• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21 
22 #define DRIVER_NAME "spi_stm32"
23 
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1			0x00
26 #define STM32F4_SPI_CR2			0x04
27 #define STM32F4_SPI_SR			0x08
28 #define STM32F4_SPI_DR			0x0C
29 #define STM32F4_SPI_I2SCFGR		0x1C
30 
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA		BIT(0)
33 #define STM32F4_SPI_CR1_CPOL		BIT(1)
34 #define STM32F4_SPI_CR1_MSTR		BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT	3
36 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE		BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39 #define STM32F4_SPI_CR1_SSI		BIT(8)
40 #define STM32F4_SPI_CR1_SSM		BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
42 #define STM32F4_SPI_CR1_DFF		BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN		0
48 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49 
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53 #define STM32F4_SPI_CR2_SSOE		BIT(2)
54 #define STM32F4_SPI_CR2_FRF		BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
58 
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE		BIT(0)
61 #define STM32F4_SPI_SR_TXE		BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
63 #define STM32F4_SPI_SR_UDR		BIT(3)
64 #define STM32F4_SPI_SR_CRCERR		BIT(4)
65 #define STM32F4_SPI_SR_MODF		BIT(5)
66 #define STM32F4_SPI_SR_OVR		BIT(6)
67 #define STM32F4_SPI_SR_BSY		BIT(7)
68 #define STM32F4_SPI_SR_FRE		BIT(8)
69 
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72 
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76 
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1			0x00
79 #define STM32H7_SPI_CR2			0x04
80 #define STM32H7_SPI_CFG1		0x08
81 #define STM32H7_SPI_CFG2		0x0C
82 #define STM32H7_SPI_IER			0x10
83 #define STM32H7_SPI_SR			0x14
84 #define STM32H7_SPI_IFCR		0x18
85 #define STM32H7_SPI_TXDR		0x20
86 #define STM32H7_SPI_RXDR		0x30
87 #define STM32H7_SPI_I2SCFGR		0x50
88 
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE		BIT(0)
91 #define STM32H7_SPI_CR1_MASRX		BIT(8)
92 #define STM32H7_SPI_CR1_CSTART		BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
95 #define STM32H7_SPI_CR1_SSI		BIT(12)
96 
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100 
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
119 #define STM32H7_SPI_CFG2_SSM		BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
121 
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE		BIT(0)
124 #define STM32H7_SPI_IER_TXPIE		BIT(1)
125 #define STM32H7_SPI_IER_DXPIE		BIT(2)
126 #define STM32H7_SPI_IER_EOTIE		BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
128 #define STM32H7_SPI_IER_OVRIE		BIT(6)
129 #define STM32H7_SPI_IER_MODFIE		BIT(9)
130 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
131 
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP		BIT(0)
134 #define STM32H7_SPI_SR_TXP		BIT(1)
135 #define STM32H7_SPI_SR_EOT		BIT(3)
136 #define STM32H7_SPI_SR_OVR		BIT(6)
137 #define STM32H7_SPI_SR_MODF		BIT(9)
138 #define STM32H7_SPI_SR_SUSP		BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE		BIT(15)
141 
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
144 
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
147 
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
151 
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX		0
154 #define STM32H7_SPI_SIMPLEX_TX		1
155 #define STM32H7_SPI_SIMPLEX_RX		2
156 #define STM32H7_SPI_HALF_DUPLEX		3
157 
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX		0
160 #define SPI_SIMPLEX_TX		1
161 #define SPI_SIMPLEX_RX		2
162 #define SPI_3WIRE_TX		3
163 #define SPI_3WIRE_RX		4
164 
165 #define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
166 
167 /*
168  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
169  * without fifo buffers.
170  */
171 #define SPI_DMA_MIN_BYTES	16
172 
173 /**
174  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
175  * @reg:		register offset
176  * @mask:		bitfield mask
177  * @shift:		left shift
178  */
179 struct stm32_spi_reg {
180 	int reg;
181 	int mask;
182 	int shift;
183 };
184 
185 /**
186  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
187  * @en: enable register and SPI enable bit
188  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
189  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
190  * @cpol: clock polarity register and polarity bit
191  * @cpha: clock phase register and phase bit
192  * @lsb_first: LSB transmitted first register and bit
193  * @br: baud rate register and bitfields
194  * @rx: SPI RX data register
195  * @tx: SPI TX data register
196  */
197 struct stm32_spi_regspec {
198 	const struct stm32_spi_reg en;
199 	const struct stm32_spi_reg dma_rx_en;
200 	const struct stm32_spi_reg dma_tx_en;
201 	const struct stm32_spi_reg cpol;
202 	const struct stm32_spi_reg cpha;
203 	const struct stm32_spi_reg lsb_first;
204 	const struct stm32_spi_reg br;
205 	const struct stm32_spi_reg rx;
206 	const struct stm32_spi_reg tx;
207 };
208 
209 struct stm32_spi;
210 
211 /**
212  * struct stm32_spi_cfg - stm32 compatible configuration data
213  * @regs: registers descriptions
214  * @get_fifo_size: routine to get fifo size
215  * @get_bpw_mask: routine to get bits per word mask
216  * @disable: routine to disable controller
217  * @config: routine to configure controller as SPI Master
218  * @set_bpw: routine to configure registers to for bits per word
219  * @set_mode: routine to configure registers to desired mode
220  * @set_data_idleness: optional routine to configure registers to desired idle
221  * time between frames (if driver has this functionality)
222  * @set_number_of_data: optional routine to configure registers to desired
223  * number of data (if driver has this functionality)
224  * @can_dma: routine to determine if the transfer is eligible for DMA use
225  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
226  * using DMA
227  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
228  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
229  * @transfer_one_irq: routine to configure interrupts for driver
230  * @irq_handler_event: Interrupt handler for SPI controller events
231  * @irq_handler_thread: thread of interrupt handler for SPI controller
232  * @baud_rate_div_min: minimum baud rate divisor
233  * @baud_rate_div_max: maximum baud rate divisor
234  * @has_fifo: boolean to know if fifo is used for driver
235  * @has_startbit: boolean to know if start bit is used to start transfer
236  */
237 struct stm32_spi_cfg {
238 	const struct stm32_spi_regspec *regs;
239 	int (*get_fifo_size)(struct stm32_spi *spi);
240 	int (*get_bpw_mask)(struct stm32_spi *spi);
241 	void (*disable)(struct stm32_spi *spi);
242 	int (*config)(struct stm32_spi *spi);
243 	void (*set_bpw)(struct stm32_spi *spi);
244 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
245 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
246 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
247 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
248 	void (*dma_rx_cb)(void *data);
249 	void (*dma_tx_cb)(void *data);
250 	int (*transfer_one_irq)(struct stm32_spi *spi);
251 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
252 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
253 	unsigned int baud_rate_div_min;
254 	unsigned int baud_rate_div_max;
255 	bool has_fifo;
256 };
257 
258 /**
259  * struct stm32_spi - private data of the SPI controller
260  * @dev: driver model representation of the controller
261  * @master: controller master interface
262  * @cfg: compatible configuration data
263  * @base: virtual memory area
264  * @clk: hw kernel clock feeding the SPI clock generator
265  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
266  * @lock: prevent I/O concurrent access
267  * @irq: SPI controller interrupt line
268  * @fifo_size: size of the embedded fifo in bytes
269  * @cur_midi: master inter-data idleness in ns
270  * @cur_speed: speed configured in Hz
271  * @cur_half_period: time of a half bit in us
272  * @cur_bpw: number of bits in a single SPI data frame
273  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
274  * @cur_comm: SPI communication mode
275  * @cur_xferlen: current transfer length in bytes
276  * @cur_usedma: boolean to know if dma is used in current transfer
277  * @tx_buf: data to be written, or NULL
278  * @rx_buf: data to be read, or NULL
279  * @tx_len: number of data to be written in bytes
280  * @rx_len: number of data to be read in bytes
281  * @dma_tx: dma channel for TX transfer
282  * @dma_rx: dma channel for RX transfer
283  * @phys_addr: SPI registers physical base address
284  */
285 struct stm32_spi {
286 	struct device *dev;
287 	struct spi_master *master;
288 	const struct stm32_spi_cfg *cfg;
289 	void __iomem *base;
290 	struct clk *clk;
291 	u32 clk_rate;
292 	spinlock_t lock; /* prevent I/O concurrent access */
293 	int irq;
294 	unsigned int fifo_size;
295 
296 	unsigned int cur_midi;
297 	unsigned int cur_speed;
298 	unsigned int cur_half_period;
299 	unsigned int cur_bpw;
300 	unsigned int cur_fthlv;
301 	unsigned int cur_comm;
302 	unsigned int cur_xferlen;
303 	bool cur_usedma;
304 
305 	const void *tx_buf;
306 	void *rx_buf;
307 	int tx_len;
308 	int rx_len;
309 	struct dma_chan *dma_tx;
310 	struct dma_chan *dma_rx;
311 	dma_addr_t phys_addr;
312 };
313 
314 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
315 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
316 
317 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
318 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
319 
320 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
321 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
322 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
323 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
324 
325 	.rx = { STM32F4_SPI_DR },
326 	.tx = { STM32F4_SPI_DR },
327 };
328 
329 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
330 	/* SPI data transfer is enabled but spi_ker_ck is idle.
331 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
332 	 */
333 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
334 
335 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
336 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
337 
338 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
339 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
340 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
341 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
342 		STM32H7_SPI_CFG1_MBR_SHIFT },
343 
344 	.rx = { STM32H7_SPI_RXDR },
345 	.tx = { STM32H7_SPI_TXDR },
346 };
347 
stm32_spi_set_bits(struct stm32_spi * spi,u32 offset,u32 bits)348 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
349 				      u32 offset, u32 bits)
350 {
351 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
352 		       spi->base + offset);
353 }
354 
stm32_spi_clr_bits(struct stm32_spi * spi,u32 offset,u32 bits)355 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
356 				      u32 offset, u32 bits)
357 {
358 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
359 		       spi->base + offset);
360 }
361 
362 /**
363  * stm32h7_spi_get_fifo_size - Return fifo size
364  * @spi: pointer to the spi controller data structure
365  */
stm32h7_spi_get_fifo_size(struct stm32_spi * spi)366 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
367 {
368 	unsigned long flags;
369 	u32 count = 0;
370 
371 	spin_lock_irqsave(&spi->lock, flags);
372 
373 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
374 
375 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
376 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
377 
378 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 
380 	spin_unlock_irqrestore(&spi->lock, flags);
381 
382 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
383 
384 	return count;
385 }
386 
387 /**
388  * stm32f4_spi_get_bpw_mask - Return bits per word mask
389  * @spi: pointer to the spi controller data structure
390  */
stm32f4_spi_get_bpw_mask(struct stm32_spi * spi)391 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
392 {
393 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
394 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
395 }
396 
397 /**
398  * stm32h7_spi_get_bpw_mask - Return bits per word mask
399  * @spi: pointer to the spi controller data structure
400  */
stm32h7_spi_get_bpw_mask(struct stm32_spi * spi)401 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
402 {
403 	unsigned long flags;
404 	u32 cfg1, max_bpw;
405 
406 	spin_lock_irqsave(&spi->lock, flags);
407 
408 	/*
409 	 * The most significant bit at DSIZE bit field is reserved when the
410 	 * maximum data size of periperal instances is limited to 16-bit
411 	 */
412 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
413 
414 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
415 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
416 
417 	spin_unlock_irqrestore(&spi->lock, flags);
418 
419 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
420 
421 	return SPI_BPW_RANGE_MASK(4, max_bpw);
422 }
423 
424 /**
425  * stm32_spi_prepare_mbr - Determine baud rate divisor value
426  * @spi: pointer to the spi controller data structure
427  * @speed_hz: requested speed
428  * @min_div: minimum baud rate divisor
429  * @max_div: maximum baud rate divisor
430  *
431  * Return baud rate divisor value in case of success or -EINVAL
432  */
stm32_spi_prepare_mbr(struct stm32_spi * spi,u32 speed_hz,u32 min_div,u32 max_div)433 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
434 				 u32 min_div, u32 max_div)
435 {
436 	u32 div, mbrdiv;
437 
438 	/* Ensure spi->clk_rate is even */
439 	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
440 
441 	/*
442 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
443 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
444 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
445 	 * no need to check it there.
446 	 * However, we need to ensure the following calculations.
447 	 */
448 	if ((div < min_div) || (div > max_div))
449 		return -EINVAL;
450 
451 	/* Determine the first power of 2 greater than or equal to div */
452 	if (div & (div - 1))
453 		mbrdiv = fls(div);
454 	else
455 		mbrdiv = fls(div) - 1;
456 
457 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
458 
459 	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
460 
461 	return mbrdiv - 1;
462 }
463 
464 /**
465  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
466  * @spi: pointer to the spi controller data structure
467  * @xfer_len: length of the message to be transferred
468  */
stm32h7_spi_prepare_fthlv(struct stm32_spi * spi,u32 xfer_len)469 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
470 {
471 	u32 packet, bpw;
472 
473 	/* data packet should not exceed 1/2 of fifo space */
474 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
475 
476 	/* align packet size with data registers access */
477 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
478 	return DIV_ROUND_UP(packet, bpw);
479 }
480 
481 /**
482  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
483  * @spi: pointer to the spi controller data structure
484  *
485  * Read from tx_buf depends on remaining bytes to avoid to read beyond
486  * tx_buf end.
487  */
stm32f4_spi_write_tx(struct stm32_spi * spi)488 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
489 {
490 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
491 				  STM32F4_SPI_SR_TXE)) {
492 		u32 offs = spi->cur_xferlen - spi->tx_len;
493 
494 		if (spi->cur_bpw == 16) {
495 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
496 
497 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
498 			spi->tx_len -= sizeof(u16);
499 		} else {
500 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
501 
502 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
503 			spi->tx_len -= sizeof(u8);
504 		}
505 	}
506 
507 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
508 }
509 
510 /**
511  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
512  * @spi: pointer to the spi controller data structure
513  *
514  * Read from tx_buf depends on remaining bytes to avoid to read beyond
515  * tx_buf end.
516  */
stm32h7_spi_write_txfifo(struct stm32_spi * spi)517 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
518 {
519 	while ((spi->tx_len > 0) &&
520 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
521 			STM32H7_SPI_SR_TXP)) {
522 		u32 offs = spi->cur_xferlen - spi->tx_len;
523 
524 		if (spi->tx_len >= sizeof(u32)) {
525 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
526 
527 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
528 			spi->tx_len -= sizeof(u32);
529 		} else if (spi->tx_len >= sizeof(u16)) {
530 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
531 
532 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
533 			spi->tx_len -= sizeof(u16);
534 		} else {
535 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
536 
537 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
538 			spi->tx_len -= sizeof(u8);
539 		}
540 	}
541 
542 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
543 }
544 
545 /**
546  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
547  * @spi: pointer to the spi controller data structure
548  *
549  * Write in rx_buf depends on remaining bytes to avoid to write beyond
550  * rx_buf end.
551  */
stm32f4_spi_read_rx(struct stm32_spi * spi)552 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
553 {
554 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
555 				  STM32F4_SPI_SR_RXNE)) {
556 		u32 offs = spi->cur_xferlen - spi->rx_len;
557 
558 		if (spi->cur_bpw == 16) {
559 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
560 
561 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
562 			spi->rx_len -= sizeof(u16);
563 		} else {
564 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
565 
566 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
567 			spi->rx_len -= sizeof(u8);
568 		}
569 	}
570 
571 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
572 }
573 
574 /**
575  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
576  * @spi: pointer to the spi controller data structure
577  *
578  * Write in rx_buf depends on remaining bytes to avoid to write beyond
579  * rx_buf end.
580  */
stm32h7_spi_read_rxfifo(struct stm32_spi * spi)581 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
582 {
583 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
584 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
585 
586 	while ((spi->rx_len > 0) &&
587 	       ((sr & STM32H7_SPI_SR_RXP) ||
588 		((sr & STM32H7_SPI_SR_EOT) &&
589 		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
590 		u32 offs = spi->cur_xferlen - spi->rx_len;
591 
592 		if ((spi->rx_len >= sizeof(u32)) ||
593 		    (sr & STM32H7_SPI_SR_RXWNE)) {
594 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
595 
596 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
597 			spi->rx_len -= sizeof(u32);
598 		} else if ((spi->rx_len >= sizeof(u16)) ||
599 			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
600 			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
601 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
602 
603 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
604 			spi->rx_len -= sizeof(u16);
605 		} else {
606 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
607 
608 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
609 			spi->rx_len -= sizeof(u8);
610 		}
611 
612 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
613 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
614 	}
615 
616 	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
617 		__func__, spi->rx_len, sr);
618 }
619 
620 /**
621  * stm32_spi_enable - Enable SPI controller
622  * @spi: pointer to the spi controller data structure
623  */
stm32_spi_enable(struct stm32_spi * spi)624 static void stm32_spi_enable(struct stm32_spi *spi)
625 {
626 	dev_dbg(spi->dev, "enable controller\n");
627 
628 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
629 			   spi->cfg->regs->en.mask);
630 }
631 
632 /**
633  * stm32f4_spi_disable - Disable SPI controller
634  * @spi: pointer to the spi controller data structure
635  */
stm32f4_spi_disable(struct stm32_spi * spi)636 static void stm32f4_spi_disable(struct stm32_spi *spi)
637 {
638 	unsigned long flags;
639 	u32 sr;
640 
641 	dev_dbg(spi->dev, "disable controller\n");
642 
643 	spin_lock_irqsave(&spi->lock, flags);
644 
645 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
646 	      STM32F4_SPI_CR1_SPE)) {
647 		spin_unlock_irqrestore(&spi->lock, flags);
648 		return;
649 	}
650 
651 	/* Disable interrupts */
652 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
653 						 STM32F4_SPI_CR2_RXNEIE |
654 						 STM32F4_SPI_CR2_ERRIE);
655 
656 	/* Wait until BSY = 0 */
657 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
658 					      sr, !(sr & STM32F4_SPI_SR_BSY),
659 					      10, 100000) < 0) {
660 		dev_warn(spi->dev, "disabling condition timeout\n");
661 	}
662 
663 	if (spi->cur_usedma && spi->dma_tx)
664 		dmaengine_terminate_all(spi->dma_tx);
665 	if (spi->cur_usedma && spi->dma_rx)
666 		dmaengine_terminate_all(spi->dma_rx);
667 
668 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
669 
670 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
671 						 STM32F4_SPI_CR2_RXDMAEN);
672 
673 	/* Sequence to clear OVR flag */
674 	readl_relaxed(spi->base + STM32F4_SPI_DR);
675 	readl_relaxed(spi->base + STM32F4_SPI_SR);
676 
677 	spin_unlock_irqrestore(&spi->lock, flags);
678 }
679 
680 /**
681  * stm32h7_spi_disable - Disable SPI controller
682  * @spi: pointer to the spi controller data structure
683  *
684  * RX-Fifo is flushed when SPI controller is disabled.
685  */
stm32h7_spi_disable(struct stm32_spi * spi)686 static void stm32h7_spi_disable(struct stm32_spi *spi)
687 {
688 	unsigned long flags;
689 	u32 cr1;
690 
691 	dev_dbg(spi->dev, "disable controller\n");
692 
693 	spin_lock_irqsave(&spi->lock, flags);
694 
695 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
696 
697 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
698 		spin_unlock_irqrestore(&spi->lock, flags);
699 		return;
700 	}
701 
702 	/* Add a delay to make sure that transmission is ended. */
703 	if (spi->cur_half_period)
704 		udelay(spi->cur_half_period);
705 
706 	if (spi->cur_usedma && spi->dma_tx)
707 		dmaengine_terminate_all(spi->dma_tx);
708 	if (spi->cur_usedma && spi->dma_rx)
709 		dmaengine_terminate_all(spi->dma_rx);
710 
711 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
712 
713 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
714 						STM32H7_SPI_CFG1_RXDMAEN);
715 
716 	/* Disable interrupts and clear status flags */
717 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
718 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
719 
720 	spin_unlock_irqrestore(&spi->lock, flags);
721 }
722 
723 /**
724  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
725  * @master: controller master interface
726  * @spi_dev: pointer to the spi device
727  * @transfer: pointer to spi transfer
728  *
729  * If driver has fifo and the current transfer size is greater than fifo size,
730  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
731  */
stm32_spi_can_dma(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)732 static bool stm32_spi_can_dma(struct spi_master *master,
733 			      struct spi_device *spi_dev,
734 			      struct spi_transfer *transfer)
735 {
736 	unsigned int dma_size;
737 	struct stm32_spi *spi = spi_master_get_devdata(master);
738 
739 	if (spi->cfg->has_fifo)
740 		dma_size = spi->fifo_size;
741 	else
742 		dma_size = SPI_DMA_MIN_BYTES;
743 
744 	dev_dbg(spi->dev, "%s: %s\n", __func__,
745 		(transfer->len > dma_size) ? "true" : "false");
746 
747 	return (transfer->len > dma_size);
748 }
749 
750 /**
751  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
752  * @irq: interrupt line
753  * @dev_id: SPI controller master interface
754  */
stm32f4_spi_irq_event(int irq,void * dev_id)755 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
756 {
757 	struct spi_master *master = dev_id;
758 	struct stm32_spi *spi = spi_master_get_devdata(master);
759 	u32 sr, mask = 0;
760 	bool end = false;
761 
762 	spin_lock(&spi->lock);
763 
764 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
765 	/*
766 	 * BSY flag is not handled in interrupt but it is normal behavior when
767 	 * this flag is set.
768 	 */
769 	sr &= ~STM32F4_SPI_SR_BSY;
770 
771 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
772 				 spi->cur_comm == SPI_3WIRE_TX)) {
773 		/* OVR flag shouldn't be handled for TX only mode */
774 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
775 		mask |= STM32F4_SPI_SR_TXE;
776 	}
777 
778 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
779 				spi->cur_comm == SPI_SIMPLEX_RX ||
780 				spi->cur_comm == SPI_3WIRE_RX)) {
781 		/* TXE flag is set and is handled when RXNE flag occurs */
782 		sr &= ~STM32F4_SPI_SR_TXE;
783 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
784 	}
785 
786 	if (!(sr & mask)) {
787 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
788 		spin_unlock(&spi->lock);
789 		return IRQ_NONE;
790 	}
791 
792 	if (sr & STM32F4_SPI_SR_OVR) {
793 		dev_warn(spi->dev, "Overrun: received value discarded\n");
794 
795 		/* Sequence to clear OVR flag */
796 		readl_relaxed(spi->base + STM32F4_SPI_DR);
797 		readl_relaxed(spi->base + STM32F4_SPI_SR);
798 
799 		/*
800 		 * If overrun is detected, it means that something went wrong,
801 		 * so stop the current transfer. Transfer can wait for next
802 		 * RXNE but DR is already read and end never happens.
803 		 */
804 		end = true;
805 		goto end_irq;
806 	}
807 
808 	if (sr & STM32F4_SPI_SR_TXE) {
809 		if (spi->tx_buf)
810 			stm32f4_spi_write_tx(spi);
811 		if (spi->tx_len == 0)
812 			end = true;
813 	}
814 
815 	if (sr & STM32F4_SPI_SR_RXNE) {
816 		stm32f4_spi_read_rx(spi);
817 		if (spi->rx_len == 0)
818 			end = true;
819 		else if (spi->tx_buf)/* Load data for discontinuous mode */
820 			stm32f4_spi_write_tx(spi);
821 	}
822 
823 end_irq:
824 	if (end) {
825 		/* Immediately disable interrupts to do not generate new one */
826 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
827 					STM32F4_SPI_CR2_TXEIE |
828 					STM32F4_SPI_CR2_RXNEIE |
829 					STM32F4_SPI_CR2_ERRIE);
830 		spin_unlock(&spi->lock);
831 		return IRQ_WAKE_THREAD;
832 	}
833 
834 	spin_unlock(&spi->lock);
835 	return IRQ_HANDLED;
836 }
837 
838 /**
839  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
840  * @irq: interrupt line
841  * @dev_id: SPI controller master interface
842  */
stm32f4_spi_irq_thread(int irq,void * dev_id)843 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
844 {
845 	struct spi_master *master = dev_id;
846 	struct stm32_spi *spi = spi_master_get_devdata(master);
847 
848 	spi_finalize_current_transfer(master);
849 	stm32f4_spi_disable(spi);
850 
851 	return IRQ_HANDLED;
852 }
853 
854 /**
855  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
856  * @irq: interrupt line
857  * @dev_id: SPI controller master interface
858  */
stm32h7_spi_irq_thread(int irq,void * dev_id)859 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
860 {
861 	struct spi_master *master = dev_id;
862 	struct stm32_spi *spi = spi_master_get_devdata(master);
863 	u32 sr, ier, mask;
864 	unsigned long flags;
865 	bool end = false;
866 
867 	spin_lock_irqsave(&spi->lock, flags);
868 
869 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
870 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
871 
872 	mask = ier;
873 	/*
874 	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
875 	 * SUSP to acknowledge it later. TXC is automatically cleared
876 	 */
877 
878 	mask |= STM32H7_SPI_SR_SUSP;
879 	/*
880 	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
881 	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
882 	 */
883 	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
884 		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
885 
886 	if (!(sr & mask)) {
887 		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
888 			 sr, ier);
889 		spin_unlock_irqrestore(&spi->lock, flags);
890 		return IRQ_NONE;
891 	}
892 
893 	if (sr & STM32H7_SPI_SR_SUSP) {
894 		static DEFINE_RATELIMIT_STATE(rs,
895 					      DEFAULT_RATELIMIT_INTERVAL * 10,
896 					      1);
897 		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
898 		if (__ratelimit(&rs))
899 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
900 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
901 			stm32h7_spi_read_rxfifo(spi);
902 		/*
903 		 * If communication is suspended while using DMA, it means
904 		 * that something went wrong, so stop the current transfer
905 		 */
906 		if (spi->cur_usedma)
907 			end = true;
908 	}
909 
910 	if (sr & STM32H7_SPI_SR_MODF) {
911 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
912 		end = true;
913 	}
914 
915 	if (sr & STM32H7_SPI_SR_OVR) {
916 		dev_err(spi->dev, "Overrun: RX data lost\n");
917 		end = true;
918 	}
919 
920 	if (sr & STM32H7_SPI_SR_EOT) {
921 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
922 			stm32h7_spi_read_rxfifo(spi);
923 		if (!spi->cur_usedma ||
924 		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
925 			end = true;
926 	}
927 
928 	if (sr & STM32H7_SPI_SR_TXP)
929 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
930 			stm32h7_spi_write_txfifo(spi);
931 
932 	if (sr & STM32H7_SPI_SR_RXP)
933 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
934 			stm32h7_spi_read_rxfifo(spi);
935 
936 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
937 
938 	spin_unlock_irqrestore(&spi->lock, flags);
939 
940 	if (end) {
941 		stm32h7_spi_disable(spi);
942 		spi_finalize_current_transfer(master);
943 	}
944 
945 	return IRQ_HANDLED;
946 }
947 
948 /**
949  * stm32_spi_prepare_msg - set up the controller to transfer a single message
950  * @master: controller master interface
951  * @msg: pointer to spi message
952  */
stm32_spi_prepare_msg(struct spi_master * master,struct spi_message * msg)953 static int stm32_spi_prepare_msg(struct spi_master *master,
954 				 struct spi_message *msg)
955 {
956 	struct stm32_spi *spi = spi_master_get_devdata(master);
957 	struct spi_device *spi_dev = msg->spi;
958 	struct device_node *np = spi_dev->dev.of_node;
959 	unsigned long flags;
960 	u32 clrb = 0, setb = 0;
961 
962 	/* SPI slave device may need time between data frames */
963 	spi->cur_midi = 0;
964 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
965 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
966 
967 	if (spi_dev->mode & SPI_CPOL)
968 		setb |= spi->cfg->regs->cpol.mask;
969 	else
970 		clrb |= spi->cfg->regs->cpol.mask;
971 
972 	if (spi_dev->mode & SPI_CPHA)
973 		setb |= spi->cfg->regs->cpha.mask;
974 	else
975 		clrb |= spi->cfg->regs->cpha.mask;
976 
977 	if (spi_dev->mode & SPI_LSB_FIRST)
978 		setb |= spi->cfg->regs->lsb_first.mask;
979 	else
980 		clrb |= spi->cfg->regs->lsb_first.mask;
981 
982 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
983 		!!(spi_dev->mode & SPI_CPOL),
984 		!!(spi_dev->mode & SPI_CPHA),
985 		!!(spi_dev->mode & SPI_LSB_FIRST),
986 		!!(spi_dev->mode & SPI_CS_HIGH));
987 
988 	/* On STM32H7, messages should not exceed a maximum size setted
989 	 * afterward via the set_number_of_data function. In order to
990 	 * ensure that, split large messages into several messages
991 	 */
992 	if (spi->cfg->set_number_of_data) {
993 		int ret;
994 
995 		ret = spi_split_transfers_maxsize(master, msg,
996 						  STM32H7_SPI_TSIZE_MAX,
997 						  GFP_KERNEL | GFP_DMA);
998 		if (ret)
999 			return ret;
1000 	}
1001 
1002 	spin_lock_irqsave(&spi->lock, flags);
1003 
1004 	/* CPOL, CPHA and LSB FIRST bits have common register */
1005 	if (clrb || setb)
1006 		writel_relaxed(
1007 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1008 			 ~clrb) | setb,
1009 			spi->base + spi->cfg->regs->cpol.reg);
1010 
1011 	spin_unlock_irqrestore(&spi->lock, flags);
1012 
1013 	return 0;
1014 }
1015 
1016 /**
1017  * stm32f4_spi_dma_tx_cb - dma callback
1018  * @data: pointer to the spi controller data structure
1019  *
1020  * DMA callback is called when the transfer is complete for DMA TX channel.
1021  */
stm32f4_spi_dma_tx_cb(void * data)1022 static void stm32f4_spi_dma_tx_cb(void *data)
1023 {
1024 	struct stm32_spi *spi = data;
1025 
1026 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1027 		spi_finalize_current_transfer(spi->master);
1028 		stm32f4_spi_disable(spi);
1029 	}
1030 }
1031 
1032 /**
1033  * stm32_spi_dma_rx_cb - dma callback
1034  * @data: pointer to the spi controller data structure
1035  *
1036  * DMA callback is called when the transfer is complete for DMA RX channel.
1037  */
stm32_spi_dma_rx_cb(void * data)1038 static void stm32_spi_dma_rx_cb(void *data)
1039 {
1040 	struct stm32_spi *spi = data;
1041 
1042 	spi_finalize_current_transfer(spi->master);
1043 	spi->cfg->disable(spi);
1044 }
1045 
1046 /**
1047  * stm32_spi_dma_config - configure dma slave channel depending on current
1048  *			  transfer bits_per_word.
1049  * @spi: pointer to the spi controller data structure
1050  * @dma_conf: pointer to the dma_slave_config structure
1051  * @dir: direction of the dma transfer
1052  */
stm32_spi_dma_config(struct stm32_spi * spi,struct dma_slave_config * dma_conf,enum dma_transfer_direction dir)1053 static void stm32_spi_dma_config(struct stm32_spi *spi,
1054 				 struct dma_slave_config *dma_conf,
1055 				 enum dma_transfer_direction dir)
1056 {
1057 	enum dma_slave_buswidth buswidth;
1058 	u32 maxburst;
1059 
1060 	if (spi->cur_bpw <= 8)
1061 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1062 	else if (spi->cur_bpw <= 16)
1063 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1064 	else
1065 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1066 
1067 	if (spi->cfg->has_fifo) {
1068 		/* Valid for DMA Half or Full Fifo threshold */
1069 		if (spi->cur_fthlv == 2)
1070 			maxburst = 1;
1071 		else
1072 			maxburst = spi->cur_fthlv;
1073 	} else {
1074 		maxburst = 1;
1075 	}
1076 
1077 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1078 	dma_conf->direction = dir;
1079 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1080 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1081 		dma_conf->src_addr_width = buswidth;
1082 		dma_conf->src_maxburst = maxburst;
1083 
1084 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1085 			buswidth, maxburst);
1086 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1087 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1088 		dma_conf->dst_addr_width = buswidth;
1089 		dma_conf->dst_maxburst = maxburst;
1090 
1091 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1092 			buswidth, maxburst);
1093 	}
1094 }
1095 
1096 /**
1097  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1098  *				  interrupts
1099  * @spi: pointer to the spi controller data structure
1100  *
1101  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1102  * in progress.
1103  */
stm32f4_spi_transfer_one_irq(struct stm32_spi * spi)1104 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1105 {
1106 	unsigned long flags;
1107 	u32 cr2 = 0;
1108 
1109 	/* Enable the interrupts relative to the current communication mode */
1110 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1111 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1112 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1113 				spi->cur_comm == SPI_SIMPLEX_RX ||
1114 				spi->cur_comm == SPI_3WIRE_RX) {
1115 		/* In transmit-only mode, the OVR flag is set in the SR register
1116 		 * since the received data are never read. Therefore set OVR
1117 		 * interrupt only when rx buffer is available.
1118 		 */
1119 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1120 	} else {
1121 		return -EINVAL;
1122 	}
1123 
1124 	spin_lock_irqsave(&spi->lock, flags);
1125 
1126 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1127 
1128 	stm32_spi_enable(spi);
1129 
1130 	/* starting data transfer when buffer is loaded */
1131 	if (spi->tx_buf)
1132 		stm32f4_spi_write_tx(spi);
1133 
1134 	spin_unlock_irqrestore(&spi->lock, flags);
1135 
1136 	return 1;
1137 }
1138 
1139 /**
1140  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1141  *				  interrupts
1142  * @spi: pointer to the spi controller data structure
1143  *
1144  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1145  * in progress.
1146  */
stm32h7_spi_transfer_one_irq(struct stm32_spi * spi)1147 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1148 {
1149 	unsigned long flags;
1150 	u32 ier = 0;
1151 
1152 	/* Enable the interrupts relative to the current communication mode */
1153 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1154 		ier |= STM32H7_SPI_IER_DXPIE;
1155 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1156 		ier |= STM32H7_SPI_IER_TXPIE;
1157 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1158 		ier |= STM32H7_SPI_IER_RXPIE;
1159 
1160 	/* Enable the interrupts relative to the end of transfer */
1161 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1162 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1163 
1164 	spin_lock_irqsave(&spi->lock, flags);
1165 
1166 	stm32_spi_enable(spi);
1167 
1168 	/* Be sure to have data in fifo before starting data transfer */
1169 	if (spi->tx_buf)
1170 		stm32h7_spi_write_txfifo(spi);
1171 
1172 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1173 
1174 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1175 
1176 	spin_unlock_irqrestore(&spi->lock, flags);
1177 
1178 	return 1;
1179 }
1180 
1181 /**
1182  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1183  *					transfer using DMA
1184  * @spi: pointer to the spi controller data structure
1185  */
stm32f4_spi_transfer_one_dma_start(struct stm32_spi * spi)1186 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1187 {
1188 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1189 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1190 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1191 		/*
1192 		 * In transmit-only mode, the OVR flag is set in the SR register
1193 		 * since the received data are never read. Therefore set OVR
1194 		 * interrupt only when rx buffer is available.
1195 		 */
1196 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1197 	}
1198 
1199 	stm32_spi_enable(spi);
1200 }
1201 
1202 /**
1203  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1204  *					transfer using DMA
1205  * @spi: pointer to the spi controller data structure
1206  */
stm32h7_spi_transfer_one_dma_start(struct stm32_spi * spi)1207 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1208 {
1209 	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1210 
1211 	/* Enable the interrupts */
1212 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1213 		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1214 
1215 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1216 
1217 	stm32_spi_enable(spi);
1218 
1219 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1220 }
1221 
1222 /**
1223  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1224  * @spi: pointer to the spi controller data structure
1225  * @xfer: pointer to the spi_transfer structure
1226  *
1227  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1228  * in progress.
1229  */
stm32_spi_transfer_one_dma(struct stm32_spi * spi,struct spi_transfer * xfer)1230 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1231 				      struct spi_transfer *xfer)
1232 {
1233 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1234 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&spi->lock, flags);
1238 
1239 	rx_dma_desc = NULL;
1240 	if (spi->rx_buf && spi->dma_rx) {
1241 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1242 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1243 
1244 		/* Enable Rx DMA request */
1245 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1246 				   spi->cfg->regs->dma_rx_en.mask);
1247 
1248 		rx_dma_desc = dmaengine_prep_slave_sg(
1249 					spi->dma_rx, xfer->rx_sg.sgl,
1250 					xfer->rx_sg.nents,
1251 					rx_dma_conf.direction,
1252 					DMA_PREP_INTERRUPT);
1253 	}
1254 
1255 	tx_dma_desc = NULL;
1256 	if (spi->tx_buf && spi->dma_tx) {
1257 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1258 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1259 
1260 		tx_dma_desc = dmaengine_prep_slave_sg(
1261 					spi->dma_tx, xfer->tx_sg.sgl,
1262 					xfer->tx_sg.nents,
1263 					tx_dma_conf.direction,
1264 					DMA_PREP_INTERRUPT);
1265 	}
1266 
1267 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1268 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1269 		goto dma_desc_error;
1270 
1271 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1272 		goto dma_desc_error;
1273 
1274 	if (rx_dma_desc) {
1275 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1276 		rx_dma_desc->callback_param = spi;
1277 
1278 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1279 			dev_err(spi->dev, "Rx DMA submit failed\n");
1280 			goto dma_desc_error;
1281 		}
1282 		/* Enable Rx DMA channel */
1283 		dma_async_issue_pending(spi->dma_rx);
1284 	}
1285 
1286 	if (tx_dma_desc) {
1287 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1288 		    spi->cur_comm == SPI_3WIRE_TX) {
1289 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1290 			tx_dma_desc->callback_param = spi;
1291 		}
1292 
1293 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1294 			dev_err(spi->dev, "Tx DMA submit failed\n");
1295 			goto dma_submit_error;
1296 		}
1297 		/* Enable Tx DMA channel */
1298 		dma_async_issue_pending(spi->dma_tx);
1299 
1300 		/* Enable Tx DMA request */
1301 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1302 				   spi->cfg->regs->dma_tx_en.mask);
1303 	}
1304 
1305 	spi->cfg->transfer_one_dma_start(spi);
1306 
1307 	spin_unlock_irqrestore(&spi->lock, flags);
1308 
1309 	return 1;
1310 
1311 dma_submit_error:
1312 	if (spi->dma_rx)
1313 		dmaengine_terminate_all(spi->dma_rx);
1314 
1315 dma_desc_error:
1316 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1317 			   spi->cfg->regs->dma_rx_en.mask);
1318 
1319 	spin_unlock_irqrestore(&spi->lock, flags);
1320 
1321 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1322 
1323 	spi->cur_usedma = false;
1324 	return spi->cfg->transfer_one_irq(spi);
1325 }
1326 
1327 /**
1328  * stm32f4_spi_set_bpw - Configure bits per word
1329  * @spi: pointer to the spi controller data structure
1330  */
stm32f4_spi_set_bpw(struct stm32_spi * spi)1331 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1332 {
1333 	if (spi->cur_bpw == 16)
1334 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1335 	else
1336 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1337 }
1338 
1339 /**
1340  * stm32h7_spi_set_bpw - configure bits per word
1341  * @spi: pointer to the spi controller data structure
1342  */
stm32h7_spi_set_bpw(struct stm32_spi * spi)1343 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1344 {
1345 	u32 bpw, fthlv;
1346 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1347 
1348 	bpw = spi->cur_bpw - 1;
1349 
1350 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1351 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1352 
1353 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1354 	fthlv = spi->cur_fthlv - 1;
1355 
1356 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1357 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1358 
1359 	writel_relaxed(
1360 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1361 		 ~cfg1_clrb) | cfg1_setb,
1362 		spi->base + STM32H7_SPI_CFG1);
1363 }
1364 
1365 /**
1366  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1367  * @spi: pointer to the spi controller data structure
1368  * @mbrdiv: baud rate divisor value
1369  */
stm32_spi_set_mbr(struct stm32_spi * spi,u32 mbrdiv)1370 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1371 {
1372 	u32 clrb = 0, setb = 0;
1373 
1374 	clrb |= spi->cfg->regs->br.mask;
1375 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1376 
1377 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1378 			~clrb) | setb,
1379 		       spi->base + spi->cfg->regs->br.reg);
1380 }
1381 
1382 /**
1383  * stm32_spi_communication_type - return transfer communication type
1384  * @spi_dev: pointer to the spi device
1385  * @transfer: pointer to spi transfer
1386  */
stm32_spi_communication_type(struct spi_device * spi_dev,struct spi_transfer * transfer)1387 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1388 						 struct spi_transfer *transfer)
1389 {
1390 	unsigned int type = SPI_FULL_DUPLEX;
1391 
1392 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1393 		/*
1394 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1395 		 * is forbidden and unvalidated by SPI subsystem so depending
1396 		 * on the valid buffer, we can determine the direction of the
1397 		 * transfer.
1398 		 */
1399 		if (!transfer->tx_buf)
1400 			type = SPI_3WIRE_RX;
1401 		else
1402 			type = SPI_3WIRE_TX;
1403 	} else {
1404 		if (!transfer->tx_buf)
1405 			type = SPI_SIMPLEX_RX;
1406 		else if (!transfer->rx_buf)
1407 			type = SPI_SIMPLEX_TX;
1408 	}
1409 
1410 	return type;
1411 }
1412 
1413 /**
1414  * stm32f4_spi_set_mode - configure communication mode
1415  * @spi: pointer to the spi controller data structure
1416  * @comm_type: type of communication to configure
1417  */
stm32f4_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1418 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1419 {
1420 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1421 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1422 					STM32F4_SPI_CR1_BIDIMODE |
1423 					STM32F4_SPI_CR1_BIDIOE);
1424 	} else if (comm_type == SPI_FULL_DUPLEX ||
1425 				comm_type == SPI_SIMPLEX_RX) {
1426 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1427 					STM32F4_SPI_CR1_BIDIMODE |
1428 					STM32F4_SPI_CR1_BIDIOE);
1429 	} else if (comm_type == SPI_3WIRE_RX) {
1430 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1431 					STM32F4_SPI_CR1_BIDIMODE);
1432 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1433 					STM32F4_SPI_CR1_BIDIOE);
1434 	} else {
1435 		return -EINVAL;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * stm32h7_spi_set_mode - configure communication mode
1443  * @spi: pointer to the spi controller data structure
1444  * @comm_type: type of communication to configure
1445  */
stm32h7_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1446 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1447 {
1448 	u32 mode;
1449 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1450 
1451 	if (comm_type == SPI_3WIRE_RX) {
1452 		mode = STM32H7_SPI_HALF_DUPLEX;
1453 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1454 	} else if (comm_type == SPI_3WIRE_TX) {
1455 		mode = STM32H7_SPI_HALF_DUPLEX;
1456 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1457 	} else if (comm_type == SPI_SIMPLEX_RX) {
1458 		mode = STM32H7_SPI_SIMPLEX_RX;
1459 	} else if (comm_type == SPI_SIMPLEX_TX) {
1460 		mode = STM32H7_SPI_SIMPLEX_TX;
1461 	} else {
1462 		mode = STM32H7_SPI_FULL_DUPLEX;
1463 	}
1464 
1465 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1466 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1467 
1468 	writel_relaxed(
1469 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1470 		 ~cfg2_clrb) | cfg2_setb,
1471 		spi->base + STM32H7_SPI_CFG2);
1472 
1473 	return 0;
1474 }
1475 
1476 /**
1477  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1478  *			       consecutive data frames in master mode
1479  * @spi: pointer to the spi controller data structure
1480  * @len: transfer len
1481  */
stm32h7_spi_data_idleness(struct stm32_spi * spi,u32 len)1482 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1483 {
1484 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1485 
1486 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1487 	if ((len > 1) && (spi->cur_midi > 0)) {
1488 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1489 		u32 midi = min_t(u32,
1490 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1491 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1492 				 STM32H7_SPI_CFG2_MIDI));
1493 
1494 
1495 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1496 			sck_period_ns, midi, midi * sck_period_ns);
1497 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1498 	}
1499 
1500 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1501 			~cfg2_clrb) | cfg2_setb,
1502 		       spi->base + STM32H7_SPI_CFG2);
1503 }
1504 
1505 /**
1506  * stm32h7_spi_number_of_data - configure number of data at current transfer
1507  * @spi: pointer to the spi controller data structure
1508  * @nb_words: transfer length (in words)
1509  */
stm32h7_spi_number_of_data(struct stm32_spi * spi,u32 nb_words)1510 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1511 {
1512 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1513 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1514 			       spi->base + STM32H7_SPI_CR2);
1515 	} else {
1516 		return -EMSGSIZE;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /**
1523  * stm32_spi_transfer_one_setup - common setup to transfer a single
1524  *				  spi_transfer either using DMA or
1525  *				  interrupts.
1526  * @spi: pointer to the spi controller data structure
1527  * @spi_dev: pointer to the spi device
1528  * @transfer: pointer to spi transfer
1529  */
stm32_spi_transfer_one_setup(struct stm32_spi * spi,struct spi_device * spi_dev,struct spi_transfer * transfer)1530 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1531 					struct spi_device *spi_dev,
1532 					struct spi_transfer *transfer)
1533 {
1534 	unsigned long flags;
1535 	unsigned int comm_type;
1536 	int nb_words, ret = 0;
1537 	int mbr;
1538 
1539 	spin_lock_irqsave(&spi->lock, flags);
1540 
1541 	spi->cur_xferlen = transfer->len;
1542 
1543 	spi->cur_bpw = transfer->bits_per_word;
1544 	spi->cfg->set_bpw(spi);
1545 
1546 	/* Update spi->cur_speed with real clock speed */
1547 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1548 				    spi->cfg->baud_rate_div_min,
1549 				    spi->cfg->baud_rate_div_max);
1550 	if (mbr < 0) {
1551 		ret = mbr;
1552 		goto out;
1553 	}
1554 
1555 	transfer->speed_hz = spi->cur_speed;
1556 	stm32_spi_set_mbr(spi, mbr);
1557 
1558 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1559 	ret = spi->cfg->set_mode(spi, comm_type);
1560 	if (ret < 0)
1561 		goto out;
1562 
1563 	spi->cur_comm = comm_type;
1564 
1565 	if (spi->cfg->set_data_idleness)
1566 		spi->cfg->set_data_idleness(spi, transfer->len);
1567 
1568 	if (spi->cur_bpw <= 8)
1569 		nb_words = transfer->len;
1570 	else if (spi->cur_bpw <= 16)
1571 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1572 	else
1573 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1574 
1575 	if (spi->cfg->set_number_of_data) {
1576 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1577 		if (ret < 0)
1578 			goto out;
1579 	}
1580 
1581 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1582 		spi->cur_comm);
1583 	dev_dbg(spi->dev,
1584 		"data frame of %d-bit, data packet of %d data frames\n",
1585 		spi->cur_bpw, spi->cur_fthlv);
1586 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1587 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1588 		spi->cur_xferlen, nb_words);
1589 	dev_dbg(spi->dev, "dma %s\n",
1590 		(spi->cur_usedma) ? "enabled" : "disabled");
1591 
1592 out:
1593 	spin_unlock_irqrestore(&spi->lock, flags);
1594 
1595 	return ret;
1596 }
1597 
1598 /**
1599  * stm32_spi_transfer_one - transfer a single spi_transfer
1600  * @master: controller master interface
1601  * @spi_dev: pointer to the spi device
1602  * @transfer: pointer to spi transfer
1603  *
1604  * It must return 0 if the transfer is finished or 1 if the transfer is still
1605  * in progress.
1606  */
stm32_spi_transfer_one(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)1607 static int stm32_spi_transfer_one(struct spi_master *master,
1608 				  struct spi_device *spi_dev,
1609 				  struct spi_transfer *transfer)
1610 {
1611 	struct stm32_spi *spi = spi_master_get_devdata(master);
1612 	int ret;
1613 
1614 	spi->tx_buf = transfer->tx_buf;
1615 	spi->rx_buf = transfer->rx_buf;
1616 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1617 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1618 
1619 	spi->cur_usedma = (master->can_dma &&
1620 			   master->can_dma(master, spi_dev, transfer));
1621 
1622 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1623 	if (ret) {
1624 		dev_err(spi->dev, "SPI transfer setup failed\n");
1625 		return ret;
1626 	}
1627 
1628 	if (spi->cur_usedma)
1629 		return stm32_spi_transfer_one_dma(spi, transfer);
1630 	else
1631 		return spi->cfg->transfer_one_irq(spi);
1632 }
1633 
1634 /**
1635  * stm32_spi_unprepare_msg - relax the hardware
1636  * @master: controller master interface
1637  * @msg: pointer to the spi message
1638  */
stm32_spi_unprepare_msg(struct spi_master * master,struct spi_message * msg)1639 static int stm32_spi_unprepare_msg(struct spi_master *master,
1640 				   struct spi_message *msg)
1641 {
1642 	struct stm32_spi *spi = spi_master_get_devdata(master);
1643 
1644 	spi->cfg->disable(spi);
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * stm32f4_spi_config - Configure SPI controller as SPI master
1651  * @spi: pointer to the spi controller data structure
1652  */
stm32f4_spi_config(struct stm32_spi * spi)1653 static int stm32f4_spi_config(struct stm32_spi *spi)
1654 {
1655 	unsigned long flags;
1656 
1657 	spin_lock_irqsave(&spi->lock, flags);
1658 
1659 	/* Ensure I2SMOD bit is kept cleared */
1660 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1661 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1662 
1663 	/*
1664 	 * - SS input value high
1665 	 * - transmitter half duplex direction
1666 	 * - Set the master mode (default Motorola mode)
1667 	 * - Consider 1 master/n slaves configuration and
1668 	 *   SS input value is determined by the SSI bit
1669 	 */
1670 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1671 						 STM32F4_SPI_CR1_BIDIOE |
1672 						 STM32F4_SPI_CR1_MSTR |
1673 						 STM32F4_SPI_CR1_SSM);
1674 
1675 	spin_unlock_irqrestore(&spi->lock, flags);
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * stm32h7_spi_config - Configure SPI controller as SPI master
1682  * @spi: pointer to the spi controller data structure
1683  */
stm32h7_spi_config(struct stm32_spi * spi)1684 static int stm32h7_spi_config(struct stm32_spi *spi)
1685 {
1686 	unsigned long flags;
1687 
1688 	spin_lock_irqsave(&spi->lock, flags);
1689 
1690 	/* Ensure I2SMOD bit is kept cleared */
1691 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1692 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1693 
1694 	/*
1695 	 * - SS input value high
1696 	 * - transmitter half duplex direction
1697 	 * - automatic communication suspend when RX-Fifo is full
1698 	 */
1699 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1700 						 STM32H7_SPI_CR1_HDDIR |
1701 						 STM32H7_SPI_CR1_MASRX);
1702 
1703 	/*
1704 	 * - Set the master mode (default Motorola mode)
1705 	 * - Consider 1 master/n slaves configuration and
1706 	 *   SS input value is determined by the SSI bit
1707 	 * - keep control of all associated GPIOs
1708 	 */
1709 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1710 						  STM32H7_SPI_CFG2_SSM |
1711 						  STM32H7_SPI_CFG2_AFCNTR);
1712 
1713 	spin_unlock_irqrestore(&spi->lock, flags);
1714 
1715 	return 0;
1716 }
1717 
1718 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1719 	.regs = &stm32f4_spi_regspec,
1720 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1721 	.disable = stm32f4_spi_disable,
1722 	.config = stm32f4_spi_config,
1723 	.set_bpw = stm32f4_spi_set_bpw,
1724 	.set_mode = stm32f4_spi_set_mode,
1725 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1726 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1727 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1728 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1729 	.irq_handler_event = stm32f4_spi_irq_event,
1730 	.irq_handler_thread = stm32f4_spi_irq_thread,
1731 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1732 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1733 	.has_fifo = false,
1734 };
1735 
1736 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1737 	.regs = &stm32h7_spi_regspec,
1738 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1739 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1740 	.disable = stm32h7_spi_disable,
1741 	.config = stm32h7_spi_config,
1742 	.set_bpw = stm32h7_spi_set_bpw,
1743 	.set_mode = stm32h7_spi_set_mode,
1744 	.set_data_idleness = stm32h7_spi_data_idleness,
1745 	.set_number_of_data = stm32h7_spi_number_of_data,
1746 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1747 	.dma_rx_cb = stm32_spi_dma_rx_cb,
1748 	/*
1749 	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1750 	 * SPI access hence handling is performed within the SPI interrupt
1751 	 */
1752 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1753 	.irq_handler_thread = stm32h7_spi_irq_thread,
1754 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1755 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1756 	.has_fifo = true,
1757 };
1758 
1759 static const struct of_device_id stm32_spi_of_match[] = {
1760 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1761 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1762 	{},
1763 };
1764 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1765 
stm32_spi_probe(struct platform_device * pdev)1766 static int stm32_spi_probe(struct platform_device *pdev)
1767 {
1768 	struct spi_master *master;
1769 	struct stm32_spi *spi;
1770 	struct resource *res;
1771 	struct reset_control *rst;
1772 	int ret;
1773 
1774 	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1775 	if (!master) {
1776 		dev_err(&pdev->dev, "spi master allocation failed\n");
1777 		return -ENOMEM;
1778 	}
1779 	platform_set_drvdata(pdev, master);
1780 
1781 	spi = spi_master_get_devdata(master);
1782 	spi->dev = &pdev->dev;
1783 	spi->master = master;
1784 	spin_lock_init(&spi->lock);
1785 
1786 	spi->cfg = (const struct stm32_spi_cfg *)
1787 		of_match_device(pdev->dev.driver->of_match_table,
1788 				&pdev->dev)->data;
1789 
1790 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1791 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1792 	if (IS_ERR(spi->base))
1793 		return PTR_ERR(spi->base);
1794 
1795 	spi->phys_addr = (dma_addr_t)res->start;
1796 
1797 	spi->irq = platform_get_irq(pdev, 0);
1798 	if (spi->irq <= 0)
1799 		return dev_err_probe(&pdev->dev, spi->irq,
1800 				     "failed to get irq\n");
1801 
1802 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1803 					spi->cfg->irq_handler_event,
1804 					spi->cfg->irq_handler_thread,
1805 					IRQF_ONESHOT, pdev->name, master);
1806 	if (ret) {
1807 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1808 			ret);
1809 		return ret;
1810 	}
1811 
1812 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1813 	if (IS_ERR(spi->clk)) {
1814 		ret = PTR_ERR(spi->clk);
1815 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1816 		return ret;
1817 	}
1818 
1819 	ret = clk_prepare_enable(spi->clk);
1820 	if (ret) {
1821 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1822 		return ret;
1823 	}
1824 	spi->clk_rate = clk_get_rate(spi->clk);
1825 	if (!spi->clk_rate) {
1826 		dev_err(&pdev->dev, "clk rate = 0\n");
1827 		ret = -EINVAL;
1828 		goto err_clk_disable;
1829 	}
1830 
1831 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1832 	if (rst) {
1833 		if (IS_ERR(rst)) {
1834 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1835 					    "failed to get reset\n");
1836 			goto err_clk_disable;
1837 		}
1838 
1839 		reset_control_assert(rst);
1840 		udelay(2);
1841 		reset_control_deassert(rst);
1842 	}
1843 
1844 	if (spi->cfg->has_fifo)
1845 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1846 
1847 	ret = spi->cfg->config(spi);
1848 	if (ret) {
1849 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1850 			ret);
1851 		goto err_clk_disable;
1852 	}
1853 
1854 	master->dev.of_node = pdev->dev.of_node;
1855 	master->auto_runtime_pm = true;
1856 	master->bus_num = pdev->id;
1857 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1858 			    SPI_3WIRE;
1859 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1860 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1861 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1862 	master->use_gpio_descriptors = true;
1863 	master->prepare_message = stm32_spi_prepare_msg;
1864 	master->transfer_one = stm32_spi_transfer_one;
1865 	master->unprepare_message = stm32_spi_unprepare_msg;
1866 	master->flags = SPI_MASTER_MUST_TX;
1867 
1868 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1869 	if (IS_ERR(spi->dma_tx)) {
1870 		ret = PTR_ERR(spi->dma_tx);
1871 		spi->dma_tx = NULL;
1872 		if (ret == -EPROBE_DEFER)
1873 			goto err_clk_disable;
1874 
1875 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1876 	} else {
1877 		master->dma_tx = spi->dma_tx;
1878 	}
1879 
1880 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1881 	if (IS_ERR(spi->dma_rx)) {
1882 		ret = PTR_ERR(spi->dma_rx);
1883 		spi->dma_rx = NULL;
1884 		if (ret == -EPROBE_DEFER)
1885 			goto err_dma_release;
1886 
1887 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1888 	} else {
1889 		master->dma_rx = spi->dma_rx;
1890 	}
1891 
1892 	if (spi->dma_tx || spi->dma_rx)
1893 		master->can_dma = stm32_spi_can_dma;
1894 
1895 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1896 					 STM32_SPI_AUTOSUSPEND_DELAY);
1897 	pm_runtime_use_autosuspend(&pdev->dev);
1898 	pm_runtime_set_active(&pdev->dev);
1899 	pm_runtime_get_noresume(&pdev->dev);
1900 	pm_runtime_enable(&pdev->dev);
1901 
1902 	ret = spi_register_master(master);
1903 	if (ret) {
1904 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1905 			ret);
1906 		goto err_pm_disable;
1907 	}
1908 
1909 	pm_runtime_mark_last_busy(&pdev->dev);
1910 	pm_runtime_put_autosuspend(&pdev->dev);
1911 
1912 	dev_info(&pdev->dev, "driver initialized\n");
1913 
1914 	return 0;
1915 
1916 err_pm_disable:
1917 	pm_runtime_disable(&pdev->dev);
1918 	pm_runtime_put_noidle(&pdev->dev);
1919 	pm_runtime_set_suspended(&pdev->dev);
1920 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1921 err_dma_release:
1922 	if (spi->dma_tx)
1923 		dma_release_channel(spi->dma_tx);
1924 	if (spi->dma_rx)
1925 		dma_release_channel(spi->dma_rx);
1926 err_clk_disable:
1927 	clk_disable_unprepare(spi->clk);
1928 
1929 	return ret;
1930 }
1931 
stm32_spi_remove(struct platform_device * pdev)1932 static int stm32_spi_remove(struct platform_device *pdev)
1933 {
1934 	struct spi_master *master = platform_get_drvdata(pdev);
1935 	struct stm32_spi *spi = spi_master_get_devdata(master);
1936 
1937 	pm_runtime_get_sync(&pdev->dev);
1938 
1939 	spi_unregister_master(master);
1940 	spi->cfg->disable(spi);
1941 
1942 	pm_runtime_disable(&pdev->dev);
1943 	pm_runtime_put_noidle(&pdev->dev);
1944 	pm_runtime_set_suspended(&pdev->dev);
1945 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1946 
1947 	if (master->dma_tx)
1948 		dma_release_channel(master->dma_tx);
1949 	if (master->dma_rx)
1950 		dma_release_channel(master->dma_rx);
1951 
1952 	clk_disable_unprepare(spi->clk);
1953 
1954 
1955 	pinctrl_pm_select_sleep_state(&pdev->dev);
1956 
1957 	return 0;
1958 }
1959 
stm32_spi_runtime_suspend(struct device * dev)1960 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1961 {
1962 	struct spi_master *master = dev_get_drvdata(dev);
1963 	struct stm32_spi *spi = spi_master_get_devdata(master);
1964 
1965 	clk_disable_unprepare(spi->clk);
1966 
1967 	return pinctrl_pm_select_sleep_state(dev);
1968 }
1969 
stm32_spi_runtime_resume(struct device * dev)1970 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1971 {
1972 	struct spi_master *master = dev_get_drvdata(dev);
1973 	struct stm32_spi *spi = spi_master_get_devdata(master);
1974 	int ret;
1975 
1976 	ret = pinctrl_pm_select_default_state(dev);
1977 	if (ret)
1978 		return ret;
1979 
1980 	return clk_prepare_enable(spi->clk);
1981 }
1982 
stm32_spi_suspend(struct device * dev)1983 static int __maybe_unused stm32_spi_suspend(struct device *dev)
1984 {
1985 	struct spi_master *master = dev_get_drvdata(dev);
1986 	int ret;
1987 
1988 	ret = spi_master_suspend(master);
1989 	if (ret)
1990 		return ret;
1991 
1992 	return pm_runtime_force_suspend(dev);
1993 }
1994 
stm32_spi_resume(struct device * dev)1995 static int __maybe_unused stm32_spi_resume(struct device *dev)
1996 {
1997 	struct spi_master *master = dev_get_drvdata(dev);
1998 	struct stm32_spi *spi = spi_master_get_devdata(master);
1999 	int ret;
2000 
2001 	ret = pm_runtime_force_resume(dev);
2002 	if (ret)
2003 		return ret;
2004 
2005 	ret = spi_master_resume(master);
2006 	if (ret) {
2007 		clk_disable_unprepare(spi->clk);
2008 		return ret;
2009 	}
2010 
2011 	ret = pm_runtime_get_sync(dev);
2012 	if (ret < 0) {
2013 		pm_runtime_put_noidle(dev);
2014 		dev_err(dev, "Unable to power device:%d\n", ret);
2015 		return ret;
2016 	}
2017 
2018 	spi->cfg->config(spi);
2019 
2020 	pm_runtime_mark_last_busy(dev);
2021 	pm_runtime_put_autosuspend(dev);
2022 
2023 	return 0;
2024 }
2025 
2026 static const struct dev_pm_ops stm32_spi_pm_ops = {
2027 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2028 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2029 			   stm32_spi_runtime_resume, NULL)
2030 };
2031 
2032 static struct platform_driver stm32_spi_driver = {
2033 	.probe = stm32_spi_probe,
2034 	.remove = stm32_spi_remove,
2035 	.driver = {
2036 		.name = DRIVER_NAME,
2037 		.pm = &stm32_spi_pm_ops,
2038 		.of_match_table = stm32_spi_of_match,
2039 	},
2040 };
2041 
2042 module_platform_driver(stm32_spi_driver);
2043 
2044 MODULE_ALIAS("platform:" DRIVER_NAME);
2045 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2046 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2047 MODULE_LICENSE("GPL v2");
2048