• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/async.h>
55 #include <linux/slab.h>
56 #include <linux/sed-opal.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/pr.h>
59 #include <linux/t10-pi.h>
60 #include <linux/uaccess.h>
61 #include <asm/unaligned.h>
62 
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_dbg.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76 
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80 
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101 
102 #define SD_MINORS	16
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int  sd_probe(struct device *);
109 static int  sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static int sd_resume_runtime(struct device *);
115 static void sd_rescan(struct device *);
116 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 
124 static DEFINE_IDA(sd_index_ida);
125 
126 /* This semaphore is used to mediate the 0->1 reference get in the
127  * face of object destruction (i.e. we can't allow a get on an
128  * object after last put) */
129 static DEFINE_MUTEX(sd_ref_mutex);
130 
131 static struct kmem_cache *sd_cdb_cache;
132 static mempool_t *sd_cdb_pool;
133 static mempool_t *sd_page_pool;
134 static struct lock_class_key sd_bio_compl_lkclass;
135 
136 static const char *sd_cache_types[] = {
137 	"write through", "none", "write back",
138 	"write back, no read (daft)"
139 };
140 
sd_set_flush_flag(struct scsi_disk * sdkp)141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 	bool wc = false, fua = false;
144 
145 	if (sdkp->WCE) {
146 		wc = true;
147 		if (sdkp->DPOFUA)
148 			fua = true;
149 	}
150 
151 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153 
154 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 		 const char *buf, size_t count)
157 {
158 	int ct, rcd, wce, sp;
159 	struct scsi_disk *sdkp = to_scsi_disk(dev);
160 	struct scsi_device *sdp = sdkp->device;
161 	char buffer[64];
162 	char *buffer_data;
163 	struct scsi_mode_data data;
164 	struct scsi_sense_hdr sshdr;
165 	static const char temp[] = "temporary ";
166 	int len;
167 
168 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 		/* no cache control on RBC devices; theoretically they
170 		 * can do it, but there's probably so many exceptions
171 		 * it's not worth the risk */
172 		return -EINVAL;
173 
174 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 		buf += sizeof(temp) - 1;
176 		sdkp->cache_override = 1;
177 	} else {
178 		sdkp->cache_override = 0;
179 	}
180 
181 	ct = sysfs_match_string(sd_cache_types, buf);
182 	if (ct < 0)
183 		return -EINVAL;
184 
185 	rcd = ct & 0x01 ? 1 : 0;
186 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
187 
188 	if (sdkp->cache_override) {
189 		sdkp->WCE = wce;
190 		sdkp->RCD = rcd;
191 		sd_set_flush_flag(sdkp);
192 		return count;
193 	}
194 
195 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
196 			    sdkp->max_retries, &data, NULL))
197 		return -EINVAL;
198 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
199 		  data.block_descriptor_length);
200 	buffer_data = buffer + data.header_length +
201 		data.block_descriptor_length;
202 	buffer_data[2] &= ~0x05;
203 	buffer_data[2] |= wce << 2 | rcd;
204 	sp = buffer_data[0] & 0x80 ? 1 : 0;
205 	buffer_data[0] &= ~0x80;
206 
207 	/*
208 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
209 	 * received mode parameter buffer before doing MODE SELECT.
210 	 */
211 	data.device_specific = 0;
212 
213 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 			     sdkp->max_retries, &data, &sshdr)) {
215 		if (scsi_sense_valid(&sshdr))
216 			sd_print_sense_hdr(sdkp, &sshdr);
217 		return -EINVAL;
218 	}
219 	sd_revalidate_disk(sdkp->disk);
220 	return count;
221 }
222 
223 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 		       char *buf)
226 {
227 	struct scsi_disk *sdkp = to_scsi_disk(dev);
228 	struct scsi_device *sdp = sdkp->device;
229 
230 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
231 }
232 
233 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 			const char *buf, size_t count)
236 {
237 	struct scsi_disk *sdkp = to_scsi_disk(dev);
238 	struct scsi_device *sdp = sdkp->device;
239 	bool v;
240 
241 	if (!capable(CAP_SYS_ADMIN))
242 		return -EACCES;
243 
244 	if (kstrtobool(buf, &v))
245 		return -EINVAL;
246 
247 	sdp->manage_start_stop = v;
248 
249 	return count;
250 }
251 static DEVICE_ATTR_RW(manage_start_stop);
252 
253 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)254 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
255 {
256 	struct scsi_disk *sdkp = to_scsi_disk(dev);
257 
258 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
259 }
260 
261 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)262 allow_restart_store(struct device *dev, struct device_attribute *attr,
263 		    const char *buf, size_t count)
264 {
265 	bool v;
266 	struct scsi_disk *sdkp = to_scsi_disk(dev);
267 	struct scsi_device *sdp = sdkp->device;
268 
269 	if (!capable(CAP_SYS_ADMIN))
270 		return -EACCES;
271 
272 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
273 		return -EINVAL;
274 
275 	if (kstrtobool(buf, &v))
276 		return -EINVAL;
277 
278 	sdp->allow_restart = v;
279 
280 	return count;
281 }
282 static DEVICE_ATTR_RW(allow_restart);
283 
284 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)285 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
286 {
287 	struct scsi_disk *sdkp = to_scsi_disk(dev);
288 	int ct = sdkp->RCD + 2*sdkp->WCE;
289 
290 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
291 }
292 static DEVICE_ATTR_RW(cache_type);
293 
294 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)295 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
296 {
297 	struct scsi_disk *sdkp = to_scsi_disk(dev);
298 
299 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
300 }
301 static DEVICE_ATTR_RO(FUA);
302 
303 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)304 protection_type_show(struct device *dev, struct device_attribute *attr,
305 		     char *buf)
306 {
307 	struct scsi_disk *sdkp = to_scsi_disk(dev);
308 
309 	return sprintf(buf, "%u\n", sdkp->protection_type);
310 }
311 
312 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)313 protection_type_store(struct device *dev, struct device_attribute *attr,
314 		      const char *buf, size_t count)
315 {
316 	struct scsi_disk *sdkp = to_scsi_disk(dev);
317 	unsigned int val;
318 	int err;
319 
320 	if (!capable(CAP_SYS_ADMIN))
321 		return -EACCES;
322 
323 	err = kstrtouint(buf, 10, &val);
324 
325 	if (err)
326 		return err;
327 
328 	if (val <= T10_PI_TYPE3_PROTECTION)
329 		sdkp->protection_type = val;
330 
331 	return count;
332 }
333 static DEVICE_ATTR_RW(protection_type);
334 
335 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)336 protection_mode_show(struct device *dev, struct device_attribute *attr,
337 		     char *buf)
338 {
339 	struct scsi_disk *sdkp = to_scsi_disk(dev);
340 	struct scsi_device *sdp = sdkp->device;
341 	unsigned int dif, dix;
342 
343 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
344 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
345 
346 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
347 		dif = 0;
348 		dix = 1;
349 	}
350 
351 	if (!dif && !dix)
352 		return sprintf(buf, "none\n");
353 
354 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
355 }
356 static DEVICE_ATTR_RO(protection_mode);
357 
358 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)359 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
360 {
361 	struct scsi_disk *sdkp = to_scsi_disk(dev);
362 
363 	return sprintf(buf, "%u\n", sdkp->ATO);
364 }
365 static DEVICE_ATTR_RO(app_tag_own);
366 
367 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)368 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
369 		       char *buf)
370 {
371 	struct scsi_disk *sdkp = to_scsi_disk(dev);
372 
373 	return sprintf(buf, "%u\n", sdkp->lbpme);
374 }
375 static DEVICE_ATTR_RO(thin_provisioning);
376 
377 /* sysfs_match_string() requires dense arrays */
378 static const char *lbp_mode[] = {
379 	[SD_LBP_FULL]		= "full",
380 	[SD_LBP_UNMAP]		= "unmap",
381 	[SD_LBP_WS16]		= "writesame_16",
382 	[SD_LBP_WS10]		= "writesame_10",
383 	[SD_LBP_ZERO]		= "writesame_zero",
384 	[SD_LBP_DISABLE]	= "disabled",
385 };
386 
387 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)388 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
389 		       char *buf)
390 {
391 	struct scsi_disk *sdkp = to_scsi_disk(dev);
392 
393 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
394 }
395 
396 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)397 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
398 			const char *buf, size_t count)
399 {
400 	struct scsi_disk *sdkp = to_scsi_disk(dev);
401 	struct scsi_device *sdp = sdkp->device;
402 	int mode;
403 
404 	if (!capable(CAP_SYS_ADMIN))
405 		return -EACCES;
406 
407 	if (sd_is_zoned(sdkp)) {
408 		sd_config_discard(sdkp, SD_LBP_DISABLE);
409 		return count;
410 	}
411 
412 	if (sdp->type != TYPE_DISK)
413 		return -EINVAL;
414 
415 	mode = sysfs_match_string(lbp_mode, buf);
416 	if (mode < 0)
417 		return -EINVAL;
418 
419 	sd_config_discard(sdkp, mode);
420 
421 	return count;
422 }
423 static DEVICE_ATTR_RW(provisioning_mode);
424 
425 /* sysfs_match_string() requires dense arrays */
426 static const char *zeroing_mode[] = {
427 	[SD_ZERO_WRITE]		= "write",
428 	[SD_ZERO_WS]		= "writesame",
429 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
430 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
431 };
432 
433 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)434 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
435 		  char *buf)
436 {
437 	struct scsi_disk *sdkp = to_scsi_disk(dev);
438 
439 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
440 }
441 
442 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)443 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
444 		   const char *buf, size_t count)
445 {
446 	struct scsi_disk *sdkp = to_scsi_disk(dev);
447 	int mode;
448 
449 	if (!capable(CAP_SYS_ADMIN))
450 		return -EACCES;
451 
452 	mode = sysfs_match_string(zeroing_mode, buf);
453 	if (mode < 0)
454 		return -EINVAL;
455 
456 	sdkp->zeroing_mode = mode;
457 
458 	return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461 
462 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)463 max_medium_access_timeouts_show(struct device *dev,
464 				struct device_attribute *attr, char *buf)
465 {
466 	struct scsi_disk *sdkp = to_scsi_disk(dev);
467 
468 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470 
471 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)472 max_medium_access_timeouts_store(struct device *dev,
473 				 struct device_attribute *attr, const char *buf,
474 				 size_t count)
475 {
476 	struct scsi_disk *sdkp = to_scsi_disk(dev);
477 	int err;
478 
479 	if (!capable(CAP_SYS_ADMIN))
480 		return -EACCES;
481 
482 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483 
484 	return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487 
488 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 			   char *buf)
491 {
492 	struct scsi_disk *sdkp = to_scsi_disk(dev);
493 
494 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
495 }
496 
497 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 			    const char *buf, size_t count)
500 {
501 	struct scsi_disk *sdkp = to_scsi_disk(dev);
502 	struct scsi_device *sdp = sdkp->device;
503 	unsigned long max;
504 	int err;
505 
506 	if (!capable(CAP_SYS_ADMIN))
507 		return -EACCES;
508 
509 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 		return -EINVAL;
511 
512 	err = kstrtoul(buf, 10, &max);
513 
514 	if (err)
515 		return err;
516 
517 	if (max == 0)
518 		sdp->no_write_same = 1;
519 	else if (max <= SD_MAX_WS16_BLOCKS) {
520 		sdp->no_write_same = 0;
521 		sdkp->max_ws_blocks = max;
522 	}
523 
524 	sd_config_write_same(sdkp);
525 
526 	return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529 
530 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)531 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 
535 	if (sdkp->device->type == TYPE_ZBC)
536 		return sprintf(buf, "host-managed\n");
537 	if (sdkp->zoned == 1)
538 		return sprintf(buf, "host-aware\n");
539 	if (sdkp->zoned == 2)
540 		return sprintf(buf, "drive-managed\n");
541 	return sprintf(buf, "none\n");
542 }
543 static DEVICE_ATTR_RO(zoned_cap);
544 
545 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)546 max_retries_store(struct device *dev, struct device_attribute *attr,
547 		  const char *buf, size_t count)
548 {
549 	struct scsi_disk *sdkp = to_scsi_disk(dev);
550 	struct scsi_device *sdev = sdkp->device;
551 	int retries, err;
552 
553 	err = kstrtoint(buf, 10, &retries);
554 	if (err)
555 		return err;
556 
557 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
558 		sdkp->max_retries = retries;
559 		return count;
560 	}
561 
562 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
563 		    SD_MAX_RETRIES);
564 	return -EINVAL;
565 }
566 
567 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)568 max_retries_show(struct device *dev, struct device_attribute *attr,
569 		 char *buf)
570 {
571 	struct scsi_disk *sdkp = to_scsi_disk(dev);
572 
573 	return sprintf(buf, "%d\n", sdkp->max_retries);
574 }
575 
576 static DEVICE_ATTR_RW(max_retries);
577 
578 static struct attribute *sd_disk_attrs[] = {
579 	&dev_attr_cache_type.attr,
580 	&dev_attr_FUA.attr,
581 	&dev_attr_allow_restart.attr,
582 	&dev_attr_manage_start_stop.attr,
583 	&dev_attr_protection_type.attr,
584 	&dev_attr_protection_mode.attr,
585 	&dev_attr_app_tag_own.attr,
586 	&dev_attr_thin_provisioning.attr,
587 	&dev_attr_provisioning_mode.attr,
588 	&dev_attr_zeroing_mode.attr,
589 	&dev_attr_max_write_same_blocks.attr,
590 	&dev_attr_max_medium_access_timeouts.attr,
591 	&dev_attr_zoned_cap.attr,
592 	&dev_attr_max_retries.attr,
593 	NULL,
594 };
595 ATTRIBUTE_GROUPS(sd_disk);
596 
597 static struct class sd_disk_class = {
598 	.name		= "scsi_disk",
599 	.owner		= THIS_MODULE,
600 	.dev_release	= scsi_disk_release,
601 	.dev_groups	= sd_disk_groups,
602 };
603 
604 static const struct dev_pm_ops sd_pm_ops = {
605 	.suspend		= sd_suspend_system,
606 	.resume			= sd_resume,
607 	.poweroff		= sd_suspend_system,
608 	.restore		= sd_resume,
609 	.runtime_suspend	= sd_suspend_runtime,
610 	.runtime_resume		= sd_resume_runtime,
611 };
612 
613 static struct scsi_driver sd_template = {
614 	.gendrv = {
615 		.name		= "sd",
616 		.owner		= THIS_MODULE,
617 		.probe		= sd_probe,
618 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
619 		.remove		= sd_remove,
620 		.shutdown	= sd_shutdown,
621 		.pm		= &sd_pm_ops,
622 	},
623 	.rescan			= sd_rescan,
624 	.init_command		= sd_init_command,
625 	.uninit_command		= sd_uninit_command,
626 	.done			= sd_done,
627 	.eh_action		= sd_eh_action,
628 	.eh_reset		= sd_eh_reset,
629 };
630 
631 /*
632  * Don't request a new module, as that could deadlock in multipath
633  * environment.
634  */
sd_default_probe(dev_t devt)635 static void sd_default_probe(dev_t devt)
636 {
637 }
638 
639 /*
640  * Device no to disk mapping:
641  *
642  *       major         disc2     disc  p1
643  *   |............|.............|....|....| <- dev_t
644  *    31        20 19          8 7  4 3  0
645  *
646  * Inside a major, we have 16k disks, however mapped non-
647  * contiguously. The first 16 disks are for major0, the next
648  * ones with major1, ... Disk 256 is for major0 again, disk 272
649  * for major1, ...
650  * As we stay compatible with our numbering scheme, we can reuse
651  * the well-know SCSI majors 8, 65--71, 136--143.
652  */
sd_major(int major_idx)653 static int sd_major(int major_idx)
654 {
655 	switch (major_idx) {
656 	case 0:
657 		return SCSI_DISK0_MAJOR;
658 	case 1 ... 7:
659 		return SCSI_DISK1_MAJOR + major_idx - 1;
660 	case 8 ... 15:
661 		return SCSI_DISK8_MAJOR + major_idx - 8;
662 	default:
663 		BUG();
664 		return 0;	/* shut up gcc */
665 	}
666 }
667 
scsi_disk_get(struct gendisk * disk)668 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
669 {
670 	struct scsi_disk *sdkp = NULL;
671 
672 	mutex_lock(&sd_ref_mutex);
673 
674 	if (disk->private_data) {
675 		sdkp = scsi_disk(disk);
676 		if (scsi_device_get(sdkp->device) == 0)
677 			get_device(&sdkp->dev);
678 		else
679 			sdkp = NULL;
680 	}
681 	mutex_unlock(&sd_ref_mutex);
682 	return sdkp;
683 }
684 
scsi_disk_put(struct scsi_disk * sdkp)685 static void scsi_disk_put(struct scsi_disk *sdkp)
686 {
687 	struct scsi_device *sdev = sdkp->device;
688 
689 	mutex_lock(&sd_ref_mutex);
690 	put_device(&sdkp->dev);
691 	scsi_device_put(sdev);
692 	mutex_unlock(&sd_ref_mutex);
693 }
694 
695 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)696 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
697 		size_t len, bool send)
698 {
699 	struct scsi_disk *sdkp = data;
700 	struct scsi_device *sdev = sdkp->device;
701 	u8 cdb[12] = { 0, };
702 	int ret;
703 
704 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
705 	cdb[1] = secp;
706 	put_unaligned_be16(spsp, &cdb[2]);
707 	put_unaligned_be32(len, &cdb[6]);
708 
709 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
710 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
711 		RQF_PM, NULL);
712 	return ret <= 0 ? ret : -EIO;
713 }
714 #endif /* CONFIG_BLK_SED_OPAL */
715 
716 /*
717  * Look up the DIX operation based on whether the command is read or
718  * write and whether dix and dif are enabled.
719  */
sd_prot_op(bool write,bool dix,bool dif)720 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
721 {
722 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
723 	static const unsigned int ops[] = {	/* wrt dix dif */
724 		SCSI_PROT_NORMAL,		/*  0	0   0  */
725 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
726 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
727 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
728 		SCSI_PROT_NORMAL,		/*  1	0   0  */
729 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
730 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
731 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
732 	};
733 
734 	return ops[write << 2 | dix << 1 | dif];
735 }
736 
737 /*
738  * Returns a mask of the protection flags that are valid for a given DIX
739  * operation.
740  */
sd_prot_flag_mask(unsigned int prot_op)741 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
742 {
743 	static const unsigned int flag_mask[] = {
744 		[SCSI_PROT_NORMAL]		= 0,
745 
746 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
747 						  SCSI_PROT_GUARD_CHECK |
748 						  SCSI_PROT_REF_CHECK |
749 						  SCSI_PROT_REF_INCREMENT,
750 
751 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
752 						  SCSI_PROT_IP_CHECKSUM,
753 
754 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
755 						  SCSI_PROT_GUARD_CHECK |
756 						  SCSI_PROT_REF_CHECK |
757 						  SCSI_PROT_REF_INCREMENT |
758 						  SCSI_PROT_IP_CHECKSUM,
759 
760 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
761 						  SCSI_PROT_REF_INCREMENT,
762 
763 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
764 						  SCSI_PROT_REF_CHECK |
765 						  SCSI_PROT_REF_INCREMENT |
766 						  SCSI_PROT_IP_CHECKSUM,
767 
768 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
769 						  SCSI_PROT_GUARD_CHECK |
770 						  SCSI_PROT_REF_CHECK |
771 						  SCSI_PROT_REF_INCREMENT |
772 						  SCSI_PROT_IP_CHECKSUM,
773 	};
774 
775 	return flag_mask[prot_op];
776 }
777 
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)778 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
779 					   unsigned int dix, unsigned int dif)
780 {
781 	struct request *rq = scsi_cmd_to_rq(scmd);
782 	struct bio *bio = rq->bio;
783 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
784 	unsigned int protect = 0;
785 
786 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
787 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
788 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789 
790 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
791 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
792 	}
793 
794 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
795 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796 
797 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
799 	}
800 
801 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
802 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803 
804 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
805 			protect = 3 << 5;	/* Disable target PI checking */
806 		else
807 			protect = 1 << 5;	/* Enable target PI checking */
808 	}
809 
810 	scsi_set_prot_op(scmd, prot_op);
811 	scsi_set_prot_type(scmd, dif);
812 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
813 
814 	return protect;
815 }
816 
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 {
819 	struct request_queue *q = sdkp->disk->queue;
820 	unsigned int logical_block_size = sdkp->device->sector_size;
821 	unsigned int max_blocks = 0;
822 
823 	q->limits.discard_alignment =
824 		sdkp->unmap_alignment * logical_block_size;
825 	q->limits.discard_granularity =
826 		max(sdkp->physical_block_size,
827 		    sdkp->unmap_granularity * logical_block_size);
828 	sdkp->provisioning_mode = mode;
829 
830 	switch (mode) {
831 
832 	case SD_LBP_FULL:
833 	case SD_LBP_DISABLE:
834 		blk_queue_max_discard_sectors(q, 0);
835 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
836 		return;
837 
838 	case SD_LBP_UNMAP:
839 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
840 					  (u32)SD_MAX_WS16_BLOCKS);
841 		break;
842 
843 	case SD_LBP_WS16:
844 		if (sdkp->device->unmap_limit_for_ws)
845 			max_blocks = sdkp->max_unmap_blocks;
846 		else
847 			max_blocks = sdkp->max_ws_blocks;
848 
849 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
850 		break;
851 
852 	case SD_LBP_WS10:
853 		if (sdkp->device->unmap_limit_for_ws)
854 			max_blocks = sdkp->max_unmap_blocks;
855 		else
856 			max_blocks = sdkp->max_ws_blocks;
857 
858 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
859 		break;
860 
861 	case SD_LBP_ZERO:
862 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
863 					  (u32)SD_MAX_WS10_BLOCKS);
864 		break;
865 	}
866 
867 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
868 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
869 }
870 
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 {
873 	struct scsi_device *sdp = cmd->device;
874 	struct request *rq = scsi_cmd_to_rq(cmd);
875 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
876 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
877 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
878 	unsigned int data_len = 24;
879 	char *buf;
880 
881 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!rq->special_vec.bv_page)
883 		return BLK_STS_RESOURCE;
884 	clear_highpage(rq->special_vec.bv_page);
885 	rq->special_vec.bv_offset = 0;
886 	rq->special_vec.bv_len = data_len;
887 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888 
889 	cmd->cmd_len = 10;
890 	cmd->cmnd[0] = UNMAP;
891 	cmd->cmnd[8] = 24;
892 
893 	buf = bvec_virt(&rq->special_vec);
894 	put_unaligned_be16(6 + 16, &buf[0]);
895 	put_unaligned_be16(16, &buf[2]);
896 	put_unaligned_be64(lba, &buf[8]);
897 	put_unaligned_be32(nr_blocks, &buf[16]);
898 
899 	cmd->allowed = sdkp->max_retries;
900 	cmd->transfersize = data_len;
901 	rq->timeout = SD_TIMEOUT;
902 
903 	return scsi_alloc_sgtables(cmd);
904 }
905 
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
907 		bool unmap)
908 {
909 	struct scsi_device *sdp = cmd->device;
910 	struct request *rq = scsi_cmd_to_rq(cmd);
911 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914 	u32 data_len = sdp->sector_size;
915 
916 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
917 	if (!rq->special_vec.bv_page)
918 		return BLK_STS_RESOURCE;
919 	clear_highpage(rq->special_vec.bv_page);
920 	rq->special_vec.bv_offset = 0;
921 	rq->special_vec.bv_len = data_len;
922 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
923 
924 	cmd->cmd_len = 16;
925 	cmd->cmnd[0] = WRITE_SAME_16;
926 	if (unmap)
927 		cmd->cmnd[1] = 0x8; /* UNMAP */
928 	put_unaligned_be64(lba, &cmd->cmnd[2]);
929 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930 
931 	cmd->allowed = sdkp->max_retries;
932 	cmd->transfersize = data_len;
933 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934 
935 	return scsi_alloc_sgtables(cmd);
936 }
937 
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
939 		bool unmap)
940 {
941 	struct scsi_device *sdp = cmd->device;
942 	struct request *rq = scsi_cmd_to_rq(cmd);
943 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
944 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
945 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
946 	u32 data_len = sdp->sector_size;
947 
948 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
949 	if (!rq->special_vec.bv_page)
950 		return BLK_STS_RESOURCE;
951 	clear_highpage(rq->special_vec.bv_page);
952 	rq->special_vec.bv_offset = 0;
953 	rq->special_vec.bv_len = data_len;
954 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
955 
956 	cmd->cmd_len = 10;
957 	cmd->cmnd[0] = WRITE_SAME;
958 	if (unmap)
959 		cmd->cmnd[1] = 0x8; /* UNMAP */
960 	put_unaligned_be32(lba, &cmd->cmnd[2]);
961 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962 
963 	cmd->allowed = sdkp->max_retries;
964 	cmd->transfersize = data_len;
965 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966 
967 	return scsi_alloc_sgtables(cmd);
968 }
969 
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 {
972 	struct request *rq = scsi_cmd_to_rq(cmd);
973 	struct scsi_device *sdp = cmd->device;
974 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
975 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977 
978 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
979 		switch (sdkp->zeroing_mode) {
980 		case SD_ZERO_WS16_UNMAP:
981 			return sd_setup_write_same16_cmnd(cmd, true);
982 		case SD_ZERO_WS10_UNMAP:
983 			return sd_setup_write_same10_cmnd(cmd, true);
984 		}
985 	}
986 
987 	if (sdp->no_write_same) {
988 		rq->rq_flags |= RQF_QUIET;
989 		return BLK_STS_TARGET;
990 	}
991 
992 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 		return sd_setup_write_same16_cmnd(cmd, false);
994 
995 	return sd_setup_write_same10_cmnd(cmd, false);
996 }
997 
sd_config_write_same(struct scsi_disk * sdkp)998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 	struct request_queue *q = sdkp->disk->queue;
1001 	unsigned int logical_block_size = sdkp->device->sector_size;
1002 
1003 	if (sdkp->device->no_write_same) {
1004 		sdkp->max_ws_blocks = 0;
1005 		goto out;
1006 	}
1007 
1008 	/* Some devices can not handle block counts above 0xffff despite
1009 	 * supporting WRITE SAME(16). Consequently we default to 64k
1010 	 * blocks per I/O unless the device explicitly advertises a
1011 	 * bigger limit.
1012 	 */
1013 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 						   (u32)SD_MAX_WS16_BLOCKS);
1016 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 						   (u32)SD_MAX_WS10_BLOCKS);
1019 	else {
1020 		sdkp->device->no_write_same = 1;
1021 		sdkp->max_ws_blocks = 0;
1022 	}
1023 
1024 	if (sdkp->lbprz && sdkp->lbpws)
1025 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 	else if (sdkp->lbprz && sdkp->lbpws10)
1027 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 	else if (sdkp->max_ws_blocks)
1029 		sdkp->zeroing_mode = SD_ZERO_WS;
1030 	else
1031 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1032 
1033 	if (sdkp->max_ws_blocks &&
1034 	    sdkp->physical_block_size > logical_block_size) {
1035 		/*
1036 		 * Reporting a maximum number of blocks that is not aligned
1037 		 * on the device physical size would cause a large write same
1038 		 * request to be split into physically unaligned chunks by
1039 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 		 * even if the caller of these functions took care to align the
1041 		 * large request. So make sure the maximum reported is aligned
1042 		 * to the device physical block size. This is only an optional
1043 		 * optimization for regular disks, but this is mandatory to
1044 		 * avoid failure of large write same requests directed at
1045 		 * sequential write required zones of host-managed ZBC disks.
1046 		 */
1047 		sdkp->max_ws_blocks =
1048 			round_down(sdkp->max_ws_blocks,
1049 				   bytes_to_logical(sdkp->device,
1050 						    sdkp->physical_block_size));
1051 	}
1052 
1053 out:
1054 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 					 (logical_block_size >> 9));
1056 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 					 (logical_block_size >> 9));
1058 }
1059 
1060 /**
1061  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062  * @cmd: command to prepare
1063  *
1064  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065  * the preference indicated by the target device.
1066  **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 	struct request *rq = scsi_cmd_to_rq(cmd);
1070 	struct scsi_device *sdp = cmd->device;
1071 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 	struct bio *bio = rq->bio;
1073 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 	unsigned int nr_bytes = blk_rq_bytes(rq);
1076 	blk_status_t ret;
1077 
1078 	if (sdkp->device->no_write_same)
1079 		return BLK_STS_TARGET;
1080 
1081 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1082 
1083 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1084 
1085 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1086 		cmd->cmd_len = 16;
1087 		cmd->cmnd[0] = WRITE_SAME_16;
1088 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1089 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1090 	} else {
1091 		cmd->cmd_len = 10;
1092 		cmd->cmnd[0] = WRITE_SAME;
1093 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1094 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1095 	}
1096 
1097 	cmd->transfersize = sdp->sector_size;
1098 	cmd->allowed = sdkp->max_retries;
1099 
1100 	/*
1101 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1102 	 * different from the amount of data actually written to the target.
1103 	 *
1104 	 * We set up __data_len to the amount of data transferred via the
1105 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1106 	 * to transfer a single sector of data first, but then reset it to
1107 	 * the amount of data to be written right after so that the I/O path
1108 	 * knows how much to actually write.
1109 	 */
1110 	rq->__data_len = sdp->sector_size;
1111 	ret = scsi_alloc_sgtables(cmd);
1112 	rq->__data_len = nr_bytes;
1113 
1114 	return ret;
1115 }
1116 
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1117 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1118 {
1119 	struct request *rq = scsi_cmd_to_rq(cmd);
1120 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1121 
1122 	/* flush requests don't perform I/O, zero the S/G table */
1123 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1124 
1125 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1126 	cmd->cmd_len = 10;
1127 	cmd->transfersize = 0;
1128 	cmd->allowed = sdkp->max_retries;
1129 
1130 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1131 	return BLK_STS_OK;
1132 }
1133 
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1134 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1135 				       sector_t lba, unsigned int nr_blocks,
1136 				       unsigned char flags)
1137 {
1138 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1139 	if (unlikely(cmd->cmnd == NULL))
1140 		return BLK_STS_RESOURCE;
1141 
1142 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1143 	memset(cmd->cmnd, 0, cmd->cmd_len);
1144 
1145 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1146 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1147 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1148 	cmd->cmnd[10] = flags;
1149 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1150 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1151 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1152 
1153 	return BLK_STS_OK;
1154 }
1155 
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1156 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1157 				       sector_t lba, unsigned int nr_blocks,
1158 				       unsigned char flags)
1159 {
1160 	cmd->cmd_len  = 16;
1161 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1162 	cmd->cmnd[1]  = flags;
1163 	cmd->cmnd[14] = 0;
1164 	cmd->cmnd[15] = 0;
1165 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1166 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1167 
1168 	return BLK_STS_OK;
1169 }
1170 
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1171 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1172 				       sector_t lba, unsigned int nr_blocks,
1173 				       unsigned char flags)
1174 {
1175 	cmd->cmd_len = 10;
1176 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1177 	cmd->cmnd[1] = flags;
1178 	cmd->cmnd[6] = 0;
1179 	cmd->cmnd[9] = 0;
1180 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1181 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1186 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1187 				      sector_t lba, unsigned int nr_blocks,
1188 				      unsigned char flags)
1189 {
1190 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1191 	if (WARN_ON_ONCE(nr_blocks == 0))
1192 		return BLK_STS_IOERR;
1193 
1194 	if (unlikely(flags & 0x8)) {
1195 		/*
1196 		 * This happens only if this drive failed 10byte rw
1197 		 * command with ILLEGAL_REQUEST during operation and
1198 		 * thus turned off use_10_for_rw.
1199 		 */
1200 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1201 		return BLK_STS_IOERR;
1202 	}
1203 
1204 	cmd->cmd_len = 6;
1205 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1206 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1207 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1208 	cmd->cmnd[3] = lba & 0xff;
1209 	cmd->cmnd[4] = nr_blocks;
1210 	cmd->cmnd[5] = 0;
1211 
1212 	return BLK_STS_OK;
1213 }
1214 
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1215 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1216 {
1217 	struct request *rq = scsi_cmd_to_rq(cmd);
1218 	struct scsi_device *sdp = cmd->device;
1219 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1220 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1221 	sector_t threshold;
1222 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1223 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1224 	bool write = rq_data_dir(rq) == WRITE;
1225 	unsigned char protect, fua;
1226 	blk_status_t ret;
1227 	unsigned int dif;
1228 	bool dix;
1229 
1230 	ret = scsi_alloc_sgtables(cmd);
1231 	if (ret != BLK_STS_OK)
1232 		return ret;
1233 
1234 	ret = BLK_STS_IOERR;
1235 	if (!scsi_device_online(sdp) || sdp->changed) {
1236 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1237 		goto fail;
1238 	}
1239 
1240 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1241 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1242 		goto fail;
1243 	}
1244 
1245 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1246 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1247 		goto fail;
1248 	}
1249 
1250 	/*
1251 	 * Some SD card readers can't handle accesses which touch the
1252 	 * last one or two logical blocks. Split accesses as needed.
1253 	 */
1254 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1255 
1256 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1257 		if (lba < threshold) {
1258 			/* Access up to the threshold but not beyond */
1259 			nr_blocks = threshold - lba;
1260 		} else {
1261 			/* Access only a single logical block */
1262 			nr_blocks = 1;
1263 		}
1264 	}
1265 
1266 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1267 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1268 		if (ret)
1269 			goto fail;
1270 	}
1271 
1272 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1273 	dix = scsi_prot_sg_count(cmd);
1274 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1275 
1276 	if (dif || dix)
1277 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1278 	else
1279 		protect = 0;
1280 
1281 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1282 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1283 					 protect | fua);
1284 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1285 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1286 					 protect | fua);
1287 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1288 		   sdp->use_10_for_rw || protect) {
1289 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1290 					 protect | fua);
1291 	} else {
1292 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1293 					protect | fua);
1294 	}
1295 
1296 	if (unlikely(ret != BLK_STS_OK))
1297 		goto fail;
1298 
1299 	/*
1300 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1301 	 * host adapter, it's safe to assume that we can at least transfer
1302 	 * this many bytes between each connect / disconnect.
1303 	 */
1304 	cmd->transfersize = sdp->sector_size;
1305 	cmd->underflow = nr_blocks << 9;
1306 	cmd->allowed = sdkp->max_retries;
1307 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1308 
1309 	SCSI_LOG_HLQUEUE(1,
1310 			 scmd_printk(KERN_INFO, cmd,
1311 				     "%s: block=%llu, count=%d\n", __func__,
1312 				     (unsigned long long)blk_rq_pos(rq),
1313 				     blk_rq_sectors(rq)));
1314 	SCSI_LOG_HLQUEUE(2,
1315 			 scmd_printk(KERN_INFO, cmd,
1316 				     "%s %d/%u 512 byte blocks.\n",
1317 				     write ? "writing" : "reading", nr_blocks,
1318 				     blk_rq_sectors(rq)));
1319 
1320 	/*
1321 	 * This indicates that the command is ready from our end to be queued.
1322 	 */
1323 	return BLK_STS_OK;
1324 fail:
1325 	scsi_free_sgtables(cmd);
1326 	return ret;
1327 }
1328 
sd_init_command(struct scsi_cmnd * cmd)1329 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1330 {
1331 	struct request *rq = scsi_cmd_to_rq(cmd);
1332 
1333 	switch (req_op(rq)) {
1334 	case REQ_OP_DISCARD:
1335 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1336 		case SD_LBP_UNMAP:
1337 			return sd_setup_unmap_cmnd(cmd);
1338 		case SD_LBP_WS16:
1339 			return sd_setup_write_same16_cmnd(cmd, true);
1340 		case SD_LBP_WS10:
1341 			return sd_setup_write_same10_cmnd(cmd, true);
1342 		case SD_LBP_ZERO:
1343 			return sd_setup_write_same10_cmnd(cmd, false);
1344 		default:
1345 			return BLK_STS_TARGET;
1346 		}
1347 	case REQ_OP_WRITE_ZEROES:
1348 		return sd_setup_write_zeroes_cmnd(cmd);
1349 	case REQ_OP_WRITE_SAME:
1350 		return sd_setup_write_same_cmnd(cmd);
1351 	case REQ_OP_FLUSH:
1352 		return sd_setup_flush_cmnd(cmd);
1353 	case REQ_OP_READ:
1354 	case REQ_OP_WRITE:
1355 	case REQ_OP_ZONE_APPEND:
1356 		return sd_setup_read_write_cmnd(cmd);
1357 	case REQ_OP_ZONE_RESET:
1358 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1359 						   false);
1360 	case REQ_OP_ZONE_RESET_ALL:
1361 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1362 						   true);
1363 	case REQ_OP_ZONE_OPEN:
1364 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1365 	case REQ_OP_ZONE_CLOSE:
1366 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1367 	case REQ_OP_ZONE_FINISH:
1368 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1369 	default:
1370 		WARN_ON_ONCE(1);
1371 		return BLK_STS_NOTSUPP;
1372 	}
1373 }
1374 
sd_uninit_command(struct scsi_cmnd * SCpnt)1375 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1376 {
1377 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1378 	u8 *cmnd;
1379 
1380 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1381 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1382 
1383 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1384 		cmnd = SCpnt->cmnd;
1385 		SCpnt->cmnd = NULL;
1386 		SCpnt->cmd_len = 0;
1387 		mempool_free(cmnd, sd_cdb_pool);
1388 	}
1389 }
1390 
sd_need_revalidate(struct block_device * bdev,struct scsi_disk * sdkp)1391 static bool sd_need_revalidate(struct block_device *bdev,
1392 		struct scsi_disk *sdkp)
1393 {
1394 	if (sdkp->device->removable || sdkp->write_prot) {
1395 		if (bdev_check_media_change(bdev))
1396 			return true;
1397 	}
1398 
1399 	/*
1400 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1401 	 * nothing to do with partitions, BLKRRPART is used to force a full
1402 	 * revalidate after things like a format for historical reasons.
1403 	 */
1404 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1405 }
1406 
1407 /**
1408  *	sd_open - open a scsi disk device
1409  *	@bdev: Block device of the scsi disk to open
1410  *	@mode: FMODE_* mask
1411  *
1412  *	Returns 0 if successful. Returns a negated errno value in case
1413  *	of error.
1414  *
1415  *	Note: This can be called from a user context (e.g. fsck(1) )
1416  *	or from within the kernel (e.g. as a result of a mount(1) ).
1417  *	In the latter case @inode and @filp carry an abridged amount
1418  *	of information as noted above.
1419  *
1420  *	Locking: called with bdev->bd_disk->open_mutex held.
1421  **/
sd_open(struct block_device * bdev,fmode_t mode)1422 static int sd_open(struct block_device *bdev, fmode_t mode)
1423 {
1424 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1425 	struct scsi_device *sdev;
1426 	int retval;
1427 
1428 	if (!sdkp)
1429 		return -ENXIO;
1430 
1431 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1432 
1433 	sdev = sdkp->device;
1434 
1435 	/*
1436 	 * If the device is in error recovery, wait until it is done.
1437 	 * If the device is offline, then disallow any access to it.
1438 	 */
1439 	retval = -ENXIO;
1440 	if (!scsi_block_when_processing_errors(sdev))
1441 		goto error_out;
1442 
1443 	if (sd_need_revalidate(bdev, sdkp))
1444 		sd_revalidate_disk(bdev->bd_disk);
1445 
1446 	/*
1447 	 * If the drive is empty, just let the open fail.
1448 	 */
1449 	retval = -ENOMEDIUM;
1450 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1451 		goto error_out;
1452 
1453 	/*
1454 	 * If the device has the write protect tab set, have the open fail
1455 	 * if the user expects to be able to write to the thing.
1456 	 */
1457 	retval = -EROFS;
1458 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1459 		goto error_out;
1460 
1461 	/*
1462 	 * It is possible that the disk changing stuff resulted in
1463 	 * the device being taken offline.  If this is the case,
1464 	 * report this to the user, and don't pretend that the
1465 	 * open actually succeeded.
1466 	 */
1467 	retval = -ENXIO;
1468 	if (!scsi_device_online(sdev))
1469 		goto error_out;
1470 
1471 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1472 		if (scsi_block_when_processing_errors(sdev))
1473 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1474 	}
1475 
1476 	return 0;
1477 
1478 error_out:
1479 	scsi_disk_put(sdkp);
1480 	return retval;
1481 }
1482 
1483 /**
1484  *	sd_release - invoked when the (last) close(2) is called on this
1485  *	scsi disk.
1486  *	@disk: disk to release
1487  *	@mode: FMODE_* mask
1488  *
1489  *	Returns 0.
1490  *
1491  *	Note: may block (uninterruptible) if error recovery is underway
1492  *	on this disk.
1493  *
1494  *	Locking: called with bdev->bd_disk->open_mutex held.
1495  **/
sd_release(struct gendisk * disk,fmode_t mode)1496 static void sd_release(struct gendisk *disk, fmode_t mode)
1497 {
1498 	struct scsi_disk *sdkp = scsi_disk(disk);
1499 	struct scsi_device *sdev = sdkp->device;
1500 
1501 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1502 
1503 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1504 		if (scsi_block_when_processing_errors(sdev))
1505 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1506 	}
1507 
1508 	scsi_disk_put(sdkp);
1509 }
1510 
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1511 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1512 {
1513 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1514 	struct scsi_device *sdp = sdkp->device;
1515 	struct Scsi_Host *host = sdp->host;
1516 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1517 	int diskinfo[4];
1518 
1519 	/* default to most commonly used values */
1520 	diskinfo[0] = 0x40;	/* 1 << 6 */
1521 	diskinfo[1] = 0x20;	/* 1 << 5 */
1522 	diskinfo[2] = capacity >> 11;
1523 
1524 	/* override with calculated, extended default, or driver values */
1525 	if (host->hostt->bios_param)
1526 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1527 	else
1528 		scsicam_bios_param(bdev, capacity, diskinfo);
1529 
1530 	geo->heads = diskinfo[0];
1531 	geo->sectors = diskinfo[1];
1532 	geo->cylinders = diskinfo[2];
1533 	return 0;
1534 }
1535 
1536 /**
1537  *	sd_ioctl - process an ioctl
1538  *	@bdev: target block device
1539  *	@mode: FMODE_* mask
1540  *	@cmd: ioctl command number
1541  *	@arg: this is third argument given to ioctl(2) system call.
1542  *	Often contains a pointer.
1543  *
1544  *	Returns 0 if successful (some ioctls return positive numbers on
1545  *	success as well). Returns a negated errno value in case of error.
1546  *
1547  *	Note: most ioctls are forward onto the block subsystem or further
1548  *	down in the scsi subsystem.
1549  **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1550 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1551 		    unsigned int cmd, unsigned long arg)
1552 {
1553 	struct gendisk *disk = bdev->bd_disk;
1554 	struct scsi_disk *sdkp = scsi_disk(disk);
1555 	struct scsi_device *sdp = sdkp->device;
1556 	void __user *p = (void __user *)arg;
1557 	int error;
1558 
1559 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1560 				    "cmd=0x%x\n", disk->disk_name, cmd));
1561 
1562 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1563 		return -ENOIOCTLCMD;
1564 
1565 	/*
1566 	 * If we are in the middle of error recovery, don't let anyone
1567 	 * else try and use this device.  Also, if error recovery fails, it
1568 	 * may try and take the device offline, in which case all further
1569 	 * access to the device is prohibited.
1570 	 */
1571 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1572 			(mode & FMODE_NDELAY) != 0);
1573 	if (error)
1574 		return error;
1575 
1576 	if (is_sed_ioctl(cmd))
1577 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1578 	return scsi_ioctl(sdp, disk, mode, cmd, p);
1579 }
1580 
set_media_not_present(struct scsi_disk * sdkp)1581 static void set_media_not_present(struct scsi_disk *sdkp)
1582 {
1583 	if (sdkp->media_present)
1584 		sdkp->device->changed = 1;
1585 
1586 	if (sdkp->device->removable) {
1587 		sdkp->media_present = 0;
1588 		sdkp->capacity = 0;
1589 	}
1590 }
1591 
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1592 static int media_not_present(struct scsi_disk *sdkp,
1593 			     struct scsi_sense_hdr *sshdr)
1594 {
1595 	if (!scsi_sense_valid(sshdr))
1596 		return 0;
1597 
1598 	/* not invoked for commands that could return deferred errors */
1599 	switch (sshdr->sense_key) {
1600 	case UNIT_ATTENTION:
1601 	case NOT_READY:
1602 		/* medium not present */
1603 		if (sshdr->asc == 0x3A) {
1604 			set_media_not_present(sdkp);
1605 			return 1;
1606 		}
1607 	}
1608 	return 0;
1609 }
1610 
1611 /**
1612  *	sd_check_events - check media events
1613  *	@disk: kernel device descriptor
1614  *	@clearing: disk events currently being cleared
1615  *
1616  *	Returns mask of DISK_EVENT_*.
1617  *
1618  *	Note: this function is invoked from the block subsystem.
1619  **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1620 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1621 {
1622 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1623 	struct scsi_device *sdp;
1624 	int retval;
1625 	bool disk_changed;
1626 
1627 	if (!sdkp)
1628 		return 0;
1629 
1630 	sdp = sdkp->device;
1631 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1632 
1633 	/*
1634 	 * If the device is offline, don't send any commands - just pretend as
1635 	 * if the command failed.  If the device ever comes back online, we
1636 	 * can deal with it then.  It is only because of unrecoverable errors
1637 	 * that we would ever take a device offline in the first place.
1638 	 */
1639 	if (!scsi_device_online(sdp)) {
1640 		set_media_not_present(sdkp);
1641 		goto out;
1642 	}
1643 
1644 	/*
1645 	 * Using TEST_UNIT_READY enables differentiation between drive with
1646 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1647 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1648 	 *
1649 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1650 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1651 	 * sd_revalidate() is called.
1652 	 */
1653 	if (scsi_block_when_processing_errors(sdp)) {
1654 		struct scsi_sense_hdr sshdr = { 0, };
1655 
1656 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1657 					      &sshdr);
1658 
1659 		/* failed to execute TUR, assume media not present */
1660 		if (retval < 0 || host_byte(retval)) {
1661 			set_media_not_present(sdkp);
1662 			goto out;
1663 		}
1664 
1665 		if (media_not_present(sdkp, &sshdr))
1666 			goto out;
1667 	}
1668 
1669 	/*
1670 	 * For removable scsi disk we have to recognise the presence
1671 	 * of a disk in the drive.
1672 	 */
1673 	if (!sdkp->media_present)
1674 		sdp->changed = 1;
1675 	sdkp->media_present = 1;
1676 out:
1677 	/*
1678 	 * sdp->changed is set under the following conditions:
1679 	 *
1680 	 *	Medium present state has changed in either direction.
1681 	 *	Device has indicated UNIT_ATTENTION.
1682 	 */
1683 	disk_changed = sdp->changed;
1684 	sdp->changed = 0;
1685 	scsi_disk_put(sdkp);
1686 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1687 }
1688 
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1689 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1690 {
1691 	int retries, res;
1692 	struct scsi_device *sdp = sdkp->device;
1693 	const int timeout = sdp->request_queue->rq_timeout
1694 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1695 	struct scsi_sense_hdr my_sshdr;
1696 
1697 	if (!scsi_device_online(sdp))
1698 		return -ENODEV;
1699 
1700 	/* caller might not be interested in sense, but we need it */
1701 	if (!sshdr)
1702 		sshdr = &my_sshdr;
1703 
1704 	for (retries = 3; retries > 0; --retries) {
1705 		unsigned char cmd[10] = { 0 };
1706 
1707 		cmd[0] = SYNCHRONIZE_CACHE;
1708 		/*
1709 		 * Leave the rest of the command zero to indicate
1710 		 * flush everything.
1711 		 */
1712 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1713 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1714 		if (res == 0)
1715 			break;
1716 	}
1717 
1718 	if (res) {
1719 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1720 
1721 		if (res < 0)
1722 			return res;
1723 
1724 		if (scsi_status_is_check_condition(res) &&
1725 		    scsi_sense_valid(sshdr)) {
1726 			sd_print_sense_hdr(sdkp, sshdr);
1727 
1728 			/* we need to evaluate the error return  */
1729 			if (sshdr->asc == 0x3a ||	/* medium not present */
1730 			    sshdr->asc == 0x20 ||	/* invalid command */
1731 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1732 				/* this is no error here */
1733 				return 0;
1734 		}
1735 
1736 		switch (host_byte(res)) {
1737 		/* ignore errors due to racing a disconnection */
1738 		case DID_BAD_TARGET:
1739 		case DID_NO_CONNECT:
1740 			return 0;
1741 		/* signal the upper layer it might try again */
1742 		case DID_BUS_BUSY:
1743 		case DID_IMM_RETRY:
1744 		case DID_REQUEUE:
1745 		case DID_SOFT_ERROR:
1746 			return -EBUSY;
1747 		default:
1748 			return -EIO;
1749 		}
1750 	}
1751 	return 0;
1752 }
1753 
sd_rescan(struct device * dev)1754 static void sd_rescan(struct device *dev)
1755 {
1756 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1757 
1758 	sd_revalidate_disk(sdkp->disk);
1759 }
1760 
sd_pr_type(enum pr_type type)1761 static char sd_pr_type(enum pr_type type)
1762 {
1763 	switch (type) {
1764 	case PR_WRITE_EXCLUSIVE:
1765 		return 0x01;
1766 	case PR_EXCLUSIVE_ACCESS:
1767 		return 0x03;
1768 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1769 		return 0x05;
1770 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1771 		return 0x06;
1772 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1773 		return 0x07;
1774 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1775 		return 0x08;
1776 	default:
1777 		return 0;
1778 	}
1779 };
1780 
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1781 static int sd_pr_command(struct block_device *bdev, u8 sa,
1782 		u64 key, u64 sa_key, u8 type, u8 flags)
1783 {
1784 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1785 	struct scsi_device *sdev = sdkp->device;
1786 	struct scsi_sense_hdr sshdr;
1787 	int result;
1788 	u8 cmd[16] = { 0, };
1789 	u8 data[24] = { 0, };
1790 
1791 	cmd[0] = PERSISTENT_RESERVE_OUT;
1792 	cmd[1] = sa;
1793 	cmd[2] = type;
1794 	put_unaligned_be32(sizeof(data), &cmd[5]);
1795 
1796 	put_unaligned_be64(key, &data[0]);
1797 	put_unaligned_be64(sa_key, &data[8]);
1798 	data[20] = flags;
1799 
1800 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1801 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1802 
1803 	if (scsi_status_is_check_condition(result) &&
1804 	    scsi_sense_valid(&sshdr)) {
1805 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1806 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1807 	}
1808 
1809 	return result;
1810 }
1811 
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1812 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1813 		u32 flags)
1814 {
1815 	if (flags & ~PR_FL_IGNORE_KEY)
1816 		return -EOPNOTSUPP;
1817 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1818 			old_key, new_key, 0,
1819 			(1 << 0) /* APTPL */);
1820 }
1821 
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1822 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1823 		u32 flags)
1824 {
1825 	if (flags)
1826 		return -EOPNOTSUPP;
1827 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1828 }
1829 
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1830 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1831 {
1832 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1833 }
1834 
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1835 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1836 		enum pr_type type, bool abort)
1837 {
1838 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1839 			     sd_pr_type(type), 0);
1840 }
1841 
sd_pr_clear(struct block_device * bdev,u64 key)1842 static int sd_pr_clear(struct block_device *bdev, u64 key)
1843 {
1844 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1845 }
1846 
1847 static const struct pr_ops sd_pr_ops = {
1848 	.pr_register	= sd_pr_register,
1849 	.pr_reserve	= sd_pr_reserve,
1850 	.pr_release	= sd_pr_release,
1851 	.pr_preempt	= sd_pr_preempt,
1852 	.pr_clear	= sd_pr_clear,
1853 };
1854 
1855 static const struct block_device_operations sd_fops = {
1856 	.owner			= THIS_MODULE,
1857 	.open			= sd_open,
1858 	.release		= sd_release,
1859 	.ioctl			= sd_ioctl,
1860 	.getgeo			= sd_getgeo,
1861 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1862 	.check_events		= sd_check_events,
1863 	.unlock_native_capacity	= sd_unlock_native_capacity,
1864 	.report_zones		= sd_zbc_report_zones,
1865 	.pr_ops			= &sd_pr_ops,
1866 };
1867 
1868 /**
1869  *	sd_eh_reset - reset error handling callback
1870  *	@scmd:		sd-issued command that has failed
1871  *
1872  *	This function is called by the SCSI midlayer before starting
1873  *	SCSI EH. When counting medium access failures we have to be
1874  *	careful to register it only only once per device and SCSI EH run;
1875  *	there might be several timed out commands which will cause the
1876  *	'max_medium_access_timeouts' counter to trigger after the first
1877  *	SCSI EH run already and set the device to offline.
1878  *	So this function resets the internal counter before starting SCSI EH.
1879  **/
sd_eh_reset(struct scsi_cmnd * scmd)1880 static void sd_eh_reset(struct scsi_cmnd *scmd)
1881 {
1882 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1883 
1884 	/* New SCSI EH run, reset gate variable */
1885 	sdkp->ignore_medium_access_errors = false;
1886 }
1887 
1888 /**
1889  *	sd_eh_action - error handling callback
1890  *	@scmd:		sd-issued command that has failed
1891  *	@eh_disp:	The recovery disposition suggested by the midlayer
1892  *
1893  *	This function is called by the SCSI midlayer upon completion of an
1894  *	error test command (currently TEST UNIT READY). The result of sending
1895  *	the eh command is passed in eh_disp.  We're looking for devices that
1896  *	fail medium access commands but are OK with non access commands like
1897  *	test unit ready (so wrongly see the device as having a successful
1898  *	recovery)
1899  **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1900 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1901 {
1902 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1903 	struct scsi_device *sdev = scmd->device;
1904 
1905 	if (!scsi_device_online(sdev) ||
1906 	    !scsi_medium_access_command(scmd) ||
1907 	    host_byte(scmd->result) != DID_TIME_OUT ||
1908 	    eh_disp != SUCCESS)
1909 		return eh_disp;
1910 
1911 	/*
1912 	 * The device has timed out executing a medium access command.
1913 	 * However, the TEST UNIT READY command sent during error
1914 	 * handling completed successfully. Either the device is in the
1915 	 * process of recovering or has it suffered an internal failure
1916 	 * that prevents access to the storage medium.
1917 	 */
1918 	if (!sdkp->ignore_medium_access_errors) {
1919 		sdkp->medium_access_timed_out++;
1920 		sdkp->ignore_medium_access_errors = true;
1921 	}
1922 
1923 	/*
1924 	 * If the device keeps failing read/write commands but TEST UNIT
1925 	 * READY always completes successfully we assume that medium
1926 	 * access is no longer possible and take the device offline.
1927 	 */
1928 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1929 		scmd_printk(KERN_ERR, scmd,
1930 			    "Medium access timeout failure. Offlining disk!\n");
1931 		mutex_lock(&sdev->state_mutex);
1932 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1933 		mutex_unlock(&sdev->state_mutex);
1934 
1935 		return SUCCESS;
1936 	}
1937 
1938 	return eh_disp;
1939 }
1940 
sd_completed_bytes(struct scsi_cmnd * scmd)1941 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1942 {
1943 	struct request *req = scsi_cmd_to_rq(scmd);
1944 	struct scsi_device *sdev = scmd->device;
1945 	unsigned int transferred, good_bytes;
1946 	u64 start_lba, end_lba, bad_lba;
1947 
1948 	/*
1949 	 * Some commands have a payload smaller than the device logical
1950 	 * block size (e.g. INQUIRY on a 4K disk).
1951 	 */
1952 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1953 		return 0;
1954 
1955 	/* Check if we have a 'bad_lba' information */
1956 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1957 				     SCSI_SENSE_BUFFERSIZE,
1958 				     &bad_lba))
1959 		return 0;
1960 
1961 	/*
1962 	 * If the bad lba was reported incorrectly, we have no idea where
1963 	 * the error is.
1964 	 */
1965 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1966 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1967 	if (bad_lba < start_lba || bad_lba >= end_lba)
1968 		return 0;
1969 
1970 	/*
1971 	 * resid is optional but mostly filled in.  When it's unused,
1972 	 * its value is zero, so we assume the whole buffer transferred
1973 	 */
1974 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1975 
1976 	/* This computation should always be done in terms of the
1977 	 * resolution of the device's medium.
1978 	 */
1979 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1980 
1981 	return min(good_bytes, transferred);
1982 }
1983 
1984 /**
1985  *	sd_done - bottom half handler: called when the lower level
1986  *	driver has completed (successfully or otherwise) a scsi command.
1987  *	@SCpnt: mid-level's per command structure.
1988  *
1989  *	Note: potentially run from within an ISR. Must not block.
1990  **/
sd_done(struct scsi_cmnd * SCpnt)1991 static int sd_done(struct scsi_cmnd *SCpnt)
1992 {
1993 	int result = SCpnt->result;
1994 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1995 	unsigned int sector_size = SCpnt->device->sector_size;
1996 	unsigned int resid;
1997 	struct scsi_sense_hdr sshdr;
1998 	struct request *req = scsi_cmd_to_rq(SCpnt);
1999 	struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
2000 	int sense_valid = 0;
2001 	int sense_deferred = 0;
2002 
2003 	switch (req_op(req)) {
2004 	case REQ_OP_DISCARD:
2005 	case REQ_OP_WRITE_ZEROES:
2006 	case REQ_OP_WRITE_SAME:
2007 	case REQ_OP_ZONE_RESET:
2008 	case REQ_OP_ZONE_RESET_ALL:
2009 	case REQ_OP_ZONE_OPEN:
2010 	case REQ_OP_ZONE_CLOSE:
2011 	case REQ_OP_ZONE_FINISH:
2012 		if (!result) {
2013 			good_bytes = blk_rq_bytes(req);
2014 			scsi_set_resid(SCpnt, 0);
2015 		} else {
2016 			good_bytes = 0;
2017 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2018 		}
2019 		break;
2020 	default:
2021 		/*
2022 		 * In case of bogus fw or device, we could end up having
2023 		 * an unaligned partial completion. Check this here and force
2024 		 * alignment.
2025 		 */
2026 		resid = scsi_get_resid(SCpnt);
2027 		if (resid & (sector_size - 1)) {
2028 			sd_printk(KERN_INFO, sdkp,
2029 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2030 				resid, sector_size);
2031 			scsi_print_command(SCpnt);
2032 			resid = min(scsi_bufflen(SCpnt),
2033 				    round_up(resid, sector_size));
2034 			scsi_set_resid(SCpnt, resid);
2035 		}
2036 	}
2037 
2038 	if (result) {
2039 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2040 		if (sense_valid)
2041 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2042 	}
2043 	sdkp->medium_access_timed_out = 0;
2044 
2045 	if (!scsi_status_is_check_condition(result) &&
2046 	    (!sense_valid || sense_deferred))
2047 		goto out;
2048 
2049 	switch (sshdr.sense_key) {
2050 	case HARDWARE_ERROR:
2051 	case MEDIUM_ERROR:
2052 		good_bytes = sd_completed_bytes(SCpnt);
2053 		break;
2054 	case RECOVERED_ERROR:
2055 		good_bytes = scsi_bufflen(SCpnt);
2056 		break;
2057 	case NO_SENSE:
2058 		/* This indicates a false check condition, so ignore it.  An
2059 		 * unknown amount of data was transferred so treat it as an
2060 		 * error.
2061 		 */
2062 		SCpnt->result = 0;
2063 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2064 		break;
2065 	case ABORTED_COMMAND:
2066 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2067 			good_bytes = sd_completed_bytes(SCpnt);
2068 		break;
2069 	case ILLEGAL_REQUEST:
2070 		switch (sshdr.asc) {
2071 		case 0x10:	/* DIX: Host detected corruption */
2072 			good_bytes = sd_completed_bytes(SCpnt);
2073 			break;
2074 		case 0x20:	/* INVALID COMMAND OPCODE */
2075 		case 0x24:	/* INVALID FIELD IN CDB */
2076 			switch (SCpnt->cmnd[0]) {
2077 			case UNMAP:
2078 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2079 				break;
2080 			case WRITE_SAME_16:
2081 			case WRITE_SAME:
2082 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2083 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2084 				} else {
2085 					sdkp->device->no_write_same = 1;
2086 					sd_config_write_same(sdkp);
2087 					req->rq_flags |= RQF_QUIET;
2088 				}
2089 				break;
2090 			}
2091 		}
2092 		break;
2093 	default:
2094 		break;
2095 	}
2096 
2097  out:
2098 	if (sd_is_zoned(sdkp))
2099 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2100 
2101 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2102 					   "sd_done: completed %d of %d bytes\n",
2103 					   good_bytes, scsi_bufflen(SCpnt)));
2104 
2105 	return good_bytes;
2106 }
2107 
2108 /*
2109  * spinup disk - called only in sd_revalidate_disk()
2110  */
2111 static void
sd_spinup_disk(struct scsi_disk * sdkp)2112 sd_spinup_disk(struct scsi_disk *sdkp)
2113 {
2114 	unsigned char cmd[10];
2115 	unsigned long spintime_expire = 0;
2116 	int retries, spintime;
2117 	unsigned int the_result;
2118 	struct scsi_sense_hdr sshdr;
2119 	int sense_valid = 0;
2120 
2121 	spintime = 0;
2122 
2123 	/* Spin up drives, as required.  Only do this at boot time */
2124 	/* Spinup needs to be done for module loads too. */
2125 	do {
2126 		retries = 0;
2127 
2128 		do {
2129 			bool media_was_present = sdkp->media_present;
2130 
2131 			cmd[0] = TEST_UNIT_READY;
2132 			memset((void *) &cmd[1], 0, 9);
2133 
2134 			the_result = scsi_execute_req(sdkp->device, cmd,
2135 						      DMA_NONE, NULL, 0,
2136 						      &sshdr, SD_TIMEOUT,
2137 						      sdkp->max_retries, NULL);
2138 
2139 			/*
2140 			 * If the drive has indicated to us that it
2141 			 * doesn't have any media in it, don't bother
2142 			 * with any more polling.
2143 			 */
2144 			if (media_not_present(sdkp, &sshdr)) {
2145 				if (media_was_present)
2146 					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2147 				return;
2148 			}
2149 
2150 			if (the_result)
2151 				sense_valid = scsi_sense_valid(&sshdr);
2152 			retries++;
2153 		} while (retries < 3 &&
2154 			 (!scsi_status_is_good(the_result) ||
2155 			  (scsi_status_is_check_condition(the_result) &&
2156 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2157 
2158 		if (!scsi_status_is_check_condition(the_result)) {
2159 			/* no sense, TUR either succeeded or failed
2160 			 * with a status error */
2161 			if(!spintime && !scsi_status_is_good(the_result)) {
2162 				sd_print_result(sdkp, "Test Unit Ready failed",
2163 						the_result);
2164 			}
2165 			break;
2166 		}
2167 
2168 		/*
2169 		 * The device does not want the automatic start to be issued.
2170 		 */
2171 		if (sdkp->device->no_start_on_add)
2172 			break;
2173 
2174 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2175 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2176 				break;	/* manual intervention required */
2177 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2178 				break;	/* standby */
2179 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2180 				break;	/* unavailable */
2181 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2182 				break;	/* sanitize in progress */
2183 			/*
2184 			 * Issue command to spin up drive when not ready
2185 			 */
2186 			if (!spintime) {
2187 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2188 				cmd[0] = START_STOP;
2189 				cmd[1] = 1;	/* Return immediately */
2190 				memset((void *) &cmd[2], 0, 8);
2191 				cmd[4] = 1;	/* Start spin cycle */
2192 				if (sdkp->device->start_stop_pwr_cond)
2193 					cmd[4] |= 1 << 4;
2194 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2195 						 NULL, 0, &sshdr,
2196 						 SD_TIMEOUT, sdkp->max_retries,
2197 						 NULL);
2198 				spintime_expire = jiffies + 100 * HZ;
2199 				spintime = 1;
2200 			}
2201 			/* Wait 1 second for next try */
2202 			msleep(1000);
2203 			printk(KERN_CONT ".");
2204 
2205 		/*
2206 		 * Wait for USB flash devices with slow firmware.
2207 		 * Yes, this sense key/ASC combination shouldn't
2208 		 * occur here.  It's characteristic of these devices.
2209 		 */
2210 		} else if (sense_valid &&
2211 				sshdr.sense_key == UNIT_ATTENTION &&
2212 				sshdr.asc == 0x28) {
2213 			if (!spintime) {
2214 				spintime_expire = jiffies + 5 * HZ;
2215 				spintime = 1;
2216 			}
2217 			/* Wait 1 second for next try */
2218 			msleep(1000);
2219 		} else {
2220 			/* we don't understand the sense code, so it's
2221 			 * probably pointless to loop */
2222 			if(!spintime) {
2223 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2224 				sd_print_sense_hdr(sdkp, &sshdr);
2225 			}
2226 			break;
2227 		}
2228 
2229 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2230 
2231 	if (spintime) {
2232 		if (scsi_status_is_good(the_result))
2233 			printk(KERN_CONT "ready\n");
2234 		else
2235 			printk(KERN_CONT "not responding...\n");
2236 	}
2237 }
2238 
2239 /*
2240  * Determine whether disk supports Data Integrity Field.
2241  */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2242 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2243 {
2244 	struct scsi_device *sdp = sdkp->device;
2245 	u8 type;
2246 	int ret = 0;
2247 
2248 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2249 		sdkp->protection_type = 0;
2250 		return ret;
2251 	}
2252 
2253 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2254 
2255 	if (type > T10_PI_TYPE3_PROTECTION)
2256 		ret = -ENODEV;
2257 	else if (scsi_host_dif_capable(sdp->host, type))
2258 		ret = 1;
2259 
2260 	if (sdkp->first_scan || type != sdkp->protection_type)
2261 		switch (ret) {
2262 		case -ENODEV:
2263 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2264 				  " protection type %u. Disabling disk!\n",
2265 				  type);
2266 			break;
2267 		case 1:
2268 			sd_printk(KERN_NOTICE, sdkp,
2269 				  "Enabling DIF Type %u protection\n", type);
2270 			break;
2271 		case 0:
2272 			sd_printk(KERN_NOTICE, sdkp,
2273 				  "Disabling DIF Type %u protection\n", type);
2274 			break;
2275 		}
2276 
2277 	sdkp->protection_type = type;
2278 
2279 	return ret;
2280 }
2281 
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2282 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2283 			struct scsi_sense_hdr *sshdr, int sense_valid,
2284 			int the_result)
2285 {
2286 	if (sense_valid)
2287 		sd_print_sense_hdr(sdkp, sshdr);
2288 	else
2289 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2290 
2291 	/*
2292 	 * Set dirty bit for removable devices if not ready -
2293 	 * sometimes drives will not report this properly.
2294 	 */
2295 	if (sdp->removable &&
2296 	    sense_valid && sshdr->sense_key == NOT_READY)
2297 		set_media_not_present(sdkp);
2298 
2299 	/*
2300 	 * We used to set media_present to 0 here to indicate no media
2301 	 * in the drive, but some drives fail read capacity even with
2302 	 * media present, so we can't do that.
2303 	 */
2304 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2305 }
2306 
2307 #define RC16_LEN 32
2308 #if RC16_LEN > SD_BUF_SIZE
2309 #error RC16_LEN must not be more than SD_BUF_SIZE
2310 #endif
2311 
2312 #define READ_CAPACITY_RETRIES_ON_RESET	10
2313 
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2314 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2315 						unsigned char *buffer)
2316 {
2317 	unsigned char cmd[16];
2318 	struct scsi_sense_hdr sshdr;
2319 	int sense_valid = 0;
2320 	int the_result;
2321 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2322 	unsigned int alignment;
2323 	unsigned long long lba;
2324 	unsigned sector_size;
2325 
2326 	if (sdp->no_read_capacity_16)
2327 		return -EINVAL;
2328 
2329 	do {
2330 		memset(cmd, 0, 16);
2331 		cmd[0] = SERVICE_ACTION_IN_16;
2332 		cmd[1] = SAI_READ_CAPACITY_16;
2333 		cmd[13] = RC16_LEN;
2334 		memset(buffer, 0, RC16_LEN);
2335 
2336 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2337 					buffer, RC16_LEN, &sshdr,
2338 					SD_TIMEOUT, sdkp->max_retries, NULL);
2339 
2340 		if (media_not_present(sdkp, &sshdr))
2341 			return -ENODEV;
2342 
2343 		if (the_result > 0) {
2344 			sense_valid = scsi_sense_valid(&sshdr);
2345 			if (sense_valid &&
2346 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2347 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2348 			    sshdr.ascq == 0x00)
2349 				/* Invalid Command Operation Code or
2350 				 * Invalid Field in CDB, just retry
2351 				 * silently with RC10 */
2352 				return -EINVAL;
2353 			if (sense_valid &&
2354 			    sshdr.sense_key == UNIT_ATTENTION &&
2355 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2356 				/* Device reset might occur several times,
2357 				 * give it one more chance */
2358 				if (--reset_retries > 0)
2359 					continue;
2360 		}
2361 		retries--;
2362 
2363 	} while (the_result && retries);
2364 
2365 	if (the_result) {
2366 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2367 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2368 		return -EINVAL;
2369 	}
2370 
2371 	sector_size = get_unaligned_be32(&buffer[8]);
2372 	lba = get_unaligned_be64(&buffer[0]);
2373 
2374 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2375 		sdkp->capacity = 0;
2376 		return -ENODEV;
2377 	}
2378 
2379 	/* Logical blocks per physical block exponent */
2380 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2381 
2382 	/* RC basis */
2383 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2384 
2385 	/* Lowest aligned logical block */
2386 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2387 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2388 	if (alignment && sdkp->first_scan)
2389 		sd_printk(KERN_NOTICE, sdkp,
2390 			  "physical block alignment offset: %u\n", alignment);
2391 
2392 	if (buffer[14] & 0x80) { /* LBPME */
2393 		sdkp->lbpme = 1;
2394 
2395 		if (buffer[14] & 0x40) /* LBPRZ */
2396 			sdkp->lbprz = 1;
2397 
2398 		sd_config_discard(sdkp, SD_LBP_WS16);
2399 	}
2400 
2401 	sdkp->capacity = lba + 1;
2402 	return sector_size;
2403 }
2404 
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2405 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2406 						unsigned char *buffer)
2407 {
2408 	unsigned char cmd[16];
2409 	struct scsi_sense_hdr sshdr;
2410 	int sense_valid = 0;
2411 	int the_result;
2412 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2413 	sector_t lba;
2414 	unsigned sector_size;
2415 
2416 	do {
2417 		cmd[0] = READ_CAPACITY;
2418 		memset(&cmd[1], 0, 9);
2419 		memset(buffer, 0, 8);
2420 
2421 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2422 					buffer, 8, &sshdr,
2423 					SD_TIMEOUT, sdkp->max_retries, NULL);
2424 
2425 		if (media_not_present(sdkp, &sshdr))
2426 			return -ENODEV;
2427 
2428 		if (the_result > 0) {
2429 			sense_valid = scsi_sense_valid(&sshdr);
2430 			if (sense_valid &&
2431 			    sshdr.sense_key == UNIT_ATTENTION &&
2432 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2433 				/* Device reset might occur several times,
2434 				 * give it one more chance */
2435 				if (--reset_retries > 0)
2436 					continue;
2437 		}
2438 		retries--;
2439 
2440 	} while (the_result && retries);
2441 
2442 	if (the_result) {
2443 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2444 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2445 		return -EINVAL;
2446 	}
2447 
2448 	sector_size = get_unaligned_be32(&buffer[4]);
2449 	lba = get_unaligned_be32(&buffer[0]);
2450 
2451 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2452 		/* Some buggy (usb cardreader) devices return an lba of
2453 		   0xffffffff when the want to report a size of 0 (with
2454 		   which they really mean no media is present) */
2455 		sdkp->capacity = 0;
2456 		sdkp->physical_block_size = sector_size;
2457 		return sector_size;
2458 	}
2459 
2460 	sdkp->capacity = lba + 1;
2461 	sdkp->physical_block_size = sector_size;
2462 	return sector_size;
2463 }
2464 
sd_try_rc16_first(struct scsi_device * sdp)2465 static int sd_try_rc16_first(struct scsi_device *sdp)
2466 {
2467 	if (sdp->host->max_cmd_len < 16)
2468 		return 0;
2469 	if (sdp->try_rc_10_first)
2470 		return 0;
2471 	if (sdp->scsi_level > SCSI_SPC_2)
2472 		return 1;
2473 	if (scsi_device_protection(sdp))
2474 		return 1;
2475 	return 0;
2476 }
2477 
2478 /*
2479  * read disk capacity
2480  */
2481 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2482 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2483 {
2484 	int sector_size;
2485 	struct scsi_device *sdp = sdkp->device;
2486 
2487 	if (sd_try_rc16_first(sdp)) {
2488 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2489 		if (sector_size == -EOVERFLOW)
2490 			goto got_data;
2491 		if (sector_size == -ENODEV)
2492 			return;
2493 		if (sector_size < 0)
2494 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2495 		if (sector_size < 0)
2496 			return;
2497 	} else {
2498 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2499 		if (sector_size == -EOVERFLOW)
2500 			goto got_data;
2501 		if (sector_size < 0)
2502 			return;
2503 		if ((sizeof(sdkp->capacity) > 4) &&
2504 		    (sdkp->capacity > 0xffffffffULL)) {
2505 			int old_sector_size = sector_size;
2506 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2507 					"Trying to use READ CAPACITY(16).\n");
2508 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2509 			if (sector_size < 0) {
2510 				sd_printk(KERN_NOTICE, sdkp,
2511 					"Using 0xffffffff as device size\n");
2512 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2513 				sector_size = old_sector_size;
2514 				goto got_data;
2515 			}
2516 			/* Remember that READ CAPACITY(16) succeeded */
2517 			sdp->try_rc_10_first = 0;
2518 		}
2519 	}
2520 
2521 	/* Some devices are known to return the total number of blocks,
2522 	 * not the highest block number.  Some devices have versions
2523 	 * which do this and others which do not.  Some devices we might
2524 	 * suspect of doing this but we don't know for certain.
2525 	 *
2526 	 * If we know the reported capacity is wrong, decrement it.  If
2527 	 * we can only guess, then assume the number of blocks is even
2528 	 * (usually true but not always) and err on the side of lowering
2529 	 * the capacity.
2530 	 */
2531 	if (sdp->fix_capacity ||
2532 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2533 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2534 				"from its reported value: %llu\n",
2535 				(unsigned long long) sdkp->capacity);
2536 		--sdkp->capacity;
2537 	}
2538 
2539 got_data:
2540 	if (sector_size == 0) {
2541 		sector_size = 512;
2542 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2543 			  "assuming 512.\n");
2544 	}
2545 
2546 	if (sector_size != 512 &&
2547 	    sector_size != 1024 &&
2548 	    sector_size != 2048 &&
2549 	    sector_size != 4096) {
2550 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2551 			  sector_size);
2552 		/*
2553 		 * The user might want to re-format the drive with
2554 		 * a supported sectorsize.  Once this happens, it
2555 		 * would be relatively trivial to set the thing up.
2556 		 * For this reason, we leave the thing in the table.
2557 		 */
2558 		sdkp->capacity = 0;
2559 		/*
2560 		 * set a bogus sector size so the normal read/write
2561 		 * logic in the block layer will eventually refuse any
2562 		 * request on this device without tripping over power
2563 		 * of two sector size assumptions
2564 		 */
2565 		sector_size = 512;
2566 	}
2567 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2568 	blk_queue_physical_block_size(sdp->request_queue,
2569 				      sdkp->physical_block_size);
2570 	sdkp->device->sector_size = sector_size;
2571 
2572 	if (sdkp->capacity > 0xffffffff)
2573 		sdp->use_16_for_rw = 1;
2574 
2575 }
2576 
2577 /*
2578  * Print disk capacity
2579  */
2580 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2581 sd_print_capacity(struct scsi_disk *sdkp,
2582 		  sector_t old_capacity)
2583 {
2584 	int sector_size = sdkp->device->sector_size;
2585 	char cap_str_2[10], cap_str_10[10];
2586 
2587 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2588 		return;
2589 
2590 	string_get_size(sdkp->capacity, sector_size,
2591 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2592 	string_get_size(sdkp->capacity, sector_size,
2593 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2594 
2595 	sd_printk(KERN_NOTICE, sdkp,
2596 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2597 		  (unsigned long long)sdkp->capacity,
2598 		  sector_size, cap_str_10, cap_str_2);
2599 
2600 	if (sdkp->physical_block_size != sector_size)
2601 		sd_printk(KERN_NOTICE, sdkp,
2602 			  "%u-byte physical blocks\n",
2603 			  sdkp->physical_block_size);
2604 }
2605 
2606 /* called with buffer of length 512 */
2607 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2608 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2609 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2610 		 struct scsi_sense_hdr *sshdr)
2611 {
2612 	/*
2613 	 * If we must use MODE SENSE(10), make sure that the buffer length
2614 	 * is at least 8 bytes so that the mode sense header fits.
2615 	 */
2616 	if (sdkp->device->use_10_for_ms && len < 8)
2617 		len = 8;
2618 
2619 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2620 			       SD_TIMEOUT, sdkp->max_retries, data,
2621 			       sshdr);
2622 }
2623 
2624 /*
2625  * read write protect setting, if possible - called only in sd_revalidate_disk()
2626  * called with buffer of length SD_BUF_SIZE
2627  */
2628 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2629 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2630 {
2631 	int res;
2632 	struct scsi_device *sdp = sdkp->device;
2633 	struct scsi_mode_data data;
2634 	int old_wp = sdkp->write_prot;
2635 
2636 	set_disk_ro(sdkp->disk, 0);
2637 	if (sdp->skip_ms_page_3f) {
2638 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2639 		return;
2640 	}
2641 
2642 	if (sdp->use_192_bytes_for_3f) {
2643 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2644 	} else {
2645 		/*
2646 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2647 		 * We have to start carefully: some devices hang if we ask
2648 		 * for more than is available.
2649 		 */
2650 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2651 
2652 		/*
2653 		 * Second attempt: ask for page 0 When only page 0 is
2654 		 * implemented, a request for page 3F may return Sense Key
2655 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2656 		 * CDB.
2657 		 */
2658 		if (res < 0)
2659 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2660 
2661 		/*
2662 		 * Third attempt: ask 255 bytes, as we did earlier.
2663 		 */
2664 		if (res < 0)
2665 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2666 					       &data, NULL);
2667 	}
2668 
2669 	if (res < 0) {
2670 		sd_first_printk(KERN_WARNING, sdkp,
2671 			  "Test WP failed, assume Write Enabled\n");
2672 	} else {
2673 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2674 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2675 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2676 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2677 				  sdkp->write_prot ? "on" : "off");
2678 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2679 		}
2680 	}
2681 }
2682 
2683 /*
2684  * sd_read_cache_type - called only from sd_revalidate_disk()
2685  * called with buffer of length SD_BUF_SIZE
2686  */
2687 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2688 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2689 {
2690 	int len = 0, res;
2691 	struct scsi_device *sdp = sdkp->device;
2692 
2693 	int dbd;
2694 	int modepage;
2695 	int first_len;
2696 	struct scsi_mode_data data;
2697 	struct scsi_sense_hdr sshdr;
2698 	int old_wce = sdkp->WCE;
2699 	int old_rcd = sdkp->RCD;
2700 	int old_dpofua = sdkp->DPOFUA;
2701 
2702 
2703 	if (sdkp->cache_override)
2704 		return;
2705 
2706 	first_len = 4;
2707 	if (sdp->skip_ms_page_8) {
2708 		if (sdp->type == TYPE_RBC)
2709 			goto defaults;
2710 		else {
2711 			if (sdp->skip_ms_page_3f)
2712 				goto defaults;
2713 			modepage = 0x3F;
2714 			if (sdp->use_192_bytes_for_3f)
2715 				first_len = 192;
2716 			dbd = 0;
2717 		}
2718 	} else if (sdp->type == TYPE_RBC) {
2719 		modepage = 6;
2720 		dbd = 8;
2721 	} else {
2722 		modepage = 8;
2723 		dbd = 0;
2724 	}
2725 
2726 	/* cautiously ask */
2727 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2728 			&data, &sshdr);
2729 
2730 	if (res < 0)
2731 		goto bad_sense;
2732 
2733 	if (!data.header_length) {
2734 		modepage = 6;
2735 		first_len = 0;
2736 		sd_first_printk(KERN_ERR, sdkp,
2737 				"Missing header in MODE_SENSE response\n");
2738 	}
2739 
2740 	/* that went OK, now ask for the proper length */
2741 	len = data.length;
2742 
2743 	/*
2744 	 * We're only interested in the first three bytes, actually.
2745 	 * But the data cache page is defined for the first 20.
2746 	 */
2747 	if (len < 3)
2748 		goto bad_sense;
2749 	else if (len > SD_BUF_SIZE) {
2750 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2751 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2752 		len = SD_BUF_SIZE;
2753 	}
2754 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2755 		len = 192;
2756 
2757 	/* Get the data */
2758 	if (len > first_len)
2759 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2760 				&data, &sshdr);
2761 
2762 	if (!res) {
2763 		int offset = data.header_length + data.block_descriptor_length;
2764 
2765 		while (offset < len) {
2766 			u8 page_code = buffer[offset] & 0x3F;
2767 			u8 spf       = buffer[offset] & 0x40;
2768 
2769 			if (page_code == 8 || page_code == 6) {
2770 				/* We're interested only in the first 3 bytes.
2771 				 */
2772 				if (len - offset <= 2) {
2773 					sd_first_printk(KERN_ERR, sdkp,
2774 						"Incomplete mode parameter "
2775 							"data\n");
2776 					goto defaults;
2777 				} else {
2778 					modepage = page_code;
2779 					goto Page_found;
2780 				}
2781 			} else {
2782 				/* Go to the next page */
2783 				if (spf && len - offset > 3)
2784 					offset += 4 + (buffer[offset+2] << 8) +
2785 						buffer[offset+3];
2786 				else if (!spf && len - offset > 1)
2787 					offset += 2 + buffer[offset+1];
2788 				else {
2789 					sd_first_printk(KERN_ERR, sdkp,
2790 							"Incomplete mode "
2791 							"parameter data\n");
2792 					goto defaults;
2793 				}
2794 			}
2795 		}
2796 
2797 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2798 		goto defaults;
2799 
2800 	Page_found:
2801 		if (modepage == 8) {
2802 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2803 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2804 		} else {
2805 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2806 			sdkp->RCD = 0;
2807 		}
2808 
2809 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2810 		if (sdp->broken_fua) {
2811 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2812 			sdkp->DPOFUA = 0;
2813 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2814 			   !sdkp->device->use_16_for_rw) {
2815 			sd_first_printk(KERN_NOTICE, sdkp,
2816 				  "Uses READ/WRITE(6), disabling FUA\n");
2817 			sdkp->DPOFUA = 0;
2818 		}
2819 
2820 		/* No cache flush allowed for write protected devices */
2821 		if (sdkp->WCE && sdkp->write_prot)
2822 			sdkp->WCE = 0;
2823 
2824 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2825 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2826 			sd_printk(KERN_NOTICE, sdkp,
2827 				  "Write cache: %s, read cache: %s, %s\n",
2828 				  sdkp->WCE ? "enabled" : "disabled",
2829 				  sdkp->RCD ? "disabled" : "enabled",
2830 				  sdkp->DPOFUA ? "supports DPO and FUA"
2831 				  : "doesn't support DPO or FUA");
2832 
2833 		return;
2834 	}
2835 
2836 bad_sense:
2837 	if (scsi_sense_valid(&sshdr) &&
2838 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2839 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2840 		/* Invalid field in CDB */
2841 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2842 	else
2843 		sd_first_printk(KERN_ERR, sdkp,
2844 				"Asking for cache data failed\n");
2845 
2846 defaults:
2847 	if (sdp->wce_default_on) {
2848 		sd_first_printk(KERN_NOTICE, sdkp,
2849 				"Assuming drive cache: write back\n");
2850 		sdkp->WCE = 1;
2851 	} else {
2852 		sd_first_printk(KERN_ERR, sdkp,
2853 				"Assuming drive cache: write through\n");
2854 		sdkp->WCE = 0;
2855 	}
2856 	sdkp->RCD = 0;
2857 	sdkp->DPOFUA = 0;
2858 }
2859 
2860 /*
2861  * The ATO bit indicates whether the DIF application tag is available
2862  * for use by the operating system.
2863  */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2864 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2865 {
2866 	int res, offset;
2867 	struct scsi_device *sdp = sdkp->device;
2868 	struct scsi_mode_data data;
2869 	struct scsi_sense_hdr sshdr;
2870 
2871 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2872 		return;
2873 
2874 	if (sdkp->protection_type == 0)
2875 		return;
2876 
2877 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2878 			      sdkp->max_retries, &data, &sshdr);
2879 
2880 	if (res < 0 || !data.header_length ||
2881 	    data.length < 6) {
2882 		sd_first_printk(KERN_WARNING, sdkp,
2883 			  "getting Control mode page failed, assume no ATO\n");
2884 
2885 		if (scsi_sense_valid(&sshdr))
2886 			sd_print_sense_hdr(sdkp, &sshdr);
2887 
2888 		return;
2889 	}
2890 
2891 	offset = data.header_length + data.block_descriptor_length;
2892 
2893 	if ((buffer[offset] & 0x3f) != 0x0a) {
2894 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2895 		return;
2896 	}
2897 
2898 	if ((buffer[offset + 5] & 0x80) == 0)
2899 		return;
2900 
2901 	sdkp->ATO = 1;
2902 
2903 	return;
2904 }
2905 
2906 /**
2907  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2908  * @sdkp: disk to query
2909  */
sd_read_block_limits(struct scsi_disk * sdkp)2910 static void sd_read_block_limits(struct scsi_disk *sdkp)
2911 {
2912 	unsigned int sector_sz = sdkp->device->sector_size;
2913 	const int vpd_len = 64;
2914 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2915 
2916 	if (!buffer ||
2917 	    /* Block Limits VPD */
2918 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2919 		goto out;
2920 
2921 	blk_queue_io_min(sdkp->disk->queue,
2922 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2923 
2924 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2925 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2926 
2927 	if (buffer[3] == 0x3c) {
2928 		unsigned int lba_count, desc_count;
2929 
2930 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2931 
2932 		if (!sdkp->lbpme)
2933 			goto out;
2934 
2935 		lba_count = get_unaligned_be32(&buffer[20]);
2936 		desc_count = get_unaligned_be32(&buffer[24]);
2937 
2938 		if (lba_count && desc_count)
2939 			sdkp->max_unmap_blocks = lba_count;
2940 
2941 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2942 
2943 		if (buffer[32] & 0x80)
2944 			sdkp->unmap_alignment =
2945 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2946 
2947 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2948 
2949 			if (sdkp->max_unmap_blocks)
2950 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2951 			else
2952 				sd_config_discard(sdkp, SD_LBP_WS16);
2953 
2954 		} else {	/* LBP VPD page tells us what to use */
2955 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2956 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2957 			else if (sdkp->lbpws)
2958 				sd_config_discard(sdkp, SD_LBP_WS16);
2959 			else if (sdkp->lbpws10)
2960 				sd_config_discard(sdkp, SD_LBP_WS10);
2961 			else
2962 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2963 		}
2964 	}
2965 
2966  out:
2967 	kfree(buffer);
2968 }
2969 
2970 /**
2971  * sd_read_block_characteristics - Query block dev. characteristics
2972  * @sdkp: disk to query
2973  */
sd_read_block_characteristics(struct scsi_disk * sdkp)2974 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2975 {
2976 	struct request_queue *q = sdkp->disk->queue;
2977 	unsigned char *buffer;
2978 	u16 rot;
2979 	const int vpd_len = 64;
2980 
2981 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2982 
2983 	if (!buffer ||
2984 	    /* Block Device Characteristics VPD */
2985 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2986 		goto out;
2987 
2988 	rot = get_unaligned_be16(&buffer[4]);
2989 
2990 	if (rot == 1) {
2991 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2992 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2993 	}
2994 
2995 	if (sdkp->device->type == TYPE_ZBC) {
2996 		/* Host-managed */
2997 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2998 	} else {
2999 		sdkp->zoned = (buffer[8] >> 4) & 3;
3000 		if (sdkp->zoned == 1) {
3001 			/* Host-aware */
3002 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3003 		} else {
3004 			/* Regular disk or drive managed disk */
3005 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3006 		}
3007 	}
3008 
3009 	if (!sdkp->first_scan)
3010 		goto out;
3011 
3012 	if (blk_queue_is_zoned(q)) {
3013 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3014 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3015 	} else {
3016 		if (sdkp->zoned == 1)
3017 			sd_printk(KERN_NOTICE, sdkp,
3018 				  "Host-aware SMR disk used as regular disk\n");
3019 		else if (sdkp->zoned == 2)
3020 			sd_printk(KERN_NOTICE, sdkp,
3021 				  "Drive-managed SMR disk\n");
3022 	}
3023 
3024  out:
3025 	kfree(buffer);
3026 }
3027 
3028 /**
3029  * sd_read_block_provisioning - Query provisioning VPD page
3030  * @sdkp: disk to query
3031  */
sd_read_block_provisioning(struct scsi_disk * sdkp)3032 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3033 {
3034 	unsigned char *buffer;
3035 	const int vpd_len = 8;
3036 
3037 	if (sdkp->lbpme == 0)
3038 		return;
3039 
3040 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3041 
3042 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3043 		goto out;
3044 
3045 	sdkp->lbpvpd	= 1;
3046 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3047 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3048 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3049 
3050  out:
3051 	kfree(buffer);
3052 }
3053 
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3054 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3055 {
3056 	struct scsi_device *sdev = sdkp->device;
3057 
3058 	if (sdev->host->no_write_same) {
3059 		sdev->no_write_same = 1;
3060 
3061 		return;
3062 	}
3063 
3064 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3065 		/* too large values might cause issues with arcmsr */
3066 		int vpd_buf_len = 64;
3067 
3068 		sdev->no_report_opcodes = 1;
3069 
3070 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3071 		 * CODES is unsupported and the device has an ATA
3072 		 * Information VPD page (SAT).
3073 		 */
3074 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3075 			sdev->no_write_same = 1;
3076 	}
3077 
3078 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3079 		sdkp->ws16 = 1;
3080 
3081 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3082 		sdkp->ws10 = 1;
3083 }
3084 
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3085 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3086 {
3087 	struct scsi_device *sdev = sdkp->device;
3088 
3089 	if (!sdev->security_supported)
3090 		return;
3091 
3092 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3093 			SECURITY_PROTOCOL_IN) == 1 &&
3094 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3095 			SECURITY_PROTOCOL_OUT) == 1)
3096 		sdkp->security = 1;
3097 }
3098 
3099 /*
3100  * Determine the device's preferred I/O size for reads and writes
3101  * unless the reported value is unreasonably small, large, not a
3102  * multiple of the physical block size, or simply garbage.
3103  */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3104 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3105 				      unsigned int dev_max)
3106 {
3107 	struct scsi_device *sdp = sdkp->device;
3108 	unsigned int opt_xfer_bytes =
3109 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3110 
3111 	if (sdkp->opt_xfer_blocks == 0)
3112 		return false;
3113 
3114 	if (sdkp->opt_xfer_blocks > dev_max) {
3115 		sd_first_printk(KERN_WARNING, sdkp,
3116 				"Optimal transfer size %u logical blocks " \
3117 				"> dev_max (%u logical blocks)\n",
3118 				sdkp->opt_xfer_blocks, dev_max);
3119 		return false;
3120 	}
3121 
3122 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3123 		sd_first_printk(KERN_WARNING, sdkp,
3124 				"Optimal transfer size %u logical blocks " \
3125 				"> sd driver limit (%u logical blocks)\n",
3126 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3127 		return false;
3128 	}
3129 
3130 	if (opt_xfer_bytes < PAGE_SIZE) {
3131 		sd_first_printk(KERN_WARNING, sdkp,
3132 				"Optimal transfer size %u bytes < " \
3133 				"PAGE_SIZE (%u bytes)\n",
3134 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3135 		return false;
3136 	}
3137 
3138 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3139 		sd_first_printk(KERN_WARNING, sdkp,
3140 				"Optimal transfer size %u bytes not a " \
3141 				"multiple of physical block size (%u bytes)\n",
3142 				opt_xfer_bytes, sdkp->physical_block_size);
3143 		return false;
3144 	}
3145 
3146 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3147 			opt_xfer_bytes);
3148 	return true;
3149 }
3150 
3151 /**
3152  *	sd_revalidate_disk - called the first time a new disk is seen,
3153  *	performs disk spin up, read_capacity, etc.
3154  *	@disk: struct gendisk we care about
3155  **/
sd_revalidate_disk(struct gendisk * disk)3156 static int sd_revalidate_disk(struct gendisk *disk)
3157 {
3158 	struct scsi_disk *sdkp = scsi_disk(disk);
3159 	struct scsi_device *sdp = sdkp->device;
3160 	struct request_queue *q = sdkp->disk->queue;
3161 	sector_t old_capacity = sdkp->capacity;
3162 	unsigned char *buffer;
3163 	unsigned int dev_max, rw_max;
3164 
3165 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3166 				      "sd_revalidate_disk\n"));
3167 
3168 	/*
3169 	 * If the device is offline, don't try and read capacity or any
3170 	 * of the other niceties.
3171 	 */
3172 	if (!scsi_device_online(sdp))
3173 		goto out;
3174 
3175 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3176 	if (!buffer) {
3177 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3178 			  "allocation failure.\n");
3179 		goto out;
3180 	}
3181 
3182 	sd_spinup_disk(sdkp);
3183 
3184 	/*
3185 	 * Without media there is no reason to ask; moreover, some devices
3186 	 * react badly if we do.
3187 	 */
3188 	if (sdkp->media_present) {
3189 		sd_read_capacity(sdkp, buffer);
3190 
3191 		/*
3192 		 * set the default to rotational.  All non-rotational devices
3193 		 * support the block characteristics VPD page, which will
3194 		 * cause this to be updated correctly and any device which
3195 		 * doesn't support it should be treated as rotational.
3196 		 */
3197 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3198 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3199 
3200 		if (scsi_device_supports_vpd(sdp)) {
3201 			sd_read_block_provisioning(sdkp);
3202 			sd_read_block_limits(sdkp);
3203 			sd_read_block_characteristics(sdkp);
3204 			sd_zbc_read_zones(sdkp, buffer);
3205 		}
3206 
3207 		sd_print_capacity(sdkp, old_capacity);
3208 
3209 		sd_read_write_protect_flag(sdkp, buffer);
3210 		sd_read_cache_type(sdkp, buffer);
3211 		sd_read_app_tag_own(sdkp, buffer);
3212 		sd_read_write_same(sdkp, buffer);
3213 		sd_read_security(sdkp, buffer);
3214 	}
3215 
3216 	/*
3217 	 * We now have all cache related info, determine how we deal
3218 	 * with flush requests.
3219 	 */
3220 	sd_set_flush_flag(sdkp);
3221 
3222 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3223 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3224 
3225 	/* Some devices report a maximum block count for READ/WRITE requests. */
3226 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3227 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3228 
3229 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3230 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3231 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3232 	} else {
3233 		q->limits.io_opt = 0;
3234 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3235 				      (sector_t)BLK_DEF_MAX_SECTORS);
3236 	}
3237 
3238 	/* Do not exceed controller limit */
3239 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3240 
3241 	/*
3242 	 * Only update max_sectors if previously unset or if the current value
3243 	 * exceeds the capabilities of the hardware.
3244 	 */
3245 	if (sdkp->first_scan ||
3246 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3247 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3248 		q->limits.max_sectors = rw_max;
3249 
3250 	sdkp->first_scan = 0;
3251 
3252 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3253 	sd_config_write_same(sdkp);
3254 	kfree(buffer);
3255 
3256 	/*
3257 	 * For a zoned drive, revalidating the zones can be done only once
3258 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3259 	 * capacity to 0.
3260 	 */
3261 	if (sd_zbc_revalidate_zones(sdkp))
3262 		set_capacity_and_notify(disk, 0);
3263 
3264  out:
3265 	return 0;
3266 }
3267 
3268 /**
3269  *	sd_unlock_native_capacity - unlock native capacity
3270  *	@disk: struct gendisk to set capacity for
3271  *
3272  *	Block layer calls this function if it detects that partitions
3273  *	on @disk reach beyond the end of the device.  If the SCSI host
3274  *	implements ->unlock_native_capacity() method, it's invoked to
3275  *	give it a chance to adjust the device capacity.
3276  *
3277  *	CONTEXT:
3278  *	Defined by block layer.  Might sleep.
3279  */
sd_unlock_native_capacity(struct gendisk * disk)3280 static void sd_unlock_native_capacity(struct gendisk *disk)
3281 {
3282 	struct scsi_device *sdev = scsi_disk(disk)->device;
3283 
3284 	if (sdev->host->hostt->unlock_native_capacity)
3285 		sdev->host->hostt->unlock_native_capacity(sdev);
3286 }
3287 
3288 /**
3289  *	sd_format_disk_name - format disk name
3290  *	@prefix: name prefix - ie. "sd" for SCSI disks
3291  *	@index: index of the disk to format name for
3292  *	@buf: output buffer
3293  *	@buflen: length of the output buffer
3294  *
3295  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3296  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3297  *	which is followed by sdaaa.
3298  *
3299  *	This is basically 26 base counting with one extra 'nil' entry
3300  *	at the beginning from the second digit on and can be
3301  *	determined using similar method as 26 base conversion with the
3302  *	index shifted -1 after each digit is computed.
3303  *
3304  *	CONTEXT:
3305  *	Don't care.
3306  *
3307  *	RETURNS:
3308  *	0 on success, -errno on failure.
3309  */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3310 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3311 {
3312 	const int base = 'z' - 'a' + 1;
3313 	char *begin = buf + strlen(prefix);
3314 	char *end = buf + buflen;
3315 	char *p;
3316 	int unit;
3317 
3318 	p = end - 1;
3319 	*p = '\0';
3320 	unit = base;
3321 	do {
3322 		if (p == begin)
3323 			return -EINVAL;
3324 		*--p = 'a' + (index % unit);
3325 		index = (index / unit) - 1;
3326 	} while (index >= 0);
3327 
3328 	memmove(begin, p, end - p);
3329 	memcpy(buf, prefix, strlen(prefix));
3330 
3331 	return 0;
3332 }
3333 
3334 /**
3335  *	sd_probe - called during driver initialization and whenever a
3336  *	new scsi device is attached to the system. It is called once
3337  *	for each scsi device (not just disks) present.
3338  *	@dev: pointer to device object
3339  *
3340  *	Returns 0 if successful (or not interested in this scsi device
3341  *	(e.g. scanner)); 1 when there is an error.
3342  *
3343  *	Note: this function is invoked from the scsi mid-level.
3344  *	This function sets up the mapping between a given
3345  *	<host,channel,id,lun> (found in sdp) and new device name
3346  *	(e.g. /dev/sda). More precisely it is the block device major
3347  *	and minor number that is chosen here.
3348  *
3349  *	Assume sd_probe is not re-entrant (for time being)
3350  *	Also think about sd_probe() and sd_remove() running coincidentally.
3351  **/
sd_probe(struct device * dev)3352 static int sd_probe(struct device *dev)
3353 {
3354 	struct scsi_device *sdp = to_scsi_device(dev);
3355 	struct scsi_disk *sdkp;
3356 	struct gendisk *gd;
3357 	int index;
3358 	int error;
3359 
3360 	scsi_autopm_get_device(sdp);
3361 	error = -ENODEV;
3362 	if (sdp->type != TYPE_DISK &&
3363 	    sdp->type != TYPE_ZBC &&
3364 	    sdp->type != TYPE_MOD &&
3365 	    sdp->type != TYPE_RBC)
3366 		goto out;
3367 
3368 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3369 		sdev_printk(KERN_WARNING, sdp,
3370 			    "Unsupported ZBC host-managed device.\n");
3371 		goto out;
3372 	}
3373 
3374 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3375 					"sd_probe\n"));
3376 
3377 	error = -ENOMEM;
3378 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3379 	if (!sdkp)
3380 		goto out;
3381 
3382 	gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3383 			       &sd_bio_compl_lkclass);
3384 	if (!gd)
3385 		goto out_free;
3386 
3387 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3388 	if (index < 0) {
3389 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3390 		goto out_put;
3391 	}
3392 
3393 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3394 	if (error) {
3395 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3396 		goto out_free_index;
3397 	}
3398 
3399 	sdkp->device = sdp;
3400 	sdkp->driver = &sd_template;
3401 	sdkp->disk = gd;
3402 	sdkp->index = index;
3403 	sdkp->max_retries = SD_MAX_RETRIES;
3404 	atomic_set(&sdkp->openers, 0);
3405 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3406 
3407 	if (!sdp->request_queue->rq_timeout) {
3408 		if (sdp->type != TYPE_MOD)
3409 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3410 		else
3411 			blk_queue_rq_timeout(sdp->request_queue,
3412 					     SD_MOD_TIMEOUT);
3413 	}
3414 
3415 	device_initialize(&sdkp->dev);
3416 	sdkp->dev.parent = get_device(dev);
3417 	sdkp->dev.class = &sd_disk_class;
3418 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3419 
3420 	error = device_add(&sdkp->dev);
3421 	if (error) {
3422 		put_device(&sdkp->dev);
3423 		goto out;
3424 	}
3425 
3426 	dev_set_drvdata(dev, sdkp);
3427 
3428 	gd->major = sd_major((index & 0xf0) >> 4);
3429 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3430 	gd->minors = SD_MINORS;
3431 
3432 	gd->fops = &sd_fops;
3433 	gd->private_data = &sdkp->driver;
3434 
3435 	/* defaults, until the device tells us otherwise */
3436 	sdp->sector_size = 512;
3437 	sdkp->capacity = 0;
3438 	sdkp->media_present = 1;
3439 	sdkp->write_prot = 0;
3440 	sdkp->cache_override = 0;
3441 	sdkp->WCE = 0;
3442 	sdkp->RCD = 0;
3443 	sdkp->ATO = 0;
3444 	sdkp->first_scan = 1;
3445 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3446 
3447 	sd_revalidate_disk(gd);
3448 
3449 	gd->flags = GENHD_FL_EXT_DEVT;
3450 	if (sdp->removable) {
3451 		gd->flags |= GENHD_FL_REMOVABLE;
3452 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3453 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3454 	}
3455 
3456 	blk_pm_runtime_init(sdp->request_queue, dev);
3457 	if (sdp->rpm_autosuspend) {
3458 		pm_runtime_set_autosuspend_delay(dev,
3459 			sdp->host->hostt->rpm_autosuspend_delay);
3460 	}
3461 	device_add_disk(dev, gd, NULL);
3462 	if (sdkp->capacity)
3463 		sd_dif_config_host(sdkp);
3464 
3465 	sd_revalidate_disk(gd);
3466 
3467 	if (sdkp->security) {
3468 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3469 		if (sdkp->opal_dev)
3470 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3471 	}
3472 
3473 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3474 		  sdp->removable ? "removable " : "");
3475 	scsi_autopm_put_device(sdp);
3476 
3477 	return 0;
3478 
3479  out_free_index:
3480 	ida_free(&sd_index_ida, index);
3481  out_put:
3482 	put_disk(gd);
3483  out_free:
3484 	kfree(sdkp);
3485  out:
3486 	scsi_autopm_put_device(sdp);
3487 	return error;
3488 }
3489 
3490 /**
3491  *	sd_remove - called whenever a scsi disk (previously recognized by
3492  *	sd_probe) is detached from the system. It is called (potentially
3493  *	multiple times) during sd module unload.
3494  *	@dev: pointer to device object
3495  *
3496  *	Note: this function is invoked from the scsi mid-level.
3497  *	This function potentially frees up a device name (e.g. /dev/sdc)
3498  *	that could be re-used by a subsequent sd_probe().
3499  *	This function is not called when the built-in sd driver is "exit-ed".
3500  **/
sd_remove(struct device * dev)3501 static int sd_remove(struct device *dev)
3502 {
3503 	struct scsi_disk *sdkp;
3504 
3505 	sdkp = dev_get_drvdata(dev);
3506 	scsi_autopm_get_device(sdkp->device);
3507 
3508 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3509 	device_del(&sdkp->dev);
3510 	del_gendisk(sdkp->disk);
3511 	sd_shutdown(dev);
3512 
3513 	free_opal_dev(sdkp->opal_dev);
3514 
3515 	mutex_lock(&sd_ref_mutex);
3516 	dev_set_drvdata(dev, NULL);
3517 	put_device(&sdkp->dev);
3518 	mutex_unlock(&sd_ref_mutex);
3519 
3520 	return 0;
3521 }
3522 
3523 /**
3524  *	scsi_disk_release - Called to free the scsi_disk structure
3525  *	@dev: pointer to embedded class device
3526  *
3527  *	sd_ref_mutex must be held entering this routine.  Because it is
3528  *	called on last put, you should always use the scsi_disk_get()
3529  *	scsi_disk_put() helpers which manipulate the semaphore directly
3530  *	and never do a direct put_device.
3531  **/
scsi_disk_release(struct device * dev)3532 static void scsi_disk_release(struct device *dev)
3533 {
3534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3535 	struct gendisk *disk = sdkp->disk;
3536 	struct request_queue *q = disk->queue;
3537 
3538 	ida_free(&sd_index_ida, sdkp->index);
3539 
3540 	/*
3541 	 * Wait until all requests that are in progress have completed.
3542 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3543 	 * due to clearing the disk->private_data pointer. Wait from inside
3544 	 * scsi_disk_release() instead of from sd_release() to avoid that
3545 	 * freezing and unfreezing the request queue affects user space I/O
3546 	 * in case multiple processes open a /dev/sd... node concurrently.
3547 	 */
3548 	blk_mq_freeze_queue(q);
3549 	blk_mq_unfreeze_queue(q);
3550 
3551 	disk->private_data = NULL;
3552 	put_disk(disk);
3553 	put_device(&sdkp->device->sdev_gendev);
3554 
3555 	sd_zbc_release_disk(sdkp);
3556 
3557 	kfree(sdkp);
3558 }
3559 
sd_start_stop_device(struct scsi_disk * sdkp,int start)3560 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3561 {
3562 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3563 	struct scsi_sense_hdr sshdr;
3564 	struct scsi_device *sdp = sdkp->device;
3565 	int res;
3566 
3567 	if (start)
3568 		cmd[4] |= 1;	/* START */
3569 
3570 	if (sdp->start_stop_pwr_cond)
3571 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3572 
3573 	if (!scsi_device_online(sdp))
3574 		return -ENODEV;
3575 
3576 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3577 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3578 	if (res) {
3579 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3580 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3581 			sd_print_sense_hdr(sdkp, &sshdr);
3582 			/* 0x3a is medium not present */
3583 			if (sshdr.asc == 0x3a)
3584 				res = 0;
3585 		}
3586 	}
3587 
3588 	/* SCSI error codes must not go to the generic layer */
3589 	if (res)
3590 		return -EIO;
3591 
3592 	return 0;
3593 }
3594 
3595 /*
3596  * Send a SYNCHRONIZE CACHE instruction down to the device through
3597  * the normal SCSI command structure.  Wait for the command to
3598  * complete.
3599  */
sd_shutdown(struct device * dev)3600 static void sd_shutdown(struct device *dev)
3601 {
3602 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3603 
3604 	if (!sdkp)
3605 		return;         /* this can happen */
3606 
3607 	if (pm_runtime_suspended(dev))
3608 		return;
3609 
3610 	if (sdkp->WCE && sdkp->media_present) {
3611 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3612 		sd_sync_cache(sdkp, NULL);
3613 	}
3614 
3615 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3616 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3617 		sd_start_stop_device(sdkp, 0);
3618 	}
3619 }
3620 
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3621 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3622 {
3623 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3624 	struct scsi_sense_hdr sshdr;
3625 	int ret = 0;
3626 
3627 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3628 		return 0;
3629 
3630 	if (sdkp->WCE && sdkp->media_present) {
3631 		if (!sdkp->device->silence_suspend)
3632 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3633 		ret = sd_sync_cache(sdkp, &sshdr);
3634 
3635 		if (ret) {
3636 			/* ignore OFFLINE device */
3637 			if (ret == -ENODEV)
3638 				return 0;
3639 
3640 			if (!scsi_sense_valid(&sshdr) ||
3641 			    sshdr.sense_key != ILLEGAL_REQUEST)
3642 				return ret;
3643 
3644 			/*
3645 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3646 			 * doesn't support sync. There's not much to do and
3647 			 * suspend shouldn't fail.
3648 			 */
3649 			ret = 0;
3650 		}
3651 	}
3652 
3653 	if (sdkp->device->manage_start_stop) {
3654 		if (!sdkp->device->silence_suspend)
3655 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3656 		/* an error is not worth aborting a system sleep */
3657 		ret = sd_start_stop_device(sdkp, 0);
3658 		if (ignore_stop_errors)
3659 			ret = 0;
3660 	}
3661 
3662 	return ret;
3663 }
3664 
sd_suspend_system(struct device * dev)3665 static int sd_suspend_system(struct device *dev)
3666 {
3667 	return sd_suspend_common(dev, true);
3668 }
3669 
sd_suspend_runtime(struct device * dev)3670 static int sd_suspend_runtime(struct device *dev)
3671 {
3672 	return sd_suspend_common(dev, false);
3673 }
3674 
sd_resume(struct device * dev)3675 static int sd_resume(struct device *dev)
3676 {
3677 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3678 	int ret;
3679 
3680 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3681 		return 0;
3682 
3683 	if (!sdkp->device->manage_start_stop)
3684 		return 0;
3685 
3686 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3687 	ret = sd_start_stop_device(sdkp, 1);
3688 	if (!ret)
3689 		opal_unlock_from_suspend(sdkp->opal_dev);
3690 	return ret;
3691 }
3692 
sd_resume_runtime(struct device * dev)3693 static int sd_resume_runtime(struct device *dev)
3694 {
3695 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3696 	struct scsi_device *sdp;
3697 
3698 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3699 		return 0;
3700 
3701 	sdp = sdkp->device;
3702 
3703 	if (sdp->ignore_media_change) {
3704 		/* clear the device's sense data */
3705 		static const u8 cmd[10] = { REQUEST_SENSE };
3706 
3707 		if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3708 				 NULL, sdp->request_queue->rq_timeout, 1, 0,
3709 				 RQF_PM, NULL))
3710 			sd_printk(KERN_NOTICE, sdkp,
3711 				  "Failed to clear sense data\n");
3712 	}
3713 
3714 	return sd_resume(dev);
3715 }
3716 
3717 /**
3718  *	init_sd - entry point for this driver (both when built in or when
3719  *	a module).
3720  *
3721  *	Note: this function registers this driver with the scsi mid-level.
3722  **/
init_sd(void)3723 static int __init init_sd(void)
3724 {
3725 	int majors = 0, i, err;
3726 
3727 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3728 
3729 	for (i = 0; i < SD_MAJORS; i++) {
3730 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3731 			continue;
3732 		majors++;
3733 	}
3734 
3735 	if (!majors)
3736 		return -ENODEV;
3737 
3738 	err = class_register(&sd_disk_class);
3739 	if (err)
3740 		goto err_out;
3741 
3742 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3743 					 0, 0, NULL);
3744 	if (!sd_cdb_cache) {
3745 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3746 		err = -ENOMEM;
3747 		goto err_out_class;
3748 	}
3749 
3750 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3751 	if (!sd_cdb_pool) {
3752 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3753 		err = -ENOMEM;
3754 		goto err_out_cache;
3755 	}
3756 
3757 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3758 	if (!sd_page_pool) {
3759 		printk(KERN_ERR "sd: can't init discard page pool\n");
3760 		err = -ENOMEM;
3761 		goto err_out_ppool;
3762 	}
3763 
3764 	err = scsi_register_driver(&sd_template.gendrv);
3765 	if (err)
3766 		goto err_out_driver;
3767 
3768 	return 0;
3769 
3770 err_out_driver:
3771 	mempool_destroy(sd_page_pool);
3772 
3773 err_out_ppool:
3774 	mempool_destroy(sd_cdb_pool);
3775 
3776 err_out_cache:
3777 	kmem_cache_destroy(sd_cdb_cache);
3778 
3779 err_out_class:
3780 	class_unregister(&sd_disk_class);
3781 err_out:
3782 	for (i = 0; i < SD_MAJORS; i++)
3783 		unregister_blkdev(sd_major(i), "sd");
3784 	return err;
3785 }
3786 
3787 /**
3788  *	exit_sd - exit point for this driver (when it is a module).
3789  *
3790  *	Note: this function unregisters this driver from the scsi mid-level.
3791  **/
exit_sd(void)3792 static void __exit exit_sd(void)
3793 {
3794 	int i;
3795 
3796 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3797 
3798 	scsi_unregister_driver(&sd_template.gendrv);
3799 	mempool_destroy(sd_cdb_pool);
3800 	mempool_destroy(sd_page_pool);
3801 	kmem_cache_destroy(sd_cdb_cache);
3802 
3803 	class_unregister(&sd_disk_class);
3804 
3805 	for (i = 0; i < SD_MAJORS; i++)
3806 		unregister_blkdev(sd_major(i), "sd");
3807 }
3808 
3809 module_init(init_sd);
3810 module_exit(exit_sd);
3811 
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3812 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3813 {
3814 	scsi_print_sense_hdr(sdkp->device,
3815 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3816 }
3817 
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3818 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3819 {
3820 	const char *hb_string = scsi_hostbyte_string(result);
3821 
3822 	if (hb_string)
3823 		sd_printk(KERN_INFO, sdkp,
3824 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3825 			  hb_string ? hb_string : "invalid",
3826 			  "DRIVER_OK");
3827 	else
3828 		sd_printk(KERN_INFO, sdkp,
3829 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3830 			  msg, host_byte(result), "DRIVER_OK");
3831 }
3832