• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5  *         Sascha Hauer <s.hauer@pengutronix.de>
6  *         Dawei Chien <dawei.chien@mediatek.com>
7  *         Louis Yu <louis.yu@mediatek.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/io.h>
22 #include <linux/thermal.h>
23 #include <linux/reset.h>
24 #include <linux/types.h>
25 
26 #include "thermal_hwmon.h"
27 
28 /* AUXADC Registers */
29 #define AUXADC_CON1_SET_V	0x008
30 #define AUXADC_CON1_CLR_V	0x00c
31 #define AUXADC_CON2_V		0x010
32 #define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
33 
34 #define APMIXED_SYS_TS_CON1	0x604
35 
36 /* Thermal Controller Registers */
37 #define TEMP_MONCTL0		0x000
38 #define TEMP_MONCTL1		0x004
39 #define TEMP_MONCTL2		0x008
40 #define TEMP_MONIDET0		0x014
41 #define TEMP_MONIDET1		0x018
42 #define TEMP_MSRCTL0		0x038
43 #define TEMP_MSRCTL1		0x03c
44 #define TEMP_AHBPOLL		0x040
45 #define TEMP_AHBTO		0x044
46 #define TEMP_ADCPNP0		0x048
47 #define TEMP_ADCPNP1		0x04c
48 #define TEMP_ADCPNP2		0x050
49 #define TEMP_ADCPNP3		0x0b4
50 
51 #define TEMP_ADCMUX		0x054
52 #define TEMP_ADCEN		0x060
53 #define TEMP_PNPMUXADDR		0x064
54 #define TEMP_ADCMUXADDR		0x068
55 #define TEMP_ADCENADDR		0x074
56 #define TEMP_ADCVALIDADDR	0x078
57 #define TEMP_ADCVOLTADDR	0x07c
58 #define TEMP_RDCTRL		0x080
59 #define TEMP_ADCVALIDMASK	0x084
60 #define TEMP_ADCVOLTAGESHIFT	0x088
61 #define TEMP_ADCWRITECTRL	0x08c
62 #define TEMP_MSR0		0x090
63 #define TEMP_MSR1		0x094
64 #define TEMP_MSR2		0x098
65 #define TEMP_MSR3		0x0B8
66 
67 #define TEMP_SPARE0		0x0f0
68 
69 #define TEMP_ADCPNP0_1          0x148
70 #define TEMP_ADCPNP1_1          0x14c
71 #define TEMP_ADCPNP2_1          0x150
72 #define TEMP_MSR0_1             0x190
73 #define TEMP_MSR1_1             0x194
74 #define TEMP_MSR2_1             0x198
75 #define TEMP_ADCPNP3_1          0x1b4
76 #define TEMP_MSR3_1             0x1B8
77 
78 #define PTPCORESEL		0x400
79 
80 #define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
81 
82 #define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
83 #define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
84 
85 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
86 
87 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
88 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
89 
90 #define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
91 #define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
92 
93 /* MT8173 thermal sensors */
94 #define MT8173_TS1	0
95 #define MT8173_TS2	1
96 #define MT8173_TS3	2
97 #define MT8173_TS4	3
98 #define MT8173_TSABB	4
99 
100 /* AUXADC channel 11 is used for the temperature sensors */
101 #define MT8173_TEMP_AUXADC_CHANNEL	11
102 
103 /* The total number of temperature sensors in the MT8173 */
104 #define MT8173_NUM_SENSORS		5
105 
106 /* The number of banks in the MT8173 */
107 #define MT8173_NUM_ZONES		4
108 
109 /* The number of sensing points per bank */
110 #define MT8173_NUM_SENSORS_PER_ZONE	4
111 
112 /* The number of controller in the MT8173 */
113 #define MT8173_NUM_CONTROLLER		1
114 
115 /* The calibration coefficient of sensor  */
116 #define MT8173_CALIBRATION	165
117 
118 /*
119  * Layout of the fuses providing the calibration data
120  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
121  * MT8183 has 6 sensors and needs 6 VTS calibration data.
122  * MT8173 has 5 sensors and needs 5 VTS calibration data.
123  * MT2701 has 3 sensors and needs 3 VTS calibration data.
124  * MT2712 has 4 sensors and needs 4 VTS calibration data.
125  */
126 #define CALIB_BUF0_VALID_V1		BIT(0)
127 #define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
128 #define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
129 #define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
130 #define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
131 #define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
132 #define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
133 #define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
134 #define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
135 #define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
136 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
137 #define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
138 
139 /*
140  * Layout of the fuses providing the calibration data
141  * These macros could be used for MT7622.
142  */
143 #define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
144 #define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
145 #define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
146 #define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
147 #define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
148 #define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
149 #define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
150 #define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
151 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
152 
153 enum {
154 	VTS1,
155 	VTS2,
156 	VTS3,
157 	VTS4,
158 	VTS5,
159 	VTSABB,
160 	MAX_NUM_VTS,
161 };
162 
163 enum mtk_thermal_version {
164 	MTK_THERMAL_V1 = 1,
165 	MTK_THERMAL_V2,
166 };
167 
168 /* MT2701 thermal sensors */
169 #define MT2701_TS1	0
170 #define MT2701_TS2	1
171 #define MT2701_TSABB	2
172 
173 /* AUXADC channel 11 is used for the temperature sensors */
174 #define MT2701_TEMP_AUXADC_CHANNEL	11
175 
176 /* The total number of temperature sensors in the MT2701 */
177 #define MT2701_NUM_SENSORS	3
178 
179 /* The number of sensing points per bank */
180 #define MT2701_NUM_SENSORS_PER_ZONE	3
181 
182 /* The number of controller in the MT2701 */
183 #define MT2701_NUM_CONTROLLER		1
184 
185 /* The calibration coefficient of sensor  */
186 #define MT2701_CALIBRATION	165
187 
188 /* MT2712 thermal sensors */
189 #define MT2712_TS1	0
190 #define MT2712_TS2	1
191 #define MT2712_TS3	2
192 #define MT2712_TS4	3
193 
194 /* AUXADC channel 11 is used for the temperature sensors */
195 #define MT2712_TEMP_AUXADC_CHANNEL	11
196 
197 /* The total number of temperature sensors in the MT2712 */
198 #define MT2712_NUM_SENSORS	4
199 
200 /* The number of sensing points per bank */
201 #define MT2712_NUM_SENSORS_PER_ZONE	4
202 
203 /* The number of controller in the MT2712 */
204 #define MT2712_NUM_CONTROLLER		1
205 
206 /* The calibration coefficient of sensor  */
207 #define MT2712_CALIBRATION	165
208 
209 #define MT7622_TEMP_AUXADC_CHANNEL	11
210 #define MT7622_NUM_SENSORS		1
211 #define MT7622_NUM_ZONES		1
212 #define MT7622_NUM_SENSORS_PER_ZONE	1
213 #define MT7622_TS1	0
214 #define MT7622_NUM_CONTROLLER		1
215 
216 /* The maximum number of banks */
217 #define MAX_NUM_ZONES		8
218 
219 /* The calibration coefficient of sensor  */
220 #define MT7622_CALIBRATION	165
221 
222 /* MT8183 thermal sensors */
223 #define MT8183_TS1	0
224 #define MT8183_TS2	1
225 #define MT8183_TS3	2
226 #define MT8183_TS4	3
227 #define MT8183_TS5	4
228 #define MT8183_TSABB	5
229 
230 /* AUXADC channel  is used for the temperature sensors */
231 #define MT8183_TEMP_AUXADC_CHANNEL	11
232 
233 /* The total number of temperature sensors in the MT8183 */
234 #define MT8183_NUM_SENSORS	6
235 
236 /* The number of banks in the MT8183 */
237 #define MT8183_NUM_ZONES               1
238 
239 /* The number of sensing points per bank */
240 #define MT8183_NUM_SENSORS_PER_ZONE	 6
241 
242 /* The number of controller in the MT8183 */
243 #define MT8183_NUM_CONTROLLER		2
244 
245 /* The calibration coefficient of sensor  */
246 #define MT8183_CALIBRATION	153
247 
248 struct mtk_thermal;
249 
250 struct thermal_bank_cfg {
251 	unsigned int num_sensors;
252 	const int *sensors;
253 };
254 
255 struct mtk_thermal_bank {
256 	struct mtk_thermal *mt;
257 	int id;
258 };
259 
260 struct mtk_thermal_data {
261 	s32 num_banks;
262 	s32 num_sensors;
263 	s32 auxadc_channel;
264 	const int *vts_index;
265 	const int *sensor_mux_values;
266 	const int *msr;
267 	const int *adcpnp;
268 	const int cali_val;
269 	const int num_controller;
270 	const int *controller_offset;
271 	bool need_switch_bank;
272 	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
273 	enum mtk_thermal_version version;
274 };
275 
276 struct mtk_thermal {
277 	struct device *dev;
278 	void __iomem *thermal_base;
279 
280 	struct clk *clk_peri_therm;
281 	struct clk *clk_auxadc;
282 	/* lock: for getting and putting banks */
283 	struct mutex lock;
284 
285 	/* Calibration values */
286 	s32 adc_ge;
287 	s32 adc_oe;
288 	s32 degc_cali;
289 	s32 o_slope;
290 	s32 o_slope_sign;
291 	s32 vts[MAX_NUM_VTS];
292 
293 	const struct mtk_thermal_data *conf;
294 	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
295 };
296 
297 /* MT8183 thermal sensor data */
298 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
299 	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
300 };
301 
302 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
303 	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
304 };
305 
306 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
307 	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
308 	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
309 };
310 
311 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
312 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
313 
314 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
315 	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
316 };
317 
318 /* MT8173 thermal sensor data */
319 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
320 	{ MT8173_TS2, MT8173_TS3 },
321 	{ MT8173_TS2, MT8173_TS4 },
322 	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
323 	{ MT8173_TS2 },
324 };
325 
326 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
327 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
328 };
329 
330 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
331 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
332 };
333 
334 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
335 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
336 
337 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
338 	VTS1, VTS2, VTS3, VTS4, VTSABB
339 };
340 
341 /* MT2701 thermal sensor data */
342 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
343 	MT2701_TS1, MT2701_TS2, MT2701_TSABB
344 };
345 
346 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
347 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
348 };
349 
350 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
351 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
352 };
353 
354 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
355 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
356 
357 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
358 	VTS1, VTS2, VTS3
359 };
360 
361 /* MT2712 thermal sensor data */
362 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
363 	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
364 };
365 
366 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
367 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
368 };
369 
370 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
371 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
372 };
373 
374 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
375 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
376 
377 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
378 	VTS1, VTS2, VTS3, VTS4
379 };
380 
381 /* MT7622 thermal sensor data */
382 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
383 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
384 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
385 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
386 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
387 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
388 
389 /*
390  * The MT8173 thermal controller has four banks. Each bank can read up to
391  * four temperature sensors simultaneously. The MT8173 has a total of 5
392  * temperature sensors. We use each bank to measure a certain area of the
393  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
394  * areas, hence is used in different banks.
395  *
396  * The thermal core only gets the maximum temperature of all banks, so
397  * the bank concept wouldn't be necessary here. However, the SVS (Smart
398  * Voltage Scaling) unit makes its decisions based on the same bank
399  * data, and this indeed needs the temperatures of the individual banks
400  * for making better decisions.
401  */
402 static const struct mtk_thermal_data mt8173_thermal_data = {
403 	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
404 	.num_banks = MT8173_NUM_ZONES,
405 	.num_sensors = MT8173_NUM_SENSORS,
406 	.vts_index = mt8173_vts_index,
407 	.cali_val = MT8173_CALIBRATION,
408 	.num_controller = MT8173_NUM_CONTROLLER,
409 	.controller_offset = mt8173_tc_offset,
410 	.need_switch_bank = true,
411 	.bank_data = {
412 		{
413 			.num_sensors = 2,
414 			.sensors = mt8173_bank_data[0],
415 		}, {
416 			.num_sensors = 2,
417 			.sensors = mt8173_bank_data[1],
418 		}, {
419 			.num_sensors = 3,
420 			.sensors = mt8173_bank_data[2],
421 		}, {
422 			.num_sensors = 1,
423 			.sensors = mt8173_bank_data[3],
424 		},
425 	},
426 	.msr = mt8173_msr,
427 	.adcpnp = mt8173_adcpnp,
428 	.sensor_mux_values = mt8173_mux_values,
429 	.version = MTK_THERMAL_V1,
430 };
431 
432 /*
433  * The MT2701 thermal controller has one bank, which can read up to
434  * three temperature sensors simultaneously. The MT2701 has a total of 3
435  * temperature sensors.
436  *
437  * The thermal core only gets the maximum temperature of this one bank,
438  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
439  * Voltage Scaling) unit makes its decisions based on the same bank
440  * data.
441  */
442 static const struct mtk_thermal_data mt2701_thermal_data = {
443 	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
444 	.num_banks = 1,
445 	.num_sensors = MT2701_NUM_SENSORS,
446 	.vts_index = mt2701_vts_index,
447 	.cali_val = MT2701_CALIBRATION,
448 	.num_controller = MT2701_NUM_CONTROLLER,
449 	.controller_offset = mt2701_tc_offset,
450 	.need_switch_bank = true,
451 	.bank_data = {
452 		{
453 			.num_sensors = 3,
454 			.sensors = mt2701_bank_data,
455 		},
456 	},
457 	.msr = mt2701_msr,
458 	.adcpnp = mt2701_adcpnp,
459 	.sensor_mux_values = mt2701_mux_values,
460 	.version = MTK_THERMAL_V1,
461 };
462 
463 /*
464  * The MT2712 thermal controller has one bank, which can read up to
465  * four temperature sensors simultaneously. The MT2712 has a total of 4
466  * temperature sensors.
467  *
468  * The thermal core only gets the maximum temperature of this one bank,
469  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
470  * Voltage Scaling) unit makes its decisions based on the same bank
471  * data.
472  */
473 static const struct mtk_thermal_data mt2712_thermal_data = {
474 	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
475 	.num_banks = 1,
476 	.num_sensors = MT2712_NUM_SENSORS,
477 	.vts_index = mt2712_vts_index,
478 	.cali_val = MT2712_CALIBRATION,
479 	.num_controller = MT2712_NUM_CONTROLLER,
480 	.controller_offset = mt2712_tc_offset,
481 	.need_switch_bank = true,
482 	.bank_data = {
483 		{
484 			.num_sensors = 4,
485 			.sensors = mt2712_bank_data,
486 		},
487 	},
488 	.msr = mt2712_msr,
489 	.adcpnp = mt2712_adcpnp,
490 	.sensor_mux_values = mt2712_mux_values,
491 	.version = MTK_THERMAL_V1,
492 };
493 
494 /*
495  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
496  * access.
497  */
498 static const struct mtk_thermal_data mt7622_thermal_data = {
499 	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
500 	.num_banks = MT7622_NUM_ZONES,
501 	.num_sensors = MT7622_NUM_SENSORS,
502 	.vts_index = mt7622_vts_index,
503 	.cali_val = MT7622_CALIBRATION,
504 	.num_controller = MT7622_NUM_CONTROLLER,
505 	.controller_offset = mt7622_tc_offset,
506 	.need_switch_bank = true,
507 	.bank_data = {
508 		{
509 			.num_sensors = 1,
510 			.sensors = mt7622_bank_data,
511 		},
512 	},
513 	.msr = mt7622_msr,
514 	.adcpnp = mt7622_adcpnp,
515 	.sensor_mux_values = mt7622_mux_values,
516 	.version = MTK_THERMAL_V2,
517 };
518 
519 /*
520  * The MT8183 thermal controller has one bank for the current SW framework.
521  * The MT8183 has a total of 6 temperature sensors.
522  * There are two thermal controller to control the six sensor.
523  * The first one bind 2 sensor, and the other bind 4 sensors.
524  * The thermal core only gets the maximum temperature of all sensor, so
525  * the bank concept wouldn't be necessary here. However, the SVS (Smart
526  * Voltage Scaling) unit makes its decisions based on the same bank
527  * data, and this indeed needs the temperatures of the individual banks
528  * for making better decisions.
529  */
530 static const struct mtk_thermal_data mt8183_thermal_data = {
531 	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
532 	.num_banks = MT8183_NUM_ZONES,
533 	.num_sensors = MT8183_NUM_SENSORS,
534 	.vts_index = mt8183_vts_index,
535 	.cali_val = MT8183_CALIBRATION,
536 	.num_controller = MT8183_NUM_CONTROLLER,
537 	.controller_offset = mt8183_tc_offset,
538 	.need_switch_bank = false,
539 	.bank_data = {
540 		{
541 			.num_sensors = 6,
542 			.sensors = mt8183_bank_data,
543 		},
544 	},
545 
546 	.msr = mt8183_msr,
547 	.adcpnp = mt8183_adcpnp,
548 	.sensor_mux_values = mt8183_mux_values,
549 	.version = MTK_THERMAL_V1,
550 };
551 
552 /**
553  * raw_to_mcelsius - convert a raw ADC value to mcelsius
554  * @mt:	The thermal controller
555  * @sensno:	sensor number
556  * @raw:	raw ADC value
557  *
558  * This converts the raw ADC value to mcelsius using the SoC specific
559  * calibration constants
560  */
raw_to_mcelsius_v1(struct mtk_thermal * mt,int sensno,s32 raw)561 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
562 {
563 	s32 tmp;
564 
565 	raw &= 0xfff;
566 
567 	tmp = 203450520 << 3;
568 	tmp /= mt->conf->cali_val + mt->o_slope;
569 	tmp /= 10000 + mt->adc_ge;
570 	tmp *= raw - mt->vts[sensno] - 3350;
571 	tmp >>= 3;
572 
573 	return mt->degc_cali * 500 - tmp;
574 }
575 
raw_to_mcelsius_v2(struct mtk_thermal * mt,int sensno,s32 raw)576 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
577 {
578 	s32 format_1;
579 	s32 format_2;
580 	s32 g_oe;
581 	s32 g_gain;
582 	s32 g_x_roomt;
583 	s32 tmp;
584 
585 	if (raw == 0)
586 		return 0;
587 
588 	raw &= 0xfff;
589 	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
590 	g_oe = mt->adc_oe - 512;
591 	format_1 = mt->vts[VTS2] + 3105 - g_oe;
592 	format_2 = (mt->degc_cali * 10) >> 1;
593 	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
594 
595 	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
596 	tmp = tmp * 10 * 100 / 11;
597 
598 	if (mt->o_slope_sign == 0)
599 		tmp = tmp / (165 - mt->o_slope);
600 	else
601 		tmp = tmp / (165 + mt->o_slope);
602 
603 	return (format_2 - tmp) * 100;
604 }
605 
606 /**
607  * mtk_thermal_get_bank - get bank
608  * @bank:	The bank
609  *
610  * The bank registers are banked, we have to select a bank in the
611  * PTPCORESEL register to access it.
612  */
mtk_thermal_get_bank(struct mtk_thermal_bank * bank)613 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
614 {
615 	struct mtk_thermal *mt = bank->mt;
616 	u32 val;
617 
618 	if (mt->conf->need_switch_bank) {
619 		mutex_lock(&mt->lock);
620 
621 		val = readl(mt->thermal_base + PTPCORESEL);
622 		val &= ~0xf;
623 		val |= bank->id;
624 		writel(val, mt->thermal_base + PTPCORESEL);
625 	}
626 }
627 
628 /**
629  * mtk_thermal_put_bank - release bank
630  * @bank:	The bank
631  *
632  * release a bank previously taken with mtk_thermal_get_bank,
633  */
mtk_thermal_put_bank(struct mtk_thermal_bank * bank)634 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
635 {
636 	struct mtk_thermal *mt = bank->mt;
637 
638 	if (mt->conf->need_switch_bank)
639 		mutex_unlock(&mt->lock);
640 }
641 
642 /**
643  * mtk_thermal_bank_temperature - get the temperature of a bank
644  * @bank:	The bank
645  *
646  * The temperature of a bank is considered the maximum temperature of
647  * the sensors associated to the bank.
648  */
mtk_thermal_bank_temperature(struct mtk_thermal_bank * bank)649 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
650 {
651 	struct mtk_thermal *mt = bank->mt;
652 	const struct mtk_thermal_data *conf = mt->conf;
653 	int i, temp = INT_MIN, max = INT_MIN;
654 	u32 raw;
655 
656 	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
657 		raw = readl(mt->thermal_base + conf->msr[i]);
658 
659 		if (mt->conf->version == MTK_THERMAL_V1) {
660 			temp = raw_to_mcelsius_v1(
661 				mt, conf->bank_data[bank->id].sensors[i], raw);
662 		} else {
663 			temp = raw_to_mcelsius_v2(
664 				mt, conf->bank_data[bank->id].sensors[i], raw);
665 		}
666 
667 		/*
668 		 * The first read of a sensor often contains very high bogus
669 		 * temperature value. Filter these out so that the system does
670 		 * not immediately shut down.
671 		 */
672 		if (temp > 200000)
673 			temp = 0;
674 
675 		if (temp > max)
676 			max = temp;
677 	}
678 
679 	return max;
680 }
681 
mtk_read_temp(void * data,int * temperature)682 static int mtk_read_temp(void *data, int *temperature)
683 {
684 	struct mtk_thermal *mt = data;
685 	int i;
686 	int tempmax = INT_MIN;
687 
688 	for (i = 0; i < mt->conf->num_banks; i++) {
689 		struct mtk_thermal_bank *bank = &mt->banks[i];
690 
691 		mtk_thermal_get_bank(bank);
692 
693 		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
694 
695 		mtk_thermal_put_bank(bank);
696 	}
697 
698 	*temperature = tempmax;
699 
700 	return 0;
701 }
702 
703 static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
704 	.get_temp = mtk_read_temp,
705 };
706 
mtk_thermal_init_bank(struct mtk_thermal * mt,int num,u32 apmixed_phys_base,u32 auxadc_phys_base,int ctrl_id)707 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
708 				  u32 apmixed_phys_base, u32 auxadc_phys_base,
709 				  int ctrl_id)
710 {
711 	struct mtk_thermal_bank *bank = &mt->banks[num];
712 	const struct mtk_thermal_data *conf = mt->conf;
713 	int i;
714 
715 	int offset = mt->conf->controller_offset[ctrl_id];
716 	void __iomem *controller_base = mt->thermal_base + offset;
717 
718 	bank->id = num;
719 	bank->mt = mt;
720 
721 	mtk_thermal_get_bank(bank);
722 
723 	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
724 	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
725 
726 	/*
727 	 * filt interval is 1 * 46.540us = 46.54us,
728 	 * sen interval is 429 * 46.540us = 19.96ms
729 	 */
730 	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
731 			TEMP_MONCTL2_SENSOR_INTERVAL(429),
732 			controller_base + TEMP_MONCTL2);
733 
734 	/* poll is set to 10u */
735 	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
736 	       controller_base + TEMP_AHBPOLL);
737 
738 	/* temperature sampling control, 1 sample */
739 	writel(0x0, controller_base + TEMP_MSRCTL0);
740 
741 	/* exceed this polling time, IRQ would be inserted */
742 	writel(0xffffffff, controller_base + TEMP_AHBTO);
743 
744 	/* number of interrupts per event, 1 is enough */
745 	writel(0x0, controller_base + TEMP_MONIDET0);
746 	writel(0x0, controller_base + TEMP_MONIDET1);
747 
748 	/*
749 	 * The MT8173 thermal controller does not have its own ADC. Instead it
750 	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
751 	 * controller has to be programmed with the physical addresses of the
752 	 * AUXADC registers and with the various bit positions in the AUXADC.
753 	 * Also the thermal controller controls a mux in the APMIXEDSYS register
754 	 * space.
755 	 */
756 
757 	/*
758 	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
759 	 * automatically by hw
760 	 */
761 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
762 
763 	/* AHB address for auxadc mux selection */
764 	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
765 	       controller_base + TEMP_ADCMUXADDR);
766 
767 	if (mt->conf->version == MTK_THERMAL_V1) {
768 		/* AHB address for pnp sensor mux selection */
769 		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
770 		       controller_base + TEMP_PNPMUXADDR);
771 	}
772 
773 	/* AHB value for auxadc enable */
774 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
775 
776 	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
777 	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
778 	       controller_base + TEMP_ADCENADDR);
779 
780 	/* AHB address for auxadc valid bit */
781 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
782 	       controller_base + TEMP_ADCVALIDADDR);
783 
784 	/* AHB address for auxadc voltage output */
785 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
786 	       controller_base + TEMP_ADCVOLTADDR);
787 
788 	/* read valid & voltage are at the same register */
789 	writel(0x0, controller_base + TEMP_RDCTRL);
790 
791 	/* indicate where the valid bit is */
792 	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
793 	       controller_base + TEMP_ADCVALIDMASK);
794 
795 	/* no shift */
796 	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
797 
798 	/* enable auxadc mux write transaction */
799 	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
800 		controller_base + TEMP_ADCWRITECTRL);
801 
802 	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
803 		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
804 		       mt->thermal_base + conf->adcpnp[i]);
805 
806 	writel((1 << conf->bank_data[num].num_sensors) - 1,
807 	       controller_base + TEMP_MONCTL0);
808 
809 	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
810 	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
811 	       controller_base + TEMP_ADCWRITECTRL);
812 
813 	mtk_thermal_put_bank(bank);
814 }
815 
of_get_phys_base(struct device_node * np)816 static u64 of_get_phys_base(struct device_node *np)
817 {
818 	u64 size64;
819 	const __be32 *regaddr_p;
820 
821 	regaddr_p = of_get_address(np, 0, &size64, NULL);
822 	if (!regaddr_p)
823 		return OF_BAD_ADDR;
824 
825 	return of_translate_address(np, regaddr_p);
826 }
827 
mtk_thermal_extract_efuse_v1(struct mtk_thermal * mt,u32 * buf)828 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
829 {
830 	int i;
831 
832 	if (!(buf[0] & CALIB_BUF0_VALID_V1))
833 		return -EINVAL;
834 
835 	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
836 
837 	for (i = 0; i < mt->conf->num_sensors; i++) {
838 		switch (mt->conf->vts_index[i]) {
839 		case VTS1:
840 			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
841 			break;
842 		case VTS2:
843 			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
844 			break;
845 		case VTS3:
846 			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
847 			break;
848 		case VTS4:
849 			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
850 			break;
851 		case VTS5:
852 			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
853 			break;
854 		case VTSABB:
855 			mt->vts[VTSABB] =
856 				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
857 			break;
858 		default:
859 			break;
860 		}
861 	}
862 
863 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
864 	if (CALIB_BUF1_ID_V1(buf[1]) &
865 	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
866 		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
867 	else
868 		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
869 
870 	return 0;
871 }
872 
mtk_thermal_extract_efuse_v2(struct mtk_thermal * mt,u32 * buf)873 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
874 {
875 	if (!CALIB_BUF1_VALID_V2(buf[1]))
876 		return -EINVAL;
877 
878 	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
879 	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
880 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
881 	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
882 	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
883 	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
884 	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
885 	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
886 
887 	return 0;
888 }
889 
mtk_thermal_get_calibration_data(struct device * dev,struct mtk_thermal * mt)890 static int mtk_thermal_get_calibration_data(struct device *dev,
891 					    struct mtk_thermal *mt)
892 {
893 	struct nvmem_cell *cell;
894 	u32 *buf;
895 	size_t len;
896 	int i, ret = 0;
897 
898 	/* Start with default values */
899 	mt->adc_ge = 512;
900 	for (i = 0; i < mt->conf->num_sensors; i++)
901 		mt->vts[i] = 260;
902 	mt->degc_cali = 40;
903 	mt->o_slope = 0;
904 
905 	cell = nvmem_cell_get(dev, "calibration-data");
906 	if (IS_ERR(cell)) {
907 		if (PTR_ERR(cell) == -EPROBE_DEFER)
908 			return PTR_ERR(cell);
909 		return 0;
910 	}
911 
912 	buf = (u32 *)nvmem_cell_read(cell, &len);
913 
914 	nvmem_cell_put(cell);
915 
916 	if (IS_ERR(buf))
917 		return PTR_ERR(buf);
918 
919 	if (len < 3 * sizeof(u32)) {
920 		dev_warn(dev, "invalid calibration data\n");
921 		ret = -EINVAL;
922 		goto out;
923 	}
924 
925 	if (mt->conf->version == MTK_THERMAL_V1)
926 		ret = mtk_thermal_extract_efuse_v1(mt, buf);
927 	else
928 		ret = mtk_thermal_extract_efuse_v2(mt, buf);
929 
930 	if (ret) {
931 		dev_info(dev, "Device not calibrated, using default calibration values\n");
932 		ret = 0;
933 	}
934 
935 out:
936 	kfree(buf);
937 
938 	return ret;
939 }
940 
941 static const struct of_device_id mtk_thermal_of_match[] = {
942 	{
943 		.compatible = "mediatek,mt8173-thermal",
944 		.data = (void *)&mt8173_thermal_data,
945 	},
946 	{
947 		.compatible = "mediatek,mt2701-thermal",
948 		.data = (void *)&mt2701_thermal_data,
949 	},
950 	{
951 		.compatible = "mediatek,mt2712-thermal",
952 		.data = (void *)&mt2712_thermal_data,
953 	},
954 	{
955 		.compatible = "mediatek,mt7622-thermal",
956 		.data = (void *)&mt7622_thermal_data,
957 	},
958 	{
959 		.compatible = "mediatek,mt8183-thermal",
960 		.data = (void *)&mt8183_thermal_data,
961 	}, {
962 	},
963 };
964 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
965 
mtk_thermal_turn_on_buffer(void __iomem * apmixed_base)966 static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
967 {
968 	int tmp;
969 
970 	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
971 	tmp &= ~(0x37);
972 	tmp |= 0x1;
973 	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
974 	udelay(200);
975 }
976 
mtk_thermal_release_periodic_ts(struct mtk_thermal * mt,void __iomem * auxadc_base)977 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
978 					    void __iomem *auxadc_base)
979 {
980 	int tmp;
981 
982 	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
983 	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
984 	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
985 	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
986 }
987 
mtk_thermal_probe(struct platform_device * pdev)988 static int mtk_thermal_probe(struct platform_device *pdev)
989 {
990 	int ret, i, ctrl_id;
991 	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
992 	struct mtk_thermal *mt;
993 	struct resource *res;
994 	u64 auxadc_phys_base, apmixed_phys_base;
995 	struct thermal_zone_device *tzdev;
996 	void __iomem *apmixed_base, *auxadc_base;
997 
998 	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
999 	if (!mt)
1000 		return -ENOMEM;
1001 
1002 	mt->conf = of_device_get_match_data(&pdev->dev);
1003 
1004 	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1005 	if (IS_ERR(mt->clk_peri_therm))
1006 		return PTR_ERR(mt->clk_peri_therm);
1007 
1008 	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1009 	if (IS_ERR(mt->clk_auxadc))
1010 		return PTR_ERR(mt->clk_auxadc);
1011 
1012 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013 	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1014 	if (IS_ERR(mt->thermal_base))
1015 		return PTR_ERR(mt->thermal_base);
1016 
1017 	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1018 	if (ret)
1019 		return ret;
1020 
1021 	mutex_init(&mt->lock);
1022 
1023 	mt->dev = &pdev->dev;
1024 
1025 	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1026 	if (!auxadc) {
1027 		dev_err(&pdev->dev, "missing auxadc node\n");
1028 		return -ENODEV;
1029 	}
1030 
1031 	auxadc_base = of_iomap(auxadc, 0);
1032 	auxadc_phys_base = of_get_phys_base(auxadc);
1033 
1034 	of_node_put(auxadc);
1035 
1036 	if (auxadc_phys_base == OF_BAD_ADDR) {
1037 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1038 		return -EINVAL;
1039 	}
1040 
1041 	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1042 	if (!apmixedsys) {
1043 		dev_err(&pdev->dev, "missing apmixedsys node\n");
1044 		return -ENODEV;
1045 	}
1046 
1047 	apmixed_base = of_iomap(apmixedsys, 0);
1048 	apmixed_phys_base = of_get_phys_base(apmixedsys);
1049 
1050 	of_node_put(apmixedsys);
1051 
1052 	if (apmixed_phys_base == OF_BAD_ADDR) {
1053 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	ret = device_reset_optional(&pdev->dev);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = clk_prepare_enable(mt->clk_auxadc);
1062 	if (ret) {
1063 		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1064 		return ret;
1065 	}
1066 
1067 	ret = clk_prepare_enable(mt->clk_peri_therm);
1068 	if (ret) {
1069 		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1070 		goto err_disable_clk_auxadc;
1071 	}
1072 
1073 	if (mt->conf->version == MTK_THERMAL_V2) {
1074 		mtk_thermal_turn_on_buffer(apmixed_base);
1075 		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1076 	}
1077 
1078 	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1079 		for (i = 0; i < mt->conf->num_banks; i++)
1080 			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1081 					      auxadc_phys_base, ctrl_id);
1082 
1083 	platform_set_drvdata(pdev, mt);
1084 
1085 	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1086 						     &mtk_thermal_ops);
1087 	if (IS_ERR(tzdev)) {
1088 		ret = PTR_ERR(tzdev);
1089 		goto err_disable_clk_peri_therm;
1090 	}
1091 
1092 	ret = devm_thermal_add_hwmon_sysfs(tzdev);
1093 	if (ret)
1094 		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1095 
1096 	return 0;
1097 
1098 err_disable_clk_peri_therm:
1099 	clk_disable_unprepare(mt->clk_peri_therm);
1100 err_disable_clk_auxadc:
1101 	clk_disable_unprepare(mt->clk_auxadc);
1102 
1103 	return ret;
1104 }
1105 
mtk_thermal_remove(struct platform_device * pdev)1106 static int mtk_thermal_remove(struct platform_device *pdev)
1107 {
1108 	struct mtk_thermal *mt = platform_get_drvdata(pdev);
1109 
1110 	clk_disable_unprepare(mt->clk_peri_therm);
1111 	clk_disable_unprepare(mt->clk_auxadc);
1112 
1113 	return 0;
1114 }
1115 
1116 static struct platform_driver mtk_thermal_driver = {
1117 	.probe = mtk_thermal_probe,
1118 	.remove = mtk_thermal_remove,
1119 	.driver = {
1120 		.name = "mtk-thermal",
1121 		.of_match_table = mtk_thermal_of_match,
1122 	},
1123 };
1124 
1125 module_platform_driver(mtk_thermal_driver);
1126 
1127 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1128 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1129 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1130 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1131 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1132 MODULE_DESCRIPTION("Mediatek thermal driver");
1133 MODULE_LICENSE("GPL v2");
1134