1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/async.h>
55 #include <linux/slab.h>
56 #include <linux/sed-opal.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/pr.h>
59 #include <linux/t10-pi.h>
60 #include <linux/uaccess.h>
61 #include <asm/unaligned.h>
62
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_dbg.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102 #define SD_MINORS 16
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static int sd_resume_runtime(struct device *);
115 static void sd_rescan(struct device *);
116 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123
124 static DEFINE_IDA(sd_index_ida);
125
126 /* This semaphore is used to mediate the 0->1 reference get in the
127 * face of object destruction (i.e. we can't allow a get on an
128 * object after last put) */
129 static DEFINE_MUTEX(sd_ref_mutex);
130
131 static struct kmem_cache *sd_cdb_cache;
132 static mempool_t *sd_cdb_pool;
133 static mempool_t *sd_page_pool;
134 static struct lock_class_key sd_bio_compl_lkclass;
135
136 static const char *sd_cache_types[] = {
137 "write through", "none", "write back",
138 "write back, no read (daft)"
139 };
140
sd_set_flush_flag(struct scsi_disk * sdkp)141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 bool wc = false, fua = false;
144
145 if (sdkp->WCE) {
146 wc = true;
147 if (sdkp->DPOFUA)
148 fua = true;
149 }
150
151 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153
154 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 const char *buf, size_t count)
157 {
158 int ct, rcd, wce, sp;
159 struct scsi_disk *sdkp = to_scsi_disk(dev);
160 struct scsi_device *sdp = sdkp->device;
161 char buffer[64];
162 char *buffer_data;
163 struct scsi_mode_data data;
164 struct scsi_sense_hdr sshdr;
165 static const char temp[] = "temporary ";
166 int len;
167
168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 /* no cache control on RBC devices; theoretically they
170 * can do it, but there's probably so many exceptions
171 * it's not worth the risk */
172 return -EINVAL;
173
174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 buf += sizeof(temp) - 1;
176 sdkp->cache_override = 1;
177 } else {
178 sdkp->cache_override = 0;
179 }
180
181 ct = sysfs_match_string(sd_cache_types, buf);
182 if (ct < 0)
183 return -EINVAL;
184
185 rcd = ct & 0x01 ? 1 : 0;
186 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
187
188 if (sdkp->cache_override) {
189 sdkp->WCE = wce;
190 sdkp->RCD = rcd;
191 sd_set_flush_flag(sdkp);
192 return count;
193 }
194
195 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
196 sdkp->max_retries, &data, NULL))
197 return -EINVAL;
198 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
199 data.block_descriptor_length);
200 buffer_data = buffer + data.header_length +
201 data.block_descriptor_length;
202 buffer_data[2] &= ~0x05;
203 buffer_data[2] |= wce << 2 | rcd;
204 sp = buffer_data[0] & 0x80 ? 1 : 0;
205 buffer_data[0] &= ~0x80;
206
207 /*
208 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
209 * received mode parameter buffer before doing MODE SELECT.
210 */
211 data.device_specific = 0;
212
213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 sdkp->max_retries, &data, &sshdr)) {
215 if (scsi_sense_valid(&sshdr))
216 sd_print_sense_hdr(sdkp, &sshdr);
217 return -EINVAL;
218 }
219 sd_revalidate_disk(sdkp->disk);
220 return count;
221 }
222
223 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 char *buf)
226 {
227 struct scsi_disk *sdkp = to_scsi_disk(dev);
228 struct scsi_device *sdp = sdkp->device;
229
230 return sprintf(buf, "%u\n", sdp->manage_start_stop);
231 }
232
233 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 const char *buf, size_t count)
236 {
237 struct scsi_disk *sdkp = to_scsi_disk(dev);
238 struct scsi_device *sdp = sdkp->device;
239 bool v;
240
241 if (!capable(CAP_SYS_ADMIN))
242 return -EACCES;
243
244 if (kstrtobool(buf, &v))
245 return -EINVAL;
246
247 sdp->manage_start_stop = v;
248
249 return count;
250 }
251 static DEVICE_ATTR_RW(manage_start_stop);
252
253 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)254 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257
258 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
259 }
260
261 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)262 allow_restart_store(struct device *dev, struct device_attribute *attr,
263 const char *buf, size_t count)
264 {
265 bool v;
266 struct scsi_disk *sdkp = to_scsi_disk(dev);
267 struct scsi_device *sdp = sdkp->device;
268
269 if (!capable(CAP_SYS_ADMIN))
270 return -EACCES;
271
272 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
273 return -EINVAL;
274
275 if (kstrtobool(buf, &v))
276 return -EINVAL;
277
278 sdp->allow_restart = v;
279
280 return count;
281 }
282 static DEVICE_ATTR_RW(allow_restart);
283
284 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)285 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
286 {
287 struct scsi_disk *sdkp = to_scsi_disk(dev);
288 int ct = sdkp->RCD + 2*sdkp->WCE;
289
290 return sprintf(buf, "%s\n", sd_cache_types[ct]);
291 }
292 static DEVICE_ATTR_RW(cache_type);
293
294 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)295 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
296 {
297 struct scsi_disk *sdkp = to_scsi_disk(dev);
298
299 return sprintf(buf, "%u\n", sdkp->DPOFUA);
300 }
301 static DEVICE_ATTR_RO(FUA);
302
303 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)304 protection_type_show(struct device *dev, struct device_attribute *attr,
305 char *buf)
306 {
307 struct scsi_disk *sdkp = to_scsi_disk(dev);
308
309 return sprintf(buf, "%u\n", sdkp->protection_type);
310 }
311
312 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)313 protection_type_store(struct device *dev, struct device_attribute *attr,
314 const char *buf, size_t count)
315 {
316 struct scsi_disk *sdkp = to_scsi_disk(dev);
317 unsigned int val;
318 int err;
319
320 if (!capable(CAP_SYS_ADMIN))
321 return -EACCES;
322
323 err = kstrtouint(buf, 10, &val);
324
325 if (err)
326 return err;
327
328 if (val <= T10_PI_TYPE3_PROTECTION)
329 sdkp->protection_type = val;
330
331 return count;
332 }
333 static DEVICE_ATTR_RW(protection_type);
334
335 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)336 protection_mode_show(struct device *dev, struct device_attribute *attr,
337 char *buf)
338 {
339 struct scsi_disk *sdkp = to_scsi_disk(dev);
340 struct scsi_device *sdp = sdkp->device;
341 unsigned int dif, dix;
342
343 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
344 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
345
346 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
347 dif = 0;
348 dix = 1;
349 }
350
351 if (!dif && !dix)
352 return sprintf(buf, "none\n");
353
354 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
355 }
356 static DEVICE_ATTR_RO(protection_mode);
357
358 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)359 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
360 {
361 struct scsi_disk *sdkp = to_scsi_disk(dev);
362
363 return sprintf(buf, "%u\n", sdkp->ATO);
364 }
365 static DEVICE_ATTR_RO(app_tag_own);
366
367 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)368 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
369 char *buf)
370 {
371 struct scsi_disk *sdkp = to_scsi_disk(dev);
372
373 return sprintf(buf, "%u\n", sdkp->lbpme);
374 }
375 static DEVICE_ATTR_RO(thin_provisioning);
376
377 /* sysfs_match_string() requires dense arrays */
378 static const char *lbp_mode[] = {
379 [SD_LBP_FULL] = "full",
380 [SD_LBP_UNMAP] = "unmap",
381 [SD_LBP_WS16] = "writesame_16",
382 [SD_LBP_WS10] = "writesame_10",
383 [SD_LBP_ZERO] = "writesame_zero",
384 [SD_LBP_DISABLE] = "disabled",
385 };
386
387 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)388 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
389 char *buf)
390 {
391 struct scsi_disk *sdkp = to_scsi_disk(dev);
392
393 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
394 }
395
396 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)397 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
398 const char *buf, size_t count)
399 {
400 struct scsi_disk *sdkp = to_scsi_disk(dev);
401 struct scsi_device *sdp = sdkp->device;
402 int mode;
403
404 if (!capable(CAP_SYS_ADMIN))
405 return -EACCES;
406
407 if (sd_is_zoned(sdkp)) {
408 sd_config_discard(sdkp, SD_LBP_DISABLE);
409 return count;
410 }
411
412 if (sdp->type != TYPE_DISK)
413 return -EINVAL;
414
415 mode = sysfs_match_string(lbp_mode, buf);
416 if (mode < 0)
417 return -EINVAL;
418
419 sd_config_discard(sdkp, mode);
420
421 return count;
422 }
423 static DEVICE_ATTR_RW(provisioning_mode);
424
425 /* sysfs_match_string() requires dense arrays */
426 static const char *zeroing_mode[] = {
427 [SD_ZERO_WRITE] = "write",
428 [SD_ZERO_WS] = "writesame",
429 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
430 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
431 };
432
433 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)434 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
435 char *buf)
436 {
437 struct scsi_disk *sdkp = to_scsi_disk(dev);
438
439 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
440 }
441
442 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)443 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
444 const char *buf, size_t count)
445 {
446 struct scsi_disk *sdkp = to_scsi_disk(dev);
447 int mode;
448
449 if (!capable(CAP_SYS_ADMIN))
450 return -EACCES;
451
452 mode = sysfs_match_string(zeroing_mode, buf);
453 if (mode < 0)
454 return -EINVAL;
455
456 sdkp->zeroing_mode = mode;
457
458 return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461
462 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)463 max_medium_access_timeouts_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct scsi_disk *sdkp = to_scsi_disk(dev);
467
468 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470
471 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)472 max_medium_access_timeouts_store(struct device *dev,
473 struct device_attribute *attr, const char *buf,
474 size_t count)
475 {
476 struct scsi_disk *sdkp = to_scsi_disk(dev);
477 int err;
478
479 if (!capable(CAP_SYS_ADMIN))
480 return -EACCES;
481
482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483
484 return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487
488 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
495 }
496
497 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 struct scsi_device *sdp = sdkp->device;
503 unsigned long max;
504 int err;
505
506 if (!capable(CAP_SYS_ADMIN))
507 return -EACCES;
508
509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 return -EINVAL;
511
512 err = kstrtoul(buf, 10, &max);
513
514 if (err)
515 return err;
516
517 if (max == 0)
518 sdp->no_write_same = 1;
519 else if (max <= SD_MAX_WS16_BLOCKS) {
520 sdp->no_write_same = 0;
521 sdkp->max_ws_blocks = max;
522 }
523
524 sd_config_write_same(sdkp);
525
526 return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529
530 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)531 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
532 {
533 struct scsi_disk *sdkp = to_scsi_disk(dev);
534
535 if (sdkp->device->type == TYPE_ZBC)
536 return sprintf(buf, "host-managed\n");
537 if (sdkp->zoned == 1)
538 return sprintf(buf, "host-aware\n");
539 if (sdkp->zoned == 2)
540 return sprintf(buf, "drive-managed\n");
541 return sprintf(buf, "none\n");
542 }
543 static DEVICE_ATTR_RO(zoned_cap);
544
545 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)546 max_retries_store(struct device *dev, struct device_attribute *attr,
547 const char *buf, size_t count)
548 {
549 struct scsi_disk *sdkp = to_scsi_disk(dev);
550 struct scsi_device *sdev = sdkp->device;
551 int retries, err;
552
553 err = kstrtoint(buf, 10, &retries);
554 if (err)
555 return err;
556
557 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
558 sdkp->max_retries = retries;
559 return count;
560 }
561
562 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
563 SD_MAX_RETRIES);
564 return -EINVAL;
565 }
566
567 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)568 max_retries_show(struct device *dev, struct device_attribute *attr,
569 char *buf)
570 {
571 struct scsi_disk *sdkp = to_scsi_disk(dev);
572
573 return sprintf(buf, "%d\n", sdkp->max_retries);
574 }
575
576 static DEVICE_ATTR_RW(max_retries);
577
578 static struct attribute *sd_disk_attrs[] = {
579 &dev_attr_cache_type.attr,
580 &dev_attr_FUA.attr,
581 &dev_attr_allow_restart.attr,
582 &dev_attr_manage_start_stop.attr,
583 &dev_attr_protection_type.attr,
584 &dev_attr_protection_mode.attr,
585 &dev_attr_app_tag_own.attr,
586 &dev_attr_thin_provisioning.attr,
587 &dev_attr_provisioning_mode.attr,
588 &dev_attr_zeroing_mode.attr,
589 &dev_attr_max_write_same_blocks.attr,
590 &dev_attr_max_medium_access_timeouts.attr,
591 &dev_attr_zoned_cap.attr,
592 &dev_attr_max_retries.attr,
593 NULL,
594 };
595 ATTRIBUTE_GROUPS(sd_disk);
596
597 static struct class sd_disk_class = {
598 .name = "scsi_disk",
599 .owner = THIS_MODULE,
600 .dev_release = scsi_disk_release,
601 .dev_groups = sd_disk_groups,
602 };
603
604 static const struct dev_pm_ops sd_pm_ops = {
605 .suspend = sd_suspend_system,
606 .resume = sd_resume,
607 .poweroff = sd_suspend_system,
608 .restore = sd_resume,
609 .runtime_suspend = sd_suspend_runtime,
610 .runtime_resume = sd_resume_runtime,
611 };
612
613 static struct scsi_driver sd_template = {
614 .gendrv = {
615 .name = "sd",
616 .owner = THIS_MODULE,
617 .probe = sd_probe,
618 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
619 .remove = sd_remove,
620 .shutdown = sd_shutdown,
621 .pm = &sd_pm_ops,
622 },
623 .rescan = sd_rescan,
624 .init_command = sd_init_command,
625 .uninit_command = sd_uninit_command,
626 .done = sd_done,
627 .eh_action = sd_eh_action,
628 .eh_reset = sd_eh_reset,
629 };
630
631 /*
632 * Don't request a new module, as that could deadlock in multipath
633 * environment.
634 */
sd_default_probe(dev_t devt)635 static void sd_default_probe(dev_t devt)
636 {
637 }
638
639 /*
640 * Device no to disk mapping:
641 *
642 * major disc2 disc p1
643 * |............|.............|....|....| <- dev_t
644 * 31 20 19 8 7 4 3 0
645 *
646 * Inside a major, we have 16k disks, however mapped non-
647 * contiguously. The first 16 disks are for major0, the next
648 * ones with major1, ... Disk 256 is for major0 again, disk 272
649 * for major1, ...
650 * As we stay compatible with our numbering scheme, we can reuse
651 * the well-know SCSI majors 8, 65--71, 136--143.
652 */
sd_major(int major_idx)653 static int sd_major(int major_idx)
654 {
655 switch (major_idx) {
656 case 0:
657 return SCSI_DISK0_MAJOR;
658 case 1 ... 7:
659 return SCSI_DISK1_MAJOR + major_idx - 1;
660 case 8 ... 15:
661 return SCSI_DISK8_MAJOR + major_idx - 8;
662 default:
663 BUG();
664 return 0; /* shut up gcc */
665 }
666 }
667
scsi_disk_get(struct gendisk * disk)668 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
669 {
670 struct scsi_disk *sdkp = NULL;
671
672 mutex_lock(&sd_ref_mutex);
673
674 if (disk->private_data) {
675 sdkp = scsi_disk(disk);
676 if (scsi_device_get(sdkp->device) == 0)
677 get_device(&sdkp->dev);
678 else
679 sdkp = NULL;
680 }
681 mutex_unlock(&sd_ref_mutex);
682 return sdkp;
683 }
684
scsi_disk_put(struct scsi_disk * sdkp)685 static void scsi_disk_put(struct scsi_disk *sdkp)
686 {
687 struct scsi_device *sdev = sdkp->device;
688
689 mutex_lock(&sd_ref_mutex);
690 put_device(&sdkp->dev);
691 scsi_device_put(sdev);
692 mutex_unlock(&sd_ref_mutex);
693 }
694
695 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)696 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
697 size_t len, bool send)
698 {
699 struct scsi_disk *sdkp = data;
700 struct scsi_device *sdev = sdkp->device;
701 u8 cdb[12] = { 0, };
702 int ret;
703
704 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
705 cdb[1] = secp;
706 put_unaligned_be16(spsp, &cdb[2]);
707 put_unaligned_be32(len, &cdb[6]);
708
709 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
710 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
711 RQF_PM, NULL);
712 return ret <= 0 ? ret : -EIO;
713 }
714 #endif /* CONFIG_BLK_SED_OPAL */
715
716 /*
717 * Look up the DIX operation based on whether the command is read or
718 * write and whether dix and dif are enabled.
719 */
sd_prot_op(bool write,bool dix,bool dif)720 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
721 {
722 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
723 static const unsigned int ops[] = { /* wrt dix dif */
724 SCSI_PROT_NORMAL, /* 0 0 0 */
725 SCSI_PROT_READ_STRIP, /* 0 0 1 */
726 SCSI_PROT_READ_INSERT, /* 0 1 0 */
727 SCSI_PROT_READ_PASS, /* 0 1 1 */
728 SCSI_PROT_NORMAL, /* 1 0 0 */
729 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
730 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
731 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
732 };
733
734 return ops[write << 2 | dix << 1 | dif];
735 }
736
737 /*
738 * Returns a mask of the protection flags that are valid for a given DIX
739 * operation.
740 */
sd_prot_flag_mask(unsigned int prot_op)741 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
742 {
743 static const unsigned int flag_mask[] = {
744 [SCSI_PROT_NORMAL] = 0,
745
746 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
747 SCSI_PROT_GUARD_CHECK |
748 SCSI_PROT_REF_CHECK |
749 SCSI_PROT_REF_INCREMENT,
750
751 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
752 SCSI_PROT_IP_CHECKSUM,
753
754 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
755 SCSI_PROT_GUARD_CHECK |
756 SCSI_PROT_REF_CHECK |
757 SCSI_PROT_REF_INCREMENT |
758 SCSI_PROT_IP_CHECKSUM,
759
760 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
761 SCSI_PROT_REF_INCREMENT,
762
763 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
764 SCSI_PROT_REF_CHECK |
765 SCSI_PROT_REF_INCREMENT |
766 SCSI_PROT_IP_CHECKSUM,
767
768 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
769 SCSI_PROT_GUARD_CHECK |
770 SCSI_PROT_REF_CHECK |
771 SCSI_PROT_REF_INCREMENT |
772 SCSI_PROT_IP_CHECKSUM,
773 };
774
775 return flag_mask[prot_op];
776 }
777
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)778 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
779 unsigned int dix, unsigned int dif)
780 {
781 struct request *rq = scsi_cmd_to_rq(scmd);
782 struct bio *bio = rq->bio;
783 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
784 unsigned int protect = 0;
785
786 if (dix) { /* DIX Type 0, 1, 2, 3 */
787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789
790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
792 }
793
794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796
797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
799 }
800
801 if (dif) { /* DIX/DIF Type 1, 2, 3 */
802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803
804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
805 protect = 3 << 5; /* Disable target PI checking */
806 else
807 protect = 1 << 5; /* Enable target PI checking */
808 }
809
810 scsi_set_prot_op(scmd, prot_op);
811 scsi_set_prot_type(scmd, dif);
812 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
813
814 return protect;
815 }
816
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 {
819 struct request_queue *q = sdkp->disk->queue;
820 unsigned int logical_block_size = sdkp->device->sector_size;
821 unsigned int max_blocks = 0;
822
823 q->limits.discard_alignment =
824 sdkp->unmap_alignment * logical_block_size;
825 q->limits.discard_granularity =
826 max(sdkp->physical_block_size,
827 sdkp->unmap_granularity * logical_block_size);
828 sdkp->provisioning_mode = mode;
829
830 switch (mode) {
831
832 case SD_LBP_FULL:
833 case SD_LBP_DISABLE:
834 blk_queue_max_discard_sectors(q, 0);
835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
836 return;
837
838 case SD_LBP_UNMAP:
839 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
840 (u32)SD_MAX_WS16_BLOCKS);
841 break;
842
843 case SD_LBP_WS16:
844 if (sdkp->device->unmap_limit_for_ws)
845 max_blocks = sdkp->max_unmap_blocks;
846 else
847 max_blocks = sdkp->max_ws_blocks;
848
849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
850 break;
851
852 case SD_LBP_WS10:
853 if (sdkp->device->unmap_limit_for_ws)
854 max_blocks = sdkp->max_unmap_blocks;
855 else
856 max_blocks = sdkp->max_ws_blocks;
857
858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
859 break;
860
861 case SD_LBP_ZERO:
862 max_blocks = min_not_zero(sdkp->max_ws_blocks,
863 (u32)SD_MAX_WS10_BLOCKS);
864 break;
865 }
866
867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
869 }
870
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 {
873 struct scsi_device *sdp = cmd->device;
874 struct request *rq = scsi_cmd_to_rq(cmd);
875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
878 unsigned int data_len = 24;
879 char *buf;
880
881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 if (!rq->special_vec.bv_page)
883 return BLK_STS_RESOURCE;
884 clear_highpage(rq->special_vec.bv_page);
885 rq->special_vec.bv_offset = 0;
886 rq->special_vec.bv_len = data_len;
887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888
889 cmd->cmd_len = 10;
890 cmd->cmnd[0] = UNMAP;
891 cmd->cmnd[8] = 24;
892
893 buf = bvec_virt(&rq->special_vec);
894 put_unaligned_be16(6 + 16, &buf[0]);
895 put_unaligned_be16(16, &buf[2]);
896 put_unaligned_be64(lba, &buf[8]);
897 put_unaligned_be32(nr_blocks, &buf[16]);
898
899 cmd->allowed = sdkp->max_retries;
900 cmd->transfersize = data_len;
901 rq->timeout = SD_TIMEOUT;
902
903 return scsi_alloc_sgtables(cmd);
904 }
905
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
907 bool unmap)
908 {
909 struct scsi_device *sdp = cmd->device;
910 struct request *rq = scsi_cmd_to_rq(cmd);
911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914 u32 data_len = sdp->sector_size;
915
916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
917 if (!rq->special_vec.bv_page)
918 return BLK_STS_RESOURCE;
919 clear_highpage(rq->special_vec.bv_page);
920 rq->special_vec.bv_offset = 0;
921 rq->special_vec.bv_len = data_len;
922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
923
924 cmd->cmd_len = 16;
925 cmd->cmnd[0] = WRITE_SAME_16;
926 if (unmap)
927 cmd->cmnd[1] = 0x8; /* UNMAP */
928 put_unaligned_be64(lba, &cmd->cmnd[2]);
929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930
931 cmd->allowed = sdkp->max_retries;
932 cmd->transfersize = data_len;
933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934
935 return scsi_alloc_sgtables(cmd);
936 }
937
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
939 bool unmap)
940 {
941 struct scsi_device *sdp = cmd->device;
942 struct request *rq = scsi_cmd_to_rq(cmd);
943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
946 u32 data_len = sdp->sector_size;
947
948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
949 if (!rq->special_vec.bv_page)
950 return BLK_STS_RESOURCE;
951 clear_highpage(rq->special_vec.bv_page);
952 rq->special_vec.bv_offset = 0;
953 rq->special_vec.bv_len = data_len;
954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
955
956 cmd->cmd_len = 10;
957 cmd->cmnd[0] = WRITE_SAME;
958 if (unmap)
959 cmd->cmnd[1] = 0x8; /* UNMAP */
960 put_unaligned_be32(lba, &cmd->cmnd[2]);
961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962
963 cmd->allowed = sdkp->max_retries;
964 cmd->transfersize = data_len;
965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966
967 return scsi_alloc_sgtables(cmd);
968 }
969
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 {
972 struct request *rq = scsi_cmd_to_rq(cmd);
973 struct scsi_device *sdp = cmd->device;
974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977
978 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
979 switch (sdkp->zeroing_mode) {
980 case SD_ZERO_WS16_UNMAP:
981 return sd_setup_write_same16_cmnd(cmd, true);
982 case SD_ZERO_WS10_UNMAP:
983 return sd_setup_write_same10_cmnd(cmd, true);
984 }
985 }
986
987 if (sdp->no_write_same) {
988 rq->rq_flags |= RQF_QUIET;
989 return BLK_STS_TARGET;
990 }
991
992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 return sd_setup_write_same16_cmnd(cmd, false);
994
995 return sd_setup_write_same10_cmnd(cmd, false);
996 }
997
sd_config_write_same(struct scsi_disk * sdkp)998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 struct request_queue *q = sdkp->disk->queue;
1001 unsigned int logical_block_size = sdkp->device->sector_size;
1002
1003 if (sdkp->device->no_write_same) {
1004 sdkp->max_ws_blocks = 0;
1005 goto out;
1006 }
1007
1008 /* Some devices can not handle block counts above 0xffff despite
1009 * supporting WRITE SAME(16). Consequently we default to 64k
1010 * blocks per I/O unless the device explicitly advertises a
1011 * bigger limit.
1012 */
1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 (u32)SD_MAX_WS16_BLOCKS);
1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 (u32)SD_MAX_WS10_BLOCKS);
1019 else {
1020 sdkp->device->no_write_same = 1;
1021 sdkp->max_ws_blocks = 0;
1022 }
1023
1024 if (sdkp->lbprz && sdkp->lbpws)
1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 else if (sdkp->lbprz && sdkp->lbpws10)
1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 else if (sdkp->max_ws_blocks)
1029 sdkp->zeroing_mode = SD_ZERO_WS;
1030 else
1031 sdkp->zeroing_mode = SD_ZERO_WRITE;
1032
1033 if (sdkp->max_ws_blocks &&
1034 sdkp->physical_block_size > logical_block_size) {
1035 /*
1036 * Reporting a maximum number of blocks that is not aligned
1037 * on the device physical size would cause a large write same
1038 * request to be split into physically unaligned chunks by
1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 * even if the caller of these functions took care to align the
1041 * large request. So make sure the maximum reported is aligned
1042 * to the device physical block size. This is only an optional
1043 * optimization for regular disks, but this is mandatory to
1044 * avoid failure of large write same requests directed at
1045 * sequential write required zones of host-managed ZBC disks.
1046 */
1047 sdkp->max_ws_blocks =
1048 round_down(sdkp->max_ws_blocks,
1049 bytes_to_logical(sdkp->device,
1050 sdkp->physical_block_size));
1051 }
1052
1053 out:
1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 (logical_block_size >> 9));
1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 }
1059
1060 /**
1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062 * @cmd: command to prepare
1063 *
1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065 * the preference indicated by the target device.
1066 **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 struct request *rq = scsi_cmd_to_rq(cmd);
1070 struct scsi_device *sdp = cmd->device;
1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 struct bio *bio = rq->bio;
1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 unsigned int nr_bytes = blk_rq_bytes(rq);
1076 blk_status_t ret;
1077
1078 if (sdkp->device->no_write_same)
1079 return BLK_STS_TARGET;
1080
1081 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1082
1083 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1084
1085 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1086 cmd->cmd_len = 16;
1087 cmd->cmnd[0] = WRITE_SAME_16;
1088 put_unaligned_be64(lba, &cmd->cmnd[2]);
1089 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1090 } else {
1091 cmd->cmd_len = 10;
1092 cmd->cmnd[0] = WRITE_SAME;
1093 put_unaligned_be32(lba, &cmd->cmnd[2]);
1094 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1095 }
1096
1097 cmd->transfersize = sdp->sector_size;
1098 cmd->allowed = sdkp->max_retries;
1099
1100 /*
1101 * For WRITE SAME the data transferred via the DATA OUT buffer is
1102 * different from the amount of data actually written to the target.
1103 *
1104 * We set up __data_len to the amount of data transferred via the
1105 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1106 * to transfer a single sector of data first, but then reset it to
1107 * the amount of data to be written right after so that the I/O path
1108 * knows how much to actually write.
1109 */
1110 rq->__data_len = sdp->sector_size;
1111 ret = scsi_alloc_sgtables(cmd);
1112 rq->__data_len = nr_bytes;
1113
1114 return ret;
1115 }
1116
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1117 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1118 {
1119 struct request *rq = scsi_cmd_to_rq(cmd);
1120 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1121
1122 /* flush requests don't perform I/O, zero the S/G table */
1123 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1124
1125 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1126 cmd->cmd_len = 10;
1127 cmd->transfersize = 0;
1128 cmd->allowed = sdkp->max_retries;
1129
1130 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1131 return BLK_STS_OK;
1132 }
1133
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1134 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1135 sector_t lba, unsigned int nr_blocks,
1136 unsigned char flags)
1137 {
1138 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1139 if (unlikely(cmd->cmnd == NULL))
1140 return BLK_STS_RESOURCE;
1141
1142 cmd->cmd_len = SD_EXT_CDB_SIZE;
1143 memset(cmd->cmnd, 0, cmd->cmd_len);
1144
1145 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1146 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1147 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1148 cmd->cmnd[10] = flags;
1149 put_unaligned_be64(lba, &cmd->cmnd[12]);
1150 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1151 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1152
1153 return BLK_STS_OK;
1154 }
1155
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1156 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1157 sector_t lba, unsigned int nr_blocks,
1158 unsigned char flags)
1159 {
1160 cmd->cmd_len = 16;
1161 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1162 cmd->cmnd[1] = flags;
1163 cmd->cmnd[14] = 0;
1164 cmd->cmnd[15] = 0;
1165 put_unaligned_be64(lba, &cmd->cmnd[2]);
1166 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1167
1168 return BLK_STS_OK;
1169 }
1170
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1171 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1172 sector_t lba, unsigned int nr_blocks,
1173 unsigned char flags)
1174 {
1175 cmd->cmd_len = 10;
1176 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1177 cmd->cmnd[1] = flags;
1178 cmd->cmnd[6] = 0;
1179 cmd->cmnd[9] = 0;
1180 put_unaligned_be32(lba, &cmd->cmnd[2]);
1181 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1182
1183 return BLK_STS_OK;
1184 }
1185
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1186 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1187 sector_t lba, unsigned int nr_blocks,
1188 unsigned char flags)
1189 {
1190 /* Avoid that 0 blocks gets translated into 256 blocks. */
1191 if (WARN_ON_ONCE(nr_blocks == 0))
1192 return BLK_STS_IOERR;
1193
1194 if (unlikely(flags & 0x8)) {
1195 /*
1196 * This happens only if this drive failed 10byte rw
1197 * command with ILLEGAL_REQUEST during operation and
1198 * thus turned off use_10_for_rw.
1199 */
1200 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1201 return BLK_STS_IOERR;
1202 }
1203
1204 cmd->cmd_len = 6;
1205 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1206 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1207 cmd->cmnd[2] = (lba >> 8) & 0xff;
1208 cmd->cmnd[3] = lba & 0xff;
1209 cmd->cmnd[4] = nr_blocks;
1210 cmd->cmnd[5] = 0;
1211
1212 return BLK_STS_OK;
1213 }
1214
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1215 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1216 {
1217 struct request *rq = scsi_cmd_to_rq(cmd);
1218 struct scsi_device *sdp = cmd->device;
1219 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1220 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1221 sector_t threshold;
1222 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1223 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1224 bool write = rq_data_dir(rq) == WRITE;
1225 unsigned char protect, fua;
1226 blk_status_t ret;
1227 unsigned int dif;
1228 bool dix;
1229
1230 ret = scsi_alloc_sgtables(cmd);
1231 if (ret != BLK_STS_OK)
1232 return ret;
1233
1234 ret = BLK_STS_IOERR;
1235 if (!scsi_device_online(sdp) || sdp->changed) {
1236 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1237 goto fail;
1238 }
1239
1240 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1241 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1242 goto fail;
1243 }
1244
1245 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1246 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1247 goto fail;
1248 }
1249
1250 /*
1251 * Some SD card readers can't handle accesses which touch the
1252 * last one or two logical blocks. Split accesses as needed.
1253 */
1254 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1255
1256 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1257 if (lba < threshold) {
1258 /* Access up to the threshold but not beyond */
1259 nr_blocks = threshold - lba;
1260 } else {
1261 /* Access only a single logical block */
1262 nr_blocks = 1;
1263 }
1264 }
1265
1266 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1267 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1268 if (ret)
1269 goto fail;
1270 }
1271
1272 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1273 dix = scsi_prot_sg_count(cmd);
1274 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1275
1276 if (dif || dix)
1277 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1278 else
1279 protect = 0;
1280
1281 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1282 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1283 protect | fua);
1284 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1285 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1286 protect | fua);
1287 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1288 sdp->use_10_for_rw || protect) {
1289 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1290 protect | fua);
1291 } else {
1292 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1293 protect | fua);
1294 }
1295
1296 if (unlikely(ret != BLK_STS_OK))
1297 goto fail;
1298
1299 /*
1300 * We shouldn't disconnect in the middle of a sector, so with a dumb
1301 * host adapter, it's safe to assume that we can at least transfer
1302 * this many bytes between each connect / disconnect.
1303 */
1304 cmd->transfersize = sdp->sector_size;
1305 cmd->underflow = nr_blocks << 9;
1306 cmd->allowed = sdkp->max_retries;
1307 cmd->sdb.length = nr_blocks * sdp->sector_size;
1308
1309 SCSI_LOG_HLQUEUE(1,
1310 scmd_printk(KERN_INFO, cmd,
1311 "%s: block=%llu, count=%d\n", __func__,
1312 (unsigned long long)blk_rq_pos(rq),
1313 blk_rq_sectors(rq)));
1314 SCSI_LOG_HLQUEUE(2,
1315 scmd_printk(KERN_INFO, cmd,
1316 "%s %d/%u 512 byte blocks.\n",
1317 write ? "writing" : "reading", nr_blocks,
1318 blk_rq_sectors(rq)));
1319
1320 /*
1321 * This indicates that the command is ready from our end to be queued.
1322 */
1323 return BLK_STS_OK;
1324 fail:
1325 scsi_free_sgtables(cmd);
1326 return ret;
1327 }
1328
sd_init_command(struct scsi_cmnd * cmd)1329 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1330 {
1331 struct request *rq = scsi_cmd_to_rq(cmd);
1332
1333 switch (req_op(rq)) {
1334 case REQ_OP_DISCARD:
1335 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1336 case SD_LBP_UNMAP:
1337 return sd_setup_unmap_cmnd(cmd);
1338 case SD_LBP_WS16:
1339 return sd_setup_write_same16_cmnd(cmd, true);
1340 case SD_LBP_WS10:
1341 return sd_setup_write_same10_cmnd(cmd, true);
1342 case SD_LBP_ZERO:
1343 return sd_setup_write_same10_cmnd(cmd, false);
1344 default:
1345 return BLK_STS_TARGET;
1346 }
1347 case REQ_OP_WRITE_ZEROES:
1348 return sd_setup_write_zeroes_cmnd(cmd);
1349 case REQ_OP_WRITE_SAME:
1350 return sd_setup_write_same_cmnd(cmd);
1351 case REQ_OP_FLUSH:
1352 return sd_setup_flush_cmnd(cmd);
1353 case REQ_OP_READ:
1354 case REQ_OP_WRITE:
1355 case REQ_OP_ZONE_APPEND:
1356 return sd_setup_read_write_cmnd(cmd);
1357 case REQ_OP_ZONE_RESET:
1358 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1359 false);
1360 case REQ_OP_ZONE_RESET_ALL:
1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1362 true);
1363 case REQ_OP_ZONE_OPEN:
1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1365 case REQ_OP_ZONE_CLOSE:
1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1367 case REQ_OP_ZONE_FINISH:
1368 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1369 default:
1370 WARN_ON_ONCE(1);
1371 return BLK_STS_NOTSUPP;
1372 }
1373 }
1374
sd_uninit_command(struct scsi_cmnd * SCpnt)1375 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1376 {
1377 struct request *rq = scsi_cmd_to_rq(SCpnt);
1378 u8 *cmnd;
1379
1380 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1381 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1382
1383 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1384 cmnd = SCpnt->cmnd;
1385 SCpnt->cmnd = NULL;
1386 SCpnt->cmd_len = 0;
1387 mempool_free(cmnd, sd_cdb_pool);
1388 }
1389 }
1390
sd_need_revalidate(struct block_device * bdev,struct scsi_disk * sdkp)1391 static bool sd_need_revalidate(struct block_device *bdev,
1392 struct scsi_disk *sdkp)
1393 {
1394 if (sdkp->device->removable || sdkp->write_prot) {
1395 if (bdev_check_media_change(bdev))
1396 return true;
1397 }
1398
1399 /*
1400 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1401 * nothing to do with partitions, BLKRRPART is used to force a full
1402 * revalidate after things like a format for historical reasons.
1403 */
1404 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1405 }
1406
1407 /**
1408 * sd_open - open a scsi disk device
1409 * @bdev: Block device of the scsi disk to open
1410 * @mode: FMODE_* mask
1411 *
1412 * Returns 0 if successful. Returns a negated errno value in case
1413 * of error.
1414 *
1415 * Note: This can be called from a user context (e.g. fsck(1) )
1416 * or from within the kernel (e.g. as a result of a mount(1) ).
1417 * In the latter case @inode and @filp carry an abridged amount
1418 * of information as noted above.
1419 *
1420 * Locking: called with bdev->bd_disk->open_mutex held.
1421 **/
sd_open(struct block_device * bdev,fmode_t mode)1422 static int sd_open(struct block_device *bdev, fmode_t mode)
1423 {
1424 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1425 struct scsi_device *sdev;
1426 int retval;
1427
1428 if (!sdkp)
1429 return -ENXIO;
1430
1431 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1432
1433 sdev = sdkp->device;
1434
1435 /*
1436 * If the device is in error recovery, wait until it is done.
1437 * If the device is offline, then disallow any access to it.
1438 */
1439 retval = -ENXIO;
1440 if (!scsi_block_when_processing_errors(sdev))
1441 goto error_out;
1442
1443 if (sd_need_revalidate(bdev, sdkp))
1444 sd_revalidate_disk(bdev->bd_disk);
1445
1446 /*
1447 * If the drive is empty, just let the open fail.
1448 */
1449 retval = -ENOMEDIUM;
1450 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1451 goto error_out;
1452
1453 /*
1454 * If the device has the write protect tab set, have the open fail
1455 * if the user expects to be able to write to the thing.
1456 */
1457 retval = -EROFS;
1458 if (sdkp->write_prot && (mode & FMODE_WRITE))
1459 goto error_out;
1460
1461 /*
1462 * It is possible that the disk changing stuff resulted in
1463 * the device being taken offline. If this is the case,
1464 * report this to the user, and don't pretend that the
1465 * open actually succeeded.
1466 */
1467 retval = -ENXIO;
1468 if (!scsi_device_online(sdev))
1469 goto error_out;
1470
1471 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1472 if (scsi_block_when_processing_errors(sdev))
1473 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1474 }
1475
1476 return 0;
1477
1478 error_out:
1479 scsi_disk_put(sdkp);
1480 return retval;
1481 }
1482
1483 /**
1484 * sd_release - invoked when the (last) close(2) is called on this
1485 * scsi disk.
1486 * @disk: disk to release
1487 * @mode: FMODE_* mask
1488 *
1489 * Returns 0.
1490 *
1491 * Note: may block (uninterruptible) if error recovery is underway
1492 * on this disk.
1493 *
1494 * Locking: called with bdev->bd_disk->open_mutex held.
1495 **/
sd_release(struct gendisk * disk,fmode_t mode)1496 static void sd_release(struct gendisk *disk, fmode_t mode)
1497 {
1498 struct scsi_disk *sdkp = scsi_disk(disk);
1499 struct scsi_device *sdev = sdkp->device;
1500
1501 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1502
1503 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1504 if (scsi_block_when_processing_errors(sdev))
1505 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1506 }
1507
1508 scsi_disk_put(sdkp);
1509 }
1510
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1511 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1512 {
1513 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1514 struct scsi_device *sdp = sdkp->device;
1515 struct Scsi_Host *host = sdp->host;
1516 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1517 int diskinfo[4];
1518
1519 /* default to most commonly used values */
1520 diskinfo[0] = 0x40; /* 1 << 6 */
1521 diskinfo[1] = 0x20; /* 1 << 5 */
1522 diskinfo[2] = capacity >> 11;
1523
1524 /* override with calculated, extended default, or driver values */
1525 if (host->hostt->bios_param)
1526 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1527 else
1528 scsicam_bios_param(bdev, capacity, diskinfo);
1529
1530 geo->heads = diskinfo[0];
1531 geo->sectors = diskinfo[1];
1532 geo->cylinders = diskinfo[2];
1533 return 0;
1534 }
1535
1536 /**
1537 * sd_ioctl - process an ioctl
1538 * @bdev: target block device
1539 * @mode: FMODE_* mask
1540 * @cmd: ioctl command number
1541 * @arg: this is third argument given to ioctl(2) system call.
1542 * Often contains a pointer.
1543 *
1544 * Returns 0 if successful (some ioctls return positive numbers on
1545 * success as well). Returns a negated errno value in case of error.
1546 *
1547 * Note: most ioctls are forward onto the block subsystem or further
1548 * down in the scsi subsystem.
1549 **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1550 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1551 unsigned int cmd, unsigned long arg)
1552 {
1553 struct gendisk *disk = bdev->bd_disk;
1554 struct scsi_disk *sdkp = scsi_disk(disk);
1555 struct scsi_device *sdp = sdkp->device;
1556 void __user *p = (void __user *)arg;
1557 int error;
1558
1559 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1560 "cmd=0x%x\n", disk->disk_name, cmd));
1561
1562 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1563 return -ENOIOCTLCMD;
1564
1565 /*
1566 * If we are in the middle of error recovery, don't let anyone
1567 * else try and use this device. Also, if error recovery fails, it
1568 * may try and take the device offline, in which case all further
1569 * access to the device is prohibited.
1570 */
1571 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1572 (mode & FMODE_NDELAY) != 0);
1573 if (error)
1574 return error;
1575
1576 if (is_sed_ioctl(cmd))
1577 return sed_ioctl(sdkp->opal_dev, cmd, p);
1578 return scsi_ioctl(sdp, disk, mode, cmd, p);
1579 }
1580
set_media_not_present(struct scsi_disk * sdkp)1581 static void set_media_not_present(struct scsi_disk *sdkp)
1582 {
1583 if (sdkp->media_present)
1584 sdkp->device->changed = 1;
1585
1586 if (sdkp->device->removable) {
1587 sdkp->media_present = 0;
1588 sdkp->capacity = 0;
1589 }
1590 }
1591
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1592 static int media_not_present(struct scsi_disk *sdkp,
1593 struct scsi_sense_hdr *sshdr)
1594 {
1595 if (!scsi_sense_valid(sshdr))
1596 return 0;
1597
1598 /* not invoked for commands that could return deferred errors */
1599 switch (sshdr->sense_key) {
1600 case UNIT_ATTENTION:
1601 case NOT_READY:
1602 /* medium not present */
1603 if (sshdr->asc == 0x3A) {
1604 set_media_not_present(sdkp);
1605 return 1;
1606 }
1607 }
1608 return 0;
1609 }
1610
1611 /**
1612 * sd_check_events - check media events
1613 * @disk: kernel device descriptor
1614 * @clearing: disk events currently being cleared
1615 *
1616 * Returns mask of DISK_EVENT_*.
1617 *
1618 * Note: this function is invoked from the block subsystem.
1619 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1620 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1621 {
1622 struct scsi_disk *sdkp = scsi_disk_get(disk);
1623 struct scsi_device *sdp;
1624 int retval;
1625 bool disk_changed;
1626
1627 if (!sdkp)
1628 return 0;
1629
1630 sdp = sdkp->device;
1631 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1632
1633 /*
1634 * If the device is offline, don't send any commands - just pretend as
1635 * if the command failed. If the device ever comes back online, we
1636 * can deal with it then. It is only because of unrecoverable errors
1637 * that we would ever take a device offline in the first place.
1638 */
1639 if (!scsi_device_online(sdp)) {
1640 set_media_not_present(sdkp);
1641 goto out;
1642 }
1643
1644 /*
1645 * Using TEST_UNIT_READY enables differentiation between drive with
1646 * no cartridge loaded - NOT READY, drive with changed cartridge -
1647 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1648 *
1649 * Drives that auto spin down. eg iomega jaz 1G, will be started
1650 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1651 * sd_revalidate() is called.
1652 */
1653 if (scsi_block_when_processing_errors(sdp)) {
1654 struct scsi_sense_hdr sshdr = { 0, };
1655
1656 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1657 &sshdr);
1658
1659 /* failed to execute TUR, assume media not present */
1660 if (retval < 0 || host_byte(retval)) {
1661 set_media_not_present(sdkp);
1662 goto out;
1663 }
1664
1665 if (media_not_present(sdkp, &sshdr))
1666 goto out;
1667 }
1668
1669 /*
1670 * For removable scsi disk we have to recognise the presence
1671 * of a disk in the drive.
1672 */
1673 if (!sdkp->media_present)
1674 sdp->changed = 1;
1675 sdkp->media_present = 1;
1676 out:
1677 /*
1678 * sdp->changed is set under the following conditions:
1679 *
1680 * Medium present state has changed in either direction.
1681 * Device has indicated UNIT_ATTENTION.
1682 */
1683 disk_changed = sdp->changed;
1684 sdp->changed = 0;
1685 scsi_disk_put(sdkp);
1686 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1687 }
1688
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1689 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1690 {
1691 int retries, res;
1692 struct scsi_device *sdp = sdkp->device;
1693 const int timeout = sdp->request_queue->rq_timeout
1694 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1695 struct scsi_sense_hdr my_sshdr;
1696
1697 if (!scsi_device_online(sdp))
1698 return -ENODEV;
1699
1700 /* caller might not be interested in sense, but we need it */
1701 if (!sshdr)
1702 sshdr = &my_sshdr;
1703
1704 for (retries = 3; retries > 0; --retries) {
1705 unsigned char cmd[10] = { 0 };
1706
1707 cmd[0] = SYNCHRONIZE_CACHE;
1708 /*
1709 * Leave the rest of the command zero to indicate
1710 * flush everything.
1711 */
1712 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1713 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1714 if (res == 0)
1715 break;
1716 }
1717
1718 if (res) {
1719 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1720
1721 if (res < 0)
1722 return res;
1723
1724 if (scsi_status_is_check_condition(res) &&
1725 scsi_sense_valid(sshdr)) {
1726 sd_print_sense_hdr(sdkp, sshdr);
1727
1728 /* we need to evaluate the error return */
1729 if (sshdr->asc == 0x3a || /* medium not present */
1730 sshdr->asc == 0x20 || /* invalid command */
1731 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1732 /* this is no error here */
1733 return 0;
1734 }
1735
1736 switch (host_byte(res)) {
1737 /* ignore errors due to racing a disconnection */
1738 case DID_BAD_TARGET:
1739 case DID_NO_CONNECT:
1740 return 0;
1741 /* signal the upper layer it might try again */
1742 case DID_BUS_BUSY:
1743 case DID_IMM_RETRY:
1744 case DID_REQUEUE:
1745 case DID_SOFT_ERROR:
1746 return -EBUSY;
1747 default:
1748 return -EIO;
1749 }
1750 }
1751 return 0;
1752 }
1753
sd_rescan(struct device * dev)1754 static void sd_rescan(struct device *dev)
1755 {
1756 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1757
1758 sd_revalidate_disk(sdkp->disk);
1759 }
1760
sd_pr_type(enum pr_type type)1761 static char sd_pr_type(enum pr_type type)
1762 {
1763 switch (type) {
1764 case PR_WRITE_EXCLUSIVE:
1765 return 0x01;
1766 case PR_EXCLUSIVE_ACCESS:
1767 return 0x03;
1768 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1769 return 0x05;
1770 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1771 return 0x06;
1772 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1773 return 0x07;
1774 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1775 return 0x08;
1776 default:
1777 return 0;
1778 }
1779 };
1780
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1781 static int sd_pr_command(struct block_device *bdev, u8 sa,
1782 u64 key, u64 sa_key, u8 type, u8 flags)
1783 {
1784 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1785 struct scsi_device *sdev = sdkp->device;
1786 struct scsi_sense_hdr sshdr;
1787 int result;
1788 u8 cmd[16] = { 0, };
1789 u8 data[24] = { 0, };
1790
1791 cmd[0] = PERSISTENT_RESERVE_OUT;
1792 cmd[1] = sa;
1793 cmd[2] = type;
1794 put_unaligned_be32(sizeof(data), &cmd[5]);
1795
1796 put_unaligned_be64(key, &data[0]);
1797 put_unaligned_be64(sa_key, &data[8]);
1798 data[20] = flags;
1799
1800 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1801 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1802
1803 if (scsi_status_is_check_condition(result) &&
1804 scsi_sense_valid(&sshdr)) {
1805 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1806 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1807 }
1808
1809 return result;
1810 }
1811
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1812 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1813 u32 flags)
1814 {
1815 if (flags & ~PR_FL_IGNORE_KEY)
1816 return -EOPNOTSUPP;
1817 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1818 old_key, new_key, 0,
1819 (1 << 0) /* APTPL */);
1820 }
1821
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1822 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1823 u32 flags)
1824 {
1825 if (flags)
1826 return -EOPNOTSUPP;
1827 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1828 }
1829
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1830 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1831 {
1832 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1833 }
1834
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1835 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1836 enum pr_type type, bool abort)
1837 {
1838 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1839 sd_pr_type(type), 0);
1840 }
1841
sd_pr_clear(struct block_device * bdev,u64 key)1842 static int sd_pr_clear(struct block_device *bdev, u64 key)
1843 {
1844 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1845 }
1846
1847 static const struct pr_ops sd_pr_ops = {
1848 .pr_register = sd_pr_register,
1849 .pr_reserve = sd_pr_reserve,
1850 .pr_release = sd_pr_release,
1851 .pr_preempt = sd_pr_preempt,
1852 .pr_clear = sd_pr_clear,
1853 };
1854
1855 static const struct block_device_operations sd_fops = {
1856 .owner = THIS_MODULE,
1857 .open = sd_open,
1858 .release = sd_release,
1859 .ioctl = sd_ioctl,
1860 .getgeo = sd_getgeo,
1861 .compat_ioctl = blkdev_compat_ptr_ioctl,
1862 .check_events = sd_check_events,
1863 .unlock_native_capacity = sd_unlock_native_capacity,
1864 .report_zones = sd_zbc_report_zones,
1865 .pr_ops = &sd_pr_ops,
1866 };
1867
1868 /**
1869 * sd_eh_reset - reset error handling callback
1870 * @scmd: sd-issued command that has failed
1871 *
1872 * This function is called by the SCSI midlayer before starting
1873 * SCSI EH. When counting medium access failures we have to be
1874 * careful to register it only only once per device and SCSI EH run;
1875 * there might be several timed out commands which will cause the
1876 * 'max_medium_access_timeouts' counter to trigger after the first
1877 * SCSI EH run already and set the device to offline.
1878 * So this function resets the internal counter before starting SCSI EH.
1879 **/
sd_eh_reset(struct scsi_cmnd * scmd)1880 static void sd_eh_reset(struct scsi_cmnd *scmd)
1881 {
1882 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1883
1884 /* New SCSI EH run, reset gate variable */
1885 sdkp->ignore_medium_access_errors = false;
1886 }
1887
1888 /**
1889 * sd_eh_action - error handling callback
1890 * @scmd: sd-issued command that has failed
1891 * @eh_disp: The recovery disposition suggested by the midlayer
1892 *
1893 * This function is called by the SCSI midlayer upon completion of an
1894 * error test command (currently TEST UNIT READY). The result of sending
1895 * the eh command is passed in eh_disp. We're looking for devices that
1896 * fail medium access commands but are OK with non access commands like
1897 * test unit ready (so wrongly see the device as having a successful
1898 * recovery)
1899 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1900 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1901 {
1902 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1903 struct scsi_device *sdev = scmd->device;
1904
1905 if (!scsi_device_online(sdev) ||
1906 !scsi_medium_access_command(scmd) ||
1907 host_byte(scmd->result) != DID_TIME_OUT ||
1908 eh_disp != SUCCESS)
1909 return eh_disp;
1910
1911 /*
1912 * The device has timed out executing a medium access command.
1913 * However, the TEST UNIT READY command sent during error
1914 * handling completed successfully. Either the device is in the
1915 * process of recovering or has it suffered an internal failure
1916 * that prevents access to the storage medium.
1917 */
1918 if (!sdkp->ignore_medium_access_errors) {
1919 sdkp->medium_access_timed_out++;
1920 sdkp->ignore_medium_access_errors = true;
1921 }
1922
1923 /*
1924 * If the device keeps failing read/write commands but TEST UNIT
1925 * READY always completes successfully we assume that medium
1926 * access is no longer possible and take the device offline.
1927 */
1928 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1929 scmd_printk(KERN_ERR, scmd,
1930 "Medium access timeout failure. Offlining disk!\n");
1931 mutex_lock(&sdev->state_mutex);
1932 scsi_device_set_state(sdev, SDEV_OFFLINE);
1933 mutex_unlock(&sdev->state_mutex);
1934
1935 return SUCCESS;
1936 }
1937
1938 return eh_disp;
1939 }
1940
sd_completed_bytes(struct scsi_cmnd * scmd)1941 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1942 {
1943 struct request *req = scsi_cmd_to_rq(scmd);
1944 struct scsi_device *sdev = scmd->device;
1945 unsigned int transferred, good_bytes;
1946 u64 start_lba, end_lba, bad_lba;
1947
1948 /*
1949 * Some commands have a payload smaller than the device logical
1950 * block size (e.g. INQUIRY on a 4K disk).
1951 */
1952 if (scsi_bufflen(scmd) <= sdev->sector_size)
1953 return 0;
1954
1955 /* Check if we have a 'bad_lba' information */
1956 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1957 SCSI_SENSE_BUFFERSIZE,
1958 &bad_lba))
1959 return 0;
1960
1961 /*
1962 * If the bad lba was reported incorrectly, we have no idea where
1963 * the error is.
1964 */
1965 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1966 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1967 if (bad_lba < start_lba || bad_lba >= end_lba)
1968 return 0;
1969
1970 /*
1971 * resid is optional but mostly filled in. When it's unused,
1972 * its value is zero, so we assume the whole buffer transferred
1973 */
1974 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1975
1976 /* This computation should always be done in terms of the
1977 * resolution of the device's medium.
1978 */
1979 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1980
1981 return min(good_bytes, transferred);
1982 }
1983
1984 /**
1985 * sd_done - bottom half handler: called when the lower level
1986 * driver has completed (successfully or otherwise) a scsi command.
1987 * @SCpnt: mid-level's per command structure.
1988 *
1989 * Note: potentially run from within an ISR. Must not block.
1990 **/
sd_done(struct scsi_cmnd * SCpnt)1991 static int sd_done(struct scsi_cmnd *SCpnt)
1992 {
1993 int result = SCpnt->result;
1994 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1995 unsigned int sector_size = SCpnt->device->sector_size;
1996 unsigned int resid;
1997 struct scsi_sense_hdr sshdr;
1998 struct request *req = scsi_cmd_to_rq(SCpnt);
1999 struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
2000 int sense_valid = 0;
2001 int sense_deferred = 0;
2002
2003 switch (req_op(req)) {
2004 case REQ_OP_DISCARD:
2005 case REQ_OP_WRITE_ZEROES:
2006 case REQ_OP_WRITE_SAME:
2007 case REQ_OP_ZONE_RESET:
2008 case REQ_OP_ZONE_RESET_ALL:
2009 case REQ_OP_ZONE_OPEN:
2010 case REQ_OP_ZONE_CLOSE:
2011 case REQ_OP_ZONE_FINISH:
2012 if (!result) {
2013 good_bytes = blk_rq_bytes(req);
2014 scsi_set_resid(SCpnt, 0);
2015 } else {
2016 good_bytes = 0;
2017 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2018 }
2019 break;
2020 default:
2021 /*
2022 * In case of bogus fw or device, we could end up having
2023 * an unaligned partial completion. Check this here and force
2024 * alignment.
2025 */
2026 resid = scsi_get_resid(SCpnt);
2027 if (resid & (sector_size - 1)) {
2028 sd_printk(KERN_INFO, sdkp,
2029 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2030 resid, sector_size);
2031 scsi_print_command(SCpnt);
2032 resid = min(scsi_bufflen(SCpnt),
2033 round_up(resid, sector_size));
2034 scsi_set_resid(SCpnt, resid);
2035 }
2036 }
2037
2038 if (result) {
2039 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2040 if (sense_valid)
2041 sense_deferred = scsi_sense_is_deferred(&sshdr);
2042 }
2043 sdkp->medium_access_timed_out = 0;
2044
2045 if (!scsi_status_is_check_condition(result) &&
2046 (!sense_valid || sense_deferred))
2047 goto out;
2048
2049 switch (sshdr.sense_key) {
2050 case HARDWARE_ERROR:
2051 case MEDIUM_ERROR:
2052 good_bytes = sd_completed_bytes(SCpnt);
2053 break;
2054 case RECOVERED_ERROR:
2055 good_bytes = scsi_bufflen(SCpnt);
2056 break;
2057 case NO_SENSE:
2058 /* This indicates a false check condition, so ignore it. An
2059 * unknown amount of data was transferred so treat it as an
2060 * error.
2061 */
2062 SCpnt->result = 0;
2063 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2064 break;
2065 case ABORTED_COMMAND:
2066 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2067 good_bytes = sd_completed_bytes(SCpnt);
2068 break;
2069 case ILLEGAL_REQUEST:
2070 switch (sshdr.asc) {
2071 case 0x10: /* DIX: Host detected corruption */
2072 good_bytes = sd_completed_bytes(SCpnt);
2073 break;
2074 case 0x20: /* INVALID COMMAND OPCODE */
2075 case 0x24: /* INVALID FIELD IN CDB */
2076 switch (SCpnt->cmnd[0]) {
2077 case UNMAP:
2078 sd_config_discard(sdkp, SD_LBP_DISABLE);
2079 break;
2080 case WRITE_SAME_16:
2081 case WRITE_SAME:
2082 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2083 sd_config_discard(sdkp, SD_LBP_DISABLE);
2084 } else {
2085 sdkp->device->no_write_same = 1;
2086 sd_config_write_same(sdkp);
2087 req->rq_flags |= RQF_QUIET;
2088 }
2089 break;
2090 }
2091 }
2092 break;
2093 default:
2094 break;
2095 }
2096
2097 out:
2098 if (sd_is_zoned(sdkp))
2099 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2100
2101 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2102 "sd_done: completed %d of %d bytes\n",
2103 good_bytes, scsi_bufflen(SCpnt)));
2104
2105 return good_bytes;
2106 }
2107
2108 /*
2109 * spinup disk - called only in sd_revalidate_disk()
2110 */
2111 static void
sd_spinup_disk(struct scsi_disk * sdkp)2112 sd_spinup_disk(struct scsi_disk *sdkp)
2113 {
2114 unsigned char cmd[10];
2115 unsigned long spintime_expire = 0;
2116 int retries, spintime;
2117 unsigned int the_result;
2118 struct scsi_sense_hdr sshdr;
2119 int sense_valid = 0;
2120
2121 spintime = 0;
2122
2123 /* Spin up drives, as required. Only do this at boot time */
2124 /* Spinup needs to be done for module loads too. */
2125 do {
2126 retries = 0;
2127
2128 do {
2129 bool media_was_present = sdkp->media_present;
2130
2131 cmd[0] = TEST_UNIT_READY;
2132 memset((void *) &cmd[1], 0, 9);
2133
2134 the_result = scsi_execute_req(sdkp->device, cmd,
2135 DMA_NONE, NULL, 0,
2136 &sshdr, SD_TIMEOUT,
2137 sdkp->max_retries, NULL);
2138
2139 /*
2140 * If the drive has indicated to us that it
2141 * doesn't have any media in it, don't bother
2142 * with any more polling.
2143 */
2144 if (media_not_present(sdkp, &sshdr)) {
2145 if (media_was_present)
2146 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2147 return;
2148 }
2149
2150 if (the_result)
2151 sense_valid = scsi_sense_valid(&sshdr);
2152 retries++;
2153 } while (retries < 3 &&
2154 (!scsi_status_is_good(the_result) ||
2155 (scsi_status_is_check_condition(the_result) &&
2156 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2157
2158 if (!scsi_status_is_check_condition(the_result)) {
2159 /* no sense, TUR either succeeded or failed
2160 * with a status error */
2161 if(!spintime && !scsi_status_is_good(the_result)) {
2162 sd_print_result(sdkp, "Test Unit Ready failed",
2163 the_result);
2164 }
2165 break;
2166 }
2167
2168 /*
2169 * The device does not want the automatic start to be issued.
2170 */
2171 if (sdkp->device->no_start_on_add)
2172 break;
2173
2174 if (sense_valid && sshdr.sense_key == NOT_READY) {
2175 if (sshdr.asc == 4 && sshdr.ascq == 3)
2176 break; /* manual intervention required */
2177 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2178 break; /* standby */
2179 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2180 break; /* unavailable */
2181 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2182 break; /* sanitize in progress */
2183 /*
2184 * Issue command to spin up drive when not ready
2185 */
2186 if (!spintime) {
2187 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2188 cmd[0] = START_STOP;
2189 cmd[1] = 1; /* Return immediately */
2190 memset((void *) &cmd[2], 0, 8);
2191 cmd[4] = 1; /* Start spin cycle */
2192 if (sdkp->device->start_stop_pwr_cond)
2193 cmd[4] |= 1 << 4;
2194 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2195 NULL, 0, &sshdr,
2196 SD_TIMEOUT, sdkp->max_retries,
2197 NULL);
2198 spintime_expire = jiffies + 100 * HZ;
2199 spintime = 1;
2200 }
2201 /* Wait 1 second for next try */
2202 msleep(1000);
2203 printk(KERN_CONT ".");
2204
2205 /*
2206 * Wait for USB flash devices with slow firmware.
2207 * Yes, this sense key/ASC combination shouldn't
2208 * occur here. It's characteristic of these devices.
2209 */
2210 } else if (sense_valid &&
2211 sshdr.sense_key == UNIT_ATTENTION &&
2212 sshdr.asc == 0x28) {
2213 if (!spintime) {
2214 spintime_expire = jiffies + 5 * HZ;
2215 spintime = 1;
2216 }
2217 /* Wait 1 second for next try */
2218 msleep(1000);
2219 } else {
2220 /* we don't understand the sense code, so it's
2221 * probably pointless to loop */
2222 if(!spintime) {
2223 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2224 sd_print_sense_hdr(sdkp, &sshdr);
2225 }
2226 break;
2227 }
2228
2229 } while (spintime && time_before_eq(jiffies, spintime_expire));
2230
2231 if (spintime) {
2232 if (scsi_status_is_good(the_result))
2233 printk(KERN_CONT "ready\n");
2234 else
2235 printk(KERN_CONT "not responding...\n");
2236 }
2237 }
2238
2239 /*
2240 * Determine whether disk supports Data Integrity Field.
2241 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2242 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2243 {
2244 struct scsi_device *sdp = sdkp->device;
2245 u8 type;
2246 int ret = 0;
2247
2248 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2249 sdkp->protection_type = 0;
2250 return ret;
2251 }
2252
2253 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2254
2255 if (type > T10_PI_TYPE3_PROTECTION)
2256 ret = -ENODEV;
2257 else if (scsi_host_dif_capable(sdp->host, type))
2258 ret = 1;
2259
2260 if (sdkp->first_scan || type != sdkp->protection_type)
2261 switch (ret) {
2262 case -ENODEV:
2263 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2264 " protection type %u. Disabling disk!\n",
2265 type);
2266 break;
2267 case 1:
2268 sd_printk(KERN_NOTICE, sdkp,
2269 "Enabling DIF Type %u protection\n", type);
2270 break;
2271 case 0:
2272 sd_printk(KERN_NOTICE, sdkp,
2273 "Disabling DIF Type %u protection\n", type);
2274 break;
2275 }
2276
2277 sdkp->protection_type = type;
2278
2279 return ret;
2280 }
2281
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2282 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2283 struct scsi_sense_hdr *sshdr, int sense_valid,
2284 int the_result)
2285 {
2286 if (sense_valid)
2287 sd_print_sense_hdr(sdkp, sshdr);
2288 else
2289 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2290
2291 /*
2292 * Set dirty bit for removable devices if not ready -
2293 * sometimes drives will not report this properly.
2294 */
2295 if (sdp->removable &&
2296 sense_valid && sshdr->sense_key == NOT_READY)
2297 set_media_not_present(sdkp);
2298
2299 /*
2300 * We used to set media_present to 0 here to indicate no media
2301 * in the drive, but some drives fail read capacity even with
2302 * media present, so we can't do that.
2303 */
2304 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2305 }
2306
2307 #define RC16_LEN 32
2308 #if RC16_LEN > SD_BUF_SIZE
2309 #error RC16_LEN must not be more than SD_BUF_SIZE
2310 #endif
2311
2312 #define READ_CAPACITY_RETRIES_ON_RESET 10
2313
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2314 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2315 unsigned char *buffer)
2316 {
2317 unsigned char cmd[16];
2318 struct scsi_sense_hdr sshdr;
2319 int sense_valid = 0;
2320 int the_result;
2321 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2322 unsigned int alignment;
2323 unsigned long long lba;
2324 unsigned sector_size;
2325
2326 if (sdp->no_read_capacity_16)
2327 return -EINVAL;
2328
2329 do {
2330 memset(cmd, 0, 16);
2331 cmd[0] = SERVICE_ACTION_IN_16;
2332 cmd[1] = SAI_READ_CAPACITY_16;
2333 cmd[13] = RC16_LEN;
2334 memset(buffer, 0, RC16_LEN);
2335
2336 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2337 buffer, RC16_LEN, &sshdr,
2338 SD_TIMEOUT, sdkp->max_retries, NULL);
2339
2340 if (media_not_present(sdkp, &sshdr))
2341 return -ENODEV;
2342
2343 if (the_result > 0) {
2344 sense_valid = scsi_sense_valid(&sshdr);
2345 if (sense_valid &&
2346 sshdr.sense_key == ILLEGAL_REQUEST &&
2347 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2348 sshdr.ascq == 0x00)
2349 /* Invalid Command Operation Code or
2350 * Invalid Field in CDB, just retry
2351 * silently with RC10 */
2352 return -EINVAL;
2353 if (sense_valid &&
2354 sshdr.sense_key == UNIT_ATTENTION &&
2355 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2356 /* Device reset might occur several times,
2357 * give it one more chance */
2358 if (--reset_retries > 0)
2359 continue;
2360 }
2361 retries--;
2362
2363 } while (the_result && retries);
2364
2365 if (the_result) {
2366 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2367 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2368 return -EINVAL;
2369 }
2370
2371 sector_size = get_unaligned_be32(&buffer[8]);
2372 lba = get_unaligned_be64(&buffer[0]);
2373
2374 if (sd_read_protection_type(sdkp, buffer) < 0) {
2375 sdkp->capacity = 0;
2376 return -ENODEV;
2377 }
2378
2379 /* Logical blocks per physical block exponent */
2380 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2381
2382 /* RC basis */
2383 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2384
2385 /* Lowest aligned logical block */
2386 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2387 blk_queue_alignment_offset(sdp->request_queue, alignment);
2388 if (alignment && sdkp->first_scan)
2389 sd_printk(KERN_NOTICE, sdkp,
2390 "physical block alignment offset: %u\n", alignment);
2391
2392 if (buffer[14] & 0x80) { /* LBPME */
2393 sdkp->lbpme = 1;
2394
2395 if (buffer[14] & 0x40) /* LBPRZ */
2396 sdkp->lbprz = 1;
2397
2398 sd_config_discard(sdkp, SD_LBP_WS16);
2399 }
2400
2401 sdkp->capacity = lba + 1;
2402 return sector_size;
2403 }
2404
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2405 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2406 unsigned char *buffer)
2407 {
2408 unsigned char cmd[16];
2409 struct scsi_sense_hdr sshdr;
2410 int sense_valid = 0;
2411 int the_result;
2412 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2413 sector_t lba;
2414 unsigned sector_size;
2415
2416 do {
2417 cmd[0] = READ_CAPACITY;
2418 memset(&cmd[1], 0, 9);
2419 memset(buffer, 0, 8);
2420
2421 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2422 buffer, 8, &sshdr,
2423 SD_TIMEOUT, sdkp->max_retries, NULL);
2424
2425 if (media_not_present(sdkp, &sshdr))
2426 return -ENODEV;
2427
2428 if (the_result > 0) {
2429 sense_valid = scsi_sense_valid(&sshdr);
2430 if (sense_valid &&
2431 sshdr.sense_key == UNIT_ATTENTION &&
2432 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2433 /* Device reset might occur several times,
2434 * give it one more chance */
2435 if (--reset_retries > 0)
2436 continue;
2437 }
2438 retries--;
2439
2440 } while (the_result && retries);
2441
2442 if (the_result) {
2443 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2444 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2445 return -EINVAL;
2446 }
2447
2448 sector_size = get_unaligned_be32(&buffer[4]);
2449 lba = get_unaligned_be32(&buffer[0]);
2450
2451 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2452 /* Some buggy (usb cardreader) devices return an lba of
2453 0xffffffff when the want to report a size of 0 (with
2454 which they really mean no media is present) */
2455 sdkp->capacity = 0;
2456 sdkp->physical_block_size = sector_size;
2457 return sector_size;
2458 }
2459
2460 sdkp->capacity = lba + 1;
2461 sdkp->physical_block_size = sector_size;
2462 return sector_size;
2463 }
2464
sd_try_rc16_first(struct scsi_device * sdp)2465 static int sd_try_rc16_first(struct scsi_device *sdp)
2466 {
2467 if (sdp->host->max_cmd_len < 16)
2468 return 0;
2469 if (sdp->try_rc_10_first)
2470 return 0;
2471 if (sdp->scsi_level > SCSI_SPC_2)
2472 return 1;
2473 if (scsi_device_protection(sdp))
2474 return 1;
2475 return 0;
2476 }
2477
2478 /*
2479 * read disk capacity
2480 */
2481 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2482 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2483 {
2484 int sector_size;
2485 struct scsi_device *sdp = sdkp->device;
2486
2487 if (sd_try_rc16_first(sdp)) {
2488 sector_size = read_capacity_16(sdkp, sdp, buffer);
2489 if (sector_size == -EOVERFLOW)
2490 goto got_data;
2491 if (sector_size == -ENODEV)
2492 return;
2493 if (sector_size < 0)
2494 sector_size = read_capacity_10(sdkp, sdp, buffer);
2495 if (sector_size < 0)
2496 return;
2497 } else {
2498 sector_size = read_capacity_10(sdkp, sdp, buffer);
2499 if (sector_size == -EOVERFLOW)
2500 goto got_data;
2501 if (sector_size < 0)
2502 return;
2503 if ((sizeof(sdkp->capacity) > 4) &&
2504 (sdkp->capacity > 0xffffffffULL)) {
2505 int old_sector_size = sector_size;
2506 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2507 "Trying to use READ CAPACITY(16).\n");
2508 sector_size = read_capacity_16(sdkp, sdp, buffer);
2509 if (sector_size < 0) {
2510 sd_printk(KERN_NOTICE, sdkp,
2511 "Using 0xffffffff as device size\n");
2512 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2513 sector_size = old_sector_size;
2514 goto got_data;
2515 }
2516 /* Remember that READ CAPACITY(16) succeeded */
2517 sdp->try_rc_10_first = 0;
2518 }
2519 }
2520
2521 /* Some devices are known to return the total number of blocks,
2522 * not the highest block number. Some devices have versions
2523 * which do this and others which do not. Some devices we might
2524 * suspect of doing this but we don't know for certain.
2525 *
2526 * If we know the reported capacity is wrong, decrement it. If
2527 * we can only guess, then assume the number of blocks is even
2528 * (usually true but not always) and err on the side of lowering
2529 * the capacity.
2530 */
2531 if (sdp->fix_capacity ||
2532 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2533 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2534 "from its reported value: %llu\n",
2535 (unsigned long long) sdkp->capacity);
2536 --sdkp->capacity;
2537 }
2538
2539 got_data:
2540 if (sector_size == 0) {
2541 sector_size = 512;
2542 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2543 "assuming 512.\n");
2544 }
2545
2546 if (sector_size != 512 &&
2547 sector_size != 1024 &&
2548 sector_size != 2048 &&
2549 sector_size != 4096) {
2550 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2551 sector_size);
2552 /*
2553 * The user might want to re-format the drive with
2554 * a supported sectorsize. Once this happens, it
2555 * would be relatively trivial to set the thing up.
2556 * For this reason, we leave the thing in the table.
2557 */
2558 sdkp->capacity = 0;
2559 /*
2560 * set a bogus sector size so the normal read/write
2561 * logic in the block layer will eventually refuse any
2562 * request on this device without tripping over power
2563 * of two sector size assumptions
2564 */
2565 sector_size = 512;
2566 }
2567 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2568 blk_queue_physical_block_size(sdp->request_queue,
2569 sdkp->physical_block_size);
2570 sdkp->device->sector_size = sector_size;
2571
2572 if (sdkp->capacity > 0xffffffff)
2573 sdp->use_16_for_rw = 1;
2574
2575 }
2576
2577 /*
2578 * Print disk capacity
2579 */
2580 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2581 sd_print_capacity(struct scsi_disk *sdkp,
2582 sector_t old_capacity)
2583 {
2584 int sector_size = sdkp->device->sector_size;
2585 char cap_str_2[10], cap_str_10[10];
2586
2587 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2588 return;
2589
2590 string_get_size(sdkp->capacity, sector_size,
2591 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2592 string_get_size(sdkp->capacity, sector_size,
2593 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2594
2595 sd_printk(KERN_NOTICE, sdkp,
2596 "%llu %d-byte logical blocks: (%s/%s)\n",
2597 (unsigned long long)sdkp->capacity,
2598 sector_size, cap_str_10, cap_str_2);
2599
2600 if (sdkp->physical_block_size != sector_size)
2601 sd_printk(KERN_NOTICE, sdkp,
2602 "%u-byte physical blocks\n",
2603 sdkp->physical_block_size);
2604 }
2605
2606 /* called with buffer of length 512 */
2607 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2608 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2609 unsigned char *buffer, int len, struct scsi_mode_data *data,
2610 struct scsi_sense_hdr *sshdr)
2611 {
2612 /*
2613 * If we must use MODE SENSE(10), make sure that the buffer length
2614 * is at least 8 bytes so that the mode sense header fits.
2615 */
2616 if (sdkp->device->use_10_for_ms && len < 8)
2617 len = 8;
2618
2619 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2620 SD_TIMEOUT, sdkp->max_retries, data,
2621 sshdr);
2622 }
2623
2624 /*
2625 * read write protect setting, if possible - called only in sd_revalidate_disk()
2626 * called with buffer of length SD_BUF_SIZE
2627 */
2628 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2629 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2630 {
2631 int res;
2632 struct scsi_device *sdp = sdkp->device;
2633 struct scsi_mode_data data;
2634 int old_wp = sdkp->write_prot;
2635
2636 set_disk_ro(sdkp->disk, 0);
2637 if (sdp->skip_ms_page_3f) {
2638 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2639 return;
2640 }
2641
2642 if (sdp->use_192_bytes_for_3f) {
2643 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2644 } else {
2645 /*
2646 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2647 * We have to start carefully: some devices hang if we ask
2648 * for more than is available.
2649 */
2650 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2651
2652 /*
2653 * Second attempt: ask for page 0 When only page 0 is
2654 * implemented, a request for page 3F may return Sense Key
2655 * 5: Illegal Request, Sense Code 24: Invalid field in
2656 * CDB.
2657 */
2658 if (res < 0)
2659 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2660
2661 /*
2662 * Third attempt: ask 255 bytes, as we did earlier.
2663 */
2664 if (res < 0)
2665 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2666 &data, NULL);
2667 }
2668
2669 if (res < 0) {
2670 sd_first_printk(KERN_WARNING, sdkp,
2671 "Test WP failed, assume Write Enabled\n");
2672 } else {
2673 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2674 set_disk_ro(sdkp->disk, sdkp->write_prot);
2675 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2676 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2677 sdkp->write_prot ? "on" : "off");
2678 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2679 }
2680 }
2681 }
2682
2683 /*
2684 * sd_read_cache_type - called only from sd_revalidate_disk()
2685 * called with buffer of length SD_BUF_SIZE
2686 */
2687 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2688 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2689 {
2690 int len = 0, res;
2691 struct scsi_device *sdp = sdkp->device;
2692
2693 int dbd;
2694 int modepage;
2695 int first_len;
2696 struct scsi_mode_data data;
2697 struct scsi_sense_hdr sshdr;
2698 int old_wce = sdkp->WCE;
2699 int old_rcd = sdkp->RCD;
2700 int old_dpofua = sdkp->DPOFUA;
2701
2702
2703 if (sdkp->cache_override)
2704 return;
2705
2706 first_len = 4;
2707 if (sdp->skip_ms_page_8) {
2708 if (sdp->type == TYPE_RBC)
2709 goto defaults;
2710 else {
2711 if (sdp->skip_ms_page_3f)
2712 goto defaults;
2713 modepage = 0x3F;
2714 if (sdp->use_192_bytes_for_3f)
2715 first_len = 192;
2716 dbd = 0;
2717 }
2718 } else if (sdp->type == TYPE_RBC) {
2719 modepage = 6;
2720 dbd = 8;
2721 } else {
2722 modepage = 8;
2723 dbd = 0;
2724 }
2725
2726 /* cautiously ask */
2727 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2728 &data, &sshdr);
2729
2730 if (res < 0)
2731 goto bad_sense;
2732
2733 if (!data.header_length) {
2734 modepage = 6;
2735 first_len = 0;
2736 sd_first_printk(KERN_ERR, sdkp,
2737 "Missing header in MODE_SENSE response\n");
2738 }
2739
2740 /* that went OK, now ask for the proper length */
2741 len = data.length;
2742
2743 /*
2744 * We're only interested in the first three bytes, actually.
2745 * But the data cache page is defined for the first 20.
2746 */
2747 if (len < 3)
2748 goto bad_sense;
2749 else if (len > SD_BUF_SIZE) {
2750 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2751 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2752 len = SD_BUF_SIZE;
2753 }
2754 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2755 len = 192;
2756
2757 /* Get the data */
2758 if (len > first_len)
2759 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2760 &data, &sshdr);
2761
2762 if (!res) {
2763 int offset = data.header_length + data.block_descriptor_length;
2764
2765 while (offset < len) {
2766 u8 page_code = buffer[offset] & 0x3F;
2767 u8 spf = buffer[offset] & 0x40;
2768
2769 if (page_code == 8 || page_code == 6) {
2770 /* We're interested only in the first 3 bytes.
2771 */
2772 if (len - offset <= 2) {
2773 sd_first_printk(KERN_ERR, sdkp,
2774 "Incomplete mode parameter "
2775 "data\n");
2776 goto defaults;
2777 } else {
2778 modepage = page_code;
2779 goto Page_found;
2780 }
2781 } else {
2782 /* Go to the next page */
2783 if (spf && len - offset > 3)
2784 offset += 4 + (buffer[offset+2] << 8) +
2785 buffer[offset+3];
2786 else if (!spf && len - offset > 1)
2787 offset += 2 + buffer[offset+1];
2788 else {
2789 sd_first_printk(KERN_ERR, sdkp,
2790 "Incomplete mode "
2791 "parameter data\n");
2792 goto defaults;
2793 }
2794 }
2795 }
2796
2797 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2798 goto defaults;
2799
2800 Page_found:
2801 if (modepage == 8) {
2802 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2803 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2804 } else {
2805 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2806 sdkp->RCD = 0;
2807 }
2808
2809 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2810 if (sdp->broken_fua) {
2811 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2812 sdkp->DPOFUA = 0;
2813 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2814 !sdkp->device->use_16_for_rw) {
2815 sd_first_printk(KERN_NOTICE, sdkp,
2816 "Uses READ/WRITE(6), disabling FUA\n");
2817 sdkp->DPOFUA = 0;
2818 }
2819
2820 /* No cache flush allowed for write protected devices */
2821 if (sdkp->WCE && sdkp->write_prot)
2822 sdkp->WCE = 0;
2823
2824 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2825 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2826 sd_printk(KERN_NOTICE, sdkp,
2827 "Write cache: %s, read cache: %s, %s\n",
2828 sdkp->WCE ? "enabled" : "disabled",
2829 sdkp->RCD ? "disabled" : "enabled",
2830 sdkp->DPOFUA ? "supports DPO and FUA"
2831 : "doesn't support DPO or FUA");
2832
2833 return;
2834 }
2835
2836 bad_sense:
2837 if (scsi_sense_valid(&sshdr) &&
2838 sshdr.sense_key == ILLEGAL_REQUEST &&
2839 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2840 /* Invalid field in CDB */
2841 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2842 else
2843 sd_first_printk(KERN_ERR, sdkp,
2844 "Asking for cache data failed\n");
2845
2846 defaults:
2847 if (sdp->wce_default_on) {
2848 sd_first_printk(KERN_NOTICE, sdkp,
2849 "Assuming drive cache: write back\n");
2850 sdkp->WCE = 1;
2851 } else {
2852 sd_first_printk(KERN_ERR, sdkp,
2853 "Assuming drive cache: write through\n");
2854 sdkp->WCE = 0;
2855 }
2856 sdkp->RCD = 0;
2857 sdkp->DPOFUA = 0;
2858 }
2859
2860 /*
2861 * The ATO bit indicates whether the DIF application tag is available
2862 * for use by the operating system.
2863 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2864 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2865 {
2866 int res, offset;
2867 struct scsi_device *sdp = sdkp->device;
2868 struct scsi_mode_data data;
2869 struct scsi_sense_hdr sshdr;
2870
2871 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2872 return;
2873
2874 if (sdkp->protection_type == 0)
2875 return;
2876
2877 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2878 sdkp->max_retries, &data, &sshdr);
2879
2880 if (res < 0 || !data.header_length ||
2881 data.length < 6) {
2882 sd_first_printk(KERN_WARNING, sdkp,
2883 "getting Control mode page failed, assume no ATO\n");
2884
2885 if (scsi_sense_valid(&sshdr))
2886 sd_print_sense_hdr(sdkp, &sshdr);
2887
2888 return;
2889 }
2890
2891 offset = data.header_length + data.block_descriptor_length;
2892
2893 if ((buffer[offset] & 0x3f) != 0x0a) {
2894 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2895 return;
2896 }
2897
2898 if ((buffer[offset + 5] & 0x80) == 0)
2899 return;
2900
2901 sdkp->ATO = 1;
2902
2903 return;
2904 }
2905
2906 /**
2907 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2908 * @sdkp: disk to query
2909 */
sd_read_block_limits(struct scsi_disk * sdkp)2910 static void sd_read_block_limits(struct scsi_disk *sdkp)
2911 {
2912 unsigned int sector_sz = sdkp->device->sector_size;
2913 const int vpd_len = 64;
2914 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2915
2916 if (!buffer ||
2917 /* Block Limits VPD */
2918 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2919 goto out;
2920
2921 blk_queue_io_min(sdkp->disk->queue,
2922 get_unaligned_be16(&buffer[6]) * sector_sz);
2923
2924 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2925 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2926
2927 if (buffer[3] == 0x3c) {
2928 unsigned int lba_count, desc_count;
2929
2930 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2931
2932 if (!sdkp->lbpme)
2933 goto out;
2934
2935 lba_count = get_unaligned_be32(&buffer[20]);
2936 desc_count = get_unaligned_be32(&buffer[24]);
2937
2938 if (lba_count && desc_count)
2939 sdkp->max_unmap_blocks = lba_count;
2940
2941 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2942
2943 if (buffer[32] & 0x80)
2944 sdkp->unmap_alignment =
2945 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2946
2947 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2948
2949 if (sdkp->max_unmap_blocks)
2950 sd_config_discard(sdkp, SD_LBP_UNMAP);
2951 else
2952 sd_config_discard(sdkp, SD_LBP_WS16);
2953
2954 } else { /* LBP VPD page tells us what to use */
2955 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2956 sd_config_discard(sdkp, SD_LBP_UNMAP);
2957 else if (sdkp->lbpws)
2958 sd_config_discard(sdkp, SD_LBP_WS16);
2959 else if (sdkp->lbpws10)
2960 sd_config_discard(sdkp, SD_LBP_WS10);
2961 else
2962 sd_config_discard(sdkp, SD_LBP_DISABLE);
2963 }
2964 }
2965
2966 out:
2967 kfree(buffer);
2968 }
2969
2970 /**
2971 * sd_read_block_characteristics - Query block dev. characteristics
2972 * @sdkp: disk to query
2973 */
sd_read_block_characteristics(struct scsi_disk * sdkp)2974 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2975 {
2976 struct request_queue *q = sdkp->disk->queue;
2977 unsigned char *buffer;
2978 u16 rot;
2979 const int vpd_len = 64;
2980
2981 buffer = kmalloc(vpd_len, GFP_KERNEL);
2982
2983 if (!buffer ||
2984 /* Block Device Characteristics VPD */
2985 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2986 goto out;
2987
2988 rot = get_unaligned_be16(&buffer[4]);
2989
2990 if (rot == 1) {
2991 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2992 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2993 }
2994
2995 if (sdkp->device->type == TYPE_ZBC) {
2996 /* Host-managed */
2997 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2998 } else {
2999 sdkp->zoned = (buffer[8] >> 4) & 3;
3000 if (sdkp->zoned == 1) {
3001 /* Host-aware */
3002 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3003 } else {
3004 /* Regular disk or drive managed disk */
3005 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3006 }
3007 }
3008
3009 if (!sdkp->first_scan)
3010 goto out;
3011
3012 if (blk_queue_is_zoned(q)) {
3013 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3014 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3015 } else {
3016 if (sdkp->zoned == 1)
3017 sd_printk(KERN_NOTICE, sdkp,
3018 "Host-aware SMR disk used as regular disk\n");
3019 else if (sdkp->zoned == 2)
3020 sd_printk(KERN_NOTICE, sdkp,
3021 "Drive-managed SMR disk\n");
3022 }
3023
3024 out:
3025 kfree(buffer);
3026 }
3027
3028 /**
3029 * sd_read_block_provisioning - Query provisioning VPD page
3030 * @sdkp: disk to query
3031 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3032 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3033 {
3034 unsigned char *buffer;
3035 const int vpd_len = 8;
3036
3037 if (sdkp->lbpme == 0)
3038 return;
3039
3040 buffer = kmalloc(vpd_len, GFP_KERNEL);
3041
3042 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3043 goto out;
3044
3045 sdkp->lbpvpd = 1;
3046 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3047 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3048 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3049
3050 out:
3051 kfree(buffer);
3052 }
3053
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3054 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3055 {
3056 struct scsi_device *sdev = sdkp->device;
3057
3058 if (sdev->host->no_write_same) {
3059 sdev->no_write_same = 1;
3060
3061 return;
3062 }
3063
3064 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3065 /* too large values might cause issues with arcmsr */
3066 int vpd_buf_len = 64;
3067
3068 sdev->no_report_opcodes = 1;
3069
3070 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3071 * CODES is unsupported and the device has an ATA
3072 * Information VPD page (SAT).
3073 */
3074 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3075 sdev->no_write_same = 1;
3076 }
3077
3078 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3079 sdkp->ws16 = 1;
3080
3081 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3082 sdkp->ws10 = 1;
3083 }
3084
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3085 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3086 {
3087 struct scsi_device *sdev = sdkp->device;
3088
3089 if (!sdev->security_supported)
3090 return;
3091
3092 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3093 SECURITY_PROTOCOL_IN) == 1 &&
3094 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3095 SECURITY_PROTOCOL_OUT) == 1)
3096 sdkp->security = 1;
3097 }
3098
3099 /*
3100 * Determine the device's preferred I/O size for reads and writes
3101 * unless the reported value is unreasonably small, large, not a
3102 * multiple of the physical block size, or simply garbage.
3103 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3104 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3105 unsigned int dev_max)
3106 {
3107 struct scsi_device *sdp = sdkp->device;
3108 unsigned int opt_xfer_bytes =
3109 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3110
3111 if (sdkp->opt_xfer_blocks == 0)
3112 return false;
3113
3114 if (sdkp->opt_xfer_blocks > dev_max) {
3115 sd_first_printk(KERN_WARNING, sdkp,
3116 "Optimal transfer size %u logical blocks " \
3117 "> dev_max (%u logical blocks)\n",
3118 sdkp->opt_xfer_blocks, dev_max);
3119 return false;
3120 }
3121
3122 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3123 sd_first_printk(KERN_WARNING, sdkp,
3124 "Optimal transfer size %u logical blocks " \
3125 "> sd driver limit (%u logical blocks)\n",
3126 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3127 return false;
3128 }
3129
3130 if (opt_xfer_bytes < PAGE_SIZE) {
3131 sd_first_printk(KERN_WARNING, sdkp,
3132 "Optimal transfer size %u bytes < " \
3133 "PAGE_SIZE (%u bytes)\n",
3134 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3135 return false;
3136 }
3137
3138 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3139 sd_first_printk(KERN_WARNING, sdkp,
3140 "Optimal transfer size %u bytes not a " \
3141 "multiple of physical block size (%u bytes)\n",
3142 opt_xfer_bytes, sdkp->physical_block_size);
3143 return false;
3144 }
3145
3146 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3147 opt_xfer_bytes);
3148 return true;
3149 }
3150
3151 /**
3152 * sd_revalidate_disk - called the first time a new disk is seen,
3153 * performs disk spin up, read_capacity, etc.
3154 * @disk: struct gendisk we care about
3155 **/
sd_revalidate_disk(struct gendisk * disk)3156 static int sd_revalidate_disk(struct gendisk *disk)
3157 {
3158 struct scsi_disk *sdkp = scsi_disk(disk);
3159 struct scsi_device *sdp = sdkp->device;
3160 struct request_queue *q = sdkp->disk->queue;
3161 sector_t old_capacity = sdkp->capacity;
3162 unsigned char *buffer;
3163 unsigned int dev_max, rw_max;
3164
3165 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3166 "sd_revalidate_disk\n"));
3167
3168 /*
3169 * If the device is offline, don't try and read capacity or any
3170 * of the other niceties.
3171 */
3172 if (!scsi_device_online(sdp))
3173 goto out;
3174
3175 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3176 if (!buffer) {
3177 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3178 "allocation failure.\n");
3179 goto out;
3180 }
3181
3182 sd_spinup_disk(sdkp);
3183
3184 /*
3185 * Without media there is no reason to ask; moreover, some devices
3186 * react badly if we do.
3187 */
3188 if (sdkp->media_present) {
3189 sd_read_capacity(sdkp, buffer);
3190
3191 /*
3192 * set the default to rotational. All non-rotational devices
3193 * support the block characteristics VPD page, which will
3194 * cause this to be updated correctly and any device which
3195 * doesn't support it should be treated as rotational.
3196 */
3197 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3198 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3199
3200 if (scsi_device_supports_vpd(sdp)) {
3201 sd_read_block_provisioning(sdkp);
3202 sd_read_block_limits(sdkp);
3203 sd_read_block_characteristics(sdkp);
3204 sd_zbc_read_zones(sdkp, buffer);
3205 }
3206
3207 sd_print_capacity(sdkp, old_capacity);
3208
3209 sd_read_write_protect_flag(sdkp, buffer);
3210 sd_read_cache_type(sdkp, buffer);
3211 sd_read_app_tag_own(sdkp, buffer);
3212 sd_read_write_same(sdkp, buffer);
3213 sd_read_security(sdkp, buffer);
3214 }
3215
3216 /*
3217 * We now have all cache related info, determine how we deal
3218 * with flush requests.
3219 */
3220 sd_set_flush_flag(sdkp);
3221
3222 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3223 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3224
3225 /* Some devices report a maximum block count for READ/WRITE requests. */
3226 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3227 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3228
3229 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3230 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3231 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3232 } else {
3233 q->limits.io_opt = 0;
3234 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3235 (sector_t)BLK_DEF_MAX_SECTORS);
3236 }
3237
3238 /* Do not exceed controller limit */
3239 rw_max = min(rw_max, queue_max_hw_sectors(q));
3240
3241 /*
3242 * Only update max_sectors if previously unset or if the current value
3243 * exceeds the capabilities of the hardware.
3244 */
3245 if (sdkp->first_scan ||
3246 q->limits.max_sectors > q->limits.max_dev_sectors ||
3247 q->limits.max_sectors > q->limits.max_hw_sectors)
3248 q->limits.max_sectors = rw_max;
3249
3250 sdkp->first_scan = 0;
3251
3252 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3253 sd_config_write_same(sdkp);
3254 kfree(buffer);
3255
3256 /*
3257 * For a zoned drive, revalidating the zones can be done only once
3258 * the gendisk capacity is set. So if this fails, set back the gendisk
3259 * capacity to 0.
3260 */
3261 if (sd_zbc_revalidate_zones(sdkp))
3262 set_capacity_and_notify(disk, 0);
3263
3264 out:
3265 return 0;
3266 }
3267
3268 /**
3269 * sd_unlock_native_capacity - unlock native capacity
3270 * @disk: struct gendisk to set capacity for
3271 *
3272 * Block layer calls this function if it detects that partitions
3273 * on @disk reach beyond the end of the device. If the SCSI host
3274 * implements ->unlock_native_capacity() method, it's invoked to
3275 * give it a chance to adjust the device capacity.
3276 *
3277 * CONTEXT:
3278 * Defined by block layer. Might sleep.
3279 */
sd_unlock_native_capacity(struct gendisk * disk)3280 static void sd_unlock_native_capacity(struct gendisk *disk)
3281 {
3282 struct scsi_device *sdev = scsi_disk(disk)->device;
3283
3284 if (sdev->host->hostt->unlock_native_capacity)
3285 sdev->host->hostt->unlock_native_capacity(sdev);
3286 }
3287
3288 /**
3289 * sd_format_disk_name - format disk name
3290 * @prefix: name prefix - ie. "sd" for SCSI disks
3291 * @index: index of the disk to format name for
3292 * @buf: output buffer
3293 * @buflen: length of the output buffer
3294 *
3295 * SCSI disk names starts at sda. The 26th device is sdz and the
3296 * 27th is sdaa. The last one for two lettered suffix is sdzz
3297 * which is followed by sdaaa.
3298 *
3299 * This is basically 26 base counting with one extra 'nil' entry
3300 * at the beginning from the second digit on and can be
3301 * determined using similar method as 26 base conversion with the
3302 * index shifted -1 after each digit is computed.
3303 *
3304 * CONTEXT:
3305 * Don't care.
3306 *
3307 * RETURNS:
3308 * 0 on success, -errno on failure.
3309 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3310 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3311 {
3312 const int base = 'z' - 'a' + 1;
3313 char *begin = buf + strlen(prefix);
3314 char *end = buf + buflen;
3315 char *p;
3316 int unit;
3317
3318 p = end - 1;
3319 *p = '\0';
3320 unit = base;
3321 do {
3322 if (p == begin)
3323 return -EINVAL;
3324 *--p = 'a' + (index % unit);
3325 index = (index / unit) - 1;
3326 } while (index >= 0);
3327
3328 memmove(begin, p, end - p);
3329 memcpy(buf, prefix, strlen(prefix));
3330
3331 return 0;
3332 }
3333
3334 /**
3335 * sd_probe - called during driver initialization and whenever a
3336 * new scsi device is attached to the system. It is called once
3337 * for each scsi device (not just disks) present.
3338 * @dev: pointer to device object
3339 *
3340 * Returns 0 if successful (or not interested in this scsi device
3341 * (e.g. scanner)); 1 when there is an error.
3342 *
3343 * Note: this function is invoked from the scsi mid-level.
3344 * This function sets up the mapping between a given
3345 * <host,channel,id,lun> (found in sdp) and new device name
3346 * (e.g. /dev/sda). More precisely it is the block device major
3347 * and minor number that is chosen here.
3348 *
3349 * Assume sd_probe is not re-entrant (for time being)
3350 * Also think about sd_probe() and sd_remove() running coincidentally.
3351 **/
sd_probe(struct device * dev)3352 static int sd_probe(struct device *dev)
3353 {
3354 struct scsi_device *sdp = to_scsi_device(dev);
3355 struct scsi_disk *sdkp;
3356 struct gendisk *gd;
3357 int index;
3358 int error;
3359
3360 scsi_autopm_get_device(sdp);
3361 error = -ENODEV;
3362 if (sdp->type != TYPE_DISK &&
3363 sdp->type != TYPE_ZBC &&
3364 sdp->type != TYPE_MOD &&
3365 sdp->type != TYPE_RBC)
3366 goto out;
3367
3368 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3369 sdev_printk(KERN_WARNING, sdp,
3370 "Unsupported ZBC host-managed device.\n");
3371 goto out;
3372 }
3373
3374 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3375 "sd_probe\n"));
3376
3377 error = -ENOMEM;
3378 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3379 if (!sdkp)
3380 goto out;
3381
3382 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3383 &sd_bio_compl_lkclass);
3384 if (!gd)
3385 goto out_free;
3386
3387 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3388 if (index < 0) {
3389 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3390 goto out_put;
3391 }
3392
3393 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3394 if (error) {
3395 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3396 goto out_free_index;
3397 }
3398
3399 sdkp->device = sdp;
3400 sdkp->driver = &sd_template;
3401 sdkp->disk = gd;
3402 sdkp->index = index;
3403 sdkp->max_retries = SD_MAX_RETRIES;
3404 atomic_set(&sdkp->openers, 0);
3405 atomic_set(&sdkp->device->ioerr_cnt, 0);
3406
3407 if (!sdp->request_queue->rq_timeout) {
3408 if (sdp->type != TYPE_MOD)
3409 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3410 else
3411 blk_queue_rq_timeout(sdp->request_queue,
3412 SD_MOD_TIMEOUT);
3413 }
3414
3415 device_initialize(&sdkp->dev);
3416 sdkp->dev.parent = get_device(dev);
3417 sdkp->dev.class = &sd_disk_class;
3418 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3419
3420 error = device_add(&sdkp->dev);
3421 if (error) {
3422 put_device(&sdkp->dev);
3423 goto out;
3424 }
3425
3426 dev_set_drvdata(dev, sdkp);
3427
3428 gd->major = sd_major((index & 0xf0) >> 4);
3429 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3430 gd->minors = SD_MINORS;
3431
3432 gd->fops = &sd_fops;
3433 gd->private_data = &sdkp->driver;
3434
3435 /* defaults, until the device tells us otherwise */
3436 sdp->sector_size = 512;
3437 sdkp->capacity = 0;
3438 sdkp->media_present = 1;
3439 sdkp->write_prot = 0;
3440 sdkp->cache_override = 0;
3441 sdkp->WCE = 0;
3442 sdkp->RCD = 0;
3443 sdkp->ATO = 0;
3444 sdkp->first_scan = 1;
3445 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3446
3447 sd_revalidate_disk(gd);
3448
3449 gd->flags = GENHD_FL_EXT_DEVT;
3450 if (sdp->removable) {
3451 gd->flags |= GENHD_FL_REMOVABLE;
3452 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3453 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3454 }
3455
3456 blk_pm_runtime_init(sdp->request_queue, dev);
3457 if (sdp->rpm_autosuspend) {
3458 pm_runtime_set_autosuspend_delay(dev,
3459 sdp->host->hostt->rpm_autosuspend_delay);
3460 }
3461 device_add_disk(dev, gd, NULL);
3462 if (sdkp->capacity)
3463 sd_dif_config_host(sdkp);
3464
3465 sd_revalidate_disk(gd);
3466
3467 if (sdkp->security) {
3468 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3469 if (sdkp->opal_dev)
3470 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3471 }
3472
3473 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3474 sdp->removable ? "removable " : "");
3475 scsi_autopm_put_device(sdp);
3476
3477 return 0;
3478
3479 out_free_index:
3480 ida_free(&sd_index_ida, index);
3481 out_put:
3482 put_disk(gd);
3483 out_free:
3484 kfree(sdkp);
3485 out:
3486 scsi_autopm_put_device(sdp);
3487 return error;
3488 }
3489
3490 /**
3491 * sd_remove - called whenever a scsi disk (previously recognized by
3492 * sd_probe) is detached from the system. It is called (potentially
3493 * multiple times) during sd module unload.
3494 * @dev: pointer to device object
3495 *
3496 * Note: this function is invoked from the scsi mid-level.
3497 * This function potentially frees up a device name (e.g. /dev/sdc)
3498 * that could be re-used by a subsequent sd_probe().
3499 * This function is not called when the built-in sd driver is "exit-ed".
3500 **/
sd_remove(struct device * dev)3501 static int sd_remove(struct device *dev)
3502 {
3503 struct scsi_disk *sdkp;
3504
3505 sdkp = dev_get_drvdata(dev);
3506 scsi_autopm_get_device(sdkp->device);
3507
3508 async_synchronize_full_domain(&scsi_sd_pm_domain);
3509 device_del(&sdkp->dev);
3510 del_gendisk(sdkp->disk);
3511 sd_shutdown(dev);
3512
3513 free_opal_dev(sdkp->opal_dev);
3514
3515 mutex_lock(&sd_ref_mutex);
3516 dev_set_drvdata(dev, NULL);
3517 put_device(&sdkp->dev);
3518 mutex_unlock(&sd_ref_mutex);
3519
3520 return 0;
3521 }
3522
3523 /**
3524 * scsi_disk_release - Called to free the scsi_disk structure
3525 * @dev: pointer to embedded class device
3526 *
3527 * sd_ref_mutex must be held entering this routine. Because it is
3528 * called on last put, you should always use the scsi_disk_get()
3529 * scsi_disk_put() helpers which manipulate the semaphore directly
3530 * and never do a direct put_device.
3531 **/
scsi_disk_release(struct device * dev)3532 static void scsi_disk_release(struct device *dev)
3533 {
3534 struct scsi_disk *sdkp = to_scsi_disk(dev);
3535 struct gendisk *disk = sdkp->disk;
3536 struct request_queue *q = disk->queue;
3537
3538 ida_free(&sd_index_ida, sdkp->index);
3539
3540 /*
3541 * Wait until all requests that are in progress have completed.
3542 * This is necessary to avoid that e.g. scsi_end_request() crashes
3543 * due to clearing the disk->private_data pointer. Wait from inside
3544 * scsi_disk_release() instead of from sd_release() to avoid that
3545 * freezing and unfreezing the request queue affects user space I/O
3546 * in case multiple processes open a /dev/sd... node concurrently.
3547 */
3548 blk_mq_freeze_queue(q);
3549 blk_mq_unfreeze_queue(q);
3550
3551 disk->private_data = NULL;
3552 put_disk(disk);
3553 put_device(&sdkp->device->sdev_gendev);
3554
3555 sd_zbc_release_disk(sdkp);
3556
3557 kfree(sdkp);
3558 }
3559
sd_start_stop_device(struct scsi_disk * sdkp,int start)3560 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3561 {
3562 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3563 struct scsi_sense_hdr sshdr;
3564 struct scsi_device *sdp = sdkp->device;
3565 int res;
3566
3567 if (start)
3568 cmd[4] |= 1; /* START */
3569
3570 if (sdp->start_stop_pwr_cond)
3571 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3572
3573 if (!scsi_device_online(sdp))
3574 return -ENODEV;
3575
3576 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3577 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3578 if (res) {
3579 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3580 if (res > 0 && scsi_sense_valid(&sshdr)) {
3581 sd_print_sense_hdr(sdkp, &sshdr);
3582 /* 0x3a is medium not present */
3583 if (sshdr.asc == 0x3a)
3584 res = 0;
3585 }
3586 }
3587
3588 /* SCSI error codes must not go to the generic layer */
3589 if (res)
3590 return -EIO;
3591
3592 return 0;
3593 }
3594
3595 /*
3596 * Send a SYNCHRONIZE CACHE instruction down to the device through
3597 * the normal SCSI command structure. Wait for the command to
3598 * complete.
3599 */
sd_shutdown(struct device * dev)3600 static void sd_shutdown(struct device *dev)
3601 {
3602 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3603
3604 if (!sdkp)
3605 return; /* this can happen */
3606
3607 if (pm_runtime_suspended(dev))
3608 return;
3609
3610 if (sdkp->WCE && sdkp->media_present) {
3611 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3612 sd_sync_cache(sdkp, NULL);
3613 }
3614
3615 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3616 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3617 sd_start_stop_device(sdkp, 0);
3618 }
3619 }
3620
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3621 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3622 {
3623 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3624 struct scsi_sense_hdr sshdr;
3625 int ret = 0;
3626
3627 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3628 return 0;
3629
3630 if (sdkp->WCE && sdkp->media_present) {
3631 if (!sdkp->device->silence_suspend)
3632 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3633 ret = sd_sync_cache(sdkp, &sshdr);
3634
3635 if (ret) {
3636 /* ignore OFFLINE device */
3637 if (ret == -ENODEV)
3638 return 0;
3639
3640 if (!scsi_sense_valid(&sshdr) ||
3641 sshdr.sense_key != ILLEGAL_REQUEST)
3642 return ret;
3643
3644 /*
3645 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3646 * doesn't support sync. There's not much to do and
3647 * suspend shouldn't fail.
3648 */
3649 ret = 0;
3650 }
3651 }
3652
3653 if (sdkp->device->manage_start_stop) {
3654 if (!sdkp->device->silence_suspend)
3655 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3656 /* an error is not worth aborting a system sleep */
3657 ret = sd_start_stop_device(sdkp, 0);
3658 if (ignore_stop_errors)
3659 ret = 0;
3660 }
3661
3662 return ret;
3663 }
3664
sd_suspend_system(struct device * dev)3665 static int sd_suspend_system(struct device *dev)
3666 {
3667 return sd_suspend_common(dev, true);
3668 }
3669
sd_suspend_runtime(struct device * dev)3670 static int sd_suspend_runtime(struct device *dev)
3671 {
3672 return sd_suspend_common(dev, false);
3673 }
3674
sd_resume(struct device * dev)3675 static int sd_resume(struct device *dev)
3676 {
3677 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3678 int ret;
3679
3680 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3681 return 0;
3682
3683 if (!sdkp->device->manage_start_stop)
3684 return 0;
3685
3686 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3687 ret = sd_start_stop_device(sdkp, 1);
3688 if (!ret)
3689 opal_unlock_from_suspend(sdkp->opal_dev);
3690 return ret;
3691 }
3692
sd_resume_runtime(struct device * dev)3693 static int sd_resume_runtime(struct device *dev)
3694 {
3695 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3696 struct scsi_device *sdp;
3697
3698 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3699 return 0;
3700
3701 sdp = sdkp->device;
3702
3703 if (sdp->ignore_media_change) {
3704 /* clear the device's sense data */
3705 static const u8 cmd[10] = { REQUEST_SENSE };
3706
3707 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3708 NULL, sdp->request_queue->rq_timeout, 1, 0,
3709 RQF_PM, NULL))
3710 sd_printk(KERN_NOTICE, sdkp,
3711 "Failed to clear sense data\n");
3712 }
3713
3714 return sd_resume(dev);
3715 }
3716
3717 /**
3718 * init_sd - entry point for this driver (both when built in or when
3719 * a module).
3720 *
3721 * Note: this function registers this driver with the scsi mid-level.
3722 **/
init_sd(void)3723 static int __init init_sd(void)
3724 {
3725 int majors = 0, i, err;
3726
3727 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3728
3729 for (i = 0; i < SD_MAJORS; i++) {
3730 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3731 continue;
3732 majors++;
3733 }
3734
3735 if (!majors)
3736 return -ENODEV;
3737
3738 err = class_register(&sd_disk_class);
3739 if (err)
3740 goto err_out;
3741
3742 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3743 0, 0, NULL);
3744 if (!sd_cdb_cache) {
3745 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3746 err = -ENOMEM;
3747 goto err_out_class;
3748 }
3749
3750 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3751 if (!sd_cdb_pool) {
3752 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3753 err = -ENOMEM;
3754 goto err_out_cache;
3755 }
3756
3757 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3758 if (!sd_page_pool) {
3759 printk(KERN_ERR "sd: can't init discard page pool\n");
3760 err = -ENOMEM;
3761 goto err_out_ppool;
3762 }
3763
3764 err = scsi_register_driver(&sd_template.gendrv);
3765 if (err)
3766 goto err_out_driver;
3767
3768 return 0;
3769
3770 err_out_driver:
3771 mempool_destroy(sd_page_pool);
3772
3773 err_out_ppool:
3774 mempool_destroy(sd_cdb_pool);
3775
3776 err_out_cache:
3777 kmem_cache_destroy(sd_cdb_cache);
3778
3779 err_out_class:
3780 class_unregister(&sd_disk_class);
3781 err_out:
3782 for (i = 0; i < SD_MAJORS; i++)
3783 unregister_blkdev(sd_major(i), "sd");
3784 return err;
3785 }
3786
3787 /**
3788 * exit_sd - exit point for this driver (when it is a module).
3789 *
3790 * Note: this function unregisters this driver from the scsi mid-level.
3791 **/
exit_sd(void)3792 static void __exit exit_sd(void)
3793 {
3794 int i;
3795
3796 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3797
3798 scsi_unregister_driver(&sd_template.gendrv);
3799 mempool_destroy(sd_cdb_pool);
3800 mempool_destroy(sd_page_pool);
3801 kmem_cache_destroy(sd_cdb_cache);
3802
3803 class_unregister(&sd_disk_class);
3804
3805 for (i = 0; i < SD_MAJORS; i++)
3806 unregister_blkdev(sd_major(i), "sd");
3807 }
3808
3809 module_init(init_sd);
3810 module_exit(exit_sd);
3811
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3812 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3813 {
3814 scsi_print_sense_hdr(sdkp->device,
3815 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3816 }
3817
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3818 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3819 {
3820 const char *hb_string = scsi_hostbyte_string(result);
3821
3822 if (hb_string)
3823 sd_printk(KERN_INFO, sdkp,
3824 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3825 hb_string ? hb_string : "invalid",
3826 "DRIVER_OK");
3827 else
3828 sd_printk(KERN_INFO, sdkp,
3829 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3830 msg, host_byte(result), "DRIVER_OK");
3831 }
3832