1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3
4 #include <linux/clk.h>
5 #include <linux/interrupt.h>
6 #include <linux/io.h>
7 #include <linux/log2.h>
8 #include <linux/module.h>
9 #include <linux/platform_device.h>
10 #include <linux/pm_opp.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/qcom-geni-se.h>
13 #include <linux/spi/spi.h>
14 #include <linux/spinlock.h>
15
16 /* SPI SE specific registers and respective register fields */
17 #define SE_SPI_CPHA 0x224
18 #define CPHA BIT(0)
19
20 #define SE_SPI_LOOPBACK 0x22c
21 #define LOOPBACK_ENABLE 0x1
22 #define NORMAL_MODE 0x0
23 #define LOOPBACK_MSK GENMASK(1, 0)
24
25 #define SE_SPI_CPOL 0x230
26 #define CPOL BIT(2)
27
28 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c
29 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
30
31 #define SE_SPI_DEMUX_SEL 0x250
32 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0)
33
34 #define SE_SPI_TRANS_CFG 0x25c
35 #define CS_TOGGLE BIT(1)
36
37 #define SE_SPI_WORD_LEN 0x268
38 #define WORD_LEN_MSK GENMASK(9, 0)
39 #define MIN_WORD_LEN 4
40
41 #define SE_SPI_TX_TRANS_LEN 0x26c
42 #define SE_SPI_RX_TRANS_LEN 0x270
43 #define TRANS_LEN_MSK GENMASK(23, 0)
44
45 #define SE_SPI_PRE_POST_CMD_DLY 0x274
46
47 #define SE_SPI_DELAY_COUNTERS 0x278
48 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0)
49 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10)
50 #define SPI_CS_CLK_DELAY_SHFT 10
51
52 /* M_CMD OP codes for SPI */
53 #define SPI_TX_ONLY 1
54 #define SPI_RX_ONLY 2
55 #define SPI_TX_RX 7
56 #define SPI_CS_ASSERT 8
57 #define SPI_CS_DEASSERT 9
58 #define SPI_SCK_ONLY 10
59 /* M_CMD params for SPI */
60 #define SPI_PRE_CMD_DELAY BIT(0)
61 #define TIMESTAMP_BEFORE BIT(1)
62 #define FRAGMENTATION BIT(2)
63 #define TIMESTAMP_AFTER BIT(3)
64 #define POST_CMD_DELAY BIT(4)
65
66 struct spi_geni_master {
67 struct geni_se se;
68 struct device *dev;
69 u32 tx_fifo_depth;
70 u32 fifo_width_bits;
71 u32 tx_wm;
72 u32 last_mode;
73 unsigned long cur_speed_hz;
74 unsigned long cur_sclk_hz;
75 unsigned int cur_bits_per_word;
76 unsigned int tx_rem_bytes;
77 unsigned int rx_rem_bytes;
78 const struct spi_transfer *cur_xfer;
79 struct completion cs_done;
80 struct completion cancel_done;
81 struct completion abort_done;
82 unsigned int oversampling;
83 spinlock_t lock;
84 int irq;
85 bool cs_flag;
86 bool abort_failed;
87 };
88
get_spi_clk_cfg(unsigned int speed_hz,struct spi_geni_master * mas,unsigned int * clk_idx,unsigned int * clk_div)89 static int get_spi_clk_cfg(unsigned int speed_hz,
90 struct spi_geni_master *mas,
91 unsigned int *clk_idx,
92 unsigned int *clk_div)
93 {
94 unsigned long sclk_freq;
95 unsigned int actual_hz;
96 int ret;
97
98 ret = geni_se_clk_freq_match(&mas->se,
99 speed_hz * mas->oversampling,
100 clk_idx, &sclk_freq, false);
101 if (ret) {
102 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
103 ret, speed_hz);
104 return ret;
105 }
106
107 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
108 actual_hz = sclk_freq / (mas->oversampling * *clk_div);
109
110 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
111 actual_hz, sclk_freq, *clk_idx, *clk_div);
112 ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
113 if (ret)
114 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
115 else
116 mas->cur_sclk_hz = sclk_freq;
117
118 return ret;
119 }
120
handle_fifo_timeout(struct spi_master * spi,struct spi_message * msg)121 static void handle_fifo_timeout(struct spi_master *spi,
122 struct spi_message *msg)
123 {
124 struct spi_geni_master *mas = spi_master_get_devdata(spi);
125 unsigned long time_left;
126 struct geni_se *se = &mas->se;
127
128 spin_lock_irq(&mas->lock);
129 reinit_completion(&mas->cancel_done);
130 writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
131 mas->cur_xfer = NULL;
132 geni_se_cancel_m_cmd(se);
133 spin_unlock_irq(&mas->lock);
134
135 time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
136 if (time_left)
137 return;
138
139 spin_lock_irq(&mas->lock);
140 reinit_completion(&mas->abort_done);
141 geni_se_abort_m_cmd(se);
142 spin_unlock_irq(&mas->lock);
143
144 time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
145 if (!time_left) {
146 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
147
148 /*
149 * No need for a lock since SPI core has a lock and we never
150 * access this from an interrupt.
151 */
152 mas->abort_failed = true;
153 }
154 }
155
spi_geni_is_abort_still_pending(struct spi_geni_master * mas)156 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
157 {
158 struct geni_se *se = &mas->se;
159 u32 m_irq, m_irq_en;
160
161 if (!mas->abort_failed)
162 return false;
163
164 /*
165 * The only known case where a transfer times out and then a cancel
166 * times out then an abort times out is if something is blocking our
167 * interrupt handler from running. Avoid starting any new transfers
168 * until that sorts itself out.
169 */
170 spin_lock_irq(&mas->lock);
171 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
172 m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
173 spin_unlock_irq(&mas->lock);
174
175 if (m_irq & m_irq_en) {
176 dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
177 m_irq & m_irq_en);
178 return true;
179 }
180
181 /*
182 * If we're here the problem resolved itself so no need to check more
183 * on future transfers.
184 */
185 mas->abort_failed = false;
186
187 return false;
188 }
189
spi_geni_set_cs(struct spi_device * slv,bool set_flag)190 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
191 {
192 struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
193 struct spi_master *spi = dev_get_drvdata(mas->dev);
194 struct geni_se *se = &mas->se;
195 unsigned long time_left;
196
197 if (!(slv->mode & SPI_CS_HIGH))
198 set_flag = !set_flag;
199
200 if (set_flag == mas->cs_flag)
201 return;
202
203 pm_runtime_get_sync(mas->dev);
204
205 if (spi_geni_is_abort_still_pending(mas)) {
206 dev_err(mas->dev, "Can't set chip select\n");
207 goto exit;
208 }
209
210 spin_lock_irq(&mas->lock);
211 if (mas->cur_xfer) {
212 dev_err(mas->dev, "Can't set CS when prev xfer running\n");
213 spin_unlock_irq(&mas->lock);
214 goto exit;
215 }
216
217 mas->cs_flag = set_flag;
218 reinit_completion(&mas->cs_done);
219 if (set_flag)
220 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
221 else
222 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
223 spin_unlock_irq(&mas->lock);
224
225 time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
226 if (!time_left) {
227 dev_warn(mas->dev, "Timeout setting chip select\n");
228 handle_fifo_timeout(spi, NULL);
229 }
230
231 exit:
232 pm_runtime_put(mas->dev);
233 }
234
spi_setup_word_len(struct spi_geni_master * mas,u16 mode,unsigned int bits_per_word)235 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
236 unsigned int bits_per_word)
237 {
238 unsigned int pack_words;
239 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
240 struct geni_se *se = &mas->se;
241 u32 word_len;
242
243 /*
244 * If bits_per_word isn't a byte aligned value, set the packing to be
245 * 1 SPI word per FIFO word.
246 */
247 if (!(mas->fifo_width_bits % bits_per_word))
248 pack_words = mas->fifo_width_bits / bits_per_word;
249 else
250 pack_words = 1;
251 geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
252 true, true);
253 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
254 writel(word_len, se->base + SE_SPI_WORD_LEN);
255 }
256
geni_spi_set_clock_and_bw(struct spi_geni_master * mas,unsigned long clk_hz)257 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
258 unsigned long clk_hz)
259 {
260 u32 clk_sel, m_clk_cfg, idx, div;
261 struct geni_se *se = &mas->se;
262 int ret;
263
264 if (clk_hz == mas->cur_speed_hz)
265 return 0;
266
267 ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
268 if (ret) {
269 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
270 return ret;
271 }
272
273 /*
274 * SPI core clock gets configured with the requested frequency
275 * or the frequency closer to the requested frequency.
276 * For that reason requested frequency is stored in the
277 * cur_speed_hz and referred in the consecutive transfer instead
278 * of calling clk_get_rate() API.
279 */
280 mas->cur_speed_hz = clk_hz;
281
282 clk_sel = idx & CLK_SEL_MSK;
283 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
284 writel(clk_sel, se->base + SE_GENI_CLK_SEL);
285 writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
286
287 /* Set BW quota for CPU as driver supports FIFO mode only. */
288 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
289 ret = geni_icc_set_bw(se);
290 if (ret)
291 return ret;
292
293 return 0;
294 }
295
setup_fifo_params(struct spi_device * spi_slv,struct spi_master * spi)296 static int setup_fifo_params(struct spi_device *spi_slv,
297 struct spi_master *spi)
298 {
299 struct spi_geni_master *mas = spi_master_get_devdata(spi);
300 struct geni_se *se = &mas->se;
301 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
302 u32 demux_sel;
303
304 if (mas->last_mode != spi_slv->mode) {
305 if (spi_slv->mode & SPI_LOOP)
306 loopback_cfg = LOOPBACK_ENABLE;
307
308 if (spi_slv->mode & SPI_CPOL)
309 cpol = CPOL;
310
311 if (spi_slv->mode & SPI_CPHA)
312 cpha = CPHA;
313
314 if (spi_slv->mode & SPI_CS_HIGH)
315 demux_output_inv = BIT(spi_slv->chip_select);
316
317 demux_sel = spi_slv->chip_select;
318 mas->cur_bits_per_word = spi_slv->bits_per_word;
319
320 spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
321 writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
322 writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
323 writel(cpha, se->base + SE_SPI_CPHA);
324 writel(cpol, se->base + SE_SPI_CPOL);
325 writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
326
327 mas->last_mode = spi_slv->mode;
328 }
329
330 return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
331 }
332
spi_geni_prepare_message(struct spi_master * spi,struct spi_message * spi_msg)333 static int spi_geni_prepare_message(struct spi_master *spi,
334 struct spi_message *spi_msg)
335 {
336 int ret;
337 struct spi_geni_master *mas = spi_master_get_devdata(spi);
338
339 if (spi_geni_is_abort_still_pending(mas))
340 return -EBUSY;
341
342 ret = setup_fifo_params(spi_msg->spi, spi);
343 if (ret)
344 dev_err(mas->dev, "Couldn't select mode %d\n", ret);
345 return ret;
346 }
347
spi_geni_init(struct spi_geni_master * mas)348 static int spi_geni_init(struct spi_geni_master *mas)
349 {
350 struct geni_se *se = &mas->se;
351 unsigned int proto, major, minor, ver;
352 u32 spi_tx_cfg;
353
354 pm_runtime_get_sync(mas->dev);
355
356 proto = geni_se_read_proto(se);
357 if (proto != GENI_SE_SPI) {
358 dev_err(mas->dev, "Invalid proto %d\n", proto);
359 pm_runtime_put(mas->dev);
360 return -ENXIO;
361 }
362 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
363
364 /* Width of Tx and Rx FIFO is same */
365 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
366
367 /*
368 * Hardware programming guide suggests to configure
369 * RX FIFO RFR level to fifo_depth-2.
370 */
371 geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
372 /* Transmit an entire FIFO worth of data per IRQ */
373 mas->tx_wm = 1;
374 ver = geni_se_get_qup_hw_version(se);
375 major = GENI_SE_VERSION_MAJOR(ver);
376 minor = GENI_SE_VERSION_MINOR(ver);
377
378 if (major == 1 && minor == 0)
379 mas->oversampling = 2;
380 else
381 mas->oversampling = 1;
382
383 geni_se_select_mode(se, GENI_SE_FIFO);
384
385 /* We always control CS manually */
386 spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
387 spi_tx_cfg &= ~CS_TOGGLE;
388 writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
389
390 pm_runtime_put(mas->dev);
391 return 0;
392 }
393
geni_byte_per_fifo_word(struct spi_geni_master * mas)394 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
395 {
396 /*
397 * Calculate how many bytes we'll put in each FIFO word. If the
398 * transfer words don't pack cleanly into a FIFO word we'll just put
399 * one transfer word in each FIFO word. If they do pack we'll pack 'em.
400 */
401 if (mas->fifo_width_bits % mas->cur_bits_per_word)
402 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
403 BITS_PER_BYTE));
404
405 return mas->fifo_width_bits / BITS_PER_BYTE;
406 }
407
geni_spi_handle_tx(struct spi_geni_master * mas)408 static bool geni_spi_handle_tx(struct spi_geni_master *mas)
409 {
410 struct geni_se *se = &mas->se;
411 unsigned int max_bytes;
412 const u8 *tx_buf;
413 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
414 unsigned int i = 0;
415
416 /* Stop the watermark IRQ if nothing to send */
417 if (!mas->cur_xfer) {
418 writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
419 return false;
420 }
421
422 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
423 if (mas->tx_rem_bytes < max_bytes)
424 max_bytes = mas->tx_rem_bytes;
425
426 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
427 while (i < max_bytes) {
428 unsigned int j;
429 unsigned int bytes_to_write;
430 u32 fifo_word = 0;
431 u8 *fifo_byte = (u8 *)&fifo_word;
432
433 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
434 for (j = 0; j < bytes_to_write; j++)
435 fifo_byte[j] = tx_buf[i++];
436 iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
437 }
438 mas->tx_rem_bytes -= max_bytes;
439 if (!mas->tx_rem_bytes) {
440 writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
441 return false;
442 }
443 return true;
444 }
445
geni_spi_handle_rx(struct spi_geni_master * mas)446 static void geni_spi_handle_rx(struct spi_geni_master *mas)
447 {
448 struct geni_se *se = &mas->se;
449 u32 rx_fifo_status;
450 unsigned int rx_bytes;
451 unsigned int rx_last_byte_valid;
452 u8 *rx_buf;
453 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
454 unsigned int i = 0;
455
456 rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
457 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
458 if (rx_fifo_status & RX_LAST) {
459 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
460 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
461 if (rx_last_byte_valid && rx_last_byte_valid < 4)
462 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
463 }
464
465 /* Clear out the FIFO and bail if nowhere to put it */
466 if (!mas->cur_xfer) {
467 for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
468 readl(se->base + SE_GENI_RX_FIFOn);
469 return;
470 }
471
472 if (mas->rx_rem_bytes < rx_bytes)
473 rx_bytes = mas->rx_rem_bytes;
474
475 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
476 while (i < rx_bytes) {
477 u32 fifo_word = 0;
478 u8 *fifo_byte = (u8 *)&fifo_word;
479 unsigned int bytes_to_read;
480 unsigned int j;
481
482 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
483 ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
484 for (j = 0; j < bytes_to_read; j++)
485 rx_buf[i++] = fifo_byte[j];
486 }
487 mas->rx_rem_bytes -= rx_bytes;
488 }
489
setup_fifo_xfer(struct spi_transfer * xfer,struct spi_geni_master * mas,u16 mode,struct spi_master * spi)490 static void setup_fifo_xfer(struct spi_transfer *xfer,
491 struct spi_geni_master *mas,
492 u16 mode, struct spi_master *spi)
493 {
494 u32 m_cmd = 0;
495 u32 len;
496 struct geni_se *se = &mas->se;
497 int ret;
498
499 /*
500 * Ensure that our interrupt handler isn't still running from some
501 * prior command before we start messing with the hardware behind
502 * its back. We don't need to _keep_ the lock here since we're only
503 * worried about racing with out interrupt handler. The SPI core
504 * already handles making sure that we're not trying to do two
505 * transfers at once or setting a chip select and doing a transfer
506 * concurrently.
507 *
508 * NOTE: we actually _can't_ hold the lock here because possibly we
509 * might call clk_set_rate() which needs to be able to sleep.
510 */
511 spin_lock_irq(&mas->lock);
512 spin_unlock_irq(&mas->lock);
513
514 if (xfer->bits_per_word != mas->cur_bits_per_word) {
515 spi_setup_word_len(mas, mode, xfer->bits_per_word);
516 mas->cur_bits_per_word = xfer->bits_per_word;
517 }
518
519 /* Speed and bits per word can be overridden per transfer */
520 ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
521 if (ret)
522 return;
523
524 mas->tx_rem_bytes = 0;
525 mas->rx_rem_bytes = 0;
526
527 if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
528 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
529 else
530 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
531 len &= TRANS_LEN_MSK;
532
533 mas->cur_xfer = xfer;
534 if (xfer->tx_buf) {
535 m_cmd |= SPI_TX_ONLY;
536 mas->tx_rem_bytes = xfer->len;
537 writel(len, se->base + SE_SPI_TX_TRANS_LEN);
538 }
539
540 if (xfer->rx_buf) {
541 m_cmd |= SPI_RX_ONLY;
542 writel(len, se->base + SE_SPI_RX_TRANS_LEN);
543 mas->rx_rem_bytes = xfer->len;
544 }
545
546 /*
547 * Lock around right before we start the transfer since our
548 * interrupt could come in at any time now.
549 */
550 spin_lock_irq(&mas->lock);
551 geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
552 if (m_cmd & SPI_TX_ONLY) {
553 if (geni_spi_handle_tx(mas))
554 writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
555 }
556 spin_unlock_irq(&mas->lock);
557 }
558
spi_geni_transfer_one(struct spi_master * spi,struct spi_device * slv,struct spi_transfer * xfer)559 static int spi_geni_transfer_one(struct spi_master *spi,
560 struct spi_device *slv,
561 struct spi_transfer *xfer)
562 {
563 struct spi_geni_master *mas = spi_master_get_devdata(spi);
564
565 if (spi_geni_is_abort_still_pending(mas))
566 return -EBUSY;
567
568 /* Terminate and return success for 0 byte length transfer */
569 if (!xfer->len)
570 return 0;
571
572 setup_fifo_xfer(xfer, mas, slv->mode, spi);
573 return 1;
574 }
575
geni_spi_isr(int irq,void * data)576 static irqreturn_t geni_spi_isr(int irq, void *data)
577 {
578 struct spi_master *spi = data;
579 struct spi_geni_master *mas = spi_master_get_devdata(spi);
580 struct geni_se *se = &mas->se;
581 u32 m_irq;
582
583 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
584 if (!m_irq)
585 return IRQ_NONE;
586
587 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
588 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
589 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
590 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
591
592 spin_lock(&mas->lock);
593
594 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
595 geni_spi_handle_rx(mas);
596
597 if (m_irq & M_TX_FIFO_WATERMARK_EN)
598 geni_spi_handle_tx(mas);
599
600 if (m_irq & M_CMD_DONE_EN) {
601 if (mas->cur_xfer) {
602 spi_finalize_current_transfer(spi);
603 mas->cur_xfer = NULL;
604 /*
605 * If this happens, then a CMD_DONE came before all the
606 * Tx buffer bytes were sent out. This is unusual, log
607 * this condition and disable the WM interrupt to
608 * prevent the system from stalling due an interrupt
609 * storm.
610 *
611 * If this happens when all Rx bytes haven't been
612 * received, log the condition. The only known time
613 * this can happen is if bits_per_word != 8 and some
614 * registers that expect xfer lengths in num spi_words
615 * weren't written correctly.
616 */
617 if (mas->tx_rem_bytes) {
618 writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
619 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
620 mas->tx_rem_bytes, mas->cur_bits_per_word);
621 }
622 if (mas->rx_rem_bytes)
623 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
624 mas->rx_rem_bytes, mas->cur_bits_per_word);
625 } else {
626 complete(&mas->cs_done);
627 }
628 }
629
630 if (m_irq & M_CMD_CANCEL_EN)
631 complete(&mas->cancel_done);
632 if (m_irq & M_CMD_ABORT_EN)
633 complete(&mas->abort_done);
634
635 /*
636 * It's safe or a good idea to Ack all of our interrupts at the end
637 * of the function. Specifically:
638 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
639 * clearing Acks. Clearing at the end relies on nobody else having
640 * started a new transfer yet or else we could be clearing _their_
641 * done bit, but everyone grabs the spinlock before starting a new
642 * transfer.
643 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
644 * to be "latched level" interrupts so it's important to clear them
645 * _after_ you've handled the condition and always safe to do so
646 * since they'll re-assert if they're still happening.
647 */
648 writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
649
650 spin_unlock(&mas->lock);
651
652 return IRQ_HANDLED;
653 }
654
spi_geni_probe(struct platform_device * pdev)655 static int spi_geni_probe(struct platform_device *pdev)
656 {
657 int ret, irq;
658 struct spi_master *spi;
659 struct spi_geni_master *mas;
660 void __iomem *base;
661 struct clk *clk;
662 struct device *dev = &pdev->dev;
663
664 irq = platform_get_irq(pdev, 0);
665 if (irq < 0)
666 return irq;
667
668 base = devm_platform_ioremap_resource(pdev, 0);
669 if (IS_ERR(base))
670 return PTR_ERR(base);
671
672 clk = devm_clk_get(dev, "se");
673 if (IS_ERR(clk))
674 return PTR_ERR(clk);
675
676 spi = devm_spi_alloc_master(dev, sizeof(*mas));
677 if (!spi)
678 return -ENOMEM;
679
680 platform_set_drvdata(pdev, spi);
681 mas = spi_master_get_devdata(spi);
682 mas->irq = irq;
683 mas->dev = dev;
684 mas->se.dev = dev;
685 mas->se.wrapper = dev_get_drvdata(dev->parent);
686 mas->se.base = base;
687 mas->se.clk = clk;
688
689 ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
690 if (ret)
691 return ret;
692 /* OPP table is optional */
693 ret = devm_pm_opp_of_add_table(&pdev->dev);
694 if (ret && ret != -ENODEV) {
695 dev_err(&pdev->dev, "invalid OPP table in device tree\n");
696 return ret;
697 }
698
699 spi->bus_num = -1;
700 spi->dev.of_node = dev->of_node;
701 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
702 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
703 spi->num_chipselect = 4;
704 spi->max_speed_hz = 50000000;
705 spi->prepare_message = spi_geni_prepare_message;
706 spi->transfer_one = spi_geni_transfer_one;
707 spi->auto_runtime_pm = true;
708 spi->handle_err = handle_fifo_timeout;
709 spi->set_cs = spi_geni_set_cs;
710 spi->use_gpio_descriptors = true;
711
712 init_completion(&mas->cs_done);
713 init_completion(&mas->cancel_done);
714 init_completion(&mas->abort_done);
715 spin_lock_init(&mas->lock);
716 pm_runtime_use_autosuspend(&pdev->dev);
717 pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
718 pm_runtime_enable(dev);
719
720 ret = geni_icc_get(&mas->se, NULL);
721 if (ret)
722 goto spi_geni_probe_runtime_disable;
723 /* Set the bus quota to a reasonable value for register access */
724 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
725 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
726
727 ret = geni_icc_set_bw(&mas->se);
728 if (ret)
729 goto spi_geni_probe_runtime_disable;
730
731 ret = spi_geni_init(mas);
732 if (ret)
733 goto spi_geni_probe_runtime_disable;
734
735 ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
736 if (ret)
737 goto spi_geni_probe_runtime_disable;
738
739 ret = spi_register_master(spi);
740 if (ret)
741 goto spi_geni_probe_free_irq;
742
743 return 0;
744 spi_geni_probe_free_irq:
745 free_irq(mas->irq, spi);
746 spi_geni_probe_runtime_disable:
747 pm_runtime_disable(dev);
748 return ret;
749 }
750
spi_geni_remove(struct platform_device * pdev)751 static int spi_geni_remove(struct platform_device *pdev)
752 {
753 struct spi_master *spi = platform_get_drvdata(pdev);
754 struct spi_geni_master *mas = spi_master_get_devdata(spi);
755
756 /* Unregister _before_ disabling pm_runtime() so we stop transfers */
757 spi_unregister_master(spi);
758
759 free_irq(mas->irq, spi);
760 pm_runtime_disable(&pdev->dev);
761 return 0;
762 }
763
spi_geni_runtime_suspend(struct device * dev)764 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
765 {
766 struct spi_master *spi = dev_get_drvdata(dev);
767 struct spi_geni_master *mas = spi_master_get_devdata(spi);
768 int ret;
769
770 /* Drop the performance state vote */
771 dev_pm_opp_set_rate(dev, 0);
772
773 ret = geni_se_resources_off(&mas->se);
774 if (ret)
775 return ret;
776
777 return geni_icc_disable(&mas->se);
778 }
779
spi_geni_runtime_resume(struct device * dev)780 static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
781 {
782 struct spi_master *spi = dev_get_drvdata(dev);
783 struct spi_geni_master *mas = spi_master_get_devdata(spi);
784 int ret;
785
786 ret = geni_icc_enable(&mas->se);
787 if (ret)
788 return ret;
789
790 ret = geni_se_resources_on(&mas->se);
791 if (ret)
792 return ret;
793
794 return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
795 }
796
spi_geni_suspend(struct device * dev)797 static int __maybe_unused spi_geni_suspend(struct device *dev)
798 {
799 struct spi_master *spi = dev_get_drvdata(dev);
800 int ret;
801
802 ret = spi_master_suspend(spi);
803 if (ret)
804 return ret;
805
806 ret = pm_runtime_force_suspend(dev);
807 if (ret)
808 spi_master_resume(spi);
809
810 return ret;
811 }
812
spi_geni_resume(struct device * dev)813 static int __maybe_unused spi_geni_resume(struct device *dev)
814 {
815 struct spi_master *spi = dev_get_drvdata(dev);
816 int ret;
817
818 ret = pm_runtime_force_resume(dev);
819 if (ret)
820 return ret;
821
822 ret = spi_master_resume(spi);
823 if (ret)
824 pm_runtime_force_suspend(dev);
825
826 return ret;
827 }
828
829 static const struct dev_pm_ops spi_geni_pm_ops = {
830 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
831 spi_geni_runtime_resume, NULL)
832 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
833 };
834
835 static const struct of_device_id spi_geni_dt_match[] = {
836 { .compatible = "qcom,geni-spi" },
837 {}
838 };
839 MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
840
841 static struct platform_driver spi_geni_driver = {
842 .probe = spi_geni_probe,
843 .remove = spi_geni_remove,
844 .driver = {
845 .name = "geni_spi",
846 .pm = &spi_geni_pm_ops,
847 .of_match_table = spi_geni_dt_match,
848 },
849 };
850 module_platform_driver(spi_geni_driver);
851
852 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
853 MODULE_LICENSE("GPL v2");
854