2698 if (ei->ScsiStatus) {
2699 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701 "Returning result: 0x%x\n",
2702 cp, ei->ScsiStatus,
2703 sense_key, asc, ascq,
2704 cmd->result);
2705 } else { /* scsi status is zero??? How??? */
2706 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707 "Returning no connection.\n", cp),
2708
2709 /* Ordinarily, this case should never happen,
2710 * but there is a bug in some released firmware
2711 * revisions that allows it to happen if, for
2712 * example, a 4100 backplane loses power and
2713 * the tape drive is in it. We assume that
2714 * it's a fatal error of some kind because we
2715 * can't show that it wasn't. We will make it
2716 * look like selection timeout since that is
2717 * the most common reason for this to occur,
2718 * and it's severe enough.
2719 */
2720
2721 cmd->result = DID_NO_CONNECT << 16;
2722 }
2723 break;
2724
2725 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726 break;
2727 case CMD_DATA_OVERRUN:
2728 dev_warn(&h->pdev->dev,
2729 "CDB %16phN data overrun\n", cp->Request.CDB);
2730 break;
2731 case CMD_INVALID: {
2732 /* print_bytes(cp, sizeof(*cp), 1, 0);
2733 print_cmd(cp); */
2734 /* We get CMD_INVALID if you address a non-existent device
2735 * instead of a selection timeout (no response). You will
2736 * see this if you yank out a drive, then try to access it.
2737 * This is kind of a shame because it means that any other
2738 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739 * missing target. */
2740 cmd->result = DID_NO_CONNECT << 16;
2741 }
2742 break;
2743 case CMD_PROTOCOL_ERR:
2744 cmd->result = DID_ERROR << 16;
2745 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746 cp->Request.CDB);
2747 break;
2748 case CMD_HARDWARE_ERR:
2749 cmd->result = DID_ERROR << 16;
2750 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751 cp->Request.CDB);
2752 break;
2753 case CMD_CONNECTION_LOST:
2754 cmd->result = DID_ERROR << 16;
2755 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756 cp->Request.CDB);
2757 break;
2758 case CMD_ABORTED:
2759 cmd->result = DID_ABORT << 16;
2760 break;
2761 case CMD_ABORT_FAILED:
2762 cmd->result = DID_ERROR << 16;
2763 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764 cp->Request.CDB);
2765 break;
2766 case CMD_UNSOLICITED_ABORT:
2767 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769 cp->Request.CDB);
2770 break;
2771 case CMD_TIMEOUT:
2772 cmd->result = DID_TIME_OUT << 16;
2773 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774 cp->Request.CDB);
2775 break;
2776 case CMD_UNABORTABLE:
2777 cmd->result = DID_ERROR << 16;
2778 dev_warn(&h->pdev->dev, "Command unabortable\n");
2779 break;
2780 case CMD_TMF_STATUS:
2781 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782 cmd->result = DID_ERROR << 16;
2783 break;
2784 case CMD_IOACCEL_DISABLED:
2785 /* This only handles the direct pass-through case since RAID
2786 * offload is handled above. Just attempt a retry.
2787 */
2788 cmd->result = DID_SOFT_ERROR << 16;
2789 dev_warn(&h->pdev->dev,
2790 "cp %p had HP SSD Smart Path error\n", cp);
2791 break;
2792 default:
2793 cmd->result = DID_ERROR << 16;
2794 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795 cp, ei->CommandStatus);
2796 }
2797
2798 return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800
hpsa_pci_unmap(struct pci_dev * pdev,struct CommandList * c,int sg_used,enum dma_data_direction data_direction)2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802 int sg_used, enum dma_data_direction data_direction)
2803 {
2804 int i;
2805
2806 for (i = 0; i < sg_used; i++)
2807 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808 le32_to_cpu(c->SG[i].Len),
2809 data_direction);
2810 }
2811
hpsa_map_one(struct pci_dev * pdev,struct CommandList * cp,unsigned char * buf,size_t buflen,enum dma_data_direction data_direction)2812 static int hpsa_map_one(struct pci_dev *pdev,
2813 struct CommandList *cp,
2814 unsigned char *buf,
2815 size_t buflen,
2816 enum dma_data_direction data_direction)
2817 {
2818 u64 addr64;
2819
2820 if (buflen == 0 || data_direction == DMA_NONE) {
2821 cp->Header.SGList = 0;
2822 cp->Header.SGTotal = cpu_to_le16(0);
2823 return 0;
2824 }
2825
2826 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827 if (dma_mapping_error(&pdev->dev, addr64)) {
2828 /* Prevent subsequent unmap of something never mapped */
2829 cp->Header.SGList = 0;
2830 cp->Header.SGTotal = cpu_to_le16(0);
2831 return -1;
2832 }
2833 cp->SG[0].Addr = cpu_to_le64(addr64);
2834 cp->SG[0].Len = cpu_to_le32(buflen);
2835 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2837 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838 return 0;
2839 }
2840
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
hpsa_scsi_do_simple_cmd_core(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846 DECLARE_COMPLETION_ONSTACK(wait);
2847
2848 c->waiting = &wait;
2849 __enqueue_cmd_and_start_io(h, c, reply_queue);
2850 if (timeout_msecs == NO_TIMEOUT) {
2851 /* TODO: get rid of this no-timeout thing */
2852 wait_for_completion_io(&wait);
2853 return IO_OK;
2854 }
2855 if (!wait_for_completion_io_timeout(&wait,
2856 msecs_to_jiffies(timeout_msecs))) {
2857 dev_warn(&h->pdev->dev, "Command timed out.\n");
2858 return -ETIMEDOUT;
2859 }
2860 return IO_OK;
2861 }
2862
hpsa_scsi_do_simple_cmd(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864 int reply_queue, unsigned long timeout_msecs)
2865 {
2866 if (unlikely(lockup_detected(h))) {
2867 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868 return IO_OK;
2869 }
2870 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872
lockup_detected(struct ctlr_info * h)2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875 int cpu;
2876 u32 rc, *lockup_detected;
2877
2878 cpu = get_cpu();
2879 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880 rc = *lockup_detected;
2881 put_cpu();
2882 return rc;
2883 }
2884
2885 #define MAX_DRIVER_CMD_RETRIES 25
hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info * h,struct CommandList * c,enum dma_data_direction data_direction,unsigned long timeout_msecs)2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887 struct CommandList *c, enum dma_data_direction data_direction,
2888 unsigned long timeout_msecs)
2889 {
2890 int backoff_time = 10, retry_count = 0;
2891 int rc;
2892
2893 do {
2894 memset(c->err_info, 0, sizeof(*c->err_info));
2895 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896 timeout_msecs);
2897 if (rc)
2898 break;
2899 retry_count++;
2900 if (retry_count > 3) {
2901 msleep(backoff_time);
2902 if (backoff_time < 1000)
2903 backoff_time *= 2;
2904 }
2905 } while ((check_for_unit_attention(h, c) ||
2906 check_for_busy(h, c)) &&
2907 retry_count <= MAX_DRIVER_CMD_RETRIES);
2908 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910 rc = -EIO;
2911 return rc;
2912 }
2913
hpsa_print_cmd(struct ctlr_info * h,char * txt,struct CommandList * c)2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915 struct CommandList *c)
2916 {
2917 const u8 *cdb = c->Request.CDB;
2918 const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921 txt, lun, cdb);
2922 }
2923
hpsa_scsi_interpret_error(struct ctlr_info * h,struct CommandList * cp)2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925 struct CommandList *cp)
2926 {
2927 const struct ErrorInfo *ei = cp->err_info;
2928 struct device *d = &cp->h->pdev->dev;
2929 u8 sense_key, asc, ascq;
2930 int sense_len;
2931
2932 switch (ei->CommandStatus) {
2933 case CMD_TARGET_STATUS:
2934 if (ei->SenseLen > sizeof(ei->SenseInfo))
2935 sense_len = sizeof(ei->SenseInfo);
2936 else
2937 sense_len = ei->SenseLen;
2938 decode_sense_data(ei->SenseInfo, sense_len,
2939 &sense_key, &asc, &ascq);
2940 hpsa_print_cmd(h, "SCSI status", cp);
2941 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943 sense_key, asc, ascq);
2944 else
2945 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946 if (ei->ScsiStatus == 0)
2947 dev_warn(d, "SCSI status is abnormally zero. "
2948 "(probably indicates selection timeout "
2949 "reported incorrectly due to a known "
2950 "firmware bug, circa July, 2001.)\n");
2951 break;
2952 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953 break;
2954 case CMD_DATA_OVERRUN:
2955 hpsa_print_cmd(h, "overrun condition", cp);
2956 break;
2957 case CMD_INVALID: {
2958 /* controller unfortunately reports SCSI passthru's
2959 * to non-existent targets as invalid commands.
2960 */
2961 hpsa_print_cmd(h, "invalid command", cp);
2962 dev_warn(d, "probably means device no longer present\n");
2963 }
2964 break;
2965 case CMD_PROTOCOL_ERR:
2966 hpsa_print_cmd(h, "protocol error", cp);
2967 break;
2968 case CMD_HARDWARE_ERR:
2969 hpsa_print_cmd(h, "hardware error", cp);
2970 break;
2971 case CMD_CONNECTION_LOST:
2972 hpsa_print_cmd(h, "connection lost", cp);
2973 break;
2974 case CMD_ABORTED:
2975 hpsa_print_cmd(h, "aborted", cp);
2976 break;
2977 case CMD_ABORT_FAILED:
2978 hpsa_print_cmd(h, "abort failed", cp);
2979 break;
2980 case CMD_UNSOLICITED_ABORT:
2981 hpsa_print_cmd(h, "unsolicited abort", cp);
2982 break;
2983 case CMD_TIMEOUT:
2984 hpsa_print_cmd(h, "timed out", cp);
2985 break;
2986 case CMD_UNABORTABLE:
2987 hpsa_print_cmd(h, "unabortable", cp);
2988 break;
2989 case CMD_CTLR_LOCKUP:
2990 hpsa_print_cmd(h, "controller lockup detected", cp);
2991 break;
2992 default:
2993 hpsa_print_cmd(h, "unknown status", cp);
2994 dev_warn(d, "Unknown command status %x\n",
2995 ei->CommandStatus);
2996 }
2997 }
2998
hpsa_do_receive_diagnostic(struct ctlr_info * h,u8 * scsi3addr,u8 page,u8 * buf,size_t bufsize)2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000 u8 page, u8 *buf, size_t bufsize)
3001 {
3002 int rc = IO_OK;
3003 struct CommandList *c;
3004 struct ErrorInfo *ei;
3005
3006 c = cmd_alloc(h);
3007 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008 page, scsi3addr, TYPE_CMD)) {
3009 rc = -1;
3010 goto out;
3011 }
3012 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013 NO_TIMEOUT);
3014 if (rc)
3015 goto out;
3016 ei = c->err_info;
3017 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018 hpsa_scsi_interpret_error(h, c);
3019 rc = -1;
3020 }
3021 out:
3022 cmd_free(h, c);
3023 return rc;
3024 }
3025
hpsa_get_enclosure_logical_identifier(struct ctlr_info * h,u8 * scsi3addr)3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027 u8 *scsi3addr)
3028 {
3029 u8 *buf;
3030 u64 sa = 0;
3031 int rc = 0;
3032
3033 buf = kzalloc(1024, GFP_KERNEL);
3034 if (!buf)
3035 return 0;
3036
3037 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038 buf, 1024);
3039
3040 if (rc)
3041 goto out;
3042
3043 sa = get_unaligned_be64(buf+12);
3044
3045 out:
3046 kfree(buf);
3047 return sa;
3048 }
3049
hpsa_scsi_do_inquiry(struct ctlr_info * h,unsigned char * scsi3addr,u16 page,unsigned char * buf,unsigned char bufsize)3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051 u16 page, unsigned char *buf,
3052 unsigned char bufsize)
3053 {
3054 int rc = IO_OK;
3055 struct CommandList *c;
3056 struct ErrorInfo *ei;
3057
3058 c = cmd_alloc(h);
3059
3060 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061 page, scsi3addr, TYPE_CMD)) {
3062 rc = -1;
3063 goto out;
3064 }
3065 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066 NO_TIMEOUT);
3067 if (rc)
3068 goto out;
3069 ei = c->err_info;
3070 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071 hpsa_scsi_interpret_error(h, c);
3072 rc = -1;
3073 }
3074 out:
3075 cmd_free(h, c);
3076 return rc;
3077 }
3078
hpsa_send_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080 u8 reset_type, int reply_queue)
3081 {
3082 int rc = IO_OK;
3083 struct CommandList *c;
3084 struct ErrorInfo *ei;
3085
3086 c = cmd_alloc(h);
3087 c->device = dev;
3088
3089 /* fill_cmd can't fail here, no data buffer to map. */
3090 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092 if (rc) {
3093 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094 goto out;
3095 }
3096 /* no unmap needed here because no data xfer. */
3097
3098 ei = c->err_info;
3099 if (ei->CommandStatus != 0) {
3100 hpsa_scsi_interpret_error(h, c);
3101 rc = -1;
3102 }
3103 out:
3104 cmd_free(h, c);
3105 return rc;
3106 }
3107
hpsa_cmd_dev_match(struct ctlr_info * h,struct CommandList * c,struct hpsa_scsi_dev_t * dev,unsigned char * scsi3addr)3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109 struct hpsa_scsi_dev_t *dev,
3110 unsigned char *scsi3addr)
3111 {
3112 int i;
3113 bool match = false;
3114 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117 if (hpsa_is_cmd_idle(c))
3118 return false;
3119
3120 switch (c->cmd_type) {
3121 case CMD_SCSI:
3122 case CMD_IOCTL_PEND:
3123 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124 sizeof(c->Header.LUN.LunAddrBytes));
3125 break;
3126
3127 case CMD_IOACCEL1:
3128 case CMD_IOACCEL2:
3129 if (c->phys_disk == dev) {
3130 /* HBA mode match */
3131 match = true;
3132 } else {
3133 /* Possible RAID mode -- check each phys dev. */
3134 /* FIXME: Do we need to take out a lock here? If
3135 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136 * instead. */
3137 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138 /* FIXME: an alternate test might be
3139 *
3140 * match = dev->phys_disk[i]->ioaccel_handle
3141 * == c2->scsi_nexus; */
3142 match = dev->phys_disk[i] == c->phys_disk;
3143 }
3144 }
3145 break;
3146
3147 case IOACCEL2_TMF:
3148 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149 match = dev->phys_disk[i]->ioaccel_handle ==
3150 le32_to_cpu(ac->it_nexus);
3151 }
3152 break;
3153
3154 case 0: /* The command is in the middle of being initialized. */
3155 match = false;
3156 break;
3157
3158 default:
3159 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160 c->cmd_type);
3161 BUG();
3162 }
3163
3164 return match;
3165 }
3166
hpsa_do_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168 u8 reset_type, int reply_queue)
3169 {
3170 int rc = 0;
3171
3172 /* We can really only handle one reset at a time */
3173 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175 return -EINTR;
3176 }
3177
3178 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179 if (!rc) {
3180 /* incremented by sending the reset request */
3181 atomic_dec(&dev->commands_outstanding);
3182 wait_event(h->event_sync_wait_queue,
3183 atomic_read(&dev->commands_outstanding) <= 0 ||
3184 lockup_detected(h));
3185 }
3186
3187 if (unlikely(lockup_detected(h))) {
3188 dev_warn(&h->pdev->dev,
3189 "Controller lockup detected during reset wait\n");
3190 rc = -ENODEV;
3191 }
3192
3193 if (!rc)
3194 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196 mutex_unlock(&h->reset_mutex);
3197 return rc;
3198 }
3199
hpsa_get_raid_level(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * raid_level)3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 int rc;
3204 unsigned char *buf;
3205
3206 *raid_level = RAID_UNKNOWN;
3207 buf = kzalloc(64, GFP_KERNEL);
3208 if (!buf)
3209 return;
3210
3211 if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 goto exit;
3214
3215 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218 if (rc == 0)
3219 *raid_level = buf[8];
3220 if (*raid_level > RAID_UNKNOWN)
3221 *raid_level = RAID_UNKNOWN;
3222 exit:
3223 kfree(buf);
3224 return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 struct raid_map_data *map_buff)
3231 {
3232 struct raid_map_disk_data *dd = &map_buff->data[0];
3233 int map, row, col;
3234 u16 map_cnt, row_cnt, disks_per_row;
3235
3236 if (rc != 0)
3237 return;
3238
3239 /* Show details only if debugging has been activated. */
3240 if (h->raid_offload_debug < 2)
3241 return;
3242
3243 dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 le32_to_cpu(map_buff->structure_size));
3245 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 le32_to_cpu(map_buff->volume_blk_size));
3247 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 le64_to_cpu(map_buff->volume_blk_cnt));
3249 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 map_buff->phys_blk_shift);
3251 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 map_buff->parity_rotation_shift);
3253 dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 le16_to_cpu(map_buff->strip_size));
3255 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 le64_to_cpu(map_buff->disk_starting_blk));
3257 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 le64_to_cpu(map_buff->disk_blk_cnt));
3259 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 le16_to_cpu(map_buff->data_disks_per_row));
3261 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 le16_to_cpu(map_buff->metadata_disks_per_row));
3263 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 le16_to_cpu(map_buff->row_cnt));
3265 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 le16_to_cpu(map_buff->layout_map_count));
3267 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 le16_to_cpu(map_buff->flags));
3269 dev_info(&h->pdev->dev, "encryption = %s\n",
3270 le16_to_cpu(map_buff->flags) &
3271 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3272 dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 le16_to_cpu(map_buff->dekindex));
3274 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 for (map = 0; map < map_cnt; map++) {
3276 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 for (row = 0; row < row_cnt; row++) {
3279 dev_info(&h->pdev->dev, " Row%u:\n", row);
3280 disks_per_row =
3281 le16_to_cpu(map_buff->data_disks_per_row);
3282 for (col = 0; col < disks_per_row; col++, dd++)
3283 dev_info(&h->pdev->dev,
3284 " D%02u: h=0x%04x xor=%u,%u\n",
3285 col, dd->ioaccel_handle,
3286 dd->xor_mult[0], dd->xor_mult[1]);
3287 disks_per_row =
3288 le16_to_cpu(map_buff->metadata_disks_per_row);
3289 for (col = 0; col < disks_per_row; col++, dd++)
3290 dev_info(&h->pdev->dev,
3291 " M%02u: h=0x%04x xor=%u,%u\n",
3292 col, dd->ioaccel_handle,
3293 dd->xor_mult[0], dd->xor_mult[1]);
3294 }
3295 }
3296 }
3297 #else
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 __attribute__((unused)) int rc,
3300 __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
hpsa_get_raid_map(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 int rc = 0;
3309 struct CommandList *c;
3310 struct ErrorInfo *ei;
3311
3312 c = cmd_alloc(h);
3313
3314 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 sizeof(this_device->raid_map), 0,
3316 scsi3addr, TYPE_CMD)) {
3317 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 cmd_free(h, c);
3319 return -1;
3320 }
3321 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 NO_TIMEOUT);
3323 if (rc)
3324 goto out;
3325 ei = c->err_info;
3326 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 hpsa_scsi_interpret_error(h, c);
3328 rc = -1;
3329 goto out;
3330 }
3331 cmd_free(h, c);
3332
3333 /* @todo in the future, dynamically allocate RAID map memory */
3334 if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 sizeof(this_device->raid_map)) {
3336 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 rc = -1;
3338 }
3339 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 return rc;
3341 out:
3342 cmd_free(h, c);
3343 return rc;
3344 }
3345
hpsa_bmic_sense_subsystem_information(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_sense_subsystem_info * buf,size_t bufsize)3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 unsigned char scsi3addr[], u16 bmic_device_index,
3348 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 int rc = IO_OK;
3351 struct CommandList *c;
3352 struct ErrorInfo *ei;
3353
3354 c = cmd_alloc(h);
3355
3356 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 0, RAID_CTLR_LUNID, TYPE_CMD);
3358 if (rc)
3359 goto out;
3360
3361 c->Request.CDB[2] = bmic_device_index & 0xff;
3362 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 NO_TIMEOUT);
3366 if (rc)
3367 goto out;
3368 ei = c->err_info;
3369 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 hpsa_scsi_interpret_error(h, c);
3371 rc = -1;
3372 }
3373 out:
3374 cmd_free(h, c);
3375 return rc;
3376 }
3377
hpsa_bmic_id_controller(struct ctlr_info * h,struct bmic_identify_controller * buf,size_t bufsize)3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 int rc = IO_OK;
3382 struct CommandList *c;
3383 struct ErrorInfo *ei;
3384
3385 c = cmd_alloc(h);
3386
3387 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 0, RAID_CTLR_LUNID, TYPE_CMD);
3389 if (rc)
3390 goto out;
3391
3392 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 NO_TIMEOUT);
3394 if (rc)
3395 goto out;
3396 ei = c->err_info;
3397 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 hpsa_scsi_interpret_error(h, c);
3399 rc = -1;
3400 }
3401 out:
3402 cmd_free(h, c);
3403 return rc;
3404 }
3405
hpsa_bmic_id_physical_device(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_identify_physical_device * buf,size_t bufsize)3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 unsigned char scsi3addr[], u16 bmic_device_index,
3408 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 int rc = IO_OK;
3411 struct CommandList *c;
3412 struct ErrorInfo *ei;
3413
3414 c = cmd_alloc(h);
3415 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 0, RAID_CTLR_LUNID, TYPE_CMD);
3417 if (rc)
3418 goto out;
3419
3420 c->Request.CDB[2] = bmic_device_index & 0xff;
3421 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 NO_TIMEOUT);
3425 ei = c->err_info;
3426 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 hpsa_scsi_interpret_error(h, c);
3428 rc = -1;
3429 }
3430 out:
3431 cmd_free(h, c);
3432
3433 return rc;
3434 }
3435
3436 /*
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3441 */
hpsa_get_enclosure_info(struct ctlr_info * h,unsigned char * scsi3addr,struct ReportExtendedLUNdata * rlep,int rle_index,struct hpsa_scsi_dev_t * encl_dev)3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 unsigned char *scsi3addr,
3444 struct ReportExtendedLUNdata *rlep, int rle_index,
3445 struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 int rc = -1;
3448 struct CommandList *c = NULL;
3449 struct ErrorInfo *ei = NULL;
3450 struct bmic_sense_storage_box_params *bssbp = NULL;
3451 struct bmic_identify_physical_device *id_phys = NULL;
3452 struct ext_report_lun_entry *rle;
3453 u16 bmic_device_index = 0;
3454
3455 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456 return;
3457
3458 rle = &rlep->LUN[rle_index];
3459
3460 encl_dev->eli =
3461 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466 rc = IO_OK;
3467 goto out;
3468 }
3469
3470 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471 rc = IO_OK;
3472 goto out;
3473 }
3474
3475 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476 if (!bssbp)
3477 goto out;
3478
3479 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480 if (!id_phys)
3481 goto out;
3482
3483 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484 id_phys, sizeof(*id_phys));
3485 if (rc) {
3486 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487 __func__, encl_dev->external, bmic_device_index);
3488 goto out;
3489 }
3490
3491 c = cmd_alloc(h);
3492
3493 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496 if (rc)
3497 goto out;
3498
3499 if (id_phys->phys_connector[1] == 'E')
3500 c->Request.CDB[5] = id_phys->box_index;
3501 else
3502 c->Request.CDB[5] = 0;
3503
3504 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505 NO_TIMEOUT);
3506 if (rc)
3507 goto out;
3508
3509 ei = c->err_info;
3510 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511 rc = -1;
3512 goto out;
3513 }
3514
3515 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519 rc = IO_OK;
3520 out:
3521 kfree(bssbp);
3522 kfree(id_phys);
3523
3524 if (c)
3525 cmd_free(h, c);
3526
3527 if (rc != IO_OK)
3528 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529 "Error, could not get enclosure information");
3530 }
3531
hpsa_get_sas_address_from_report_physical(struct ctlr_info * h,unsigned char * scsi3addr)3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533 unsigned char *scsi3addr)
3534 {
3535 struct ReportExtendedLUNdata *physdev;
3536 u32 nphysicals;
3537 u64 sa = 0;
3538 int i;
3539
3540 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541 if (!physdev)
3542 return 0;
3543
3544 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546 kfree(physdev);
3547 return 0;
3548 }
3549 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551 for (i = 0; i < nphysicals; i++)
3552 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554 break;
3555 }
3556
3557 kfree(physdev);
3558
3559 return sa;
3560 }
3561
hpsa_get_sas_address(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * dev)3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563 struct hpsa_scsi_dev_t *dev)
3564 {
3565 int rc;
3566 u64 sa = 0;
3567
3568 if (is_hba_lunid(scsi3addr)) {
3569 struct bmic_sense_subsystem_info *ssi;
3570
3571 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572 if (!ssi)
3573 return;
3574
3575 rc = hpsa_bmic_sense_subsystem_information(h,
3576 scsi3addr, 0, ssi, sizeof(*ssi));
3577 if (rc == 0) {
3578 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579 h->sas_address = sa;
3580 }
3581
3582 kfree(ssi);
3583 } else
3584 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586 dev->sas_address = sa;
3587 }
3588
hpsa_ext_ctrl_present(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev)3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590 struct ReportExtendedLUNdata *physdev)
3591 {
3592 u32 nphysicals;
3593 int i;
3594
3595 if (h->discovery_polling)
3596 return;
3597
3598 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600 for (i = 0; i < nphysicals; i++) {
3601 if (physdev->LUN[i].device_type ==
3602 BMIC_DEVICE_TYPE_CONTROLLER
3603 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604 dev_info(&h->pdev->dev,
3605 "External controller present, activate discovery polling and disable rld caching\n");
3606 hpsa_disable_rld_caching(h);
3607 h->discovery_polling = 1;
3608 break;
3609 }
3610 }
3611 }
3612
3613 /* Get a device id from inquiry page 0x83 */
hpsa_vpd_page_supported(struct ctlr_info * h,unsigned char scsi3addr[],u8 page)3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615 unsigned char scsi3addr[], u8 page)
3616 {
3617 int rc;
3618 int i;
3619 int pages;
3620 unsigned char *buf, bufsize;
3621
3622 buf = kzalloc(256, GFP_KERNEL);
3623 if (!buf)
3624 return false;
3625
3626 /* Get the size of the page list first */
3627 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629 buf, HPSA_VPD_HEADER_SZ);
3630 if (rc != 0)
3631 goto exit_unsupported;
3632 pages = buf[3];
3633 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634 bufsize = pages + HPSA_VPD_HEADER_SZ;
3635 else
3636 bufsize = 255;
3637
3638 /* Get the whole VPD page list */
3639 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641 buf, bufsize);
3642 if (rc != 0)
3643 goto exit_unsupported;
3644
3645 pages = buf[3];
3646 for (i = 1; i <= pages; i++)
3647 if (buf[3 + i] == page)
3648 goto exit_supported;
3649 exit_unsupported:
3650 kfree(buf);
3651 return false;
3652 exit_supported:
3653 kfree(buf);
3654 return true;
3655 }
3656
3657 /*
3658 * Called during a scan operation.
3659 * Sets ioaccel status on the new device list, not the existing device list
3660 *
3661 * The device list used during I/O will be updated later in
3662 * adjust_hpsa_scsi_table.
3663 */
hpsa_get_ioaccel_status(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667 int rc;
3668 unsigned char *buf;
3669 u8 ioaccel_status;
3670
3671 this_device->offload_config = 0;
3672 this_device->offload_enabled = 0;
3673 this_device->offload_to_be_enabled = 0;
3674
3675 buf = kzalloc(64, GFP_KERNEL);
3676 if (!buf)
3677 return;
3678 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679 goto out;
3680 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682 if (rc != 0)
3683 goto out;
3684
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689 this_device->offload_config =
3690 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691 if (this_device->offload_config) {
3692 bool offload_enabled =
3693 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694 /*
3695 * Check to see if offload can be enabled.
3696 */
3697 if (offload_enabled) {
3698 rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699 if (rc) /* could not load raid_map */
3700 goto out;
3701 this_device->offload_to_be_enabled = 1;
3702 }
3703 }
3704
3705 out:
3706 kfree(buf);
3707 return;
3708 }
3709
3710 /* Get the device id from inquiry page 0x83 */
hpsa_get_device_id(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * device_id,int index,int buflen)3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712 unsigned char *device_id, int index, int buflen)
3713 {
3714 int rc;
3715 unsigned char *buf;
3716
3717 /* Does controller have VPD for device id? */
3718 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719 return 1; /* not supported */
3720
3721 buf = kzalloc(64, GFP_KERNEL);
3722 if (!buf)
3723 return -ENOMEM;
3724
3725 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727 if (rc == 0) {
3728 if (buflen > 16)
3729 buflen = 16;
3730 memcpy(device_id, &buf[8], buflen);
3731 }
3732
3733 kfree(buf);
3734
3735 return rc; /*0 - got id, otherwise, didn't */
3736 }
3737
hpsa_scsi_do_report_luns(struct ctlr_info * h,int logical,void * buf,int bufsize,int extended_response)3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739 void *buf, int bufsize,
3740 int extended_response)
3741 {
3742 int rc = IO_OK;
3743 struct CommandList *c;
3744 unsigned char scsi3addr[8];
3745 struct ErrorInfo *ei;
3746
3747 c = cmd_alloc(h);
3748
3749 /* address the controller */
3750 memset(scsi3addr, 0, sizeof(scsi3addr));
3751 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753 rc = -EAGAIN;
3754 goto out;
3755 }
3756 if (extended_response)
3757 c->Request.CDB[1] = extended_response;
3758 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759 NO_TIMEOUT);
3760 if (rc)
3761 goto out;
3762 ei = c->err_info;
3763 if (ei->CommandStatus != 0 &&
3764 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765 hpsa_scsi_interpret_error(h, c);
3766 rc = -EIO;
3767 } else {
3768 struct ReportLUNdata *rld = buf;
3769
3770 if (rld->extended_response_flag != extended_response) {
3771 if (!h->legacy_board) {
3772 dev_err(&h->pdev->dev,
3773 "report luns requested format %u, got %u\n",
3774 extended_response,
3775 rld->extended_response_flag);
3776 rc = -EINVAL;
3777 } else
3778 rc = -EOPNOTSUPP;
3779 }
3780 }
3781 out:
3782 cmd_free(h, c);
3783 return rc;
3784 }
3785
hpsa_scsi_do_report_phys_luns(struct ctlr_info * h,struct ReportExtendedLUNdata * buf,int bufsize)3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787 struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789 int rc;
3790 struct ReportLUNdata *lbuf;
3791
3792 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793 HPSA_REPORT_PHYS_EXTENDED);
3794 if (!rc || rc != -EOPNOTSUPP)
3795 return rc;
3796
3797 /* REPORT PHYS EXTENDED is not supported */
3798 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799 if (!lbuf)
3800 return -ENOMEM;
3801
3802 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803 if (!rc) {
3804 int i;
3805 u32 nphys;
3806
3807 /* Copy ReportLUNdata header */
3808 memcpy(buf, lbuf, 8);
3809 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810 for (i = 0; i < nphys; i++)
3811 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812 }
3813 kfree(lbuf);
3814 return rc;
3815 }
3816
hpsa_scsi_do_report_log_luns(struct ctlr_info * h,struct ReportLUNdata * buf,int bufsize)3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818 struct ReportLUNdata *buf, int bufsize)
3819 {
3820 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822
hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t * device,int bus,int target,int lun)3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824 int bus, int target, int lun)
3825 {
3826 device->bus = bus;
3827 device->target = target;
3828 device->lun = lun;
3829 }
3830
3831 /* Use VPD inquiry to get details of volume status */
hpsa_get_volume_status(struct ctlr_info * h,unsigned char scsi3addr[])3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833 unsigned char scsi3addr[])
3834 {
3835 int rc;
3836 int status;
3837 int size;
3838 unsigned char *buf;
3839
3840 buf = kzalloc(64, GFP_KERNEL);
3841 if (!buf)
3842 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844 /* Does controller have VPD for logical volume status? */
3845 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846 goto exit_failed;
3847
3848 /* Get the size of the VPD return buffer */
3849 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850 buf, HPSA_VPD_HEADER_SZ);
3851 if (rc != 0)
3852 goto exit_failed;
3853 size = buf[3];
3854
3855 /* Now get the whole VPD buffer */
3856 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857 buf, size + HPSA_VPD_HEADER_SZ);
3858 if (rc != 0)
3859 goto exit_failed;
3860 status = buf[4]; /* status byte */
3861
3862 kfree(buf);
3863 return status;
3864 exit_failed:
3865 kfree(buf);
3866 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868
3869 /* Determine offline status of a volume.
3870 * Return either:
3871 * 0 (not offline)
3872 * 0xff (offline for unknown reasons)
3873 * # (integer code indicating one of several NOT READY states
3874 * describing why a volume is to be kept offline)
3875 */
hpsa_volume_offline(struct ctlr_info * h,unsigned char scsi3addr[])3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877 unsigned char scsi3addr[])
3878 {
3879 struct CommandList *c;
3880 unsigned char *sense;
3881 u8 sense_key, asc, ascq;
3882 int sense_len;
3883 int rc, ldstat = 0;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887
3888 c = cmd_alloc(h);
3889
3890 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892 NO_TIMEOUT);
3893 if (rc) {
3894 cmd_free(h, c);
3895 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896 }
3897 sense = c->err_info->SenseInfo;
3898 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899 sense_len = sizeof(c->err_info->SenseInfo);
3900 else
3901 sense_len = c->err_info->SenseLen;
3902 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903 cmd_free(h, c);
3904
3905 /* Determine the reason for not ready state */
3906 ldstat = hpsa_get_volume_status(h, scsi3addr);
3907
3908 /* Keep volume offline in certain cases: */
3909 switch (ldstat) {
3910 case HPSA_LV_FAILED:
3911 case HPSA_LV_UNDERGOING_ERASE:
3912 case HPSA_LV_NOT_AVAILABLE:
3913 case HPSA_LV_UNDERGOING_RPI:
3914 case HPSA_LV_PENDING_RPI:
3915 case HPSA_LV_ENCRYPTED_NO_KEY:
3916 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917 case HPSA_LV_UNDERGOING_ENCRYPTION:
3918 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920 return ldstat;
3921 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922 /* If VPD status page isn't available,
3923 * use ASC/ASCQ to determine state
3924 */
3925 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927 return ldstat;
3928 break;
3929 default:
3930 break;
3931 }
3932 return HPSA_LV_OK;
3933 }
3934
hpsa_update_device_info(struct ctlr_info * h,unsigned char scsi3addr[],struct hpsa_scsi_dev_t * this_device,unsigned char * is_OBDR_device)3935 static int hpsa_update_device_info(struct ctlr_info *h,
3936 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937 unsigned char *is_OBDR_device)
3938 {
3939
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944
3945 unsigned char *inq_buff;
3946 unsigned char *obdr_sig;
3947 int rc = 0;
3948
3949 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950 if (!inq_buff) {
3951 rc = -ENOMEM;
3952 goto bail_out;
3953 }
3954
3955 /* Do an inquiry to the device to see what it is. */
3956 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958 dev_err(&h->pdev->dev,
3959 "%s: inquiry failed, device will be skipped.\n",
3960 __func__);
3961 rc = HPSA_INQUIRY_FAILED;
3962 goto bail_out;
3963 }
3964
3965 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967
3968 this_device->devtype = (inq_buff[0] & 0x1f);
3969 memcpy(this_device->scsi3addr, scsi3addr, 8);
3970 memcpy(this_device->vendor, &inq_buff[8],
3971 sizeof(this_device->vendor));
3972 memcpy(this_device->model, &inq_buff[16],
3973 sizeof(this_device->model));
3974 this_device->rev = inq_buff[2];
3975 memset(this_device->device_id, 0,
3976 sizeof(this_device->device_id));
3977 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978 sizeof(this_device->device_id)) < 0) {
3979 dev_err(&h->pdev->dev,
3980 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981 h->ctlr, __func__,
3982 h->scsi_host->host_no,
3983 this_device->bus, this_device->target,
3984 this_device->lun,
3985 scsi_device_type(this_device->devtype),
3986 this_device->model);
3987 rc = HPSA_LV_FAILED;
3988 goto bail_out;
3989 }
3990
3991 if ((this_device->devtype == TYPE_DISK ||
3992 this_device->devtype == TYPE_ZBC) &&
3993 is_logical_dev_addr_mode(scsi3addr)) {
3994 unsigned char volume_offline;
3995
3996 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999 volume_offline = hpsa_volume_offline(h, scsi3addr);
4000 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001 h->legacy_board) {
4002 /*
4003 * Legacy boards might not support volume status
4004 */
4005 dev_info(&h->pdev->dev,
4006 "C0:T%d:L%d Volume status not available, assuming online.\n",
4007 this_device->target, this_device->lun);
4008 volume_offline = 0;
4009 }
4010 this_device->volume_offline = volume_offline;
4011 if (volume_offline == HPSA_LV_FAILED) {
4012 rc = HPSA_LV_FAILED;
4013 dev_err(&h->pdev->dev,
4014 "%s: LV failed, device will be skipped.\n",
4015 __func__);
4016 goto bail_out;
4017 }
4018 } else {
4019 this_device->raid_level = RAID_UNKNOWN;
4020 this_device->offload_config = 0;
4021 hpsa_turn_off_ioaccel_for_device(this_device);
4022 this_device->hba_ioaccel_enabled = 0;
4023 this_device->volume_offline = 0;
4024 this_device->queue_depth = h->nr_cmds;
4025 }
4026
4027 if (this_device->external)
4028 this_device->queue_depth = EXTERNAL_QD;
4029
4030 if (is_OBDR_device) {
4031 /* See if this is a One-Button-Disaster-Recovery device
4032 * by looking for "$DR-10" at offset 43 in inquiry data.
4033 */
4034 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036 strncmp(obdr_sig, OBDR_TAPE_SIG,
4037 OBDR_SIG_LEN) == 0);
4038 }
4039 kfree(inq_buff);
4040 return 0;
4041
4042 bail_out:
4043 kfree(inq_buff);
4044 return rc;
4045 }
4046
4047 /*
4048 * Helper function to assign bus, target, lun mapping of devices.
4049 * Logical drive target and lun are assigned at this time, but
4050 * physical device lun and target assignment are deferred (assigned
4051 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052 */
figure_bus_target_lun(struct ctlr_info * h,u8 * lunaddrbytes,struct hpsa_scsi_dev_t * device)4053 static void figure_bus_target_lun(struct ctlr_info *h,
4054 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055 {
4056 u32 lunid = get_unaligned_le32(lunaddrbytes);
4057
4058 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059 /* physical device, target and lun filled in later */
4060 if (is_hba_lunid(lunaddrbytes)) {
4061 int bus = HPSA_HBA_BUS;
4062
4063 if (!device->rev)
4064 bus = HPSA_LEGACY_HBA_BUS;
4065 hpsa_set_bus_target_lun(device,
4066 bus, 0, lunid & 0x3fff);
4067 } else
4068 /* defer target, lun assignment for physical devices */
4069 hpsa_set_bus_target_lun(device,
4070 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071 return;
4072 }
4073 /* It's a logical device */
4074 if (device->external) {
4075 hpsa_set_bus_target_lun(device,
4076 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077 lunid & 0x00ff);
4078 return;
4079 }
4080 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081 0, lunid & 0x3fff);
4082 }
4083
figure_external_status(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlocal_logicals)4084 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085 int i, int nphysicals, int nlocal_logicals)
4086 {
4087 /* In report logicals, local logicals are listed first,
4088 * then any externals.
4089 */
4090 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091
4092 if (i == raid_ctlr_position)
4093 return 0;
4094
4095 if (i < logicals_start)
4096 return 0;
4097
4098 /* i is in logicals range, but still within local logicals */
4099 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100 return 0;
4101
4102 return 1; /* it's an external lun */
4103 }
4104
4105 /*
4106 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4107 * logdev. The number of luns in physdev and logdev are returned in
4108 * *nphysicals and *nlogicals, respectively.
4109 * Returns 0 on success, -1 otherwise.
4110 */
hpsa_gather_lun_info(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev,u32 * nphysicals,struct ReportLUNdata * logdev,u32 * nlogicals)4111 static int hpsa_gather_lun_info(struct ctlr_info *h,
4112 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113 struct ReportLUNdata *logdev, u32 *nlogicals)
4114 {
4115 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117 return -1;
4118 }
4119 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123 *nphysicals = HPSA_MAX_PHYS_LUN;
4124 }
4125 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127 return -1;
4128 }
4129 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130 /* Reject Logicals in excess of our max capability. */
4131 if (*nlogicals > HPSA_MAX_LUN) {
4132 dev_warn(&h->pdev->dev,
4133 "maximum logical LUNs (%d) exceeded. "
4134 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4135 *nlogicals - HPSA_MAX_LUN);
4136 *nlogicals = HPSA_MAX_LUN;
4137 }
4138 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139 dev_warn(&h->pdev->dev,
4140 "maximum logical + physical LUNs (%d) exceeded. "
4141 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144 }
4145 return 0;
4146 }
4147
figure_lunaddrbytes(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlogicals,struct ReportExtendedLUNdata * physdev_list,struct ReportLUNdata * logdev_list)4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149 int i, int nphysicals, int nlogicals,
4150 struct ReportExtendedLUNdata *physdev_list,
4151 struct ReportLUNdata *logdev_list)
4152 {
4153 /* Helper function, figure out where the LUN ID info is coming from
4154 * given index i, lists of physical and logical devices, where in
4155 * the list the raid controller is supposed to appear (first or last)
4156 */
4157
4158 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160
4161 if (i == raid_ctlr_position)
4162 return RAID_CTLR_LUNID;
4163
4164 if (i < logicals_start)
4165 return &physdev_list->LUN[i -
4166 (raid_ctlr_position == 0)].lunid[0];
4167
4168 if (i < last_device)
4169 return &logdev_list->LUN[i - nphysicals -
4170 (raid_ctlr_position == 0)][0];
4171 BUG();
4172 return NULL;
4173 }
4174
4175 /* get physical drive ioaccel handle and queue depth */
hpsa_get_ioaccel_drive_info(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177 struct hpsa_scsi_dev_t *dev,
4178 struct ReportExtendedLUNdata *rlep, int rle_index,
4179 struct bmic_identify_physical_device *id_phys)
4180 {
4181 int rc;
4182 struct ext_report_lun_entry *rle;
4183
4184 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185 return;
4186
4187 rle = &rlep->LUN[rle_index];
4188
4189 dev->ioaccel_handle = rle->ioaccel_handle;
4190 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191 dev->hba_ioaccel_enabled = 1;
4192 memset(id_phys, 0, sizeof(*id_phys));
4193 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195 sizeof(*id_phys));
4196 if (!rc)
4197 /* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4200 dev->queue_depth =
4201 le16_to_cpu(id_phys->current_queue_depth_limit) -
4202 DRIVE_CMDS_RESERVED_FOR_FW;
4203 else
4204 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205 }
4206
hpsa_get_path_info(struct hpsa_scsi_dev_t * this_device,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208 struct ReportExtendedLUNdata *rlep, int rle_index,
4209 struct bmic_identify_physical_device *id_phys)
4210 {
4211 struct ext_report_lun_entry *rle;
4212
4213 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214 return;
4215
4216 rle = &rlep->LUN[rle_index];
4217
4218 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219 this_device->hba_ioaccel_enabled = 1;
4220
4221 memcpy(&this_device->active_path_index,
4222 &id_phys->active_path_number,
4223 sizeof(this_device->active_path_index));
4224 memcpy(&this_device->path_map,
4225 &id_phys->redundant_path_present_map,
4226 sizeof(this_device->path_map));
4227 memcpy(&this_device->box,
4228 &id_phys->alternate_paths_phys_box_on_port,
4229 sizeof(this_device->box));
4230 memcpy(&this_device->phys_connector,
4231 &id_phys->alternate_paths_phys_connector,
4232 sizeof(this_device->phys_connector));
4233 memcpy(&this_device->bay,
4234 &id_phys->phys_bay_in_box,
4235 sizeof(this_device->bay));
4236 }
4237
4238 /* get number of local logical disks. */
hpsa_set_local_logical_count(struct ctlr_info * h,struct bmic_identify_controller * id_ctlr,u32 * nlocals)4239 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240 struct bmic_identify_controller *id_ctlr,
4241 u32 *nlocals)
4242 {
4243 int rc;
4244
4245 if (!id_ctlr) {
4246 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247 __func__);
4248 return -ENOMEM;
4249 }
4250 memset(id_ctlr, 0, sizeof(*id_ctlr));
4251 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252 if (!rc)
4253 if (id_ctlr->configured_logical_drive_count < 255)
4254 *nlocals = id_ctlr->configured_logical_drive_count;
4255 else
4256 *nlocals = le16_to_cpu(
4257 id_ctlr->extended_logical_unit_count);
4258 else
4259 *nlocals = -1;
4260 return rc;
4261 }
4262
hpsa_is_disk_spare(struct ctlr_info * h,u8 * lunaddrbytes)4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264 {
4265 struct bmic_identify_physical_device *id_phys;
4266 bool is_spare = false;
4267 int rc;
4268
4269 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270 if (!id_phys)
4271 return false;
4272
4273 rc = hpsa_bmic_id_physical_device(h,
4274 lunaddrbytes,
4275 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276 id_phys, sizeof(*id_phys));
4277 if (rc == 0)
4278 is_spare = (id_phys->more_flags >> 6) & 0x01;
4279
4280 kfree(id_phys);
4281 return is_spare;
4282 }
4283
4284 #define RPL_DEV_FLAG_NON_DISK 0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4287
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4289
hpsa_skip_device(struct ctlr_info * h,u8 * lunaddrbytes,struct ext_report_lun_entry * rle)4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291 struct ext_report_lun_entry *rle)
4292 {
4293 u8 device_flags;
4294 u8 device_type;
4295
4296 if (!MASKED_DEVICE(lunaddrbytes))
4297 return false;
4298
4299 device_flags = rle->device_flags;
4300 device_type = rle->device_type;
4301
4302 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304 return false;
4305 return true;
4306 }
4307
4308 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309 return false;
4310
4311 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312 return false;
4313
4314 /*
4315 * Spares may be spun down, we do not want to
4316 * do an Inquiry to a RAID set spare drive as
4317 * that would have them spun up, that is a
4318 * performance hit because I/O to the RAID device
4319 * stops while the spin up occurs which can take
4320 * over 50 seconds.
4321 */
4322 if (hpsa_is_disk_spare(h, lunaddrbytes))
4323 return true;
4324
4325 return false;
4326 }
4327
hpsa_update_scsi_devices(struct ctlr_info * h)4328 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329 {
4330 /* the idea here is we could get notified
4331 * that some devices have changed, so we do a report
4332 * physical luns and report logical luns cmd, and adjust
4333 * our list of devices accordingly.
4334 *
4335 * The scsi3addr's of devices won't change so long as the
4336 * adapter is not reset. That means we can rescan and
4337 * tell which devices we already know about, vs. new
4338 * devices, vs. disappearing devices.
4339 */
4340 struct ReportExtendedLUNdata *physdev_list = NULL;
4341 struct ReportLUNdata *logdev_list = NULL;
4342 struct bmic_identify_physical_device *id_phys = NULL;
4343 struct bmic_identify_controller *id_ctlr = NULL;
4344 u32 nphysicals = 0;
4345 u32 nlogicals = 0;
4346 u32 nlocal_logicals = 0;
4347 u32 ndev_allocated = 0;
4348 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349 int ncurrent = 0;
4350 int i, ndevs_to_allocate;
4351 int raid_ctlr_position;
4352 bool physical_device;
4353 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354
4355 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361
4362 if (!currentsd || !physdev_list || !logdev_list ||
4363 !tmpdevice || !id_phys || !id_ctlr) {
4364 dev_err(&h->pdev->dev, "out of memory\n");
4365 goto out;
4366 }
4367 memset(lunzerobits, 0, sizeof(lunzerobits));
4368
4369 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370
4371 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372 logdev_list, &nlogicals)) {
4373 h->drv_req_rescan = 1;
4374 goto out;
4375 }
4376
4377 /* Set number of local logicals (non PTRAID) */
4378 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379 dev_warn(&h->pdev->dev,
4380 "%s: Can't determine number of local logical devices.\n",
4381 __func__);
4382 }
4383
4384 /* We might see up to the maximum number of logical and physical disks
4385 * plus external target devices, and a device for the local RAID
4386 * controller.
4387 */
4388 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389
4390 hpsa_ext_ctrl_present(h, physdev_list);
4391
4392 /* Allocate the per device structures */
4393 for (i = 0; i < ndevs_to_allocate; i++) {
4394 if (i >= HPSA_MAX_DEVICES) {
4395 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4397 ndevs_to_allocate - HPSA_MAX_DEVICES);
4398 break;
4399 }
4400
4401 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402 if (!currentsd[i]) {
4403 h->drv_req_rescan = 1;
4404 goto out;
4405 }
4406 ndev_allocated++;
4407 }
4408
4409 if (is_scsi_rev_5(h))
4410 raid_ctlr_position = 0;
4411 else
4412 raid_ctlr_position = nphysicals + nlogicals;
4413
4414 /* adjust our table of devices */
4415 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416 u8 *lunaddrbytes, is_OBDR = 0;
4417 int rc = 0;
4418 int phys_dev_index = i - (raid_ctlr_position == 0);
4419 bool skip_device = false;
4420
4421 memset(tmpdevice, 0, sizeof(*tmpdevice));
4422
4423 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424
4425 /* Figure out where the LUN ID info is coming from */
4426 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427 i, nphysicals, nlogicals, physdev_list, logdev_list);
4428
4429 /* Determine if this is a lun from an external target array */
4430 tmpdevice->external =
4431 figure_external_status(h, raid_ctlr_position, i,
4432 nphysicals, nlocal_logicals);
4433
4434 /*
4435 * Skip over some devices such as a spare.
4436 */
4437 if (phys_dev_index >= 0 && !tmpdevice->external &&
4438 physical_device) {
4439 skip_device = hpsa_skip_device(h, lunaddrbytes,
4440 &physdev_list->LUN[phys_dev_index]);
4441 if (skip_device)
4442 continue;
4443 }
4444
4445 /* Get device type, vendor, model, device id, raid_map */
4446 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447 &is_OBDR);
4448 if (rc == -ENOMEM) {
4449 dev_warn(&h->pdev->dev,
4450 "Out of memory, rescan deferred.\n");
4451 h->drv_req_rescan = 1;
4452 goto out;
4453 }
4454 if (rc) {
4455 h->drv_req_rescan = 1;
4456 continue;
4457 }
4458
4459 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460 this_device = currentsd[ncurrent];
4461
4462 *this_device = *tmpdevice;
4463 this_device->physical_device = physical_device;
4464
4465 /*
4466 * Expose all devices except for physical devices that
4467 * are masked.
4468 */
4469 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470 this_device->expose_device = 0;
4471 else
4472 this_device->expose_device = 1;
4473
4474
4475 /*
4476 * Get the SAS address for physical devices that are exposed.
4477 */
4478 if (this_device->physical_device && this_device->expose_device)
4479 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480
4481 switch (this_device->devtype) {
4482 case TYPE_ROM:
4483 /* We don't *really* support actual CD-ROM devices,
4484 * just "One Button Disaster Recovery" tape drive
4485 * which temporarily pretends to be a CD-ROM drive.
4486 * So we check that the device is really an OBDR tape
4487 * device by checking for "$DR-10" in bytes 43-48 of
4488 * the inquiry data.
4489 */
4490 if (is_OBDR)
4491 ncurrent++;
4492 break;
4493 case TYPE_DISK:
4494 case TYPE_ZBC:
4495 if (this_device->physical_device) {
4496 /* The disk is in HBA mode. */
4497 /* Never use RAID mapper in HBA mode. */
4498 this_device->offload_enabled = 0;
4499 hpsa_get_ioaccel_drive_info(h, this_device,
4500 physdev_list, phys_dev_index, id_phys);
4501 hpsa_get_path_info(this_device,
4502 physdev_list, phys_dev_index, id_phys);
4503 }
4504 ncurrent++;
4505 break;
4506 case TYPE_TAPE:
4507 case TYPE_MEDIUM_CHANGER:
4508 ncurrent++;
4509 break;
4510 case TYPE_ENCLOSURE:
4511 if (!this_device->external)
4512 hpsa_get_enclosure_info(h, lunaddrbytes,
4513 physdev_list, phys_dev_index,
4514 this_device);
4515 ncurrent++;
4516 break;
4517 case TYPE_RAID:
4518 /* Only present the Smartarray HBA as a RAID controller.
4519 * If it's a RAID controller other than the HBA itself
4520 * (an external RAID controller, MSA500 or similar)
4521 * don't present it.
4522 */
4523 if (!is_hba_lunid(lunaddrbytes))
4524 break;
4525 ncurrent++;
4526 break;
4527 default:
4528 break;
4529 }
4530 if (ncurrent >= HPSA_MAX_DEVICES)
4531 break;
4532 }
4533
4534 if (h->sas_host == NULL) {
4535 int rc = 0;
4536
4537 rc = hpsa_add_sas_host(h);
4538 if (rc) {
4539 dev_warn(&h->pdev->dev,
4540 "Could not add sas host %d\n", rc);
4541 goto out;
4542 }
4543 }
4544
4545 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546 out:
4547 kfree(tmpdevice);
4548 for (i = 0; i < ndev_allocated; i++)
4549 kfree(currentsd[i]);
4550 kfree(currentsd);
4551 kfree(physdev_list);
4552 kfree(logdev_list);
4553 kfree(id_ctlr);
4554 kfree(id_phys);
4555 }
4556
hpsa_set_sg_descriptor(struct SGDescriptor * desc,struct scatterlist * sg)4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558 struct scatterlist *sg)
4559 {
4560 u64 addr64 = (u64) sg_dma_address(sg);
4561 unsigned int len = sg_dma_len(sg);
4562
4563 desc->Addr = cpu_to_le64(addr64);
4564 desc->Len = cpu_to_le32(len);
4565 desc->Ext = 0;
4566 }
4567
4568 /*
4569 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570 * dma mapping and fills in the scatter gather entries of the
4571 * hpsa command, cp.
4572 */
hpsa_scatter_gather(struct ctlr_info * h,struct CommandList * cp,struct scsi_cmnd * cmd)4573 static int hpsa_scatter_gather(struct ctlr_info *h,
4574 struct CommandList *cp,
4575 struct scsi_cmnd *cmd)
4576 {
4577 struct scatterlist *sg;
4578 int use_sg, i, sg_limit, chained;
4579 struct SGDescriptor *curr_sg;
4580
4581 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582
4583 use_sg = scsi_dma_map(cmd);
4584 if (use_sg < 0)
4585 return use_sg;
4586
4587 if (!use_sg)
4588 goto sglist_finished;
4589
4590 /*
4591 * If the number of entries is greater than the max for a single list,
4592 * then we have a chained list; we will set up all but one entry in the
4593 * first list (the last entry is saved for link information);
4594 * otherwise, we don't have a chained list and we'll set up at each of
4595 * the entries in the one list.
4596 */
4597 curr_sg = cp->SG;
4598 chained = use_sg > h->max_cmd_sg_entries;
4599 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601 hpsa_set_sg_descriptor(curr_sg, sg);
4602 curr_sg++;
4603 }
4604
4605 if (chained) {
4606 /*
4607 * Continue with the chained list. Set curr_sg to the chained
4608 * list. Modify the limit to the total count less the entries
4609 * we've already set up. Resume the scan at the list entry
4610 * where the previous loop left off.
4611 */
4612 curr_sg = h->cmd_sg_list[cp->cmdindex];
4613 sg_limit = use_sg - sg_limit;
4614 for_each_sg(sg, sg, sg_limit, i) {
4615 hpsa_set_sg_descriptor(curr_sg, sg);
4616 curr_sg++;
4617 }
4618 }
4619
4620 /* Back the pointer up to the last entry and mark it as "last". */
4621 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622
4623 if (use_sg + chained > h->maxSG)
4624 h->maxSG = use_sg + chained;
4625
4626 if (chained) {
4627 cp->Header.SGList = h->max_cmd_sg_entries;
4628 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629 if (hpsa_map_sg_chain_block(h, cp)) {
4630 scsi_dma_unmap(cmd);
4631 return -1;
4632 }
4633 return 0;
4634 }
4635
4636 sglist_finished:
4637
4638 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4639 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640 return 0;
4641 }
4642
warn_zero_length_transfer(struct ctlr_info * h,u8 * cdb,int cdb_len,const char * func)4643 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644 u8 *cdb, int cdb_len,
4645 const char *func)
4646 {
4647 dev_warn(&h->pdev->dev,
4648 "%s: Blocking zero-length request: CDB:%*phN\n",
4649 func, cdb_len, cdb);
4650 }
4651
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
is_zero_length_transfer(u8 * cdb)4654 static bool is_zero_length_transfer(u8 *cdb)
4655 {
4656 u32 block_cnt;
4657
4658 /* Block zero-length transfer sizes on certain commands. */
4659 switch (cdb[0]) {
4660 case READ_10:
4661 case WRITE_10:
4662 case VERIFY: /* 0x2F */
4663 case WRITE_VERIFY: /* 0x2E */
4664 block_cnt = get_unaligned_be16(&cdb[7]);
4665 break;
4666 case READ_12:
4667 case WRITE_12:
4668 case VERIFY_12: /* 0xAF */
4669 case WRITE_VERIFY_12: /* 0xAE */
4670 block_cnt = get_unaligned_be32(&cdb[6]);
4671 break;
4672 case READ_16:
4673 case WRITE_16:
4674 case VERIFY_16: /* 0x8F */
4675 block_cnt = get_unaligned_be32(&cdb[10]);
4676 break;
4677 default:
4678 return false;
4679 }
4680
4681 return block_cnt == 0;
4682 }
4683
fixup_ioaccel_cdb(u8 * cdb,int * cdb_len)4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685 {
4686 int is_write = 0;
4687 u32 block;
4688 u32 block_cnt;
4689
4690 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691 switch (cdb[0]) {
4692 case WRITE_6:
4693 case WRITE_12:
4694 is_write = 1;
4695 fallthrough;
4696 case READ_6:
4697 case READ_12:
4698 if (*cdb_len == 6) {
4699 block = (((cdb[1] & 0x1F) << 16) |
4700 (cdb[2] << 8) |
4701 cdb[3]);
4702 block_cnt = cdb[4];
4703 if (block_cnt == 0)
4704 block_cnt = 256;
4705 } else {
4706 BUG_ON(*cdb_len != 12);
4707 block = get_unaligned_be32(&cdb[2]);
4708 block_cnt = get_unaligned_be32(&cdb[6]);
4709 }
4710 if (block_cnt > 0xffff)
4711 return IO_ACCEL_INELIGIBLE;
4712
4713 cdb[0] = is_write ? WRITE_10 : READ_10;
4714 cdb[1] = 0;
4715 cdb[2] = (u8) (block >> 24);
4716 cdb[3] = (u8) (block >> 16);
4717 cdb[4] = (u8) (block >> 8);
4718 cdb[5] = (u8) (block);
4719 cdb[6] = 0;
4720 cdb[7] = (u8) (block_cnt >> 8);
4721 cdb[8] = (u8) (block_cnt);
4722 cdb[9] = 0;
4723 *cdb_len = 10;
4724 break;
4725 }
4726 return 0;
4727 }
4728
hpsa_scsi_ioaccel1_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732 {
4733 struct scsi_cmnd *cmd = c->scsi_cmd;
4734 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735 unsigned int len;
4736 unsigned int total_len = 0;
4737 struct scatterlist *sg;
4738 u64 addr64;
4739 int use_sg, i;
4740 struct SGDescriptor *curr_sg;
4741 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742
4743 /* TODO: implement chaining support */
4744 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745 atomic_dec(&phys_disk->ioaccel_cmds_out);
4746 return IO_ACCEL_INELIGIBLE;
4747 }
4748
4749 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750
4751 if (is_zero_length_transfer(cdb)) {
4752 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753 atomic_dec(&phys_disk->ioaccel_cmds_out);
4754 return IO_ACCEL_INELIGIBLE;
4755 }
4756
4757 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758 atomic_dec(&phys_disk->ioaccel_cmds_out);
4759 return IO_ACCEL_INELIGIBLE;
4760 }
4761
4762 c->cmd_type = CMD_IOACCEL1;
4763
4764 /* Adjust the DMA address to point to the accelerated command buffer */
4765 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766 (c->cmdindex * sizeof(*cp));
4767 BUG_ON(c->busaddr & 0x0000007F);
4768
4769 use_sg = scsi_dma_map(cmd);
4770 if (use_sg < 0) {
4771 atomic_dec(&phys_disk->ioaccel_cmds_out);
4772 return use_sg;
4773 }
4774
4775 if (use_sg) {
4776 curr_sg = cp->SG;
4777 scsi_for_each_sg(cmd, sg, use_sg, i) {
4778 addr64 = (u64) sg_dma_address(sg);
4779 len = sg_dma_len(sg);
4780 total_len += len;
4781 curr_sg->Addr = cpu_to_le64(addr64);
4782 curr_sg->Len = cpu_to_le32(len);
4783 curr_sg->Ext = cpu_to_le32(0);
4784 curr_sg++;
4785 }
4786 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787
4788 switch (cmd->sc_data_direction) {
4789 case DMA_TO_DEVICE:
4790 control |= IOACCEL1_CONTROL_DATA_OUT;
4791 break;
4792 case DMA_FROM_DEVICE:
4793 control |= IOACCEL1_CONTROL_DATA_IN;
4794 break;
4795 case DMA_NONE:
4796 control |= IOACCEL1_CONTROL_NODATAXFER;
4797 break;
4798 default:
4799 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800 cmd->sc_data_direction);
4801 BUG();
4802 break;
4803 }
4804 } else {
4805 control |= IOACCEL1_CONTROL_NODATAXFER;
4806 }
4807
4808 c->Header.SGList = use_sg;
4809 /* Fill out the command structure to submit */
4810 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811 cp->transfer_len = cpu_to_le32(total_len);
4812 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814 cp->control = cpu_to_le32(control);
4815 memcpy(cp->CDB, cdb, cdb_len);
4816 memcpy(cp->CISS_LUN, scsi3addr, 8);
4817 /* Tag was already set at init time. */
4818 enqueue_cmd_and_start_io(h, c);
4819 return 0;
4820 }
4821
4822 /*
4823 * Queue a command directly to a device behind the controller using the
4824 * I/O accelerator path.
4825 */
hpsa_scsi_ioaccel_direct_map(struct ctlr_info * h,struct CommandList * c)4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827 struct CommandList *c)
4828 {
4829 struct scsi_cmnd *cmd = c->scsi_cmd;
4830 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831
4832 if (!dev)
4833 return -1;
4834
4835 c->phys_disk = dev;
4836
4837 if (dev->in_reset)
4838 return -1;
4839
4840 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842 }
4843
4844 /*
4845 * Set encryption parameters for the ioaccel2 request
4846 */
set_encrypt_ioaccel2(struct ctlr_info * h,struct CommandList * c,struct io_accel2_cmd * cp)4847 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848 struct CommandList *c, struct io_accel2_cmd *cp)
4849 {
4850 struct scsi_cmnd *cmd = c->scsi_cmd;
4851 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852 struct raid_map_data *map = &dev->raid_map;
4853 u64 first_block;
4854
4855 /* Are we doing encryption on this device */
4856 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857 return;
4858 /* Set the data encryption key index. */
4859 cp->dekindex = map->dekindex;
4860
4861 /* Set the encryption enable flag, encoded into direction field. */
4862 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863
4864 /* Set encryption tweak values based on logical block address
4865 * If block size is 512, tweak value is LBA.
4866 * For other block sizes, tweak is (LBA * block size)/ 512)
4867 */
4868 switch (cmd->cmnd[0]) {
4869 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870 case READ_6:
4871 case WRITE_6:
4872 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873 (cmd->cmnd[2] << 8) |
4874 cmd->cmnd[3]);
4875 break;
4876 case WRITE_10:
4877 case READ_10:
4878 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879 case WRITE_12:
4880 case READ_12:
4881 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882 break;
4883 case WRITE_16:
4884 case READ_16:
4885 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886 break;
4887 default:
4888 dev_err(&h->pdev->dev,
4889 "ERROR: %s: size (0x%x) not supported for encryption\n",
4890 __func__, cmd->cmnd[0]);
4891 BUG();
4892 break;
4893 }
4894
4895 if (le32_to_cpu(map->volume_blk_size) != 512)
4896 first_block = first_block *
4897 le32_to_cpu(map->volume_blk_size)/512;
4898
4899 cp->tweak_lower = cpu_to_le32(first_block);
4900 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901 }
4902
hpsa_scsi_ioaccel2_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906 {
4907 struct scsi_cmnd *cmd = c->scsi_cmd;
4908 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909 struct ioaccel2_sg_element *curr_sg;
4910 int use_sg, i;
4911 struct scatterlist *sg;
4912 u64 addr64;
4913 u32 len;
4914 u32 total_len = 0;
4915
4916 if (!cmd->device)
4917 return -1;
4918
4919 if (!cmd->device->hostdata)
4920 return -1;
4921
4922 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923
4924 if (is_zero_length_transfer(cdb)) {
4925 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926 atomic_dec(&phys_disk->ioaccel_cmds_out);
4927 return IO_ACCEL_INELIGIBLE;
4928 }
4929
4930 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932 return IO_ACCEL_INELIGIBLE;
4933 }
4934
4935 c->cmd_type = CMD_IOACCEL2;
4936 /* Adjust the DMA address to point to the accelerated command buffer */
4937 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938 (c->cmdindex * sizeof(*cp));
4939 BUG_ON(c->busaddr & 0x0000007F);
4940
4941 memset(cp, 0, sizeof(*cp));
4942 cp->IU_type = IOACCEL2_IU_TYPE;
4943
4944 use_sg = scsi_dma_map(cmd);
4945 if (use_sg < 0) {
4946 atomic_dec(&phys_disk->ioaccel_cmds_out);
4947 return use_sg;
4948 }
4949
4950 if (use_sg) {
4951 curr_sg = cp->sg;
4952 if (use_sg > h->ioaccel_maxsg) {
4953 addr64 = le64_to_cpu(
4954 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955 curr_sg->address = cpu_to_le64(addr64);
4956 curr_sg->length = 0;
4957 curr_sg->reserved[0] = 0;
4958 curr_sg->reserved[1] = 0;
4959 curr_sg->reserved[2] = 0;
4960 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961
4962 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963 }
4964 scsi_for_each_sg(cmd, sg, use_sg, i) {
4965 addr64 = (u64) sg_dma_address(sg);
4966 len = sg_dma_len(sg);
4967 total_len += len;
4968 curr_sg->address = cpu_to_le64(addr64);
4969 curr_sg->length = cpu_to_le32(len);
4970 curr_sg->reserved[0] = 0;
4971 curr_sg->reserved[1] = 0;
4972 curr_sg->reserved[2] = 0;
4973 curr_sg->chain_indicator = 0;
4974 curr_sg++;
4975 }
4976
4977 /*
4978 * Set the last s/g element bit
4979 */
4980 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981
4982 switch (cmd->sc_data_direction) {
4983 case DMA_TO_DEVICE:
4984 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986 break;
4987 case DMA_FROM_DEVICE:
4988 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 cp->direction |= IOACCEL2_DIR_DATA_IN;
4990 break;
4991 case DMA_NONE:
4992 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993 cp->direction |= IOACCEL2_DIR_NO_DATA;
4994 break;
4995 default:
4996 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997 cmd->sc_data_direction);
4998 BUG();
4999 break;
5000 }
5001 } else {
5002 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003 cp->direction |= IOACCEL2_DIR_NO_DATA;
5004 }
5005
5006 /* Set encryption parameters, if necessary */
5007 set_encrypt_ioaccel2(h, c, cp);
5008
5009 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012
5013 cp->data_len = cpu_to_le32(total_len);
5014 cp->err_ptr = cpu_to_le64(c->busaddr +
5015 offsetof(struct io_accel2_cmd, error_data));
5016 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017
5018 /* fill in sg elements */
5019 if (use_sg > h->ioaccel_maxsg) {
5020 cp->sg_count = 1;
5021 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023 atomic_dec(&phys_disk->ioaccel_cmds_out);
5024 scsi_dma_unmap(cmd);
5025 return -1;
5026 }
5027 } else
5028 cp->sg_count = (u8) use_sg;
5029
5030 if (phys_disk->in_reset) {
5031 cmd->result = DID_RESET << 16;
5032 return -1;
5033 }
5034
5035 enqueue_cmd_and_start_io(h, c);
5036 return 0;
5037 }
5038
5039 /*
5040 * Queue a command to the correct I/O accelerator path.
5041 */
hpsa_scsi_ioaccel_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045 {
5046 if (!c->scsi_cmd->device)
5047 return -1;
5048
5049 if (!c->scsi_cmd->device->hostdata)
5050 return -1;
5051
5052 if (phys_disk->in_reset)
5053 return -1;
5054
5055 /* Try to honor the device's queue depth */
5056 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057 phys_disk->queue_depth) {
5058 atomic_dec(&phys_disk->ioaccel_cmds_out);
5059 return IO_ACCEL_INELIGIBLE;
5060 }
5061 if (h->transMethod & CFGTBL_Trans_io_accel1)
5062 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063 cdb, cdb_len, scsi3addr,
5064 phys_disk);
5065 else
5066 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067 cdb, cdb_len, scsi3addr,
5068 phys_disk);
5069 }
5070
raid_map_helper(struct raid_map_data * map,int offload_to_mirror,u32 * map_index,u32 * current_group)5071 static void raid_map_helper(struct raid_map_data *map,
5072 int offload_to_mirror, u32 *map_index, u32 *current_group)
5073 {
5074 if (offload_to_mirror == 0) {
5075 /* use physical disk in the first mirrored group. */
5076 *map_index %= le16_to_cpu(map->data_disks_per_row);
5077 return;
5078 }
5079 do {
5080 /* determine mirror group that *map_index indicates */
5081 *current_group = *map_index /
5082 le16_to_cpu(map->data_disks_per_row);
5083 if (offload_to_mirror == *current_group)
5084 continue;
5085 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086 /* select map index from next group */
5087 *map_index += le16_to_cpu(map->data_disks_per_row);
5088 (*current_group)++;
5089 } else {
5090 /* select map index from first group */
5091 *map_index %= le16_to_cpu(map->data_disks_per_row);
5092 *current_group = 0;
5093 }
5094 } while (offload_to_mirror != *current_group);
5095 }
5096
5097 /*
5098 * Attempt to perform offload RAID mapping for a logical volume I/O.
5099 */
hpsa_scsi_ioaccel_raid_map(struct ctlr_info * h,struct CommandList * c)5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101 struct CommandList *c)
5102 {
5103 struct scsi_cmnd *cmd = c->scsi_cmd;
5104 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105 struct raid_map_data *map = &dev->raid_map;
5106 struct raid_map_disk_data *dd = &map->data[0];
5107 int is_write = 0;
5108 u32 map_index;
5109 u64 first_block, last_block;
5110 u32 block_cnt;
5111 u32 blocks_per_row;
5112 u64 first_row, last_row;
5113 u32 first_row_offset, last_row_offset;
5114 u32 first_column, last_column;
5115 u64 r0_first_row, r0_last_row;
5116 u32 r5or6_blocks_per_row;
5117 u64 r5or6_first_row, r5or6_last_row;
5118 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119 u32 r5or6_first_column, r5or6_last_column;
5120 u32 total_disks_per_row;
5121 u32 stripesize;
5122 u32 first_group, last_group, current_group;
5123 u32 map_row;
5124 u32 disk_handle;
5125 u64 disk_block;
5126 u32 disk_block_cnt;
5127 u8 cdb[16];
5128 u8 cdb_len;
5129 u16 strip_size;
5130 #if BITS_PER_LONG == 32
5131 u64 tmpdiv;
5132 #endif
5133 int offload_to_mirror;
5134
5135 if (!dev)
5136 return -1;
5137
5138 if (dev->in_reset)
5139 return -1;
5140
5141 /* check for valid opcode, get LBA and block count */
5142 switch (cmd->cmnd[0]) {
5143 case WRITE_6:
5144 is_write = 1;
5145 fallthrough;
5146 case READ_6:
5147 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148 (cmd->cmnd[2] << 8) |
5149 cmd->cmnd[3]);
5150 block_cnt = cmd->cmnd[4];
5151 if (block_cnt == 0)
5152 block_cnt = 256;
5153 break;
5154 case WRITE_10:
5155 is_write = 1;
5156 fallthrough;
5157 case READ_10:
5158 first_block =
5159 (((u64) cmd->cmnd[2]) << 24) |
5160 (((u64) cmd->cmnd[3]) << 16) |
5161 (((u64) cmd->cmnd[4]) << 8) |
5162 cmd->cmnd[5];
5163 block_cnt =
5164 (((u32) cmd->cmnd[7]) << 8) |
5165 cmd->cmnd[8];
5166 break;
5167 case WRITE_12:
5168 is_write = 1;
5169 fallthrough;
5170 case READ_12:
5171 first_block =
5172 (((u64) cmd->cmnd[2]) << 24) |
5173 (((u64) cmd->cmnd[3]) << 16) |
5174 (((u64) cmd->cmnd[4]) << 8) |
5175 cmd->cmnd[5];
5176 block_cnt =
5177 (((u32) cmd->cmnd[6]) << 24) |
5178 (((u32) cmd->cmnd[7]) << 16) |
5179 (((u32) cmd->cmnd[8]) << 8) |
5180 cmd->cmnd[9];
5181 break;
5182 case WRITE_16:
5183 is_write = 1;
5184 fallthrough;
5185 case READ_16:
5186 first_block =
5187 (((u64) cmd->cmnd[2]) << 56) |
5188 (((u64) cmd->cmnd[3]) << 48) |
5189 (((u64) cmd->cmnd[4]) << 40) |
5190 (((u64) cmd->cmnd[5]) << 32) |
5191 (((u64) cmd->cmnd[6]) << 24) |
5192 (((u64) cmd->cmnd[7]) << 16) |
5193 (((u64) cmd->cmnd[8]) << 8) |
5194 cmd->cmnd[9];
5195 block_cnt =
5196 (((u32) cmd->cmnd[10]) << 24) |
5197 (((u32) cmd->cmnd[11]) << 16) |
5198 (((u32) cmd->cmnd[12]) << 8) |
5199 cmd->cmnd[13];
5200 break;
5201 default:
5202 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203 }
5204 last_block = first_block + block_cnt - 1;
5205
5206 /* check for write to non-RAID-0 */
5207 if (is_write && dev->raid_level != 0)
5208 return IO_ACCEL_INELIGIBLE;
5209
5210 /* check for invalid block or wraparound */
5211 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212 last_block < first_block)
5213 return IO_ACCEL_INELIGIBLE;
5214
5215 /* calculate stripe information for the request */
5216 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217 le16_to_cpu(map->strip_size);
5218 strip_size = le16_to_cpu(map->strip_size);
5219 #if BITS_PER_LONG == 32
5220 tmpdiv = first_block;
5221 (void) do_div(tmpdiv, blocks_per_row);
5222 first_row = tmpdiv;
5223 tmpdiv = last_block;
5224 (void) do_div(tmpdiv, blocks_per_row);
5225 last_row = tmpdiv;
5226 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228 tmpdiv = first_row_offset;
5229 (void) do_div(tmpdiv, strip_size);
5230 first_column = tmpdiv;
5231 tmpdiv = last_row_offset;
5232 (void) do_div(tmpdiv, strip_size);
5233 last_column = tmpdiv;
5234 #else
5235 first_row = first_block / blocks_per_row;
5236 last_row = last_block / blocks_per_row;
5237 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239 first_column = first_row_offset / strip_size;
5240 last_column = last_row_offset / strip_size;
5241 #endif
5242
5243 /* if this isn't a single row/column then give to the controller */
5244 if ((first_row != last_row) || (first_column != last_column))
5245 return IO_ACCEL_INELIGIBLE;
5246
5247 /* proceeding with driver mapping */
5248 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249 le16_to_cpu(map->metadata_disks_per_row);
5250 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251 le16_to_cpu(map->row_cnt);
5252 map_index = (map_row * total_disks_per_row) + first_column;
5253
5254 switch (dev->raid_level) {
5255 case HPSA_RAID_0:
5256 break; /* nothing special to do */
5257 case HPSA_RAID_1:
5258 /* Handles load balance across RAID 1 members.
5259 * (2-drive R1 and R10 with even # of drives.)
5260 * Appropriate for SSDs, not optimal for HDDs
5261 * Ensure we have the correct raid_map.
5262 */
5263 if (le16_to_cpu(map->layout_map_count) != 2) {
5264 hpsa_turn_off_ioaccel_for_device(dev);
5265 return IO_ACCEL_INELIGIBLE;
5266 }
5267 if (dev->offload_to_mirror)
5268 map_index += le16_to_cpu(map->data_disks_per_row);
5269 dev->offload_to_mirror = !dev->offload_to_mirror;
5270 break;
5271 case HPSA_RAID_ADM:
5272 /* Handles N-way mirrors (R1-ADM)
5273 * and R10 with # of drives divisible by 3.)
5274 * Ensure we have the correct raid_map.
5275 */
5276 if (le16_to_cpu(map->layout_map_count) != 3) {
5277 hpsa_turn_off_ioaccel_for_device(dev);
5278 return IO_ACCEL_INELIGIBLE;
5279 }
5280
5281 offload_to_mirror = dev->offload_to_mirror;
5282 raid_map_helper(map, offload_to_mirror,
5283 &map_index, ¤t_group);
5284 /* set mirror group to use next time */
5285 offload_to_mirror =
5286 (offload_to_mirror >=
5287 le16_to_cpu(map->layout_map_count) - 1)
5288 ? 0 : offload_to_mirror + 1;
5289 dev->offload_to_mirror = offload_to_mirror;
5290 /* Avoid direct use of dev->offload_to_mirror within this
5291 * function since multiple threads might simultaneously
5292 * increment it beyond the range of dev->layout_map_count -1.
5293 */
5294 break;
5295 case HPSA_RAID_5:
5296 case HPSA_RAID_6:
5297 if (le16_to_cpu(map->layout_map_count) <= 1)
5298 break;
5299
5300 /* Verify first and last block are in same RAID group */
5301 r5or6_blocks_per_row =
5302 le16_to_cpu(map->strip_size) *
5303 le16_to_cpu(map->data_disks_per_row);
5304 if (r5or6_blocks_per_row == 0) {
5305 hpsa_turn_off_ioaccel_for_device(dev);
5306 return IO_ACCEL_INELIGIBLE;
5307 }
5308 stripesize = r5or6_blocks_per_row *
5309 le16_to_cpu(map->layout_map_count);
5310 #if BITS_PER_LONG == 32
5311 tmpdiv = first_block;
5312 first_group = do_div(tmpdiv, stripesize);
5313 tmpdiv = first_group;
5314 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5315 first_group = tmpdiv;
5316 tmpdiv = last_block;
5317 last_group = do_div(tmpdiv, stripesize);
5318 tmpdiv = last_group;
5319 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5320 last_group = tmpdiv;
5321 #else
5322 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324 #endif
5325 if (first_group != last_group)
5326 return IO_ACCEL_INELIGIBLE;
5327
5328 /* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330 tmpdiv = first_block;
5331 (void) do_div(tmpdiv, stripesize);
5332 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333 tmpdiv = last_block;
5334 (void) do_div(tmpdiv, stripesize);
5335 r5or6_last_row = r0_last_row = tmpdiv;
5336 #else
5337 first_row = r5or6_first_row = r0_first_row =
5338 first_block / stripesize;
5339 r5or6_last_row = r0_last_row = last_block / stripesize;
5340 #endif
5341 if (r5or6_first_row != r5or6_last_row)
5342 return IO_ACCEL_INELIGIBLE;
5343
5344
5345 /* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347 tmpdiv = first_block;
5348 first_row_offset = do_div(tmpdiv, stripesize);
5349 tmpdiv = first_row_offset;
5350 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351 r5or6_first_row_offset = first_row_offset;
5352 tmpdiv = last_block;
5353 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354 tmpdiv = r5or6_last_row_offset;
5355 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356 tmpdiv = r5or6_first_row_offset;
5357 (void) do_div(tmpdiv, map->strip_size);
5358 first_column = r5or6_first_column = tmpdiv;
5359 tmpdiv = r5or6_last_row_offset;
5360 (void) do_div(tmpdiv, map->strip_size);
5361 r5or6_last_column = tmpdiv;
5362 #else
5363 first_row_offset = r5or6_first_row_offset =
5364 (u32)((first_block % stripesize) %
5365 r5or6_blocks_per_row);
5366
5367 r5or6_last_row_offset =
5368 (u32)((last_block % stripesize) %
5369 r5or6_blocks_per_row);
5370
5371 first_column = r5or6_first_column =
5372 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373 r5or6_last_column =
5374 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375 #endif
5376 if (r5or6_first_column != r5or6_last_column)
5377 return IO_ACCEL_INELIGIBLE;
5378
5379 /* Request is eligible */
5380 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381 le16_to_cpu(map->row_cnt);
5382
5383 map_index = (first_group *
5384 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385 (map_row * total_disks_per_row) + first_column;
5386 break;
5387 default:
5388 return IO_ACCEL_INELIGIBLE;
5389 }
5390
5391 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392 return IO_ACCEL_INELIGIBLE;
5393
5394 c->phys_disk = dev->phys_disk[map_index];
5395 if (!c->phys_disk)
5396 return IO_ACCEL_INELIGIBLE;
5397
5398 disk_handle = dd[map_index].ioaccel_handle;
5399 disk_block = le64_to_cpu(map->disk_starting_blk) +
5400 first_row * le16_to_cpu(map->strip_size) +
5401 (first_row_offset - first_column *
5402 le16_to_cpu(map->strip_size));
5403 disk_block_cnt = block_cnt;
5404
5405 /* handle differing logical/physical block sizes */
5406 if (map->phys_blk_shift) {
5407 disk_block <<= map->phys_blk_shift;
5408 disk_block_cnt <<= map->phys_blk_shift;
5409 }
5410 BUG_ON(disk_block_cnt > 0xffff);
5411
5412 /* build the new CDB for the physical disk I/O */
5413 if (disk_block > 0xffffffff) {
5414 cdb[0] = is_write ? WRITE_16 : READ_16;
5415 cdb[1] = 0;
5416 cdb[2] = (u8) (disk_block >> 56);
5417 cdb[3] = (u8) (disk_block >> 48);
5418 cdb[4] = (u8) (disk_block >> 40);
5419 cdb[5] = (u8) (disk_block >> 32);
5420 cdb[6] = (u8) (disk_block >> 24);
5421 cdb[7] = (u8) (disk_block >> 16);
5422 cdb[8] = (u8) (disk_block >> 8);
5423 cdb[9] = (u8) (disk_block);
5424 cdb[10] = (u8) (disk_block_cnt >> 24);
5425 cdb[11] = (u8) (disk_block_cnt >> 16);
5426 cdb[12] = (u8) (disk_block_cnt >> 8);
5427 cdb[13] = (u8) (disk_block_cnt);
5428 cdb[14] = 0;
5429 cdb[15] = 0;
5430 cdb_len = 16;
5431 } else {
5432 cdb[0] = is_write ? WRITE_10 : READ_10;
5433 cdb[1] = 0;
5434 cdb[2] = (u8) (disk_block >> 24);
5435 cdb[3] = (u8) (disk_block >> 16);
5436 cdb[4] = (u8) (disk_block >> 8);
5437 cdb[5] = (u8) (disk_block);
5438 cdb[6] = 0;
5439 cdb[7] = (u8) (disk_block_cnt >> 8);
5440 cdb[8] = (u8) (disk_block_cnt);
5441 cdb[9] = 0;
5442 cdb_len = 10;
5443 }
5444 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445 dev->scsi3addr,
5446 dev->phys_disk[map_index]);
5447 }
5448
5449 /*
5450 * Submit commands down the "normal" RAID stack path
5451 * All callers to hpsa_ciss_submit must check lockup_detected
5452 * beforehand, before (opt.) and after calling cmd_alloc
5453 */
hpsa_ciss_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)5454 static int hpsa_ciss_submit(struct ctlr_info *h,
5455 struct CommandList *c, struct scsi_cmnd *cmd,
5456 struct hpsa_scsi_dev_t *dev)
5457 {
5458 cmd->host_scribble = (unsigned char *) c;
5459 c->cmd_type = CMD_SCSI;
5460 c->scsi_cmd = cmd;
5461 c->Header.ReplyQueue = 0; /* unused in simple mode */
5462 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464
5465 /* Fill in the request block... */
5466
5467 c->Request.Timeout = 0;
5468 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469 c->Request.CDBLen = cmd->cmd_len;
5470 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471 switch (cmd->sc_data_direction) {
5472 case DMA_TO_DEVICE:
5473 c->Request.type_attr_dir =
5474 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475 break;
5476 case DMA_FROM_DEVICE:
5477 c->Request.type_attr_dir =
5478 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479 break;
5480 case DMA_NONE:
5481 c->Request.type_attr_dir =
5482 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483 break;
5484 case DMA_BIDIRECTIONAL:
5485 /* This can happen if a buggy application does a scsi passthru
5486 * and sets both inlen and outlen to non-zero. ( see
5487 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488 */
5489
5490 c->Request.type_attr_dir =
5491 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492 /* This is technically wrong, and hpsa controllers should
5493 * reject it with CMD_INVALID, which is the most correct
5494 * response, but non-fibre backends appear to let it
5495 * slide by, and give the same results as if this field
5496 * were set correctly. Either way is acceptable for
5497 * our purposes here.
5498 */
5499
5500 break;
5501
5502 default:
5503 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504 cmd->sc_data_direction);
5505 BUG();
5506 break;
5507 }
5508
5509 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510 hpsa_cmd_resolve_and_free(h, c);
5511 return SCSI_MLQUEUE_HOST_BUSY;
5512 }
5513
5514 if (dev->in_reset) {
5515 hpsa_cmd_resolve_and_free(h, c);
5516 return SCSI_MLQUEUE_HOST_BUSY;
5517 }
5518
5519 c->device = dev;
5520
5521 enqueue_cmd_and_start_io(h, c);
5522 /* the cmd'll come back via intr handler in complete_scsi_command() */
5523 return 0;
5524 }
5525
hpsa_cmd_init(struct ctlr_info * h,int index,struct CommandList * c)5526 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527 struct CommandList *c)
5528 {
5529 dma_addr_t cmd_dma_handle, err_dma_handle;
5530
5531 /* Zero out all of commandlist except the last field, refcount */
5532 memset(c, 0, offsetof(struct CommandList, refcount));
5533 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535 c->err_info = h->errinfo_pool + index;
5536 memset(c->err_info, 0, sizeof(*c->err_info));
5537 err_dma_handle = h->errinfo_pool_dhandle
5538 + index * sizeof(*c->err_info);
5539 c->cmdindex = index;
5540 c->busaddr = (u32) cmd_dma_handle;
5541 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543 c->h = h;
5544 c->scsi_cmd = SCSI_CMD_IDLE;
5545 }
5546
hpsa_preinitialize_commands(struct ctlr_info * h)5547 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548 {
5549 int i;
5550
5551 for (i = 0; i < h->nr_cmds; i++) {
5552 struct CommandList *c = h->cmd_pool + i;
5553
5554 hpsa_cmd_init(h, i, c);
5555 atomic_set(&c->refcount, 0);
5556 }
5557 }
5558
hpsa_cmd_partial_init(struct ctlr_info * h,int index,struct CommandList * c)5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560 struct CommandList *c)
5561 {
5562 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563
5564 BUG_ON(c->cmdindex != index);
5565
5566 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567 memset(c->err_info, 0, sizeof(*c->err_info));
5568 c->busaddr = (u32) cmd_dma_handle;
5569 }
5570
hpsa_ioaccel_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,bool retry)5571 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572 struct CommandList *c, struct scsi_cmnd *cmd,
5573 bool retry)
5574 {
5575 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5576 int rc = IO_ACCEL_INELIGIBLE;
5577
5578 if (!dev)
5579 return SCSI_MLQUEUE_HOST_BUSY;
5580
5581 if (dev->in_reset)
5582 return SCSI_MLQUEUE_HOST_BUSY;
5583
5584 if (hpsa_simple_mode)
5585 return IO_ACCEL_INELIGIBLE;
5586
5587 cmd->host_scribble = (unsigned char *) c;
5588
5589 if (dev->offload_enabled) {
5590 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5591 c->cmd_type = CMD_SCSI;
5592 c->scsi_cmd = cmd;
5593 c->device = dev;
5594 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5595 c->retry_pending = true;
5596 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5597 if (rc < 0) /* scsi_dma_map failed. */
5598 rc = SCSI_MLQUEUE_HOST_BUSY;
5599 } else if (dev->hba_ioaccel_enabled) {
5600 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5601 c->cmd_type = CMD_SCSI;
5602 c->scsi_cmd = cmd;
5603 c->device = dev;
5604 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5605 c->retry_pending = true;
5606 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607 if (rc < 0) /* scsi_dma_map failed. */
5608 rc = SCSI_MLQUEUE_HOST_BUSY;
5609 }
5610 return rc;
5611 }
5612
hpsa_command_resubmit_worker(struct work_struct * work)5613 static void hpsa_command_resubmit_worker(struct work_struct *work)
5614 {
5615 struct scsi_cmnd *cmd;
5616 struct hpsa_scsi_dev_t *dev;
5617 struct CommandList *c = container_of(work, struct CommandList, work);
5618
5619 cmd = c->scsi_cmd;
5620 dev = cmd->device->hostdata;
5621 if (!dev) {
5622 cmd->result = DID_NO_CONNECT << 16;
5623 return hpsa_cmd_free_and_done(c->h, c, cmd);
5624 }
5625
5626 if (dev->in_reset) {
5627 cmd->result = DID_RESET << 16;
5628 return hpsa_cmd_free_and_done(c->h, c, cmd);
5629 }
5630
5631 if (c->cmd_type == CMD_IOACCEL2) {
5632 struct ctlr_info *h = c->h;
5633 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634 int rc;
5635
5636 if (c2->error_data.serv_response ==
5637 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638 /* Resubmit with the retry_pending flag set. */
5639 rc = hpsa_ioaccel_submit(h, c, cmd, true);
5640 if (rc == 0)
5641 return;
5642 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643 /*
5644 * If we get here, it means dma mapping failed.
5645 * Try again via scsi mid layer, which will
5646 * then get SCSI_MLQUEUE_HOST_BUSY.
5647 */
5648 cmd->result = DID_IMM_RETRY << 16;
5649 return hpsa_cmd_free_and_done(h, c, cmd);
5650 }
5651 /* else, fall thru and resubmit down CISS path */
5652 }
5653 }
5654 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655 /*
5656 * Here we have not come in though queue_command, so we
5657 * can set the retry_pending flag to true for a driver initiated
5658 * retry attempt (I.E. not a SML retry).
5659 * I.E. We are submitting a driver initiated retry.
5660 * Note: hpsa_ciss_submit does not zero out the command fields like
5661 * ioaccel submit does.
5662 */
5663 c->retry_pending = true;
5664 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5665 /*
5666 * If we get here, it means dma mapping failed. Try
5667 * again via scsi mid layer, which will then get
5668 * SCSI_MLQUEUE_HOST_BUSY.
5669 *
5670 * hpsa_ciss_submit will have already freed c
5671 * if it encountered a dma mapping failure.
5672 */
5673 cmd->result = DID_IMM_RETRY << 16;
5674 cmd->scsi_done(cmd);
5675 }
5676 }
5677
5678 /* Running in struct Scsi_Host->host_lock less mode */
hpsa_scsi_queue_command(struct Scsi_Host * sh,struct scsi_cmnd * cmd)5679 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5680 {
5681 struct ctlr_info *h;
5682 struct hpsa_scsi_dev_t *dev;
5683 struct CommandList *c;
5684 int rc = 0;
5685
5686 /* Get the ptr to our adapter structure out of cmd->host. */
5687 h = sdev_to_hba(cmd->device);
5688
5689 BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5690
5691 dev = cmd->device->hostdata;
5692 if (!dev) {
5693 cmd->result = DID_NO_CONNECT << 16;
5694 cmd->scsi_done(cmd);
5695 return 0;
5696 }
5697
5698 if (dev->removed) {
5699 cmd->result = DID_NO_CONNECT << 16;
5700 cmd->scsi_done(cmd);
5701 return 0;
5702 }
5703
5704 if (unlikely(lockup_detected(h))) {
5705 cmd->result = DID_NO_CONNECT << 16;
5706 cmd->scsi_done(cmd);
5707 return 0;
5708 }
5709
5710 if (dev->in_reset)
5711 return SCSI_MLQUEUE_DEVICE_BUSY;
5712
5713 c = cmd_tagged_alloc(h, cmd);
5714 if (c == NULL)
5715 return SCSI_MLQUEUE_DEVICE_BUSY;
5716
5717 /*
5718 * This is necessary because the SML doesn't zero out this field during
5719 * error recovery.
5720 */
5721 cmd->result = 0;
5722
5723 /*
5724 * Call alternate submit routine for I/O accelerated commands.
5725 * Retries always go down the normal I/O path.
5726 * Note: If cmd->retries is non-zero, then this is a SML
5727 * initiated retry and not a driver initiated retry.
5728 * This command has been obtained from cmd_tagged_alloc
5729 * and is therefore a brand-new command.
5730 */
5731 if (likely(cmd->retries == 0 &&
5732 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5733 h->acciopath_status)) {
5734 /* Submit with the retry_pending flag unset. */
5735 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5736 if (rc == 0)
5737 return 0;
5738 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5739 hpsa_cmd_resolve_and_free(h, c);
5740 return SCSI_MLQUEUE_HOST_BUSY;
5741 }
5742 }
5743 return hpsa_ciss_submit(h, c, cmd, dev);
5744 }
5745
hpsa_scan_complete(struct ctlr_info * h)5746 static void hpsa_scan_complete(struct ctlr_info *h)
5747 {
5748 unsigned long flags;
5749
5750 spin_lock_irqsave(&h->scan_lock, flags);
5751 h->scan_finished = 1;
5752 wake_up(&h->scan_wait_queue);
5753 spin_unlock_irqrestore(&h->scan_lock, flags);
5754 }
5755
hpsa_scan_start(struct Scsi_Host * sh)5756 static void hpsa_scan_start(struct Scsi_Host *sh)
5757 {
5758 struct ctlr_info *h = shost_to_hba(sh);
5759 unsigned long flags;
5760
5761 /*
5762 * Don't let rescans be initiated on a controller known to be locked
5763 * up. If the controller locks up *during* a rescan, that thread is
5764 * probably hosed, but at least we can prevent new rescan threads from
5765 * piling up on a locked up controller.
5766 */
5767 if (unlikely(lockup_detected(h)))
5768 return hpsa_scan_complete(h);
5769
5770 /*
5771 * If a scan is already waiting to run, no need to add another
5772 */
5773 spin_lock_irqsave(&h->scan_lock, flags);
5774 if (h->scan_waiting) {
5775 spin_unlock_irqrestore(&h->scan_lock, flags);
5776 return;
5777 }
5778
5779 spin_unlock_irqrestore(&h->scan_lock, flags);
5780
5781 /* wait until any scan already in progress is finished. */
5782 while (1) {
5783 spin_lock_irqsave(&h->scan_lock, flags);
5784 if (h->scan_finished)
5785 break;
5786 h->scan_waiting = 1;
5787 spin_unlock_irqrestore(&h->scan_lock, flags);
5788 wait_event(h->scan_wait_queue, h->scan_finished);
5789 /* Note: We don't need to worry about a race between this
5790 * thread and driver unload because the midlayer will
5791 * have incremented the reference count, so unload won't
5792 * happen if we're in here.
5793 */
5794 }
5795 h->scan_finished = 0; /* mark scan as in progress */
5796 h->scan_waiting = 0;
5797 spin_unlock_irqrestore(&h->scan_lock, flags);
5798
5799 if (unlikely(lockup_detected(h)))
5800 return hpsa_scan_complete(h);
5801
5802 /*
5803 * Do the scan after a reset completion
5804 */
5805 spin_lock_irqsave(&h->reset_lock, flags);
5806 if (h->reset_in_progress) {
5807 h->drv_req_rescan = 1;
5808 spin_unlock_irqrestore(&h->reset_lock, flags);
5809 hpsa_scan_complete(h);
5810 return;
5811 }
5812 spin_unlock_irqrestore(&h->reset_lock, flags);
5813
5814 hpsa_update_scsi_devices(h);
5815
5816 hpsa_scan_complete(h);
5817 }
5818
hpsa_change_queue_depth(struct scsi_device * sdev,int qdepth)5819 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5820 {
5821 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5822
5823 if (!logical_drive)
5824 return -ENODEV;
5825
5826 if (qdepth < 1)
5827 qdepth = 1;
5828 else if (qdepth > logical_drive->queue_depth)
5829 qdepth = logical_drive->queue_depth;
5830
5831 return scsi_change_queue_depth(sdev, qdepth);
5832 }
5833
hpsa_scan_finished(struct Scsi_Host * sh,unsigned long elapsed_time)5834 static int hpsa_scan_finished(struct Scsi_Host *sh,
5835 unsigned long elapsed_time)
5836 {
5837 struct ctlr_info *h = shost_to_hba(sh);
5838 unsigned long flags;
5839 int finished;
5840
5841 spin_lock_irqsave(&h->scan_lock, flags);
5842 finished = h->scan_finished;
5843 spin_unlock_irqrestore(&h->scan_lock, flags);
5844 return finished;
5845 }
5846
hpsa_scsi_host_alloc(struct ctlr_info * h)5847 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5848 {
5849 struct Scsi_Host *sh;
5850
5851 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info));
5852 if (sh == NULL) {
5853 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5854 return -ENOMEM;
5855 }
5856
5857 sh->io_port = 0;
5858 sh->n_io_port = 0;
5859 sh->this_id = -1;
5860 sh->max_channel = 3;
5861 sh->max_cmd_len = MAX_COMMAND_SIZE;
5862 sh->max_lun = HPSA_MAX_LUN;
5863 sh->max_id = HPSA_MAX_LUN;
5864 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5865 sh->cmd_per_lun = sh->can_queue;
5866 sh->sg_tablesize = h->maxsgentries;
5867 sh->transportt = hpsa_sas_transport_template;
5868 sh->hostdata[0] = (unsigned long) h;
5869 sh->irq = pci_irq_vector(h->pdev, 0);
5870 sh->unique_id = sh->irq;
5871
5872 h->scsi_host = sh;
5873 return 0;
5874 }
5875
hpsa_scsi_add_host(struct ctlr_info * h)5876 static int hpsa_scsi_add_host(struct ctlr_info *h)
5877 {
5878 int rv;
5879
5880 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5881 if (rv) {
5882 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5883 return rv;
5884 }
5885 scsi_scan_host(h->scsi_host);
5886 return 0;
5887 }
5888
5889 /*
5890 * The block layer has already gone to the trouble of picking out a unique,
5891 * small-integer tag for this request. We use an offset from that value as
5892 * an index to select our command block. (The offset allows us to reserve the
5893 * low-numbered entries for our own uses.)
5894 */
hpsa_get_cmd_index(struct scsi_cmnd * scmd)5895 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5896 {
5897 int idx = scsi_cmd_to_rq(scmd)->tag;
5898
5899 if (idx < 0)
5900 return idx;
5901
5902 /* Offset to leave space for internal cmds. */
5903 return idx += HPSA_NRESERVED_CMDS;
5904 }
5905
5906 /*
5907 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5908 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5909 */
hpsa_send_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5910 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5911 struct CommandList *c, unsigned char lunaddr[],
5912 int reply_queue)
5913 {
5914 int rc;
5915
5916 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5917 (void) fill_cmd(c, TEST_UNIT_READY, h,
5918 NULL, 0, 0, lunaddr, TYPE_CMD);
5919 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5920 if (rc)
5921 return rc;
5922 /* no unmap needed here because no data xfer. */
5923
5924 /* Check if the unit is already ready. */
5925 if (c->err_info->CommandStatus == CMD_SUCCESS)
5926 return 0;
5927
5928 /*
5929 * The first command sent after reset will receive "unit attention" to
5930 * indicate that the LUN has been reset...this is actually what we're
5931 * looking for (but, success is good too).
5932 */
5933 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5934 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5935 (c->err_info->SenseInfo[2] == NO_SENSE ||
5936 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5937 return 0;
5938
5939 return 1;
5940 }
5941
5942 /*
5943 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5944 * returns zero when the unit is ready, and non-zero when giving up.
5945 */
hpsa_wait_for_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5946 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5947 struct CommandList *c,
5948 unsigned char lunaddr[], int reply_queue)
5949 {
5950 int rc;
5951 int count = 0;
5952 int waittime = 1; /* seconds */
5953
5954 /* Send test unit ready until device ready, or give up. */
5955 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5956
5957 /*
5958 * Wait for a bit. do this first, because if we send
5959 * the TUR right away, the reset will just abort it.
5960 */
5961 msleep(1000 * waittime);
5962
5963 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5964 if (!rc)
5965 break;
5966
5967 /* Increase wait time with each try, up to a point. */
5968 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5969 waittime *= 2;
5970
5971 dev_warn(&h->pdev->dev,
5972 "waiting %d secs for device to become ready.\n",
5973 waittime);
5974 }
5975
5976 return rc;
5977 }
5978
wait_for_device_to_become_ready(struct ctlr_info * h,unsigned char lunaddr[],int reply_queue)5979 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5980 unsigned char lunaddr[],
5981 int reply_queue)
5982 {
5983 int first_queue;
5984 int last_queue;
5985 int rq;
5986 int rc = 0;
5987 struct CommandList *c;
5988
5989 c = cmd_alloc(h);
5990
5991 /*
5992 * If no specific reply queue was requested, then send the TUR
5993 * repeatedly, requesting a reply on each reply queue; otherwise execute
5994 * the loop exactly once using only the specified queue.
5995 */
5996 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5997 first_queue = 0;
5998 last_queue = h->nreply_queues - 1;
5999 } else {
6000 first_queue = reply_queue;
6001 last_queue = reply_queue;
6002 }
6003
6004 for (rq = first_queue; rq <= last_queue; rq++) {
6005 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6006 if (rc)
6007 break;
6008 }
6009
6010 if (rc)
6011 dev_warn(&h->pdev->dev, "giving up on device.\n");
6012 else
6013 dev_warn(&h->pdev->dev, "device is ready.\n");
6014
6015 cmd_free(h, c);
6016 return rc;
6017 }
6018
6019 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6020 * complaining. Doing a host- or bus-reset can't do anything good here.
6021 */
hpsa_eh_device_reset_handler(struct scsi_cmnd * scsicmd)6022 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6023 {
6024 int rc = SUCCESS;
6025 int i;
6026 struct ctlr_info *h;
6027 struct hpsa_scsi_dev_t *dev = NULL;
6028 u8 reset_type;
6029 char msg[48];
6030 unsigned long flags;
6031
6032 /* find the controller to which the command to be aborted was sent */
6033 h = sdev_to_hba(scsicmd->device);
6034 if (h == NULL) /* paranoia */
6035 return FAILED;
6036
6037 spin_lock_irqsave(&h->reset_lock, flags);
6038 h->reset_in_progress = 1;
6039 spin_unlock_irqrestore(&h->reset_lock, flags);
6040
6041 if (lockup_detected(h)) {
6042 rc = FAILED;
6043 goto return_reset_status;
6044 }
6045
6046 dev = scsicmd->device->hostdata;
6047 if (!dev) {
6048 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6049 rc = FAILED;
6050 goto return_reset_status;
6051 }
6052
6053 if (dev->devtype == TYPE_ENCLOSURE) {
6054 rc = SUCCESS;
6055 goto return_reset_status;
6056 }
6057
6058 /* if controller locked up, we can guarantee command won't complete */
6059 if (lockup_detected(h)) {
6060 snprintf(msg, sizeof(msg),
6061 "cmd %d RESET FAILED, lockup detected",
6062 hpsa_get_cmd_index(scsicmd));
6063 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6064 rc = FAILED;
6065 goto return_reset_status;
6066 }
6067
6068 /* this reset request might be the result of a lockup; check */
6069 if (detect_controller_lockup(h)) {
6070 snprintf(msg, sizeof(msg),
6071 "cmd %d RESET FAILED, new lockup detected",
6072 hpsa_get_cmd_index(scsicmd));
6073 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6074 rc = FAILED;
6075 goto return_reset_status;
6076 }
6077
6078 /* Do not attempt on controller */
6079 if (is_hba_lunid(dev->scsi3addr)) {
6080 rc = SUCCESS;
6081 goto return_reset_status;
6082 }
6083
6084 if (is_logical_dev_addr_mode(dev->scsi3addr))
6085 reset_type = HPSA_DEVICE_RESET_MSG;
6086 else
6087 reset_type = HPSA_PHYS_TARGET_RESET;
6088
6089 sprintf(msg, "resetting %s",
6090 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6091 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6092
6093 /*
6094 * wait to see if any commands will complete before sending reset
6095 */
6096 dev->in_reset = true; /* block any new cmds from OS for this device */
6097 for (i = 0; i < 10; i++) {
6098 if (atomic_read(&dev->commands_outstanding) > 0)
6099 msleep(1000);
6100 else
6101 break;
6102 }
6103
6104 /* send a reset to the SCSI LUN which the command was sent to */
6105 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6106 if (rc == 0)
6107 rc = SUCCESS;
6108 else
6109 rc = FAILED;
6110
6111 sprintf(msg, "reset %s %s",
6112 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6113 rc == SUCCESS ? "completed successfully" : "failed");
6114 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6115
6116 return_reset_status:
6117 spin_lock_irqsave(&h->reset_lock, flags);
6118 h->reset_in_progress = 0;
6119 if (dev)
6120 dev->in_reset = false;
6121 spin_unlock_irqrestore(&h->reset_lock, flags);
6122 return rc;
6123 }
6124
6125 /*
6126 * For operations with an associated SCSI command, a command block is allocated
6127 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6128 * block request tag as an index into a table of entries. cmd_tagged_free() is
6129 * the complement, although cmd_free() may be called instead.
6130 * This function is only called for new requests from queue_command.
6131 */
cmd_tagged_alloc(struct ctlr_info * h,struct scsi_cmnd * scmd)6132 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6133 struct scsi_cmnd *scmd)
6134 {
6135 int idx = hpsa_get_cmd_index(scmd);
6136 struct CommandList *c = h->cmd_pool + idx;
6137
6138 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6139 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6140 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6141 /* The index value comes from the block layer, so if it's out of
6142 * bounds, it's probably not our bug.
6143 */
6144 BUG();
6145 }
6146
6147 if (unlikely(!hpsa_is_cmd_idle(c))) {
6148 /*
6149 * We expect that the SCSI layer will hand us a unique tag
6150 * value. Thus, there should never be a collision here between
6151 * two requests...because if the selected command isn't idle
6152 * then someone is going to be very disappointed.
6153 */
6154 if (idx != h->last_collision_tag) { /* Print once per tag */
6155 dev_warn(&h->pdev->dev,
6156 "%s: tag collision (tag=%d)\n", __func__, idx);
6157 if (scmd)
6158 scsi_print_command(scmd);
6159 h->last_collision_tag = idx;
6160 }
6161 return NULL;
6162 }
6163
6164 atomic_inc(&c->refcount);
6165 hpsa_cmd_partial_init(h, idx, c);
6166
6167 /*
6168 * This is a new command obtained from queue_command so
6169 * there have not been any driver initiated retry attempts.
6170 */
6171 c->retry_pending = false;
6172
6173 return c;
6174 }
6175
cmd_tagged_free(struct ctlr_info * h,struct CommandList * c)6176 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6177 {
6178 /*
6179 * Release our reference to the block. We don't need to do anything
6180 * else to free it, because it is accessed by index.
6181 */
6182 (void)atomic_dec(&c->refcount);
6183 }
6184
6185 /*
6186 * For operations that cannot sleep, a command block is allocated at init,
6187 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6188 * which ones are free or in use. Lock must be held when calling this.
6189 * cmd_free() is the complement.
6190 * This function never gives up and returns NULL. If it hangs,
6191 * another thread must call cmd_free() to free some tags.
6192 */
6193
cmd_alloc(struct ctlr_info * h)6194 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6195 {
6196 struct CommandList *c;
6197 int refcount, i;
6198 int offset = 0;
6199
6200 /*
6201 * There is some *extremely* small but non-zero chance that that
6202 * multiple threads could get in here, and one thread could
6203 * be scanning through the list of bits looking for a free
6204 * one, but the free ones are always behind him, and other
6205 * threads sneak in behind him and eat them before he can
6206 * get to them, so that while there is always a free one, a
6207 * very unlucky thread might be starved anyway, never able to
6208 * beat the other threads. In reality, this happens so
6209 * infrequently as to be indistinguishable from never.
6210 *
6211 * Note that we start allocating commands before the SCSI host structure
6212 * is initialized. Since the search starts at bit zero, this
6213 * all works, since we have at least one command structure available;
6214 * however, it means that the structures with the low indexes have to be
6215 * reserved for driver-initiated requests, while requests from the block
6216 * layer will use the higher indexes.
6217 */
6218
6219 for (;;) {
6220 i = find_next_zero_bit(h->cmd_pool_bits,
6221 HPSA_NRESERVED_CMDS,
6222 offset);
6223 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6224 offset = 0;
6225 continue;
6226 }
6227 c = h->cmd_pool + i;
6228 refcount = atomic_inc_return(&c->refcount);
6229 if (unlikely(refcount > 1)) {
6230 cmd_free(h, c); /* already in use */
6231 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6232 continue;
6233 }
6234 set_bit(i & (BITS_PER_LONG - 1),
6235 h->cmd_pool_bits + (i / BITS_PER_LONG));
6236 break; /* it's ours now. */
6237 }
6238 hpsa_cmd_partial_init(h, i, c);
6239 c->device = NULL;
6240
6241 /*
6242 * cmd_alloc is for "internal" commands and they are never
6243 * retried.
6244 */
6245 c->retry_pending = false;
6246
6247 return c;
6248 }
6249
6250 /*
6251 * This is the complementary operation to cmd_alloc(). Note, however, in some
6252 * corner cases it may also be used to free blocks allocated by
6253 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6254 * the clear-bit is harmless.
6255 */
cmd_free(struct ctlr_info * h,struct CommandList * c)6256 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6257 {
6258 if (atomic_dec_and_test(&c->refcount)) {
6259 int i;
6260
6261 i = c - h->cmd_pool;
6262 clear_bit(i & (BITS_PER_LONG - 1),
6263 h->cmd_pool_bits + (i / BITS_PER_LONG));
6264 }
6265 }
6266
6267 #ifdef CONFIG_COMPAT
6268
hpsa_ioctl32_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270 void __user *arg)
6271 {
6272 struct ctlr_info *h = sdev_to_hba(dev);
6273 IOCTL32_Command_struct __user *arg32 = arg;
6274 IOCTL_Command_struct arg64;
6275 int err;
6276 u32 cp;
6277
6278 if (!arg)
6279 return -EINVAL;
6280
6281 memset(&arg64, 0, sizeof(arg64));
6282 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283 return -EFAULT;
6284 if (get_user(cp, &arg32->buf))
6285 return -EFAULT;
6286 arg64.buf = compat_ptr(cp);
6287
6288 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289 return -EAGAIN;
6290 err = hpsa_passthru_ioctl(h, &arg64);
6291 atomic_inc(&h->passthru_cmds_avail);
6292 if (err)
6293 return err;
6294 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295 sizeof(arg32->error_info)))
6296 return -EFAULT;
6297 return 0;
6298 }
6299
hpsa_ioctl32_big_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301 unsigned int cmd, void __user *arg)
6302 {
6303 struct ctlr_info *h = sdev_to_hba(dev);
6304 BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305 BIG_IOCTL_Command_struct arg64;
6306 int err;
6307 u32 cp;
6308
6309 if (!arg)
6310 return -EINVAL;
6311 memset(&arg64, 0, sizeof(arg64));
6312 if (copy_from_user(&arg64, arg32,
6313 offsetof(BIG_IOCTL32_Command_struct, buf)))
6314 return -EFAULT;
6315 if (get_user(cp, &arg32->buf))
6316 return -EFAULT;
6317 arg64.buf = compat_ptr(cp);
6318
6319 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320 return -EAGAIN;
6321 err = hpsa_big_passthru_ioctl(h, &arg64);
6322 atomic_inc(&h->passthru_cmds_avail);
6323 if (err)
6324 return err;
6325 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326 sizeof(arg32->error_info)))
6327 return -EFAULT;
6328 return 0;
6329 }
6330
hpsa_compat_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * arg)6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332 void __user *arg)
6333 {
6334 switch (cmd) {
6335 case CCISS_GETPCIINFO:
6336 case CCISS_GETINTINFO:
6337 case CCISS_SETINTINFO:
6338 case CCISS_GETNODENAME:
6339 case CCISS_SETNODENAME:
6340 case CCISS_GETHEARTBEAT:
6341 case CCISS_GETBUSTYPES:
6342 case CCISS_GETFIRMVER:
6343 case CCISS_GETDRIVVER:
6344 case CCISS_REVALIDVOLS:
6345 case CCISS_DEREGDISK:
6346 case CCISS_REGNEWDISK:
6347 case CCISS_REGNEWD:
6348 case CCISS_RESCANDISK:
6349 case CCISS_GETLUNINFO:
6350 return hpsa_ioctl(dev, cmd, arg);
6351
6352 case CCISS_PASSTHRU32:
6353 return hpsa_ioctl32_passthru(dev, cmd, arg);
6354 case CCISS_BIG_PASSTHRU32:
6355 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356
6357 default:
6358 return -ENOIOCTLCMD;
6359 }
6360 }
6361 #endif
6362
hpsa_getpciinfo_ioctl(struct ctlr_info * h,void __user * argp)6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364 {
6365 struct hpsa_pci_info pciinfo;
6366
6367 if (!argp)
6368 return -EINVAL;
6369 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370 pciinfo.bus = h->pdev->bus->number;
6371 pciinfo.dev_fn = h->pdev->devfn;
6372 pciinfo.board_id = h->board_id;
6373 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374 return -EFAULT;
6375 return 0;
6376 }
6377
hpsa_getdrivver_ioctl(struct ctlr_info * h,void __user * argp)6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380 DriverVer_type DriverVer;
6381 unsigned char vmaj, vmin, vsubmin;
6382 int rc;
6383
6384 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385 &vmaj, &vmin, &vsubmin);
6386 if (rc != 3) {
6387 dev_info(&h->pdev->dev, "driver version string '%s' "
6388 "unrecognized.", HPSA_DRIVER_VERSION);
6389 vmaj = 0;
6390 vmin = 0;
6391 vsubmin = 0;
6392 }
6393 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394 if (!argp)
6395 return -EINVAL;
6396 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397 return -EFAULT;
6398 return 0;
6399 }
6400
hpsa_passthru_ioctl(struct ctlr_info * h,IOCTL_Command_struct * iocommand)6401 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402 IOCTL_Command_struct *iocommand)
6403 {
6404 struct CommandList *c;
6405 char *buff = NULL;
6406 u64 temp64;
6407 int rc = 0;
6408
6409 if (!capable(CAP_SYS_RAWIO))
6410 return -EPERM;
6411 if ((iocommand->buf_size < 1) &&
6412 (iocommand->Request.Type.Direction != XFER_NONE)) {
6413 return -EINVAL;
6414 }
6415 if (iocommand->buf_size > 0) {
6416 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417 if (buff == NULL)
6418 return -ENOMEM;
6419 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420 /* Copy the data into the buffer we created */
6421 if (copy_from_user(buff, iocommand->buf,
6422 iocommand->buf_size)) {
6423 rc = -EFAULT;
6424 goto out_kfree;
6425 }
6426 } else {
6427 memset(buff, 0, iocommand->buf_size);
6428 }
6429 }
6430 c = cmd_alloc(h);
6431
6432 /* Fill in the command type */
6433 c->cmd_type = CMD_IOCTL_PEND;
6434 c->scsi_cmd = SCSI_CMD_BUSY;
6435 /* Fill in Command Header */
6436 c->Header.ReplyQueue = 0; /* unused in simple mode */
6437 if (iocommand->buf_size > 0) { /* buffer to fill */
6438 c->Header.SGList = 1;
6439 c->Header.SGTotal = cpu_to_le16(1);
6440 } else { /* no buffers to fill */
6441 c->Header.SGList = 0;
6442 c->Header.SGTotal = cpu_to_le16(0);
6443 }
6444 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445
6446 /* Fill in Request block */
6447 memcpy(&c->Request, &iocommand->Request,
6448 sizeof(c->Request));
6449
6450 /* Fill in the scatter gather information */
6451 if (iocommand->buf_size > 0) {
6452 temp64 = dma_map_single(&h->pdev->dev, buff,
6453 iocommand->buf_size, DMA_BIDIRECTIONAL);
6454 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455 c->SG[0].Addr = cpu_to_le64(0);
6456 c->SG[0].Len = cpu_to_le32(0);
6457 rc = -ENOMEM;
6458 goto out;
6459 }
6460 c->SG[0].Addr = cpu_to_le64(temp64);
6461 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463 }
6464 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465 NO_TIMEOUT);
6466 if (iocommand->buf_size > 0)
6467 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468 check_ioctl_unit_attention(h, c);
6469 if (rc) {
6470 rc = -EIO;
6471 goto out;
6472 }
6473
6474 /* Copy the error information out */
6475 memcpy(&iocommand->error_info, c->err_info,
6476 sizeof(iocommand->error_info));
6477 if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478 iocommand->buf_size > 0) {
6479 /* Copy the data out of the buffer we created */
6480 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481 rc = -EFAULT;
6482 goto out;
6483 }
6484 }
6485 out:
6486 cmd_free(h, c);
6487 out_kfree:
6488 kfree(buff);
6489 return rc;
6490 }
6491
hpsa_big_passthru_ioctl(struct ctlr_info * h,BIG_IOCTL_Command_struct * ioc)6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493 BIG_IOCTL_Command_struct *ioc)
6494 {
6495 struct CommandList *c;
6496 unsigned char **buff = NULL;
6497 int *buff_size = NULL;
6498 u64 temp64;
6499 BYTE sg_used = 0;
6500 int status = 0;
6501 u32 left;
6502 u32 sz;
6503 BYTE __user *data_ptr;
6504
6505 if (!capable(CAP_SYS_RAWIO))
6506 return -EPERM;
6507
6508 if ((ioc->buf_size < 1) &&
6509 (ioc->Request.Type.Direction != XFER_NONE))
6510 return -EINVAL;
6511 /* Check kmalloc limits using all SGs */
6512 if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513 return -EINVAL;
6514 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515 return -EINVAL;
6516 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517 if (!buff) {
6518 status = -ENOMEM;
6519 goto cleanup1;
6520 }
6521 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522 if (!buff_size) {
6523 status = -ENOMEM;
6524 goto cleanup1;
6525 }
6526 left = ioc->buf_size;
6527 data_ptr = ioc->buf;
6528 while (left) {
6529 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530 buff_size[sg_used] = sz;
6531 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532 if (buff[sg_used] == NULL) {
6533 status = -ENOMEM;
6534 goto cleanup1;
6535 }
6536 if (ioc->Request.Type.Direction & XFER_WRITE) {
6537 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538 status = -EFAULT;
6539 goto cleanup1;
6540 }
6541 } else
6542 memset(buff[sg_used], 0, sz);
6543 left -= sz;
6544 data_ptr += sz;
6545 sg_used++;
6546 }
6547 c = cmd_alloc(h);
6548
6549 c->cmd_type = CMD_IOCTL_PEND;
6550 c->scsi_cmd = SCSI_CMD_BUSY;
6551 c->Header.ReplyQueue = 0;
6552 c->Header.SGList = (u8) sg_used;
6553 c->Header.SGTotal = cpu_to_le16(sg_used);
6554 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556 if (ioc->buf_size > 0) {
6557 int i;
6558 for (i = 0; i < sg_used; i++) {
6559 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560 buff_size[i], DMA_BIDIRECTIONAL);
6561 if (dma_mapping_error(&h->pdev->dev,
6562 (dma_addr_t) temp64)) {
6563 c->SG[i].Addr = cpu_to_le64(0);
6564 c->SG[i].Len = cpu_to_le32(0);
6565 hpsa_pci_unmap(h->pdev, c, i,
6566 DMA_BIDIRECTIONAL);
6567 status = -ENOMEM;
6568 goto cleanup0;
6569 }
6570 c->SG[i].Addr = cpu_to_le64(temp64);
6571 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572 c->SG[i].Ext = cpu_to_le32(0);
6573 }
6574 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575 }
6576 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577 NO_TIMEOUT);
6578 if (sg_used)
6579 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580 check_ioctl_unit_attention(h, c);
6581 if (status) {
6582 status = -EIO;
6583 goto cleanup0;
6584 }
6585
6586 /* Copy the error information out */
6587 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589 int i;
6590
6591 /* Copy the data out of the buffer we created */
6592 BYTE __user *ptr = ioc->buf;
6593 for (i = 0; i < sg_used; i++) {
6594 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595 status = -EFAULT;
6596 goto cleanup0;
6597 }
6598 ptr += buff_size[i];
6599 }
6600 }
6601 status = 0;
6602 cleanup0:
6603 cmd_free(h, c);
6604 cleanup1:
6605 if (buff) {
6606 int i;
6607
6608 for (i = 0; i < sg_used; i++)
6609 kfree(buff[i]);
6610 kfree(buff);
6611 }
6612 kfree(buff_size);
6613 return status;
6614 }
6615
check_ioctl_unit_attention(struct ctlr_info * h,struct CommandList * c)6616 static void check_ioctl_unit_attention(struct ctlr_info *h,
6617 struct CommandList *c)
6618 {
6619 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621 (void) check_for_unit_attention(h, c);
6622 }
6623
6624 /*
6625 * ioctl
6626 */
hpsa_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * argp)6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628 void __user *argp)
6629 {
6630 struct ctlr_info *h = sdev_to_hba(dev);
6631 int rc;
6632
6633 switch (cmd) {
6634 case CCISS_DEREGDISK:
6635 case CCISS_REGNEWDISK:
6636 case CCISS_REGNEWD:
6637 hpsa_scan_start(h->scsi_host);
6638 return 0;
6639 case CCISS_GETPCIINFO:
6640 return hpsa_getpciinfo_ioctl(h, argp);
6641 case CCISS_GETDRIVVER:
6642 return hpsa_getdrivver_ioctl(h, argp);
6643 case CCISS_PASSTHRU: {
6644 IOCTL_Command_struct iocommand;
6645
6646 if (!argp)
6647 return -EINVAL;
6648 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649 return -EFAULT;
6650 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651 return -EAGAIN;
6652 rc = hpsa_passthru_ioctl(h, &iocommand);
6653 atomic_inc(&h->passthru_cmds_avail);
6654 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655 rc = -EFAULT;
6656 return rc;
6657 }
6658 case CCISS_BIG_PASSTHRU: {
6659 BIG_IOCTL_Command_struct ioc;
6660 if (!argp)
6661 return -EINVAL;
6662 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663 return -EFAULT;
6664 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665 return -EAGAIN;
6666 rc = hpsa_big_passthru_ioctl(h, &ioc);
6667 atomic_inc(&h->passthru_cmds_avail);
6668 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669 rc = -EFAULT;
6670 return rc;
6671 }
6672 default:
6673 return -ENOTTY;
6674 }
6675 }
6676
hpsa_send_host_reset(struct ctlr_info * h,u8 reset_type)6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678 {
6679 struct CommandList *c;
6680
6681 c = cmd_alloc(h);
6682
6683 /* fill_cmd can't fail here, no data buffer to map */
6684 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685 RAID_CTLR_LUNID, TYPE_MSG);
6686 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687 c->waiting = NULL;
6688 enqueue_cmd_and_start_io(h, c);
6689 /* Don't wait for completion, the reset won't complete. Don't free
6690 * the command either. This is the last command we will send before
6691 * re-initializing everything, so it doesn't matter and won't leak.
6692 */
6693 return;
6694 }
6695
fill_cmd(struct CommandList * c,u8 cmd,struct ctlr_info * h,void * buff,size_t size,u16 page_code,unsigned char * scsi3addr,int cmd_type)6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698 int cmd_type)
6699 {
6700 enum dma_data_direction dir = DMA_NONE;
6701
6702 c->cmd_type = CMD_IOCTL_PEND;
6703 c->scsi_cmd = SCSI_CMD_BUSY;
6704 c->Header.ReplyQueue = 0;
6705 if (buff != NULL && size > 0) {
6706 c->Header.SGList = 1;
6707 c->Header.SGTotal = cpu_to_le16(1);
6708 } else {
6709 c->Header.SGList = 0;
6710 c->Header.SGTotal = cpu_to_le16(0);
6711 }
6712 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713
6714 if (cmd_type == TYPE_CMD) {
6715 switch (cmd) {
6716 case HPSA_INQUIRY:
6717 /* are we trying to read a vital product page */
6718 if (page_code & VPD_PAGE) {
6719 c->Request.CDB[1] = 0x01;
6720 c->Request.CDB[2] = (page_code & 0xff);
6721 }
6722 c->Request.CDBLen = 6;
6723 c->Request.type_attr_dir =
6724 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 c->Request.Timeout = 0;
6726 c->Request.CDB[0] = HPSA_INQUIRY;
6727 c->Request.CDB[4] = size & 0xFF;
6728 break;
6729 case RECEIVE_DIAGNOSTIC:
6730 c->Request.CDBLen = 6;
6731 c->Request.type_attr_dir =
6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 c->Request.Timeout = 0;
6734 c->Request.CDB[0] = cmd;
6735 c->Request.CDB[1] = 1;
6736 c->Request.CDB[2] = 1;
6737 c->Request.CDB[3] = (size >> 8) & 0xFF;
6738 c->Request.CDB[4] = size & 0xFF;
6739 break;
6740 case HPSA_REPORT_LOG:
6741 case HPSA_REPORT_PHYS:
6742 /* Talking to controller so It's a physical command
6743 mode = 00 target = 0. Nothing to write.
6744 */
6745 c->Request.CDBLen = 12;
6746 c->Request.type_attr_dir =
6747 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748 c->Request.Timeout = 0;
6749 c->Request.CDB[0] = cmd;
6750 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751 c->Request.CDB[7] = (size >> 16) & 0xFF;
6752 c->Request.CDB[8] = (size >> 8) & 0xFF;
6753 c->Request.CDB[9] = size & 0xFF;
6754 break;
6755 case BMIC_SENSE_DIAG_OPTIONS:
6756 c->Request.CDBLen = 16;
6757 c->Request.type_attr_dir =
6758 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759 c->Request.Timeout = 0;
6760 /* Spec says this should be BMIC_WRITE */
6761 c->Request.CDB[0] = BMIC_READ;
6762 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763 break;
6764 case BMIC_SET_DIAG_OPTIONS:
6765 c->Request.CDBLen = 16;
6766 c->Request.type_attr_dir =
6767 TYPE_ATTR_DIR(cmd_type,
6768 ATTR_SIMPLE, XFER_WRITE);
6769 c->Request.Timeout = 0;
6770 c->Request.CDB[0] = BMIC_WRITE;
6771 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772 break;
6773 case HPSA_CACHE_FLUSH:
6774 c->Request.CDBLen = 12;
6775 c->Request.type_attr_dir =
6776 TYPE_ATTR_DIR(cmd_type,
6777 ATTR_SIMPLE, XFER_WRITE);
6778 c->Request.Timeout = 0;
6779 c->Request.CDB[0] = BMIC_WRITE;
6780 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781 c->Request.CDB[7] = (size >> 8) & 0xFF;
6782 c->Request.CDB[8] = size & 0xFF;
6783 break;
6784 case TEST_UNIT_READY:
6785 c->Request.CDBLen = 6;
6786 c->Request.type_attr_dir =
6787 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788 c->Request.Timeout = 0;
6789 break;
6790 case HPSA_GET_RAID_MAP:
6791 c->Request.CDBLen = 12;
6792 c->Request.type_attr_dir =
6793 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794 c->Request.Timeout = 0;
6795 c->Request.CDB[0] = HPSA_CISS_READ;
6796 c->Request.CDB[1] = cmd;
6797 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798 c->Request.CDB[7] = (size >> 16) & 0xFF;
6799 c->Request.CDB[8] = (size >> 8) & 0xFF;
6800 c->Request.CDB[9] = size & 0xFF;
6801 break;
6802 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803 c->Request.CDBLen = 10;
6804 c->Request.type_attr_dir =
6805 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806 c->Request.Timeout = 0;
6807 c->Request.CDB[0] = BMIC_READ;
6808 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809 c->Request.CDB[7] = (size >> 16) & 0xFF;
6810 c->Request.CDB[8] = (size >> 8) & 0xFF;
6811 break;
6812 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813 c->Request.CDBLen = 10;
6814 c->Request.type_attr_dir =
6815 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816 c->Request.Timeout = 0;
6817 c->Request.CDB[0] = BMIC_READ;
6818 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819 c->Request.CDB[7] = (size >> 16) & 0xFF;
6820 c->Request.CDB[8] = (size >> 8) & 0XFF;
6821 break;
6822 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823 c->Request.CDBLen = 10;
6824 c->Request.type_attr_dir =
6825 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826 c->Request.Timeout = 0;
6827 c->Request.CDB[0] = BMIC_READ;
6828 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829 c->Request.CDB[7] = (size >> 16) & 0xFF;
6830 c->Request.CDB[8] = (size >> 8) & 0XFF;
6831 break;
6832 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833 c->Request.CDBLen = 10;
6834 c->Request.type_attr_dir =
6835 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836 c->Request.Timeout = 0;
6837 c->Request.CDB[0] = BMIC_READ;
6838 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839 c->Request.CDB[7] = (size >> 16) & 0xFF;
6840 c->Request.CDB[8] = (size >> 8) & 0XFF;
6841 break;
6842 case BMIC_IDENTIFY_CONTROLLER:
6843 c->Request.CDBLen = 10;
6844 c->Request.type_attr_dir =
6845 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846 c->Request.Timeout = 0;
6847 c->Request.CDB[0] = BMIC_READ;
6848 c->Request.CDB[1] = 0;
6849 c->Request.CDB[2] = 0;
6850 c->Request.CDB[3] = 0;
6851 c->Request.CDB[4] = 0;
6852 c->Request.CDB[5] = 0;
6853 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854 c->Request.CDB[7] = (size >> 16) & 0xFF;
6855 c->Request.CDB[8] = (size >> 8) & 0XFF;
6856 c->Request.CDB[9] = 0;
6857 break;
6858 default:
6859 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860 BUG();
6861 }
6862 } else if (cmd_type == TYPE_MSG) {
6863 switch (cmd) {
6864
6865 case HPSA_PHYS_TARGET_RESET:
6866 c->Request.CDBLen = 16;
6867 c->Request.type_attr_dir =
6868 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869 c->Request.Timeout = 0; /* Don't time out */
6870 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871 c->Request.CDB[0] = HPSA_RESET;
6872 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873 /* Physical target reset needs no control bytes 4-7*/
6874 c->Request.CDB[4] = 0x00;
6875 c->Request.CDB[5] = 0x00;
6876 c->Request.CDB[6] = 0x00;
6877 c->Request.CDB[7] = 0x00;
6878 break;
6879 case HPSA_DEVICE_RESET_MSG:
6880 c->Request.CDBLen = 16;
6881 c->Request.type_attr_dir =
6882 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883 c->Request.Timeout = 0; /* Don't time out */
6884 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885 c->Request.CDB[0] = cmd;
6886 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887 /* If bytes 4-7 are zero, it means reset the */
6888 /* LunID device */
6889 c->Request.CDB[4] = 0x00;
6890 c->Request.CDB[5] = 0x00;
6891 c->Request.CDB[6] = 0x00;
6892 c->Request.CDB[7] = 0x00;
6893 break;
6894 default:
6895 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896 cmd);
6897 BUG();
6898 }
6899 } else {
6900 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901 BUG();
6902 }
6903
6904 switch (GET_DIR(c->Request.type_attr_dir)) {
6905 case XFER_READ:
6906 dir = DMA_FROM_DEVICE;
6907 break;
6908 case XFER_WRITE:
6909 dir = DMA_TO_DEVICE;
6910 break;
6911 case XFER_NONE:
6912 dir = DMA_NONE;
6913 break;
6914 default:
6915 dir = DMA_BIDIRECTIONAL;
6916 }
6917 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918 return -1;
6919 return 0;
6920 }
6921
6922 /*
6923 * Map (physical) PCI mem into (virtual) kernel space
6924 */
remap_pci_mem(ulong base,ulong size)6925 static void __iomem *remap_pci_mem(ulong base, ulong size)
6926 {
6927 ulong page_base = ((ulong) base) & PAGE_MASK;
6928 ulong page_offs = ((ulong) base) - page_base;
6929 void __iomem *page_remapped = ioremap(page_base,
6930 page_offs + size);
6931
6932 return page_remapped ? (page_remapped + page_offs) : NULL;
6933 }
6934
get_next_completion(struct ctlr_info * h,u8 q)6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936 {
6937 return h->access.command_completed(h, q);
6938 }
6939
interrupt_pending(struct ctlr_info * h)6940 static inline bool interrupt_pending(struct ctlr_info *h)
6941 {
6942 return h->access.intr_pending(h);
6943 }
6944
interrupt_not_for_us(struct ctlr_info * h)6945 static inline long interrupt_not_for_us(struct ctlr_info *h)
6946 {
6947 return (h->access.intr_pending(h) == 0) ||
6948 (h->interrupts_enabled == 0);
6949 }
6950
bad_tag(struct ctlr_info * h,u32 tag_index,u32 raw_tag)6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952 u32 raw_tag)
6953 {
6954 if (unlikely(tag_index >= h->nr_cmds)) {
6955 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956 return 1;
6957 }
6958 return 0;
6959 }
6960
finish_cmd(struct CommandList * c)6961 static inline void finish_cmd(struct CommandList *c)
6962 {
6963 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965 || c->cmd_type == CMD_IOACCEL2))
6966 complete_scsi_command(c);
6967 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968 complete(c->waiting);
6969 }
6970
6971 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(struct ctlr_info * h,u32 raw_tag)6972 static inline void process_indexed_cmd(struct ctlr_info *h,
6973 u32 raw_tag)
6974 {
6975 u32 tag_index;
6976 struct CommandList *c;
6977
6978 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979 if (!bad_tag(h, tag_index, raw_tag)) {
6980 c = h->cmd_pool + tag_index;
6981 finish_cmd(c);
6982 }
6983 }
6984
6985 /* Some controllers, like p400, will give us one interrupt
6986 * after a soft reset, even if we turned interrupts off.
6987 * Only need to check for this in the hpsa_xxx_discard_completions
6988 * functions.
6989 */
ignore_bogus_interrupt(struct ctlr_info * h)6990 static int ignore_bogus_interrupt(struct ctlr_info *h)
6991 {
6992 if (likely(!reset_devices))
6993 return 0;
6994
6995 if (likely(h->interrupts_enabled))
6996 return 0;
6997
6998 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999 "(known firmware bug.) Ignoring.\n");
7000
7001 return 1;
7002 }
7003
7004 /*
7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006 * Relies on (h-q[x] == x) being true for x such that
7007 * 0 <= x < MAX_REPLY_QUEUES.
7008 */
queue_to_hba(u8 * queue)7009 static struct ctlr_info *queue_to_hba(u8 *queue)
7010 {
7011 return container_of((queue - *queue), struct ctlr_info, q[0]);
7012 }
7013
hpsa_intx_discard_completions(int irq,void * queue)7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015 {
7016 struct ctlr_info *h = queue_to_hba(queue);
7017 u8 q = *(u8 *) queue;
7018 u32 raw_tag;
7019
7020 if (ignore_bogus_interrupt(h))
7021 return IRQ_NONE;
7022
7023 if (interrupt_not_for_us(h))
7024 return IRQ_NONE;
7025 h->last_intr_timestamp = get_jiffies_64();
7026 while (interrupt_pending(h)) {
7027 raw_tag = get_next_completion(h, q);
7028 while (raw_tag != FIFO_EMPTY)
7029 raw_tag = next_command(h, q);
7030 }
7031 return IRQ_HANDLED;
7032 }
7033
hpsa_msix_discard_completions(int irq,void * queue)7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035 {
7036 struct ctlr_info *h = queue_to_hba(queue);
7037 u32 raw_tag;
7038 u8 q = *(u8 *) queue;
7039
7040 if (ignore_bogus_interrupt(h))
7041 return IRQ_NONE;
7042
7043 h->last_intr_timestamp = get_jiffies_64();
7044 raw_tag = get_next_completion(h, q);
7045 while (raw_tag != FIFO_EMPTY)
7046 raw_tag = next_command(h, q);
7047 return IRQ_HANDLED;
7048 }
7049
do_hpsa_intr_intx(int irq,void * queue)7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051 {
7052 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053 u32 raw_tag;
7054 u8 q = *(u8 *) queue;
7055
7056 if (interrupt_not_for_us(h))
7057 return IRQ_NONE;
7058 h->last_intr_timestamp = get_jiffies_64();
7059 while (interrupt_pending(h)) {
7060 raw_tag = get_next_completion(h, q);
7061 while (raw_tag != FIFO_EMPTY) {
7062 process_indexed_cmd(h, raw_tag);
7063 raw_tag = next_command(h, q);
7064 }
7065 }
7066 return IRQ_HANDLED;
7067 }
7068
do_hpsa_intr_msi(int irq,void * queue)7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070 {
7071 struct ctlr_info *h = queue_to_hba(queue);
7072 u32 raw_tag;
7073 u8 q = *(u8 *) queue;
7074
7075 h->last_intr_timestamp = get_jiffies_64();
7076 raw_tag = get_next_completion(h, q);
7077 while (raw_tag != FIFO_EMPTY) {
7078 process_indexed_cmd(h, raw_tag);
7079 raw_tag = next_command(h, q);
7080 }
7081 return IRQ_HANDLED;
7082 }
7083
7084 /* Send a message CDB to the firmware. Careful, this only works
7085 * in simple mode, not performant mode due to the tag lookup.
7086 * We only ever use this immediately after a controller reset.
7087 */
hpsa_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089 unsigned char type)
7090 {
7091 struct Command {
7092 struct CommandListHeader CommandHeader;
7093 struct RequestBlock Request;
7094 struct ErrDescriptor ErrorDescriptor;
7095 };
7096 struct Command *cmd;
7097 static const size_t cmd_sz = sizeof(*cmd) +
7098 sizeof(cmd->ErrorDescriptor);
7099 dma_addr_t paddr64;
7100 __le32 paddr32;
7101 u32 tag;
7102 void __iomem *vaddr;
7103 int i, err;
7104
7105 vaddr = pci_ioremap_bar(pdev, 0);
7106 if (vaddr == NULL)
7107 return -ENOMEM;
7108
7109 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110 * CCISS commands, so they must be allocated from the lower 4GiB of
7111 * memory.
7112 */
7113 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114 if (err) {
7115 iounmap(vaddr);
7116 return err;
7117 }
7118
7119 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120 if (cmd == NULL) {
7121 iounmap(vaddr);
7122 return -ENOMEM;
7123 }
7124
7125 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7126 * although there's no guarantee, we assume that the address is at
7127 * least 4-byte aligned (most likely, it's page-aligned).
7128 */
7129 paddr32 = cpu_to_le32(paddr64);
7130
7131 cmd->CommandHeader.ReplyQueue = 0;
7132 cmd->CommandHeader.SGList = 0;
7133 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136
7137 cmd->Request.CDBLen = 16;
7138 cmd->Request.type_attr_dir =
7139 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140 cmd->Request.Timeout = 0; /* Don't time out */
7141 cmd->Request.CDB[0] = opcode;
7142 cmd->Request.CDB[1] = type;
7143 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144 cmd->ErrorDescriptor.Addr =
7145 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147
7148 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149
7150 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153 break;
7154 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155 }
7156
7157 iounmap(vaddr);
7158
7159 /* we leak the DMA buffer here ... no choice since the controller could
7160 * still complete the command.
7161 */
7162 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164 opcode, type);
7165 return -ETIMEDOUT;
7166 }
7167
7168 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169
7170 if (tag & HPSA_ERROR_BIT) {
7171 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172 opcode, type);
7173 return -EIO;
7174 }
7175
7176 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177 opcode, type);
7178 return 0;
7179 }
7180
7181 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7182
hpsa_controller_hard_reset(struct pci_dev * pdev,void __iomem * vaddr,u32 use_doorbell)7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184 void __iomem *vaddr, u32 use_doorbell)
7185 {
7186
7187 if (use_doorbell) {
7188 /* For everything after the P600, the PCI power state method
7189 * of resetting the controller doesn't work, so we have this
7190 * other way using the doorbell register.
7191 */
7192 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193 writel(use_doorbell, vaddr + SA5_DOORBELL);
7194
7195 /* PMC hardware guys tell us we need a 10 second delay after
7196 * doorbell reset and before any attempt to talk to the board
7197 * at all to ensure that this actually works and doesn't fall
7198 * over in some weird corner cases.
7199 */
7200 msleep(10000);
7201 } else { /* Try to do it the PCI power state way */
7202
7203 /* Quoting from the Open CISS Specification: "The Power
7204 * Management Control/Status Register (CSR) controls the power
7205 * state of the device. The normal operating state is D0,
7206 * CSR=00h. The software off state is D3, CSR=03h. To reset
7207 * the controller, place the interface device in D3 then to D0,
7208 * this causes a secondary PCI reset which will reset the
7209 * controller." */
7210
7211 int rc = 0;
7212
7213 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214
7215 /* enter the D3hot power management state */
7216 rc = pci_set_power_state(pdev, PCI_D3hot);
7217 if (rc)
7218 return rc;
7219
7220 msleep(500);
7221
7222 /* enter the D0 power management state */
7223 rc = pci_set_power_state(pdev, PCI_D0);
7224 if (rc)
7225 return rc;
7226
7227 /*
7228 * The P600 requires a small delay when changing states.
7229 * Otherwise we may think the board did not reset and we bail.
7230 * This for kdump only and is particular to the P600.
7231 */
7232 msleep(500);
7233 }
7234 return 0;
7235 }
7236
init_driver_version(char * driver_version,int len)7237 static void init_driver_version(char *driver_version, int len)
7238 {
7239 memset(driver_version, 0, len);
7240 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241 }
7242
write_driver_ver_to_cfgtable(struct CfgTable __iomem * cfgtable)7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244 {
7245 char *driver_version;
7246 int i, size = sizeof(cfgtable->driver_version);
7247
7248 driver_version = kmalloc(size, GFP_KERNEL);
7249 if (!driver_version)
7250 return -ENOMEM;
7251
7252 init_driver_version(driver_version, size);
7253 for (i = 0; i < size; i++)
7254 writeb(driver_version[i], &cfgtable->driver_version[i]);
7255 kfree(driver_version);
7256 return 0;
7257 }
7258
read_driver_ver_from_cfgtable(struct CfgTable __iomem * cfgtable,unsigned char * driver_ver)7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260 unsigned char *driver_ver)
7261 {
7262 int i;
7263
7264 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266 }
7267
controller_reset_failed(struct CfgTable __iomem * cfgtable)7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269 {
7270
7271 char *driver_ver, *old_driver_ver;
7272 int rc, size = sizeof(cfgtable->driver_version);
7273
7274 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275 if (!old_driver_ver)
7276 return -ENOMEM;
7277 driver_ver = old_driver_ver + size;
7278
7279 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7280 * should have been changed, otherwise we know the reset failed.
7281 */
7282 init_driver_version(old_driver_ver, size);
7283 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284 rc = !memcmp(driver_ver, old_driver_ver, size);
7285 kfree(old_driver_ver);
7286 return rc;
7287 }
7288 /* This does a hard reset of the controller using PCI power management
7289 * states or the using the doorbell register.
7290 */
hpsa_kdump_hard_reset_controller(struct pci_dev * pdev,u32 board_id)7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292 {
7293 u64 cfg_offset;
7294 u32 cfg_base_addr;
7295 u64 cfg_base_addr_index;
7296 void __iomem *vaddr;
7297 unsigned long paddr;
7298 u32 misc_fw_support;
7299 int rc;
7300 struct CfgTable __iomem *cfgtable;
7301 u32 use_doorbell;
7302 u16 command_register;
7303
7304 /* For controllers as old as the P600, this is very nearly
7305 * the same thing as
7306 *
7307 * pci_save_state(pci_dev);
7308 * pci_set_power_state(pci_dev, PCI_D3hot);
7309 * pci_set_power_state(pci_dev, PCI_D0);
7310 * pci_restore_state(pci_dev);
7311 *
7312 * For controllers newer than the P600, the pci power state
7313 * method of resetting doesn't work so we have another way
7314 * using the doorbell register.
7315 */
7316
7317 if (!ctlr_is_resettable(board_id)) {
7318 dev_warn(&pdev->dev, "Controller not resettable\n");
7319 return -ENODEV;
7320 }
7321
7322 /* if controller is soft- but not hard resettable... */
7323 if (!ctlr_is_hard_resettable(board_id))
7324 return -ENOTSUPP; /* try soft reset later. */
7325
7326 /* Save the PCI command register */
7327 pci_read_config_word(pdev, 4, &command_register);
7328 pci_save_state(pdev);
7329
7330 /* find the first memory BAR, so we can find the cfg table */
7331 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332 if (rc)
7333 return rc;
7334 vaddr = remap_pci_mem(paddr, 0x250);
7335 if (!vaddr)
7336 return -ENOMEM;
7337
7338 /* find cfgtable in order to check if reset via doorbell is supported */
7339 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340 &cfg_base_addr_index, &cfg_offset);
7341 if (rc)
7342 goto unmap_vaddr;
7343 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345 if (!cfgtable) {
7346 rc = -ENOMEM;
7347 goto unmap_vaddr;
7348 }
7349 rc = write_driver_ver_to_cfgtable(cfgtable);
7350 if (rc)
7351 goto unmap_cfgtable;
7352
7353 /* If reset via doorbell register is supported, use that.
7354 * There are two such methods. Favor the newest method.
7355 */
7356 misc_fw_support = readl(&cfgtable->misc_fw_support);
7357 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358 if (use_doorbell) {
7359 use_doorbell = DOORBELL_CTLR_RESET2;
7360 } else {
7361 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362 if (use_doorbell) {
7363 dev_warn(&pdev->dev,
7364 "Soft reset not supported. Firmware update is required.\n");
7365 rc = -ENOTSUPP; /* try soft reset */
7366 goto unmap_cfgtable;
7367 }
7368 }
7369
7370 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371 if (rc)
7372 goto unmap_cfgtable;
7373
7374 pci_restore_state(pdev);
7375 pci_write_config_word(pdev, 4, command_register);
7376
7377 /* Some devices (notably the HP Smart Array 5i Controller)
7378 need a little pause here */
7379 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380
7381 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382 if (rc) {
7383 dev_warn(&pdev->dev,
7384 "Failed waiting for board to become ready after hard reset\n");
7385 goto unmap_cfgtable;
7386 }
7387
7388 rc = controller_reset_failed(vaddr);
7389 if (rc < 0)
7390 goto unmap_cfgtable;
7391 if (rc) {
7392 dev_warn(&pdev->dev, "Unable to successfully reset "
7393 "controller. Will try soft reset.\n");
7394 rc = -ENOTSUPP;
7395 } else {
7396 dev_info(&pdev->dev, "board ready after hard reset.\n");
7397 }
7398
7399 unmap_cfgtable:
7400 iounmap(cfgtable);
7401
7402 unmap_vaddr:
7403 iounmap(vaddr);
7404 return rc;
7405 }
7406
7407 /*
7408 * We cannot read the structure directly, for portability we must use
7409 * the io functions.
7410 * This is for debug only.
7411 */
print_cfg_table(struct device * dev,struct CfgTable __iomem * tb)7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413 {
7414 #ifdef HPSA_DEBUG
7415 int i;
7416 char temp_name[17];
7417
7418 dev_info(dev, "Controller Configuration information\n");
7419 dev_info(dev, "------------------------------------\n");
7420 for (i = 0; i < 4; i++)
7421 temp_name[i] = readb(&(tb->Signature[i]));
7422 temp_name[4] = '\0';
7423 dev_info(dev, " Signature = %s\n", temp_name);
7424 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7425 dev_info(dev, " Transport methods supported = 0x%x\n",
7426 readl(&(tb->TransportSupport)));
7427 dev_info(dev, " Transport methods active = 0x%x\n",
7428 readl(&(tb->TransportActive)));
7429 dev_info(dev, " Requested transport Method = 0x%x\n",
7430 readl(&(tb->HostWrite.TransportRequest)));
7431 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7432 readl(&(tb->HostWrite.CoalIntDelay)));
7433 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7434 readl(&(tb->HostWrite.CoalIntCount)));
7435 dev_info(dev, " Max outstanding commands = %d\n",
7436 readl(&(tb->CmdsOutMax)));
7437 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438 for (i = 0; i < 16; i++)
7439 temp_name[i] = readb(&(tb->ServerName[i]));
7440 temp_name[16] = '\0';
7441 dev_info(dev, " Server Name = %s\n", temp_name);
7442 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7443 readl(&(tb->HeartBeat)));
7444 #endif /* HPSA_DEBUG */
7445 }
7446
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448 {
7449 int i, offset, mem_type, bar_type;
7450
7451 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7452 return 0;
7453 offset = 0;
7454 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457 offset += 4;
7458 else {
7459 mem_type = pci_resource_flags(pdev, i) &
7460 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461 switch (mem_type) {
7462 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464 offset += 4; /* 32 bit */
7465 break;
7466 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467 offset += 8;
7468 break;
7469 default: /* reserved in PCI 2.2 */
7470 dev_warn(&pdev->dev,
7471 "base address is invalid\n");
7472 return -1;
7473 }
7474 }
7475 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476 return i + 1;
7477 }
7478 return -1;
7479 }
7480
hpsa_disable_interrupt_mode(struct ctlr_info * h)7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482 {
7483 pci_free_irq_vectors(h->pdev);
7484 h->msix_vectors = 0;
7485 }
7486
hpsa_setup_reply_map(struct ctlr_info * h)7487 static void hpsa_setup_reply_map(struct ctlr_info *h)
7488 {
7489 const struct cpumask *mask;
7490 unsigned int queue, cpu;
7491
7492 for (queue = 0; queue < h->msix_vectors; queue++) {
7493 mask = pci_irq_get_affinity(h->pdev, queue);
7494 if (!mask)
7495 goto fallback;
7496
7497 for_each_cpu(cpu, mask)
7498 h->reply_map[cpu] = queue;
7499 }
7500 return;
7501
7502 fallback:
7503 for_each_possible_cpu(cpu)
7504 h->reply_map[cpu] = 0;
7505 }
7506
7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508 * controllers that are capable. If not, we use legacy INTx mode.
7509 */
hpsa_interrupt_mode(struct ctlr_info * h)7510 static int hpsa_interrupt_mode(struct ctlr_info *h)
7511 {
7512 unsigned int flags = PCI_IRQ_LEGACY;
7513 int ret;
7514
7515 /* Some boards advertise MSI but don't really support it */
7516 switch (h->board_id) {
7517 case 0x40700E11:
7518 case 0x40800E11:
7519 case 0x40820E11:
7520 case 0x40830E11:
7521 break;
7522 default:
7523 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525 if (ret > 0) {
7526 h->msix_vectors = ret;
7527 return 0;
7528 }
7529
7530 flags |= PCI_IRQ_MSI;
7531 break;
7532 }
7533
7534 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535 if (ret < 0)
7536 return ret;
7537 return 0;
7538 }
7539
hpsa_lookup_board_id(struct pci_dev * pdev,u32 * board_id,bool * legacy_board)7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541 bool *legacy_board)
7542 {
7543 int i;
7544 u32 subsystem_vendor_id, subsystem_device_id;
7545
7546 subsystem_vendor_id = pdev->subsystem_vendor;
7547 subsystem_device_id = pdev->subsystem_device;
7548 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549 subsystem_vendor_id;
7550
7551 if (legacy_board)
7552 *legacy_board = false;
7553 for (i = 0; i < ARRAY_SIZE(products); i++)
7554 if (*board_id == products[i].board_id) {
7555 if (products[i].access != &SA5A_access &&
7556 products[i].access != &SA5B_access)
7557 return i;
7558 dev_warn(&pdev->dev,
7559 "legacy board ID: 0x%08x\n",
7560 *board_id);
7561 if (legacy_board)
7562 *legacy_board = true;
7563 return i;
7564 }
7565
7566 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567 if (legacy_board)
7568 *legacy_board = true;
7569 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570 }
7571
hpsa_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573 unsigned long *memory_bar)
7574 {
7575 int i;
7576
7577 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579 /* addressing mode bits already removed */
7580 *memory_bar = pci_resource_start(pdev, i);
7581 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582 *memory_bar);
7583 return 0;
7584 }
7585 dev_warn(&pdev->dev, "no memory BAR found\n");
7586 return -ENODEV;
7587 }
7588
hpsa_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590 int wait_for_ready)
7591 {
7592 int i, iterations;
7593 u32 scratchpad;
7594 if (wait_for_ready)
7595 iterations = HPSA_BOARD_READY_ITERATIONS;
7596 else
7597 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598
7599 for (i = 0; i < iterations; i++) {
7600 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601 if (wait_for_ready) {
7602 if (scratchpad == HPSA_FIRMWARE_READY)
7603 return 0;
7604 } else {
7605 if (scratchpad != HPSA_FIRMWARE_READY)
7606 return 0;
7607 }
7608 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609 }
7610 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611 return -ENODEV;
7612 }
7613
hpsa_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616 u64 *cfg_offset)
7617 {
7618 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620 *cfg_base_addr &= (u32) 0x0000ffff;
7621 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622 if (*cfg_base_addr_index == -1) {
7623 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624 return -ENODEV;
7625 }
7626 return 0;
7627 }
7628
hpsa_free_cfgtables(struct ctlr_info * h)7629 static void hpsa_free_cfgtables(struct ctlr_info *h)
7630 {
7631 if (h->transtable) {
7632 iounmap(h->transtable);
7633 h->transtable = NULL;
7634 }
7635 if (h->cfgtable) {
7636 iounmap(h->cfgtable);
7637 h->cfgtable = NULL;
7638 }
7639 }
7640
7641 /* Find and map CISS config table and transfer table
7642 + * several items must be unmapped (freed) later
7643 + * */
hpsa_find_cfgtables(struct ctlr_info * h)7644 static int hpsa_find_cfgtables(struct ctlr_info *h)
7645 {
7646 u64 cfg_offset;
7647 u32 cfg_base_addr;
7648 u64 cfg_base_addr_index;
7649 u32 trans_offset;
7650 int rc;
7651
7652 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653 &cfg_base_addr_index, &cfg_offset);
7654 if (rc)
7655 return rc;
7656 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658 if (!h->cfgtable) {
7659 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660 return -ENOMEM;
7661 }
7662 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663 if (rc)
7664 return rc;
7665 /* Find performant mode table. */
7666 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668 cfg_base_addr_index)+cfg_offset+trans_offset,
7669 sizeof(*h->transtable));
7670 if (!h->transtable) {
7671 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672 hpsa_free_cfgtables(h);
7673 return -ENOMEM;
7674 }
7675 return 0;
7676 }
7677
hpsa_get_max_perf_mode_cmds(struct ctlr_info * h)7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679 {
7680 #define MIN_MAX_COMMANDS 16
7681 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682
7683 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684
7685 /* Limit commands in memory limited kdump scenario. */
7686 if (reset_devices && h->max_commands > 32)
7687 h->max_commands = 32;
7688
7689 if (h->max_commands < MIN_MAX_COMMANDS) {
7690 dev_warn(&h->pdev->dev,
7691 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692 h->max_commands,
7693 MIN_MAX_COMMANDS);
7694 h->max_commands = MIN_MAX_COMMANDS;
7695 }
7696 }
7697
7698 /* If the controller reports that the total max sg entries is greater than 512,
7699 * then we know that chained SG blocks work. (Original smart arrays did not
7700 * support chained SG blocks and would return zero for max sg entries.)
7701 */
hpsa_supports_chained_sg_blocks(struct ctlr_info * h)7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703 {
7704 return h->maxsgentries > 512;
7705 }
7706
7707 /* Interrogate the hardware for some limits:
7708 * max commands, max SG elements without chaining, and with chaining,
7709 * SG chain block size, etc.
7710 */
hpsa_find_board_params(struct ctlr_info * h)7711 static void hpsa_find_board_params(struct ctlr_info *h)
7712 {
7713 hpsa_get_max_perf_mode_cmds(h);
7714 h->nr_cmds = h->max_commands;
7715 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717 if (hpsa_supports_chained_sg_blocks(h)) {
7718 /* Limit in-command s/g elements to 32 save dma'able memory. */
7719 h->max_cmd_sg_entries = 32;
7720 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721 h->maxsgentries--; /* save one for chain pointer */
7722 } else {
7723 /*
7724 * Original smart arrays supported at most 31 s/g entries
7725 * embedded inline in the command (trying to use more
7726 * would lock up the controller)
7727 */
7728 h->max_cmd_sg_entries = 31;
7729 h->maxsgentries = 31; /* default to traditional values */
7730 h->chainsize = 0;
7731 }
7732
7733 /* Find out what task management functions are supported and cache */
7734 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741 }
7742
hpsa_CISS_signature_present(struct ctlr_info * h)7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744 {
7745 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747 return false;
7748 }
7749 return true;
7750 }
7751
hpsa_set_driver_support_bits(struct ctlr_info * h)7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753 {
7754 u32 driver_support;
7755
7756 driver_support = readl(&(h->cfgtable->driver_support));
7757 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758 #ifdef CONFIG_X86
7759 driver_support |= ENABLE_SCSI_PREFETCH;
7760 #endif
7761 driver_support |= ENABLE_UNIT_ATTN;
7762 writel(driver_support, &(h->cfgtable->driver_support));
7763 }
7764
7765 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7766 * in a prefetch beyond physical memory.
7767 */
hpsa_p600_dma_prefetch_quirk(struct ctlr_info * h)7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769 {
7770 u32 dma_prefetch;
7771
7772 if (h->board_id != 0x3225103C)
7773 return;
7774 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775 dma_prefetch |= 0x8000;
7776 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777 }
7778
hpsa_wait_for_clear_event_notify_ack(struct ctlr_info * h)7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780 {
7781 int i;
7782 u32 doorbell_value;
7783 unsigned long flags;
7784 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7785 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786 spin_lock_irqsave(&h->lock, flags);
7787 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788 spin_unlock_irqrestore(&h->lock, flags);
7789 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790 goto done;
7791 /* delay and try again */
7792 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793 }
7794 return -ENODEV;
7795 done:
7796 return 0;
7797 }
7798
hpsa_wait_for_mode_change_ack(struct ctlr_info * h)7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800 {
7801 int i;
7802 u32 doorbell_value;
7803 unsigned long flags;
7804
7805 /* under certain very rare conditions, this can take awhile.
7806 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807 * as we enter this code.)
7808 */
7809 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810 if (h->remove_in_progress)
7811 goto done;
7812 spin_lock_irqsave(&h->lock, flags);
7813 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814 spin_unlock_irqrestore(&h->lock, flags);
7815 if (!(doorbell_value & CFGTBL_ChangeReq))
7816 goto done;
7817 /* delay and try again */
7818 msleep(MODE_CHANGE_WAIT_INTERVAL);
7819 }
7820 return -ENODEV;
7821 done:
7822 return 0;
7823 }
7824
7825 /* return -ENODEV or other reason on error, 0 on success */
hpsa_enter_simple_mode(struct ctlr_info * h)7826 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827 {
7828 u32 trans_support;
7829
7830 trans_support = readl(&(h->cfgtable->TransportSupport));
7831 if (!(trans_support & SIMPLE_MODE))
7832 return -ENOTSUPP;
7833
7834 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835
7836 /* Update the field, and then ring the doorbell */
7837 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840 if (hpsa_wait_for_mode_change_ack(h))
7841 goto error;
7842 print_cfg_table(&h->pdev->dev, h->cfgtable);
7843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844 goto error;
7845 h->transMethod = CFGTBL_Trans_Simple;
7846 return 0;
7847 error:
7848 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849 return -ENODEV;
7850 }
7851
7852 /* free items allocated or mapped by hpsa_pci_init */
hpsa_free_pci_init(struct ctlr_info * h)7853 static void hpsa_free_pci_init(struct ctlr_info *h)
7854 {
7855 hpsa_free_cfgtables(h); /* pci_init 4 */
7856 iounmap(h->vaddr); /* pci_init 3 */
7857 h->vaddr = NULL;
7858 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7859 /*
7860 * call pci_disable_device before pci_release_regions per
7861 * Documentation/driver-api/pci/pci.rst
7862 */
7863 pci_disable_device(h->pdev); /* pci_init 1 */
7864 pci_release_regions(h->pdev); /* pci_init 2 */
7865 }
7866
7867 /* several items must be freed later */
hpsa_pci_init(struct ctlr_info * h)7868 static int hpsa_pci_init(struct ctlr_info *h)
7869 {
7870 int prod_index, err;
7871 bool legacy_board;
7872
7873 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874 if (prod_index < 0)
7875 return prod_index;
7876 h->product_name = products[prod_index].product_name;
7877 h->access = *(products[prod_index].access);
7878 h->legacy_board = legacy_board;
7879 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881
7882 err = pci_enable_device(h->pdev);
7883 if (err) {
7884 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885 pci_disable_device(h->pdev);
7886 return err;
7887 }
7888
7889 err = pci_request_regions(h->pdev, HPSA);
7890 if (err) {
7891 dev_err(&h->pdev->dev,
7892 "failed to obtain PCI resources\n");
7893 pci_disable_device(h->pdev);
7894 return err;
7895 }
7896
7897 pci_set_master(h->pdev);
7898
7899 err = hpsa_interrupt_mode(h);
7900 if (err)
7901 goto clean1;
7902
7903 /* setup mapping between CPU and reply queue */
7904 hpsa_setup_reply_map(h);
7905
7906 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907 if (err)
7908 goto clean2; /* intmode+region, pci */
7909 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910 if (!h->vaddr) {
7911 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912 err = -ENOMEM;
7913 goto clean2; /* intmode+region, pci */
7914 }
7915 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916 if (err)
7917 goto clean3; /* vaddr, intmode+region, pci */
7918 err = hpsa_find_cfgtables(h);
7919 if (err)
7920 goto clean3; /* vaddr, intmode+region, pci */
7921 hpsa_find_board_params(h);
7922
7923 if (!hpsa_CISS_signature_present(h)) {
7924 err = -ENODEV;
7925 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7926 }
7927 hpsa_set_driver_support_bits(h);
7928 hpsa_p600_dma_prefetch_quirk(h);
7929 err = hpsa_enter_simple_mode(h);
7930 if (err)
7931 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7932 return 0;
7933
7934 clean4: /* cfgtables, vaddr, intmode+region, pci */
7935 hpsa_free_cfgtables(h);
7936 clean3: /* vaddr, intmode+region, pci */
7937 iounmap(h->vaddr);
7938 h->vaddr = NULL;
7939 clean2: /* intmode+region, pci */
7940 hpsa_disable_interrupt_mode(h);
7941 clean1:
7942 /*
7943 * call pci_disable_device before pci_release_regions per
7944 * Documentation/driver-api/pci/pci.rst
7945 */
7946 pci_disable_device(h->pdev);
7947 pci_release_regions(h->pdev);
7948 return err;
7949 }
7950
hpsa_hba_inquiry(struct ctlr_info * h)7951 static void hpsa_hba_inquiry(struct ctlr_info *h)
7952 {
7953 int rc;
7954
7955 #define HBA_INQUIRY_BYTE_COUNT 64
7956 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957 if (!h->hba_inquiry_data)
7958 return;
7959 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961 if (rc != 0) {
7962 kfree(h->hba_inquiry_data);
7963 h->hba_inquiry_data = NULL;
7964 }
7965 }
7966
hpsa_init_reset_devices(struct pci_dev * pdev,u32 board_id)7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968 {
7969 int rc, i;
7970 void __iomem *vaddr;
7971
7972 if (!reset_devices)
7973 return 0;
7974
7975 /* kdump kernel is loading, we don't know in which state is
7976 * the pci interface. The dev->enable_cnt is equal zero
7977 * so we call enable+disable, wait a while and switch it on.
7978 */
7979 rc = pci_enable_device(pdev);
7980 if (rc) {
7981 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982 return -ENODEV;
7983 }
7984 pci_disable_device(pdev);
7985 msleep(260); /* a randomly chosen number */
7986 rc = pci_enable_device(pdev);
7987 if (rc) {
7988 dev_warn(&pdev->dev, "failed to enable device.\n");
7989 return -ENODEV;
7990 }
7991
7992 pci_set_master(pdev);
7993
7994 vaddr = pci_ioremap_bar(pdev, 0);
7995 if (vaddr == NULL) {
7996 rc = -ENOMEM;
7997 goto out_disable;
7998 }
7999 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000 iounmap(vaddr);
8001
8002 /* Reset the controller with a PCI power-cycle or via doorbell */
8003 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004
8005 /* -ENOTSUPP here means we cannot reset the controller
8006 * but it's already (and still) up and running in
8007 * "performant mode". Or, it might be 640x, which can't reset
8008 * due to concerns about shared bbwc between 6402/6404 pair.
8009 */
8010 if (rc)
8011 goto out_disable;
8012
8013 /* Now try to get the controller to respond to a no-op */
8014 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016 if (hpsa_noop(pdev) == 0)
8017 break;
8018 else
8019 dev_warn(&pdev->dev, "no-op failed%s\n",
8020 (i < 11 ? "; re-trying" : ""));
8021 }
8022
8023 out_disable:
8024
8025 pci_disable_device(pdev);
8026 return rc;
8027 }
8028
hpsa_free_cmd_pool(struct ctlr_info * h)8029 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030 {
8031 kfree(h->cmd_pool_bits);
8032 h->cmd_pool_bits = NULL;
8033 if (h->cmd_pool) {
8034 dma_free_coherent(&h->pdev->dev,
8035 h->nr_cmds * sizeof(struct CommandList),
8036 h->cmd_pool,
8037 h->cmd_pool_dhandle);
8038 h->cmd_pool = NULL;
8039 h->cmd_pool_dhandle = 0;
8040 }
8041 if (h->errinfo_pool) {
8042 dma_free_coherent(&h->pdev->dev,
8043 h->nr_cmds * sizeof(struct ErrorInfo),
8044 h->errinfo_pool,
8045 h->errinfo_pool_dhandle);
8046 h->errinfo_pool = NULL;
8047 h->errinfo_pool_dhandle = 0;
8048 }
8049 }
8050
hpsa_alloc_cmd_pool(struct ctlr_info * h)8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052 {
8053 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8054 sizeof(unsigned long),
8055 GFP_KERNEL);
8056 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8057 h->nr_cmds * sizeof(*h->cmd_pool),
8058 &h->cmd_pool_dhandle, GFP_KERNEL);
8059 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8060 h->nr_cmds * sizeof(*h->errinfo_pool),
8061 &h->errinfo_pool_dhandle, GFP_KERNEL);
8062 if ((h->cmd_pool_bits == NULL)
8063 || (h->cmd_pool == NULL)
8064 || (h->errinfo_pool == NULL)) {
8065 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8066 goto clean_up;
8067 }
8068 hpsa_preinitialize_commands(h);
8069 return 0;
8070 clean_up:
8071 hpsa_free_cmd_pool(h);
8072 return -ENOMEM;
8073 }
8074
8075 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
hpsa_free_irqs(struct ctlr_info * h)8076 static void hpsa_free_irqs(struct ctlr_info *h)
8077 {
8078 int i;
8079 int irq_vector = 0;
8080
8081 if (hpsa_simple_mode)
8082 irq_vector = h->intr_mode;
8083
8084 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8085 /* Single reply queue, only one irq to free */
8086 free_irq(pci_irq_vector(h->pdev, irq_vector),
8087 &h->q[h->intr_mode]);
8088 h->q[h->intr_mode] = 0;
8089 return;
8090 }
8091
8092 for (i = 0; i < h->msix_vectors; i++) {
8093 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8094 h->q[i] = 0;
8095 }
8096 for (; i < MAX_REPLY_QUEUES; i++)
8097 h->q[i] = 0;
8098 }
8099
8100 /* returns 0 on success; cleans up and returns -Enn on error */
hpsa_request_irqs(struct ctlr_info * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))8101 static int hpsa_request_irqs(struct ctlr_info *h,
8102 irqreturn_t (*msixhandler)(int, void *),
8103 irqreturn_t (*intxhandler)(int, void *))
8104 {
8105 int rc, i;
8106 int irq_vector = 0;
8107
8108 if (hpsa_simple_mode)
8109 irq_vector = h->intr_mode;
8110
8111 /*
8112 * initialize h->q[x] = x so that interrupt handlers know which
8113 * queue to process.
8114 */
8115 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8116 h->q[i] = (u8) i;
8117
8118 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8119 /* If performant mode and MSI-X, use multiple reply queues */
8120 for (i = 0; i < h->msix_vectors; i++) {
8121 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8122 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8123 0, h->intrname[i],
8124 &h->q[i]);
8125 if (rc) {
8126 int j;
8127
8128 dev_err(&h->pdev->dev,
8129 "failed to get irq %d for %s\n",
8130 pci_irq_vector(h->pdev, i), h->devname);
8131 for (j = 0; j < i; j++) {
8132 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8133 h->q[j] = 0;
8134 }
8135 for (; j < MAX_REPLY_QUEUES; j++)
8136 h->q[j] = 0;
8137 return rc;
8138 }
8139 }
8140 } else {
8141 /* Use single reply pool */
8142 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8143 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8144 h->msix_vectors ? "x" : "");
8145 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8146 msixhandler, 0,
8147 h->intrname[0],
8148 &h->q[h->intr_mode]);
8149 } else {
8150 sprintf(h->intrname[h->intr_mode],
8151 "%s-intx", h->devname);
8152 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8153 intxhandler, IRQF_SHARED,
8154 h->intrname[0],
8155 &h->q[h->intr_mode]);
8156 }
8157 }
8158 if (rc) {
8159 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8160 pci_irq_vector(h->pdev, irq_vector), h->devname);
8161 hpsa_free_irqs(h);
8162 return -ENODEV;
8163 }
8164 return 0;
8165 }
8166
hpsa_kdump_soft_reset(struct ctlr_info * h)8167 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8168 {
8169 int rc;
8170 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8171
8172 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8173 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8174 if (rc) {
8175 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8176 return rc;
8177 }
8178
8179 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8180 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8181 if (rc) {
8182 dev_warn(&h->pdev->dev, "Board failed to become ready "
8183 "after soft reset.\n");
8184 return rc;
8185 }
8186
8187 return 0;
8188 }
8189
hpsa_free_reply_queues(struct ctlr_info * h)8190 static void hpsa_free_reply_queues(struct ctlr_info *h)
8191 {
8192 int i;
8193
8194 for (i = 0; i < h->nreply_queues; i++) {
8195 if (!h->reply_queue[i].head)
8196 continue;
8197 dma_free_coherent(&h->pdev->dev,
8198 h->reply_queue_size,
8199 h->reply_queue[i].head,
8200 h->reply_queue[i].busaddr);
8201 h->reply_queue[i].head = NULL;
8202 h->reply_queue[i].busaddr = 0;
8203 }
8204 h->reply_queue_size = 0;
8205 }
8206
hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info * h)8207 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8208 {
8209 hpsa_free_performant_mode(h); /* init_one 7 */
8210 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8211 hpsa_free_cmd_pool(h); /* init_one 5 */
8212 hpsa_free_irqs(h); /* init_one 4 */
8213 scsi_host_put(h->scsi_host); /* init_one 3 */
8214 h->scsi_host = NULL; /* init_one 3 */
8215 hpsa_free_pci_init(h); /* init_one 2_5 */
8216 free_percpu(h->lockup_detected); /* init_one 2 */
8217 h->lockup_detected = NULL; /* init_one 2 */
8218 if (h->resubmit_wq) {
8219 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8220 h->resubmit_wq = NULL;
8221 }
8222 if (h->rescan_ctlr_wq) {
8223 destroy_workqueue(h->rescan_ctlr_wq);
8224 h->rescan_ctlr_wq = NULL;
8225 }
8226 if (h->monitor_ctlr_wq) {
8227 destroy_workqueue(h->monitor_ctlr_wq);
8228 h->monitor_ctlr_wq = NULL;
8229 }
8230
8231 kfree(h); /* init_one 1 */
8232 }
8233
8234 /* Called when controller lockup detected. */
fail_all_outstanding_cmds(struct ctlr_info * h)8235 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8236 {
8237 int i, refcount;
8238 struct CommandList *c;
8239 int failcount = 0;
8240
8241 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8242 for (i = 0; i < h->nr_cmds; i++) {
8243 c = h->cmd_pool + i;
8244 refcount = atomic_inc_return(&c->refcount);
8245 if (refcount > 1) {
8246 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8247 finish_cmd(c);
8248 atomic_dec(&h->commands_outstanding);
8249 failcount++;
8250 }
8251 cmd_free(h, c);
8252 }
8253 dev_warn(&h->pdev->dev,
8254 "failed %d commands in fail_all\n", failcount);
8255 }
8256
set_lockup_detected_for_all_cpus(struct ctlr_info * h,u32 value)8257 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8258 {
8259 int cpu;
8260
8261 for_each_online_cpu(cpu) {
8262 u32 *lockup_detected;
8263 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8264 *lockup_detected = value;
8265 }
8266 wmb(); /* be sure the per-cpu variables are out to memory */
8267 }
8268
controller_lockup_detected(struct ctlr_info * h)8269 static void controller_lockup_detected(struct ctlr_info *h)
8270 {
8271 unsigned long flags;
8272 u32 lockup_detected;
8273
8274 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275 spin_lock_irqsave(&h->lock, flags);
8276 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8277 if (!lockup_detected) {
8278 /* no heartbeat, but controller gave us a zero. */
8279 dev_warn(&h->pdev->dev,
8280 "lockup detected after %d but scratchpad register is zero\n",
8281 h->heartbeat_sample_interval / HZ);
8282 lockup_detected = 0xffffffff;
8283 }
8284 set_lockup_detected_for_all_cpus(h, lockup_detected);
8285 spin_unlock_irqrestore(&h->lock, flags);
8286 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8287 lockup_detected, h->heartbeat_sample_interval / HZ);
8288 if (lockup_detected == 0xffff0000) {
8289 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8290 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8291 }
8292 pci_disable_device(h->pdev);
8293 fail_all_outstanding_cmds(h);
8294 }
8295
detect_controller_lockup(struct ctlr_info * h)8296 static int detect_controller_lockup(struct ctlr_info *h)
8297 {
8298 u64 now;
8299 u32 heartbeat;
8300 unsigned long flags;
8301
8302 now = get_jiffies_64();
8303 /* If we've received an interrupt recently, we're ok. */
8304 if (time_after64(h->last_intr_timestamp +
8305 (h->heartbeat_sample_interval), now))
8306 return false;
8307
8308 /*
8309 * If we've already checked the heartbeat recently, we're ok.
8310 * This could happen if someone sends us a signal. We
8311 * otherwise don't care about signals in this thread.
8312 */
8313 if (time_after64(h->last_heartbeat_timestamp +
8314 (h->heartbeat_sample_interval), now))
8315 return false;
8316
8317 /* If heartbeat has not changed since we last looked, we're not ok. */
8318 spin_lock_irqsave(&h->lock, flags);
8319 heartbeat = readl(&h->cfgtable->HeartBeat);
8320 spin_unlock_irqrestore(&h->lock, flags);
8321 if (h->last_heartbeat == heartbeat) {
8322 controller_lockup_detected(h);
8323 return true;
8324 }
8325
8326 /* We're ok. */
8327 h->last_heartbeat = heartbeat;
8328 h->last_heartbeat_timestamp = now;
8329 return false;
8330 }
8331
8332 /*
8333 * Set ioaccel status for all ioaccel volumes.
8334 *
8335 * Called from monitor controller worker (hpsa_event_monitor_worker)
8336 *
8337 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8338 * transformation, so we will be turning off ioaccel for all volumes that
8339 * make up the Array.
8340 */
hpsa_set_ioaccel_status(struct ctlr_info * h)8341 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8342 {
8343 int rc;
8344 int i;
8345 u8 ioaccel_status;
8346 unsigned char *buf;
8347 struct hpsa_scsi_dev_t *device;
8348
8349 if (!h)
8350 return;
8351
8352 buf = kmalloc(64, GFP_KERNEL);
8353 if (!buf)
8354 return;
8355
8356 /*
8357 * Run through current device list used during I/O requests.
8358 */
8359 for (i = 0; i < h->ndevices; i++) {
8360 int offload_to_be_enabled = 0;
8361 int offload_config = 0;
8362
8363 device = h->dev[i];
8364
8365 if (!device)
8366 continue;
8367 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8368 HPSA_VPD_LV_IOACCEL_STATUS))
8369 continue;
8370
8371 memset(buf, 0, 64);
8372
8373 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8374 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8375 buf, 64);
8376 if (rc != 0)
8377 continue;
8378
8379 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8380
8381 /*
8382 * Check if offload is still configured on
8383 */
8384 offload_config =
8385 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8386 /*
8387 * If offload is configured on, check to see if ioaccel
8388 * needs to be enabled.
8389 */
8390 if (offload_config)
8391 offload_to_be_enabled =
8392 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8393
8394 /*
8395 * If ioaccel is to be re-enabled, re-enable later during the
8396 * scan operation so the driver can get a fresh raidmap
8397 * before turning ioaccel back on.
8398 */
8399 if (offload_to_be_enabled)
8400 continue;
8401
8402 /*
8403 * Immediately turn off ioaccel for any volume the
8404 * controller tells us to. Some of the reasons could be:
8405 * transformation - change to the LVs of an Array.
8406 * degraded volume - component failure
8407 */
8408 hpsa_turn_off_ioaccel_for_device(device);
8409 }
8410
8411 kfree(buf);
8412 }
8413
hpsa_ack_ctlr_events(struct ctlr_info * h)8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416 char *event_type;
8417
8418 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8419 return;
8420
8421 /* Ask the controller to clear the events we're handling. */
8422 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8423 | CFGTBL_Trans_io_accel2)) &&
8424 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8425 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8426
8427 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8428 event_type = "state change";
8429 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8430 event_type = "configuration change";
8431 /* Stop sending new RAID offload reqs via the IO accelerator */
8432 scsi_block_requests(h->scsi_host);
8433 hpsa_set_ioaccel_status(h);
8434 hpsa_drain_accel_commands(h);
8435 /* Set 'accelerator path config change' bit */
8436 dev_warn(&h->pdev->dev,
8437 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8438 h->events, event_type);
8439 writel(h->events, &(h->cfgtable->clear_event_notify));
8440 /* Set the "clear event notify field update" bit 6 */
8441 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8442 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8443 hpsa_wait_for_clear_event_notify_ack(h);
8444 scsi_unblock_requests(h->scsi_host);
8445 } else {
8446 /* Acknowledge controller notification events. */
8447 writel(h->events, &(h->cfgtable->clear_event_notify));
8448 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8449 hpsa_wait_for_clear_event_notify_ack(h);
8450 }
8451 return;
8452 }
8453
8454 /* Check a register on the controller to see if there are configuration
8455 * changes (added/changed/removed logical drives, etc.) which mean that
8456 * we should rescan the controller for devices.
8457 * Also check flag for driver-initiated rescan.
8458 */
hpsa_ctlr_needs_rescan(struct ctlr_info * h)8459 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8460 {
8461 if (h->drv_req_rescan) {
8462 h->drv_req_rescan = 0;
8463 return 1;
8464 }
8465
8466 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8467 return 0;
8468
8469 h->events = readl(&(h->cfgtable->event_notify));
8470 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8471 }
8472
8473 /*
8474 * Check if any of the offline devices have become ready
8475 */
hpsa_offline_devices_ready(struct ctlr_info * h)8476 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8477 {
8478 unsigned long flags;
8479 struct offline_device_entry *d;
8480 struct list_head *this, *tmp;
8481
8482 spin_lock_irqsave(&h->offline_device_lock, flags);
8483 list_for_each_safe(this, tmp, &h->offline_device_list) {
8484 d = list_entry(this, struct offline_device_entry,
8485 offline_list);
8486 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8488 spin_lock_irqsave(&h->offline_device_lock, flags);
8489 list_del(&d->offline_list);
8490 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491 return 1;
8492 }
8493 spin_lock_irqsave(&h->offline_device_lock, flags);
8494 }
8495 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8496 return 0;
8497 }
8498
hpsa_luns_changed(struct ctlr_info * h)8499 static int hpsa_luns_changed(struct ctlr_info *h)
8500 {
8501 int rc = 1; /* assume there are changes */
8502 struct ReportLUNdata *logdev = NULL;
8503
8504 /* if we can't find out if lun data has changed,
8505 * assume that it has.
8506 */
8507
8508 if (!h->lastlogicals)
8509 return rc;
8510
8511 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8512 if (!logdev)
8513 return rc;
8514
8515 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8516 dev_warn(&h->pdev->dev,
8517 "report luns failed, can't track lun changes.\n");
8518 goto out;
8519 }
8520 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8521 dev_info(&h->pdev->dev,
8522 "Lun changes detected.\n");
8523 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8524 goto out;
8525 } else
8526 rc = 0; /* no changes detected. */
8527 out:
8528 kfree(logdev);
8529 return rc;
8530 }
8531
hpsa_perform_rescan(struct ctlr_info * h)8532 static void hpsa_perform_rescan(struct ctlr_info *h)
8533 {
8534 struct Scsi_Host *sh = NULL;
8535 unsigned long flags;
8536
8537 /*
8538 * Do the scan after the reset
8539 */
8540 spin_lock_irqsave(&h->reset_lock, flags);
8541 if (h->reset_in_progress) {
8542 h->drv_req_rescan = 1;
8543 spin_unlock_irqrestore(&h->reset_lock, flags);
8544 return;
8545 }
8546 spin_unlock_irqrestore(&h->reset_lock, flags);
8547
8548 sh = scsi_host_get(h->scsi_host);
8549 if (sh != NULL) {
8550 hpsa_scan_start(sh);
8551 scsi_host_put(sh);
8552 h->drv_req_rescan = 0;
8553 }
8554 }
8555
8556 /*
8557 * watch for controller events
8558 */
hpsa_event_monitor_worker(struct work_struct * work)8559 static void hpsa_event_monitor_worker(struct work_struct *work)
8560 {
8561 struct ctlr_info *h = container_of(to_delayed_work(work),
8562 struct ctlr_info, event_monitor_work);
8563 unsigned long flags;
8564
8565 spin_lock_irqsave(&h->lock, flags);
8566 if (h->remove_in_progress) {
8567 spin_unlock_irqrestore(&h->lock, flags);
8568 return;
8569 }
8570 spin_unlock_irqrestore(&h->lock, flags);
8571
8572 if (hpsa_ctlr_needs_rescan(h)) {
8573 hpsa_ack_ctlr_events(h);
8574 hpsa_perform_rescan(h);
8575 }
8576
8577 spin_lock_irqsave(&h->lock, flags);
8578 if (!h->remove_in_progress)
8579 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8580 HPSA_EVENT_MONITOR_INTERVAL);
8581 spin_unlock_irqrestore(&h->lock, flags);
8582 }
8583
hpsa_rescan_ctlr_worker(struct work_struct * work)8584 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8585 {
8586 unsigned long flags;
8587 struct ctlr_info *h = container_of(to_delayed_work(work),
8588 struct ctlr_info, rescan_ctlr_work);
8589
8590 spin_lock_irqsave(&h->lock, flags);
8591 if (h->remove_in_progress) {
8592 spin_unlock_irqrestore(&h->lock, flags);
8593 return;
8594 }
8595 spin_unlock_irqrestore(&h->lock, flags);
8596
8597 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8598 hpsa_perform_rescan(h);
8599 } else if (h->discovery_polling) {
8600 if (hpsa_luns_changed(h)) {
8601 dev_info(&h->pdev->dev,
8602 "driver discovery polling rescan.\n");
8603 hpsa_perform_rescan(h);
8604 }
8605 }
8606 spin_lock_irqsave(&h->lock, flags);
8607 if (!h->remove_in_progress)
8608 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8609 h->heartbeat_sample_interval);
8610 spin_unlock_irqrestore(&h->lock, flags);
8611 }
8612
hpsa_monitor_ctlr_worker(struct work_struct * work)8613 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8614 {
8615 unsigned long flags;
8616 struct ctlr_info *h = container_of(to_delayed_work(work),
8617 struct ctlr_info, monitor_ctlr_work);
8618
8619 detect_controller_lockup(h);
8620 if (lockup_detected(h))
8621 return;
8622
8623 spin_lock_irqsave(&h->lock, flags);
8624 if (!h->remove_in_progress)
8625 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8626 h->heartbeat_sample_interval);
8627 spin_unlock_irqrestore(&h->lock, flags);
8628 }
8629
hpsa_create_controller_wq(struct ctlr_info * h,char * name)8630 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8631 char *name)
8632 {
8633 struct workqueue_struct *wq = NULL;
8634
8635 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8636 if (!wq)
8637 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8638
8639 return wq;
8640 }
8641
hpda_free_ctlr_info(struct ctlr_info * h)8642 static void hpda_free_ctlr_info(struct ctlr_info *h)
8643 {
8644 kfree(h->reply_map);
8645 kfree(h);
8646 }
8647
hpda_alloc_ctlr_info(void)8648 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8649 {
8650 struct ctlr_info *h;
8651
8652 h = kzalloc(sizeof(*h), GFP_KERNEL);
8653 if (!h)
8654 return NULL;
8655
8656 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8657 if (!h->reply_map) {
8658 kfree(h);
8659 return NULL;
8660 }
8661 return h;
8662 }
8663
hpsa_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)8664 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8665 {
8666 int rc;
8667 struct ctlr_info *h;
8668 int try_soft_reset = 0;
8669 unsigned long flags;
8670 u32 board_id;
8671
8672 if (number_of_controllers == 0)
8673 printk(KERN_INFO DRIVER_NAME "\n");
8674
8675 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8676 if (rc < 0) {
8677 dev_warn(&pdev->dev, "Board ID not found\n");
8678 return rc;
8679 }
8680
8681 rc = hpsa_init_reset_devices(pdev, board_id);
8682 if (rc) {
8683 if (rc != -ENOTSUPP)
8684 return rc;
8685 /* If the reset fails in a particular way (it has no way to do
8686 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8687 * a soft reset once we get the controller configured up to the
8688 * point that it can accept a command.
8689 */
8690 try_soft_reset = 1;
8691 rc = 0;
8692 }
8693
8694 reinit_after_soft_reset:
8695
8696 /* Command structures must be aligned on a 32-byte boundary because
8697 * the 5 lower bits of the address are used by the hardware. and by
8698 * the driver. See comments in hpsa.h for more info.
8699 */
8700 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8701 h = hpda_alloc_ctlr_info();
8702 if (!h) {
8703 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8704 return -ENOMEM;
8705 }
8706
8707 h->pdev = pdev;
8708
8709 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8710 INIT_LIST_HEAD(&h->offline_device_list);
8711 spin_lock_init(&h->lock);
8712 spin_lock_init(&h->offline_device_lock);
8713 spin_lock_init(&h->scan_lock);
8714 spin_lock_init(&h->reset_lock);
8715 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8716
8717 /* Allocate and clear per-cpu variable lockup_detected */
8718 h->lockup_detected = alloc_percpu(u32);
8719 if (!h->lockup_detected) {
8720 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8721 rc = -ENOMEM;
8722 goto clean1; /* aer/h */
8723 }
8724 set_lockup_detected_for_all_cpus(h, 0);
8725
8726 rc = hpsa_pci_init(h);
8727 if (rc)
8728 goto clean2; /* lu, aer/h */
8729
8730 /* relies on h-> settings made by hpsa_pci_init, including
8731 * interrupt_mode h->intr */
8732 rc = hpsa_scsi_host_alloc(h);
8733 if (rc)
8734 goto clean2_5; /* pci, lu, aer/h */
8735
8736 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8737 h->ctlr = number_of_controllers;
8738 number_of_controllers++;
8739
8740 /* configure PCI DMA stuff */
8741 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8742 if (rc != 0) {
8743 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8744 if (rc != 0) {
8745 dev_err(&pdev->dev, "no suitable DMA available\n");
8746 goto clean3; /* shost, pci, lu, aer/h */
8747 }
8748 }
8749
8750 /* make sure the board interrupts are off */
8751 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752
8753 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8754 if (rc)
8755 goto clean3; /* shost, pci, lu, aer/h */
8756 rc = hpsa_alloc_cmd_pool(h);
8757 if (rc)
8758 goto clean4; /* irq, shost, pci, lu, aer/h */
8759 rc = hpsa_alloc_sg_chain_blocks(h);
8760 if (rc)
8761 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8762 init_waitqueue_head(&h->scan_wait_queue);
8763 init_waitqueue_head(&h->event_sync_wait_queue);
8764 mutex_init(&h->reset_mutex);
8765 h->scan_finished = 1; /* no scan currently in progress */
8766 h->scan_waiting = 0;
8767
8768 pci_set_drvdata(pdev, h);
8769 h->ndevices = 0;
8770
8771 spin_lock_init(&h->devlock);
8772 rc = hpsa_put_ctlr_into_performant_mode(h);
8773 if (rc)
8774 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8775
8776 /* create the resubmit workqueue */
8777 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8778 if (!h->rescan_ctlr_wq) {
8779 rc = -ENOMEM;
8780 goto clean7;
8781 }
8782
8783 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8784 if (!h->resubmit_wq) {
8785 rc = -ENOMEM;
8786 goto clean7; /* aer/h */
8787 }
8788
8789 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8790 if (!h->monitor_ctlr_wq) {
8791 rc = -ENOMEM;
8792 goto clean7;
8793 }
8794
8795 /*
8796 * At this point, the controller is ready to take commands.
8797 * Now, if reset_devices and the hard reset didn't work, try
8798 * the soft reset and see if that works.
8799 */
8800 if (try_soft_reset) {
8801
8802 /* This is kind of gross. We may or may not get a completion
8803 * from the soft reset command, and if we do, then the value
8804 * from the fifo may or may not be valid. So, we wait 10 secs
8805 * after the reset throwing away any completions we get during
8806 * that time. Unregister the interrupt handler and register
8807 * fake ones to scoop up any residual completions.
8808 */
8809 spin_lock_irqsave(&h->lock, flags);
8810 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8811 spin_unlock_irqrestore(&h->lock, flags);
8812 hpsa_free_irqs(h);
8813 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8814 hpsa_intx_discard_completions);
8815 if (rc) {
8816 dev_warn(&h->pdev->dev,
8817 "Failed to request_irq after soft reset.\n");
8818 /*
8819 * cannot goto clean7 or free_irqs will be called
8820 * again. Instead, do its work
8821 */
8822 hpsa_free_performant_mode(h); /* clean7 */
8823 hpsa_free_sg_chain_blocks(h); /* clean6 */
8824 hpsa_free_cmd_pool(h); /* clean5 */
8825 /*
8826 * skip hpsa_free_irqs(h) clean4 since that
8827 * was just called before request_irqs failed
8828 */
8829 goto clean3;
8830 }
8831
8832 rc = hpsa_kdump_soft_reset(h);
8833 if (rc)
8834 /* Neither hard nor soft reset worked, we're hosed. */
8835 goto clean7;
8836
8837 dev_info(&h->pdev->dev, "Board READY.\n");
8838 dev_info(&h->pdev->dev,
8839 "Waiting for stale completions to drain.\n");
8840 h->access.set_intr_mask(h, HPSA_INTR_ON);
8841 msleep(10000);
8842 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843
8844 rc = controller_reset_failed(h->cfgtable);
8845 if (rc)
8846 dev_info(&h->pdev->dev,
8847 "Soft reset appears to have failed.\n");
8848
8849 /* since the controller's reset, we have to go back and re-init
8850 * everything. Easiest to just forget what we've done and do it
8851 * all over again.
8852 */
8853 hpsa_undo_allocations_after_kdump_soft_reset(h);
8854 try_soft_reset = 0;
8855 if (rc)
8856 /* don't goto clean, we already unallocated */
8857 return -ENODEV;
8858
8859 goto reinit_after_soft_reset;
8860 }
8861
8862 /* Enable Accelerated IO path at driver layer */
8863 h->acciopath_status = 1;
8864 /* Disable discovery polling.*/
8865 h->discovery_polling = 0;
8866
8867
8868 /* Turn the interrupts on so we can service requests */
8869 h->access.set_intr_mask(h, HPSA_INTR_ON);
8870
8871 hpsa_hba_inquiry(h);
8872
8873 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8874 if (!h->lastlogicals)
8875 dev_info(&h->pdev->dev,
8876 "Can't track change to report lun data\n");
8877
8878 /* hook into SCSI subsystem */
8879 rc = hpsa_scsi_add_host(h);
8880 if (rc)
8881 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8882
8883 /* Monitor the controller for firmware lockups */
8884 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8885 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8886 schedule_delayed_work(&h->monitor_ctlr_work,
8887 h->heartbeat_sample_interval);
8888 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8889 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8890 h->heartbeat_sample_interval);
8891 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8892 schedule_delayed_work(&h->event_monitor_work,
8893 HPSA_EVENT_MONITOR_INTERVAL);
8894 return 0;
8895
8896 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897 kfree(h->lastlogicals);
8898 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899 hpsa_free_performant_mode(h);
8900 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8901 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8902 hpsa_free_sg_chain_blocks(h);
8903 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8904 hpsa_free_cmd_pool(h);
8905 clean4: /* irq, shost, pci, lu, aer/h */
8906 hpsa_free_irqs(h);
8907 clean3: /* shost, pci, lu, aer/h */
8908 scsi_host_put(h->scsi_host);
8909 h->scsi_host = NULL;
8910 clean2_5: /* pci, lu, aer/h */
8911 hpsa_free_pci_init(h);
8912 clean2: /* lu, aer/h */
8913 if (h->lockup_detected) {
8914 free_percpu(h->lockup_detected);
8915 h->lockup_detected = NULL;
8916 }
8917 clean1: /* wq/aer/h */
8918 if (h->resubmit_wq) {
8919 destroy_workqueue(h->resubmit_wq);
8920 h->resubmit_wq = NULL;
8921 }
8922 if (h->rescan_ctlr_wq) {
8923 destroy_workqueue(h->rescan_ctlr_wq);
8924 h->rescan_ctlr_wq = NULL;
8925 }
8926 if (h->monitor_ctlr_wq) {
8927 destroy_workqueue(h->monitor_ctlr_wq);
8928 h->monitor_ctlr_wq = NULL;
8929 }
8930 hpda_free_ctlr_info(h);
8931 return rc;
8932 }
8933
hpsa_flush_cache(struct ctlr_info * h)8934 static void hpsa_flush_cache(struct ctlr_info *h)
8935 {
8936 char *flush_buf;
8937 struct CommandList *c;
8938 int rc;
8939
8940 if (unlikely(lockup_detected(h)))
8941 return;
8942 flush_buf = kzalloc(4, GFP_KERNEL);
8943 if (!flush_buf)
8944 return;
8945
8946 c = cmd_alloc(h);
8947
8948 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8949 RAID_CTLR_LUNID, TYPE_CMD)) {
8950 goto out;
8951 }
8952 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8953 DEFAULT_TIMEOUT);
8954 if (rc)
8955 goto out;
8956 if (c->err_info->CommandStatus != 0)
8957 out:
8958 dev_warn(&h->pdev->dev,
8959 "error flushing cache on controller\n");
8960 cmd_free(h, c);
8961 kfree(flush_buf);
8962 }
8963
8964 /* Make controller gather fresh report lun data each time we
8965 * send down a report luns request
8966 */
hpsa_disable_rld_caching(struct ctlr_info * h)8967 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8968 {
8969 u32 *options;
8970 struct CommandList *c;
8971 int rc;
8972
8973 /* Don't bother trying to set diag options if locked up */
8974 if (unlikely(h->lockup_detected))
8975 return;
8976
8977 options = kzalloc(sizeof(*options), GFP_KERNEL);
8978 if (!options)
8979 return;
8980
8981 c = cmd_alloc(h);
8982
8983 /* first, get the current diag options settings */
8984 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8985 RAID_CTLR_LUNID, TYPE_CMD))
8986 goto errout;
8987
8988 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8989 NO_TIMEOUT);
8990 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8991 goto errout;
8992
8993 /* Now, set the bit for disabling the RLD caching */
8994 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8995
8996 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8997 RAID_CTLR_LUNID, TYPE_CMD))
8998 goto errout;
8999
9000 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9001 NO_TIMEOUT);
9002 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9003 goto errout;
9004
9005 /* Now verify that it got set: */
9006 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9007 RAID_CTLR_LUNID, TYPE_CMD))
9008 goto errout;
9009
9010 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9011 NO_TIMEOUT);
9012 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9013 goto errout;
9014
9015 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9016 goto out;
9017
9018 errout:
9019 dev_err(&h->pdev->dev,
9020 "Error: failed to disable report lun data caching.\n");
9021 out:
9022 cmd_free(h, c);
9023 kfree(options);
9024 }
9025
__hpsa_shutdown(struct pci_dev * pdev)9026 static void __hpsa_shutdown(struct pci_dev *pdev)
9027 {
9028 struct ctlr_info *h;
9029
9030 h = pci_get_drvdata(pdev);
9031 /* Turn board interrupts off and send the flush cache command
9032 * sendcmd will turn off interrupt, and send the flush...
9033 * To write all data in the battery backed cache to disks
9034 */
9035 hpsa_flush_cache(h);
9036 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9037 hpsa_free_irqs(h); /* init_one 4 */
9038 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9039 }
9040
hpsa_shutdown(struct pci_dev * pdev)9041 static void hpsa_shutdown(struct pci_dev *pdev)
9042 {
9043 __hpsa_shutdown(pdev);
9044 pci_disable_device(pdev);
9045 }
9046
hpsa_free_device_info(struct ctlr_info * h)9047 static void hpsa_free_device_info(struct ctlr_info *h)
9048 {
9049 int i;
9050
9051 for (i = 0; i < h->ndevices; i++) {
9052 kfree(h->dev[i]);
9053 h->dev[i] = NULL;
9054 }
9055 }
9056
hpsa_remove_one(struct pci_dev * pdev)9057 static void hpsa_remove_one(struct pci_dev *pdev)
9058 {
9059 struct ctlr_info *h;
9060 unsigned long flags;
9061
9062 if (pci_get_drvdata(pdev) == NULL) {
9063 dev_err(&pdev->dev, "unable to remove device\n");
9064 return;
9065 }
9066 h = pci_get_drvdata(pdev);
9067
9068 /* Get rid of any controller monitoring work items */
9069 spin_lock_irqsave(&h->lock, flags);
9070 h->remove_in_progress = 1;
9071 spin_unlock_irqrestore(&h->lock, flags);
9072 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9073 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9074 cancel_delayed_work_sync(&h->event_monitor_work);
9075 destroy_workqueue(h->rescan_ctlr_wq);
9076 destroy_workqueue(h->resubmit_wq);
9077 destroy_workqueue(h->monitor_ctlr_wq);
9078
9079 hpsa_delete_sas_host(h);
9080
9081 /*
9082 * Call before disabling interrupts.
9083 * scsi_remove_host can trigger I/O operations especially
9084 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9085 * operations which cannot complete and will hang the system.
9086 */
9087 if (h->scsi_host)
9088 scsi_remove_host(h->scsi_host); /* init_one 8 */
9089 /* includes hpsa_free_irqs - init_one 4 */
9090 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9091 __hpsa_shutdown(pdev);
9092
9093 hpsa_free_device_info(h); /* scan */
9094
9095 kfree(h->hba_inquiry_data); /* init_one 10 */
9096 h->hba_inquiry_data = NULL; /* init_one 10 */
9097 hpsa_free_ioaccel2_sg_chain_blocks(h);
9098 hpsa_free_performant_mode(h); /* init_one 7 */
9099 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9100 hpsa_free_cmd_pool(h); /* init_one 5 */
9101 kfree(h->lastlogicals);
9102
9103 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9104
9105 scsi_host_put(h->scsi_host); /* init_one 3 */
9106 h->scsi_host = NULL; /* init_one 3 */
9107
9108 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9109 hpsa_free_pci_init(h); /* init_one 2.5 */
9110
9111 free_percpu(h->lockup_detected); /* init_one 2 */
9112 h->lockup_detected = NULL; /* init_one 2 */
9113 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9114
9115 hpda_free_ctlr_info(h); /* init_one 1 */
9116 }
9117
hpsa_suspend(struct device * dev)9118 static int __maybe_unused hpsa_suspend(
9119 __attribute__((unused)) struct device *dev)
9120 {
9121 return -ENOSYS;
9122 }
9123
hpsa_resume(struct device * dev)9124 static int __maybe_unused hpsa_resume
9125 (__attribute__((unused)) struct device *dev)
9126 {
9127 return -ENOSYS;
9128 }
9129
9130 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9131
9132 static struct pci_driver hpsa_pci_driver = {
9133 .name = HPSA,
9134 .probe = hpsa_init_one,
9135 .remove = hpsa_remove_one,
9136 .id_table = hpsa_pci_device_id, /* id_table */
9137 .shutdown = hpsa_shutdown,
9138 .driver.pm = &hpsa_pm_ops,
9139 };
9140
9141 /* Fill in bucket_map[], given nsgs (the max number of
9142 * scatter gather elements supported) and bucket[],
9143 * which is an array of 8 integers. The bucket[] array
9144 * contains 8 different DMA transfer sizes (in 16
9145 * byte increments) which the controller uses to fetch
9146 * commands. This function fills in bucket_map[], which
9147 * maps a given number of scatter gather elements to one of
9148 * the 8 DMA transfer sizes. The point of it is to allow the
9149 * controller to only do as much DMA as needed to fetch the
9150 * command, with the DMA transfer size encoded in the lower
9151 * bits of the command address.
9152 */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int min_blocks,u32 * bucket_map)9153 static void calc_bucket_map(int bucket[], int num_buckets,
9154 int nsgs, int min_blocks, u32 *bucket_map)
9155 {
9156 int i, j, b, size;
9157
9158 /* Note, bucket_map must have nsgs+1 entries. */
9159 for (i = 0; i <= nsgs; i++) {
9160 /* Compute size of a command with i SG entries */
9161 size = i + min_blocks;
9162 b = num_buckets; /* Assume the biggest bucket */
9163 /* Find the bucket that is just big enough */
9164 for (j = 0; j < num_buckets; j++) {
9165 if (bucket[j] >= size) {
9166 b = j;
9167 break;
9168 }
9169 }
9170 /* for a command with i SG entries, use bucket b. */
9171 bucket_map[i] = b;
9172 }
9173 }
9174
9175 /*
9176 * return -ENODEV on err, 0 on success (or no action)
9177 * allocates numerous items that must be freed later
9178 */
hpsa_enter_performant_mode(struct ctlr_info * h,u32 trans_support)9179 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9180 {
9181 int i;
9182 unsigned long register_value;
9183 unsigned long transMethod = CFGTBL_Trans_Performant |
9184 (trans_support & CFGTBL_Trans_use_short_tags) |
9185 CFGTBL_Trans_enable_directed_msix |
9186 (trans_support & (CFGTBL_Trans_io_accel1 |
9187 CFGTBL_Trans_io_accel2));
9188 struct access_method access = SA5_performant_access;
9189
9190 /* This is a bit complicated. There are 8 registers on
9191 * the controller which we write to to tell it 8 different
9192 * sizes of commands which there may be. It's a way of
9193 * reducing the DMA done to fetch each command. Encoded into
9194 * each command's tag are 3 bits which communicate to the controller
9195 * which of the eight sizes that command fits within. The size of
9196 * each command depends on how many scatter gather entries there are.
9197 * Each SG entry requires 16 bytes. The eight registers are programmed
9198 * with the number of 16-byte blocks a command of that size requires.
9199 * The smallest command possible requires 5 such 16 byte blocks.
9200 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9201 * blocks. Note, this only extends to the SG entries contained
9202 * within the command block, and does not extend to chained blocks
9203 * of SG elements. bft[] contains the eight values we write to
9204 * the registers. They are not evenly distributed, but have more
9205 * sizes for small commands, and fewer sizes for larger commands.
9206 */
9207 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9208 #define MIN_IOACCEL2_BFT_ENTRY 5
9209 #define HPSA_IOACCEL2_HEADER_SZ 4
9210 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9211 13, 14, 15, 16, 17, 18, 19,
9212 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9213 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9214 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9215 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9216 16 * MIN_IOACCEL2_BFT_ENTRY);
9217 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9218 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9219 /* 5 = 1 s/g entry or 4k
9220 * 6 = 2 s/g entry or 8k
9221 * 8 = 4 s/g entry or 16k
9222 * 10 = 6 s/g entry or 24k
9223 */
9224
9225 /* If the controller supports either ioaccel method then
9226 * we can also use the RAID stack submit path that does not
9227 * perform the superfluous readl() after each command submission.
9228 */
9229 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9230 access = SA5_performant_access_no_read;
9231
9232 /* Controller spec: zero out this buffer. */
9233 for (i = 0; i < h->nreply_queues; i++)
9234 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9235
9236 bft[7] = SG_ENTRIES_IN_CMD + 4;
9237 calc_bucket_map(bft, ARRAY_SIZE(bft),
9238 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9239 for (i = 0; i < 8; i++)
9240 writel(bft[i], &h->transtable->BlockFetch[i]);
9241
9242 /* size of controller ring buffer */
9243 writel(h->max_commands, &h->transtable->RepQSize);
9244 writel(h->nreply_queues, &h->transtable->RepQCount);
9245 writel(0, &h->transtable->RepQCtrAddrLow32);
9246 writel(0, &h->transtable->RepQCtrAddrHigh32);
9247
9248 for (i = 0; i < h->nreply_queues; i++) {
9249 writel(0, &h->transtable->RepQAddr[i].upper);
9250 writel(h->reply_queue[i].busaddr,
9251 &h->transtable->RepQAddr[i].lower);
9252 }
9253
9254 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9255 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9256 /*
9257 * enable outbound interrupt coalescing in accelerator mode;
9258 */
9259 if (trans_support & CFGTBL_Trans_io_accel1) {
9260 access = SA5_ioaccel_mode1_access;
9261 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9262 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9263 } else
9264 if (trans_support & CFGTBL_Trans_io_accel2)
9265 access = SA5_ioaccel_mode2_access;
9266 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9267 if (hpsa_wait_for_mode_change_ack(h)) {
9268 dev_err(&h->pdev->dev,
9269 "performant mode problem - doorbell timeout\n");
9270 return -ENODEV;
9271 }
9272 register_value = readl(&(h->cfgtable->TransportActive));
9273 if (!(register_value & CFGTBL_Trans_Performant)) {
9274 dev_err(&h->pdev->dev,
9275 "performant mode problem - transport not active\n");
9276 return -ENODEV;
9277 }
9278 /* Change the access methods to the performant access methods */
9279 h->access = access;
9280 h->transMethod = transMethod;
9281
9282 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9283 (trans_support & CFGTBL_Trans_io_accel2)))
9284 return 0;
9285
9286 if (trans_support & CFGTBL_Trans_io_accel1) {
9287 /* Set up I/O accelerator mode */
9288 for (i = 0; i < h->nreply_queues; i++) {
9289 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9290 h->reply_queue[i].current_entry =
9291 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9292 }
9293 bft[7] = h->ioaccel_maxsg + 8;
9294 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9295 h->ioaccel1_blockFetchTable);
9296
9297 /* initialize all reply queue entries to unused */
9298 for (i = 0; i < h->nreply_queues; i++)
9299 memset(h->reply_queue[i].head,
9300 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9301 h->reply_queue_size);
9302
9303 /* set all the constant fields in the accelerator command
9304 * frames once at init time to save CPU cycles later.
9305 */
9306 for (i = 0; i < h->nr_cmds; i++) {
9307 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9308
9309 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9310 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9311 (i * sizeof(struct ErrorInfo)));
9312 cp->err_info_len = sizeof(struct ErrorInfo);
9313 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9314 cp->host_context_flags =
9315 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9316 cp->timeout_sec = 0;
9317 cp->ReplyQueue = 0;
9318 cp->tag =
9319 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9320 cp->host_addr =
9321 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9322 (i * sizeof(struct io_accel1_cmd)));
9323 }
9324 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9325 u64 cfg_offset, cfg_base_addr_index;
9326 u32 bft2_offset, cfg_base_addr;
9327
9328 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9329 &cfg_base_addr_index, &cfg_offset);
9330 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9331 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9332 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9333 4, h->ioaccel2_blockFetchTable);
9334 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9335 BUILD_BUG_ON(offsetof(struct CfgTable,
9336 io_accel_request_size_offset) != 0xb8);
9337 h->ioaccel2_bft2_regs =
9338 remap_pci_mem(pci_resource_start(h->pdev,
9339 cfg_base_addr_index) +
9340 cfg_offset + bft2_offset,
9341 ARRAY_SIZE(bft2) *
9342 sizeof(*h->ioaccel2_bft2_regs));
9343 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9344 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9345 }
9346 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9347 if (hpsa_wait_for_mode_change_ack(h)) {
9348 dev_err(&h->pdev->dev,
9349 "performant mode problem - enabling ioaccel mode\n");
9350 return -ENODEV;
9351 }
9352 return 0;
9353 }
9354
9355 /* Free ioaccel1 mode command blocks and block fetch table */
hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info * h)9356 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9357 {
9358 if (h->ioaccel_cmd_pool) {
9359 dma_free_coherent(&h->pdev->dev,
9360 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9361 h->ioaccel_cmd_pool,
9362 h->ioaccel_cmd_pool_dhandle);
9363 h->ioaccel_cmd_pool = NULL;
9364 h->ioaccel_cmd_pool_dhandle = 0;
9365 }
9366 kfree(h->ioaccel1_blockFetchTable);
9367 h->ioaccel1_blockFetchTable = NULL;
9368 }
9369
9370 /* Allocate ioaccel1 mode command blocks and block fetch table */
hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info * h)9371 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373 h->ioaccel_maxsg =
9374 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9375 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9376 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9377
9378 /* Command structures must be aligned on a 128-byte boundary
9379 * because the 7 lower bits of the address are used by the
9380 * hardware.
9381 */
9382 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9383 IOACCEL1_COMMANDLIST_ALIGNMENT);
9384 h->ioaccel_cmd_pool =
9385 dma_alloc_coherent(&h->pdev->dev,
9386 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9387 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9388
9389 h->ioaccel1_blockFetchTable =
9390 kmalloc(((h->ioaccel_maxsg + 1) *
9391 sizeof(u32)), GFP_KERNEL);
9392
9393 if ((h->ioaccel_cmd_pool == NULL) ||
9394 (h->ioaccel1_blockFetchTable == NULL))
9395 goto clean_up;
9396
9397 memset(h->ioaccel_cmd_pool, 0,
9398 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9399 return 0;
9400
9401 clean_up:
9402 hpsa_free_ioaccel1_cmd_and_bft(h);
9403 return -ENOMEM;
9404 }
9405
9406 /* Free ioaccel2 mode command blocks and block fetch table */
hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info * h)9407 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9408 {
9409 hpsa_free_ioaccel2_sg_chain_blocks(h);
9410
9411 if (h->ioaccel2_cmd_pool) {
9412 dma_free_coherent(&h->pdev->dev,
9413 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9414 h->ioaccel2_cmd_pool,
9415 h->ioaccel2_cmd_pool_dhandle);
9416 h->ioaccel2_cmd_pool = NULL;
9417 h->ioaccel2_cmd_pool_dhandle = 0;
9418 }
9419 kfree(h->ioaccel2_blockFetchTable);
9420 h->ioaccel2_blockFetchTable = NULL;
9421 }
9422
9423 /* Allocate ioaccel2 mode command blocks and block fetch table */
hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info * h)9424 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9425 {
9426 int rc;
9427
9428 /* Allocate ioaccel2 mode command blocks and block fetch table */
9429
9430 h->ioaccel_maxsg =
9431 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9432 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9433 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9434
9435 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9436 IOACCEL2_COMMANDLIST_ALIGNMENT);
9437 h->ioaccel2_cmd_pool =
9438 dma_alloc_coherent(&h->pdev->dev,
9439 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9440 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9441
9442 h->ioaccel2_blockFetchTable =
9443 kmalloc(((h->ioaccel_maxsg + 1) *
9444 sizeof(u32)), GFP_KERNEL);
9445
9446 if ((h->ioaccel2_cmd_pool == NULL) ||
9447 (h->ioaccel2_blockFetchTable == NULL)) {
9448 rc = -ENOMEM;
9449 goto clean_up;
9450 }
9451
9452 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9453 if (rc)
9454 goto clean_up;
9455
9456 memset(h->ioaccel2_cmd_pool, 0,
9457 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9458 return 0;
9459
9460 clean_up:
9461 hpsa_free_ioaccel2_cmd_and_bft(h);
9462 return rc;
9463 }
9464
9465 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
hpsa_free_performant_mode(struct ctlr_info * h)9466 static void hpsa_free_performant_mode(struct ctlr_info *h)
9467 {
9468 kfree(h->blockFetchTable);
9469 h->blockFetchTable = NULL;
9470 hpsa_free_reply_queues(h);
9471 hpsa_free_ioaccel1_cmd_and_bft(h);
9472 hpsa_free_ioaccel2_cmd_and_bft(h);
9473 }
9474
9475 /* return -ENODEV on error, 0 on success (or no action)
9476 * allocates numerous items that must be freed later
9477 */
hpsa_put_ctlr_into_performant_mode(struct ctlr_info * h)9478 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9479 {
9480 u32 trans_support;
9481 unsigned long transMethod = CFGTBL_Trans_Performant |
9482 CFGTBL_Trans_use_short_tags;
9483 int i, rc;
9484
9485 if (hpsa_simple_mode)
9486 return 0;
9487
9488 trans_support = readl(&(h->cfgtable->TransportSupport));
9489 if (!(trans_support & PERFORMANT_MODE))
9490 return 0;
9491
9492 /* Check for I/O accelerator mode support */
9493 if (trans_support & CFGTBL_Trans_io_accel1) {
9494 transMethod |= CFGTBL_Trans_io_accel1 |
9495 CFGTBL_Trans_enable_directed_msix;
9496 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9497 if (rc)
9498 return rc;
9499 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9500 transMethod |= CFGTBL_Trans_io_accel2 |
9501 CFGTBL_Trans_enable_directed_msix;
9502 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9503 if (rc)
9504 return rc;
9505 }
9506
9507 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9508 hpsa_get_max_perf_mode_cmds(h);
9509 /* Performant mode ring buffer and supporting data structures */
9510 h->reply_queue_size = h->max_commands * sizeof(u64);
9511
9512 for (i = 0; i < h->nreply_queues; i++) {
9513 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9514 h->reply_queue_size,
9515 &h->reply_queue[i].busaddr,
9516 GFP_KERNEL);
9517 if (!h->reply_queue[i].head) {
9518 rc = -ENOMEM;
9519 goto clean1; /* rq, ioaccel */
9520 }
9521 h->reply_queue[i].size = h->max_commands;
9522 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9523 h->reply_queue[i].current_entry = 0;
9524 }
9525
9526 /* Need a block fetch table for performant mode */
9527 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9528 sizeof(u32)), GFP_KERNEL);
9529 if (!h->blockFetchTable) {
9530 rc = -ENOMEM;
9531 goto clean1; /* rq, ioaccel */
9532 }
9533
9534 rc = hpsa_enter_performant_mode(h, trans_support);
9535 if (rc)
9536 goto clean2; /* bft, rq, ioaccel */
9537 return 0;
9538
9539 clean2: /* bft, rq, ioaccel */
9540 kfree(h->blockFetchTable);
9541 h->blockFetchTable = NULL;
9542 clean1: /* rq, ioaccel */
9543 hpsa_free_reply_queues(h);
9544 hpsa_free_ioaccel1_cmd_and_bft(h);
9545 hpsa_free_ioaccel2_cmd_and_bft(h);
9546 return rc;
9547 }
9548
is_accelerated_cmd(struct CommandList * c)9549 static int is_accelerated_cmd(struct CommandList *c)
9550 {
9551 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9552 }
9553
hpsa_drain_accel_commands(struct ctlr_info * h)9554 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9555 {
9556 struct CommandList *c = NULL;
9557 int i, accel_cmds_out;
9558 int refcount;
9559
9560 do { /* wait for all outstanding ioaccel commands to drain out */
9561 accel_cmds_out = 0;
9562 for (i = 0; i < h->nr_cmds; i++) {
9563 c = h->cmd_pool + i;
9564 refcount = atomic_inc_return(&c->refcount);
9565 if (refcount > 1) /* Command is allocated */
9566 accel_cmds_out += is_accelerated_cmd(c);
9567 cmd_free(h, c);
9568 }
9569 if (accel_cmds_out <= 0)
9570 break;
9571 msleep(100);
9572 } while (1);
9573 }
9574
hpsa_alloc_sas_phy(struct hpsa_sas_port * hpsa_sas_port)9575 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9576 struct hpsa_sas_port *hpsa_sas_port)
9577 {
9578 struct hpsa_sas_phy *hpsa_sas_phy;
9579 struct sas_phy *phy;
9580
9581 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9582 if (!hpsa_sas_phy)
9583 return NULL;
9584
9585 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9586 hpsa_sas_port->next_phy_index);
9587 if (!phy) {
9588 kfree(hpsa_sas_phy);
9589 return NULL;
9590 }
9591
9592 hpsa_sas_port->next_phy_index++;
9593 hpsa_sas_phy->phy = phy;
9594 hpsa_sas_phy->parent_port = hpsa_sas_port;
9595
9596 return hpsa_sas_phy;
9597 }
9598
hpsa_free_sas_phy(struct hpsa_sas_phy * hpsa_sas_phy)9599 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9600 {
9601 struct sas_phy *phy = hpsa_sas_phy->phy;
9602
9603 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9604 if (hpsa_sas_phy->added_to_port)
9605 list_del(&hpsa_sas_phy->phy_list_entry);
9606 sas_phy_delete(phy);
9607 kfree(hpsa_sas_phy);
9608 }
9609
hpsa_sas_port_add_phy(struct hpsa_sas_phy * hpsa_sas_phy)9610 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9611 {
9612 int rc;
9613 struct hpsa_sas_port *hpsa_sas_port;
9614 struct sas_phy *phy;
9615 struct sas_identify *identify;
9616
9617 hpsa_sas_port = hpsa_sas_phy->parent_port;
9618 phy = hpsa_sas_phy->phy;
9619
9620 identify = &phy->identify;
9621 memset(identify, 0, sizeof(*identify));
9622 identify->sas_address = hpsa_sas_port->sas_address;
9623 identify->device_type = SAS_END_DEVICE;
9624 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9625 identify->target_port_protocols = SAS_PROTOCOL_STP;
9626 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9627 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9629 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9631
9632 rc = sas_phy_add(hpsa_sas_phy->phy);
9633 if (rc)
9634 return rc;
9635
9636 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9637 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9638 &hpsa_sas_port->phy_list_head);
9639 hpsa_sas_phy->added_to_port = true;
9640
9641 return 0;
9642 }
9643
9644 static int
hpsa_sas_port_add_rphy(struct hpsa_sas_port * hpsa_sas_port,struct sas_rphy * rphy)9645 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9646 struct sas_rphy *rphy)
9647 {
9648 struct sas_identify *identify;
9649
9650 identify = &rphy->identify;
9651 identify->sas_address = hpsa_sas_port->sas_address;
9652 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653 identify->target_port_protocols = SAS_PROTOCOL_STP;
9654
9655 return sas_rphy_add(rphy);
9656 }
9657
9658 static struct hpsa_sas_port
hpsa_alloc_sas_port(struct hpsa_sas_node * hpsa_sas_node,u64 sas_address)9659 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9660 u64 sas_address)
9661 {
9662 int rc;
9663 struct hpsa_sas_port *hpsa_sas_port;
9664 struct sas_port *port;
9665
9666 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9667 if (!hpsa_sas_port)
9668 return NULL;
9669
9670 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9671 hpsa_sas_port->parent_node = hpsa_sas_node;
9672
9673 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9674 if (!port)
9675 goto free_hpsa_port;
9676
9677 rc = sas_port_add(port);
9678 if (rc)
9679 goto free_sas_port;
9680
9681 hpsa_sas_port->port = port;
9682 hpsa_sas_port->sas_address = sas_address;
9683 list_add_tail(&hpsa_sas_port->port_list_entry,
9684 &hpsa_sas_node->port_list_head);
9685
9686 return hpsa_sas_port;
9687
9688 free_sas_port:
9689 sas_port_free(port);
9690 free_hpsa_port:
9691 kfree(hpsa_sas_port);
9692
9693 return NULL;
9694 }
9695
hpsa_free_sas_port(struct hpsa_sas_port * hpsa_sas_port)9696 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9697 {
9698 struct hpsa_sas_phy *hpsa_sas_phy;
9699 struct hpsa_sas_phy *next;
9700
9701 list_for_each_entry_safe(hpsa_sas_phy, next,
9702 &hpsa_sas_port->phy_list_head, phy_list_entry)
9703 hpsa_free_sas_phy(hpsa_sas_phy);
9704
9705 sas_port_delete(hpsa_sas_port->port);
9706 list_del(&hpsa_sas_port->port_list_entry);
9707 kfree(hpsa_sas_port);
9708 }
9709
hpsa_alloc_sas_node(struct device * parent_dev)9710 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9711 {
9712 struct hpsa_sas_node *hpsa_sas_node;
9713
9714 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9715 if (hpsa_sas_node) {
9716 hpsa_sas_node->parent_dev = parent_dev;
9717 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9718 }
9719
9720 return hpsa_sas_node;
9721 }
9722
hpsa_free_sas_node(struct hpsa_sas_node * hpsa_sas_node)9723 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9724 {
9725 struct hpsa_sas_port *hpsa_sas_port;
9726 struct hpsa_sas_port *next;
9727
9728 if (!hpsa_sas_node)
9729 return;
9730
9731 list_for_each_entry_safe(hpsa_sas_port, next,
9732 &hpsa_sas_node->port_list_head, port_list_entry)
9733 hpsa_free_sas_port(hpsa_sas_port);
9734
9735 kfree(hpsa_sas_node);
9736 }
9737
9738 static struct hpsa_scsi_dev_t
hpsa_find_device_by_sas_rphy(struct ctlr_info * h,struct sas_rphy * rphy)9739 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9740 struct sas_rphy *rphy)
9741 {
9742 int i;
9743 struct hpsa_scsi_dev_t *device;
9744
9745 for (i = 0; i < h->ndevices; i++) {
9746 device = h->dev[i];
9747 if (!device->sas_port)
9748 continue;
9749 if (device->sas_port->rphy == rphy)
9750 return device;
9751 }
9752
9753 return NULL;
9754 }
9755
hpsa_add_sas_host(struct ctlr_info * h)9756 static int hpsa_add_sas_host(struct ctlr_info *h)
9757 {
9758 int rc;
9759 struct device *parent_dev;
9760 struct hpsa_sas_node *hpsa_sas_node;
9761 struct hpsa_sas_port *hpsa_sas_port;
9762 struct hpsa_sas_phy *hpsa_sas_phy;
9763
9764 parent_dev = &h->scsi_host->shost_dev;
9765
9766 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9767 if (!hpsa_sas_node)
9768 return -ENOMEM;
9769
9770 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9771 if (!hpsa_sas_port) {
9772 rc = -ENODEV;
9773 goto free_sas_node;
9774 }
9775
9776 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9777 if (!hpsa_sas_phy) {
9778 rc = -ENODEV;
9779 goto free_sas_port;
9780 }
9781
9782 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9783 if (rc)
9784 goto free_sas_phy;
9785
9786 h->sas_host = hpsa_sas_node;
9787
9788 return 0;
9789
9790 free_sas_phy:
9791 sas_phy_free(hpsa_sas_phy->phy);
9792 kfree(hpsa_sas_phy);
9793 free_sas_port:
9794 hpsa_free_sas_port(hpsa_sas_port);
9795 free_sas_node:
9796 hpsa_free_sas_node(hpsa_sas_node);
9797
9798 return rc;
9799 }
9800
hpsa_delete_sas_host(struct ctlr_info * h)9801 static void hpsa_delete_sas_host(struct ctlr_info *h)
9802 {
9803 hpsa_free_sas_node(h->sas_host);
9804 }
9805
hpsa_add_sas_device(struct hpsa_sas_node * hpsa_sas_node,struct hpsa_scsi_dev_t * device)9806 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9807 struct hpsa_scsi_dev_t *device)
9808 {
9809 int rc;
9810 struct hpsa_sas_port *hpsa_sas_port;
9811 struct sas_rphy *rphy;
9812
9813 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9814 if (!hpsa_sas_port)
9815 return -ENOMEM;
9816
9817 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9818 if (!rphy) {
9819 rc = -ENODEV;
9820 goto free_sas_port;
9821 }
9822
9823 hpsa_sas_port->rphy = rphy;
9824 device->sas_port = hpsa_sas_port;
9825
9826 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9827 if (rc)
9828 goto free_sas_rphy;
9829
9830 return 0;
9831
9832 free_sas_rphy:
9833 sas_rphy_free(rphy);
9834 free_sas_port:
9835 hpsa_free_sas_port(hpsa_sas_port);
9836 device->sas_port = NULL;
9837
9838 return rc;
9839 }
9840
hpsa_remove_sas_device(struct hpsa_scsi_dev_t * device)9841 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9842 {
9843 if (device->sas_port) {
9844 hpsa_free_sas_port(device->sas_port);
9845 device->sas_port = NULL;
9846 }
9847 }
9848
9849 static int
hpsa_sas_get_linkerrors(struct sas_phy * phy)9850 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9851 {
9852 return 0;
9853 }
9854
9855 static int
hpsa_sas_get_enclosure_identifier(struct sas_rphy * rphy,u64 * identifier)9856 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9857 {
9858 struct Scsi_Host *shost = phy_to_shost(rphy);
9859 struct ctlr_info *h;
9860 struct hpsa_scsi_dev_t *sd;
9861
9862 if (!shost)
9863 return -ENXIO;
9864
9865 h = shost_to_hba(shost);
9866
9867 if (!h)
9868 return -ENXIO;
9869
9870 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9871 if (!sd)
9872 return -ENXIO;
9873
9874 *identifier = sd->eli;
9875
9876 return 0;
9877 }
9878
9879 static int
hpsa_sas_get_bay_identifier(struct sas_rphy * rphy)9880 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9881 {
9882 return -ENXIO;
9883 }
9884
9885 static int
hpsa_sas_phy_reset(struct sas_phy * phy,int hard_reset)9886 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9887 {
9888 return 0;
9889 }
9890
9891 static int
hpsa_sas_phy_enable(struct sas_phy * phy,int enable)9892 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9893 {
9894 return 0;
9895 }
9896
9897 static int
hpsa_sas_phy_setup(struct sas_phy * phy)9898 hpsa_sas_phy_setup(struct sas_phy *phy)
9899 {
9900 return 0;
9901 }
9902
9903 static void
hpsa_sas_phy_release(struct sas_phy * phy)9904 hpsa_sas_phy_release(struct sas_phy *phy)
9905 {
9906 }
9907
9908 static int
hpsa_sas_phy_speed(struct sas_phy * phy,struct sas_phy_linkrates * rates)9909 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9910 {
9911 return -EINVAL;
9912 }
9913
9914 static struct sas_function_template hpsa_sas_transport_functions = {
9915 .get_linkerrors = hpsa_sas_get_linkerrors,
9916 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9917 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9918 .phy_reset = hpsa_sas_phy_reset,
9919 .phy_enable = hpsa_sas_phy_enable,
9920 .phy_setup = hpsa_sas_phy_setup,
9921 .phy_release = hpsa_sas_phy_release,
9922 .set_phy_speed = hpsa_sas_phy_speed,
9923 };
9924
9925 /*
9926 * This is it. Register the PCI driver information for the cards we control
9927 * the OS will call our registered routines when it finds one of our cards.
9928 */
hpsa_init(void)9929 static int __init hpsa_init(void)
9930 {
9931 int rc;
9932
9933 hpsa_sas_transport_template =
9934 sas_attach_transport(&hpsa_sas_transport_functions);
9935 if (!hpsa_sas_transport_template)
9936 return -ENODEV;
9937
9938 rc = pci_register_driver(&hpsa_pci_driver);
9939
9940 if (rc)
9941 sas_release_transport(hpsa_sas_transport_template);
9942
9943 return rc;
9944 }
9945
hpsa_cleanup(void)9946 static void __exit hpsa_cleanup(void)
9947 {
9948 pci_unregister_driver(&hpsa_pci_driver);
9949 sas_release_transport(hpsa_sas_transport_template);
9950 }
9951
verify_offsets(void)9952 static void __attribute__((unused)) verify_offsets(void)
9953 {
9954 #define VERIFY_OFFSET(member, offset) \
9955 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9956
9957 VERIFY_OFFSET(structure_size, 0);
9958 VERIFY_OFFSET(volume_blk_size, 4);
9959 VERIFY_OFFSET(volume_blk_cnt, 8);
9960 VERIFY_OFFSET(phys_blk_shift, 16);
9961 VERIFY_OFFSET(parity_rotation_shift, 17);
9962 VERIFY_OFFSET(strip_size, 18);
9963 VERIFY_OFFSET(disk_starting_blk, 20);
9964 VERIFY_OFFSET(disk_blk_cnt, 28);
9965 VERIFY_OFFSET(data_disks_per_row, 36);
9966 VERIFY_OFFSET(metadata_disks_per_row, 38);
9967 VERIFY_OFFSET(row_cnt, 40);
9968 VERIFY_OFFSET(layout_map_count, 42);
9969 VERIFY_OFFSET(flags, 44);
9970 VERIFY_OFFSET(dekindex, 46);
9971 /* VERIFY_OFFSET(reserved, 48 */
9972 VERIFY_OFFSET(data, 64);
9973
9974 #undef VERIFY_OFFSET
9975
9976 #define VERIFY_OFFSET(member, offset) \
9977 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9978
9979 VERIFY_OFFSET(IU_type, 0);
9980 VERIFY_OFFSET(direction, 1);
9981 VERIFY_OFFSET(reply_queue, 2);
9982 /* VERIFY_OFFSET(reserved1, 3); */
9983 VERIFY_OFFSET(scsi_nexus, 4);
9984 VERIFY_OFFSET(Tag, 8);
9985 VERIFY_OFFSET(cdb, 16);
9986 VERIFY_OFFSET(cciss_lun, 32);
9987 VERIFY_OFFSET(data_len, 40);
9988 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9989 VERIFY_OFFSET(sg_count, 45);
9990 /* VERIFY_OFFSET(reserved3 */
9991 VERIFY_OFFSET(err_ptr, 48);
9992 VERIFY_OFFSET(err_len, 56);
9993 /* VERIFY_OFFSET(reserved4 */
9994 VERIFY_OFFSET(sg, 64);
9995
9996 #undef VERIFY_OFFSET
9997
9998 #define VERIFY_OFFSET(member, offset) \
9999 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10000
10001 VERIFY_OFFSET(dev_handle, 0x00);
10002 VERIFY_OFFSET(reserved1, 0x02);
10003 VERIFY_OFFSET(function, 0x03);
10004 VERIFY_OFFSET(reserved2, 0x04);
10005 VERIFY_OFFSET(err_info, 0x0C);
10006 VERIFY_OFFSET(reserved3, 0x10);
10007 VERIFY_OFFSET(err_info_len, 0x12);
10008 VERIFY_OFFSET(reserved4, 0x13);
10009 VERIFY_OFFSET(sgl_offset, 0x14);
10010 VERIFY_OFFSET(reserved5, 0x15);
10011 VERIFY_OFFSET(transfer_len, 0x1C);
10012 VERIFY_OFFSET(reserved6, 0x20);
10013 VERIFY_OFFSET(io_flags, 0x24);
10014 VERIFY_OFFSET(reserved7, 0x26);
10015 VERIFY_OFFSET(LUN, 0x34);
10016 VERIFY_OFFSET(control, 0x3C);
10017 VERIFY_OFFSET(CDB, 0x40);
10018 VERIFY_OFFSET(reserved8, 0x50);
10019 VERIFY_OFFSET(host_context_flags, 0x60);
10020 VERIFY_OFFSET(timeout_sec, 0x62);
10021 VERIFY_OFFSET(ReplyQueue, 0x64);
10022 VERIFY_OFFSET(reserved9, 0x65);
10023 VERIFY_OFFSET(tag, 0x68);
10024 VERIFY_OFFSET(host_addr, 0x70);
10025 VERIFY_OFFSET(CISS_LUN, 0x78);
10026 VERIFY_OFFSET(SG, 0x78 + 8);
10027 #undef VERIFY_OFFSET
10028 }
10029
10030 module_init(hpsa_init);
10031 module_exit(hpsa_cleanup);
10032