• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Xilinx USB peripheral controller driver
4  *
5  * Copyright (C) 2004 by Thomas Rathbone
6  * Copyright (C) 2005 by HP Labs
7  * Copyright (C) 2005 by David Brownell
8  * Copyright (C) 2010 - 2014 Xilinx, Inc.
9  *
10  * Some parts of this driver code is based on the driver for at91-series
11  * USB peripheral controller (at91_udc.c).
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_irq.h>
24 #include <linux/prefetch.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27 
28 /* Register offsets for the USB device.*/
29 #define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
30 #define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
31 #define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
32 #define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
33 #define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
34 #define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
35 #define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
36 #define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
37 #define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
38 #define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
39 #define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
40 #define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
41 #define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
42 #define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
43 #define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
44 
45 /* Endpoint Configuration Space offsets */
46 #define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
47 #define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
48 #define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
49 
50 #define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
51 #define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
52 
53 /* Interrupt register related masks.*/
54 #define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
55 #define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
56 #define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
57 #define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
58 #define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
59 #define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
60 #define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
61 #define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
62 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
63 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
64 #define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
65 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
66 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
67 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
68 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
69 #define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
70 /* Suspend,Reset,Suspend and Disconnect Mask */
71 #define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
72 /* Buffers  completion Mask */
73 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
74 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */
75 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
76 #define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
77 
78 /* Endpoint Configuration Status Register */
79 #define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
80 #define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
81 #define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
82 
83 /* USB device specific global configuration constants.*/
84 #define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
85 #define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
86 /* DPRAM is the source address for DMA transfer */
87 #define XUSB_DMA_READ_FROM_DPRAM	0x80000000
88 #define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
89 #define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
90 /*
91  * When this bit is set, the DMA buffer ready bit is set by hardware upon
92  * DMA transfer completion.
93  */
94 #define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
95 /* Phase States */
96 #define SETUP_PHASE			0x0000	/* Setup Phase */
97 #define DATA_PHASE			0x0001  /* Data Phase */
98 #define STATUS_PHASE			0x0002  /* Status Phase */
99 
100 #define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
101 #define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
102 #define EPNAME_SIZE		4  /* Buffer size for endpoint name */
103 
104 /* container_of helper macros */
105 #define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
106 #define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
107 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
108 
109 /**
110  * struct xusb_req - Xilinx USB device request structure
111  * @usb_req: Linux usb request structure
112  * @queue: usb device request queue
113  * @ep: pointer to xusb_endpoint structure
114  */
115 struct xusb_req {
116 	struct usb_request usb_req;
117 	struct list_head queue;
118 	struct xusb_ep *ep;
119 };
120 
121 /**
122  * struct xusb_ep - USB end point structure.
123  * @ep_usb: usb endpoint instance
124  * @queue: endpoint message queue
125  * @udc: xilinx usb peripheral driver instance pointer
126  * @desc: pointer to the usb endpoint descriptor
127  * @rambase: the endpoint buffer address
128  * @offset: the endpoint register offset value
129  * @name: name of the endpoint
130  * @epnumber: endpoint number
131  * @maxpacket: maximum packet size the endpoint can store
132  * @buffer0count: the size of the packet recieved in the first buffer
133  * @buffer1count: the size of the packet received in the second buffer
134  * @curbufnum: current buffer of endpoint that will be processed next
135  * @buffer0ready: the busy state of first buffer
136  * @buffer1ready: the busy state of second buffer
137  * @is_in: endpoint direction (IN or OUT)
138  * @is_iso: endpoint type(isochronous or non isochronous)
139  */
140 struct xusb_ep {
141 	struct usb_ep ep_usb;
142 	struct list_head queue;
143 	struct xusb_udc *udc;
144 	const struct usb_endpoint_descriptor *desc;
145 	u32  rambase;
146 	u32  offset;
147 	char name[4];
148 	u16  epnumber;
149 	u16  maxpacket;
150 	u16  buffer0count;
151 	u16  buffer1count;
152 	u8   curbufnum;
153 	bool buffer0ready;
154 	bool buffer1ready;
155 	bool is_in;
156 	bool is_iso;
157 };
158 
159 /**
160  * struct xusb_udc -  USB peripheral driver structure
161  * @gadget: USB gadget driver instance
162  * @ep: an array of endpoint structures
163  * @driver: pointer to the usb gadget driver instance
164  * @setup: usb_ctrlrequest structure for control requests
165  * @req: pointer to dummy request for get status command
166  * @dev: pointer to device structure in gadget
167  * @usb_state: device in suspended state or not
168  * @remote_wkp: remote wakeup enabled by host
169  * @setupseqtx: tx status
170  * @setupseqrx: rx status
171  * @addr: the usb device base address
172  * @lock: instance of spinlock
173  * @dma_enabled: flag indicating whether the dma is included in the system
174  * @read_fn: function pointer to read device registers
175  * @write_fn: function pointer to write to device registers
176  */
177 struct xusb_udc {
178 	struct usb_gadget gadget;
179 	struct xusb_ep ep[8];
180 	struct usb_gadget_driver *driver;
181 	struct usb_ctrlrequest setup;
182 	struct xusb_req *req;
183 	struct device *dev;
184 	u32 usb_state;
185 	u32 remote_wkp;
186 	u32 setupseqtx;
187 	u32 setupseqrx;
188 	void __iomem *addr;
189 	spinlock_t lock;
190 	bool dma_enabled;
191 
192 	unsigned int (*read_fn)(void __iomem *);
193 	void (*write_fn)(void __iomem *, u32, u32);
194 };
195 
196 /* Endpoint buffer start addresses in the core */
197 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
198 			  0x1600 };
199 
200 static const char driver_name[] = "xilinx-udc";
201 static const char ep0name[] = "ep0";
202 
203 /* Control endpoint configuration.*/
204 static const struct usb_endpoint_descriptor config_bulk_out_desc = {
205 	.bLength		= USB_DT_ENDPOINT_SIZE,
206 	.bDescriptorType	= USB_DT_ENDPOINT,
207 	.bEndpointAddress	= USB_DIR_OUT,
208 	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
209 	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
210 };
211 
212 /**
213  * xudc_write32 - little endian write to device registers
214  * @addr: base addr of device registers
215  * @offset: register offset
216  * @val: data to be written
217  */
xudc_write32(void __iomem * addr,u32 offset,u32 val)218 static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
219 {
220 	iowrite32(val, addr + offset);
221 }
222 
223 /**
224  * xudc_read32 - little endian read from device registers
225  * @addr: addr of device register
226  * Return: value at addr
227  */
xudc_read32(void __iomem * addr)228 static unsigned int xudc_read32(void __iomem *addr)
229 {
230 	return ioread32(addr);
231 }
232 
233 /**
234  * xudc_write32_be - big endian write to device registers
235  * @addr: base addr of device registers
236  * @offset: register offset
237  * @val: data to be written
238  */
xudc_write32_be(void __iomem * addr,u32 offset,u32 val)239 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
240 {
241 	iowrite32be(val, addr + offset);
242 }
243 
244 /**
245  * xudc_read32_be - big endian read from device registers
246  * @addr: addr of device register
247  * Return: value at addr
248  */
xudc_read32_be(void __iomem * addr)249 static unsigned int xudc_read32_be(void __iomem *addr)
250 {
251 	return ioread32be(addr);
252 }
253 
254 /**
255  * xudc_wrstatus - Sets up the usb device status stages.
256  * @udc: pointer to the usb device controller structure.
257  */
xudc_wrstatus(struct xusb_udc * udc)258 static void xudc_wrstatus(struct xusb_udc *udc)
259 {
260 	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
261 	u32 epcfgreg;
262 
263 	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
264 				XUSB_EP_CFG_DATA_TOGGLE_MASK;
265 	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
266 	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
267 	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
268 }
269 
270 /**
271  * xudc_epconfig - Configures the given endpoint.
272  * @ep: pointer to the usb device endpoint structure.
273  * @udc: pointer to the usb peripheral controller structure.
274  *
275  * This function configures a specific endpoint with the given configuration
276  * data.
277  */
xudc_epconfig(struct xusb_ep * ep,struct xusb_udc * udc)278 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
279 {
280 	u32 epcfgreg;
281 
282 	/*
283 	 * Configure the end point direction, type, Max Packet Size and the
284 	 * EP buffer location.
285 	 */
286 	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
287 		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
288 	udc->write_fn(udc->addr, ep->offset, epcfgreg);
289 
290 	/* Set the Buffer count and the Buffer ready bits.*/
291 	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
292 		      ep->buffer0count);
293 	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
294 		      ep->buffer1count);
295 	if (ep->buffer0ready)
296 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
297 			      1 << ep->epnumber);
298 	if (ep->buffer1ready)
299 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
300 			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
301 }
302 
303 /**
304  * xudc_start_dma - Starts DMA transfer.
305  * @ep: pointer to the usb device endpoint structure.
306  * @src: DMA source address.
307  * @dst: DMA destination address.
308  * @length: number of bytes to transfer.
309  *
310  * Return: 0 on success, error code on failure
311  *
312  * This function starts DMA transfer by writing to DMA source,
313  * destination and lenth registers.
314  */
xudc_start_dma(struct xusb_ep * ep,dma_addr_t src,dma_addr_t dst,u32 length)315 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
316 			  dma_addr_t dst, u32 length)
317 {
318 	struct xusb_udc *udc = ep->udc;
319 	int rc = 0;
320 	u32 timeout = 500;
321 	u32 reg;
322 
323 	/*
324 	 * Set the addresses in the DMA source and
325 	 * destination registers and then set the length
326 	 * into the DMA length register.
327 	 */
328 	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
329 	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
330 	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
331 
332 	/*
333 	 * Wait till DMA transaction is complete and
334 	 * check whether the DMA transaction was
335 	 * successful.
336 	 */
337 	do {
338 		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
339 		if (!(reg &  XUSB_DMA_DMASR_BUSY))
340 			break;
341 
342 		/*
343 		 * We can't sleep here, because it's also called from
344 		 * interrupt context.
345 		 */
346 		timeout--;
347 		if (!timeout) {
348 			dev_err(udc->dev, "DMA timeout\n");
349 			return -ETIMEDOUT;
350 		}
351 		udelay(1);
352 	} while (1);
353 
354 	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
355 			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
356 		dev_err(udc->dev, "DMA Error\n");
357 		rc = -EINVAL;
358 	}
359 
360 	return rc;
361 }
362 
363 /**
364  * xudc_dma_send - Sends IN data using DMA.
365  * @ep: pointer to the usb device endpoint structure.
366  * @req: pointer to the usb request structure.
367  * @buffer: pointer to data to be sent.
368  * @length: number of bytes to send.
369  *
370  * Return: 0 on success, -EAGAIN if no buffer is free and error
371  *	   code on failure.
372  *
373  * This function sends data using DMA.
374  */
xudc_dma_send(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)375 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
376 			 u8 *buffer, u32 length)
377 {
378 	u32 *eprambase;
379 	dma_addr_t src;
380 	dma_addr_t dst;
381 	struct xusb_udc *udc = ep->udc;
382 
383 	src = req->usb_req.dma + req->usb_req.actual;
384 	if (req->usb_req.length)
385 		dma_sync_single_for_device(udc->dev, src,
386 					   length, DMA_TO_DEVICE);
387 	if (!ep->curbufnum && !ep->buffer0ready) {
388 		/* Get the Buffer address and copy the transmit data.*/
389 		eprambase = (u32 __force *)(udc->addr + ep->rambase);
390 		dst = virt_to_phys(eprambase);
391 		udc->write_fn(udc->addr, ep->offset +
392 			      XUSB_EP_BUF0COUNT_OFFSET, length);
393 		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
394 			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
395 		ep->buffer0ready = 1;
396 		ep->curbufnum = 1;
397 	} else if (ep->curbufnum && !ep->buffer1ready) {
398 		/* Get the Buffer address and copy the transmit data.*/
399 		eprambase = (u32 __force *)(udc->addr + ep->rambase +
400 			     ep->ep_usb.maxpacket);
401 		dst = virt_to_phys(eprambase);
402 		udc->write_fn(udc->addr, ep->offset +
403 			      XUSB_EP_BUF1COUNT_OFFSET, length);
404 		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
405 			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
406 			      XUSB_STATUS_EP_BUFF2_SHIFT)));
407 		ep->buffer1ready = 1;
408 		ep->curbufnum = 0;
409 	} else {
410 		/* None of ping pong buffers are ready currently .*/
411 		return -EAGAIN;
412 	}
413 
414 	return xudc_start_dma(ep, src, dst, length);
415 }
416 
417 /**
418  * xudc_dma_receive - Receives OUT data using DMA.
419  * @ep: pointer to the usb device endpoint structure.
420  * @req: pointer to the usb request structure.
421  * @buffer: pointer to storage buffer of received data.
422  * @length: number of bytes to receive.
423  *
424  * Return: 0 on success, -EAGAIN if no buffer is free and error
425  *	   code on failure.
426  *
427  * This function receives data using DMA.
428  */
xudc_dma_receive(struct xusb_ep * ep,struct xusb_req * req,u8 * buffer,u32 length)429 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
430 			    u8 *buffer, u32 length)
431 {
432 	u32 *eprambase;
433 	dma_addr_t src;
434 	dma_addr_t dst;
435 	struct xusb_udc *udc = ep->udc;
436 
437 	dst = req->usb_req.dma + req->usb_req.actual;
438 	if (!ep->curbufnum && !ep->buffer0ready) {
439 		/* Get the Buffer address and copy the transmit data */
440 		eprambase = (u32 __force *)(udc->addr + ep->rambase);
441 		src = virt_to_phys(eprambase);
442 		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
443 			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
444 			      (1 << ep->epnumber));
445 		ep->buffer0ready = 1;
446 		ep->curbufnum = 1;
447 	} else if (ep->curbufnum && !ep->buffer1ready) {
448 		/* Get the Buffer address and copy the transmit data */
449 		eprambase = (u32 __force *)(udc->addr +
450 			     ep->rambase + ep->ep_usb.maxpacket);
451 		src = virt_to_phys(eprambase);
452 		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
453 			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
454 			      (1 << (ep->epnumber +
455 			      XUSB_STATUS_EP_BUFF2_SHIFT)));
456 		ep->buffer1ready = 1;
457 		ep->curbufnum = 0;
458 	} else {
459 		/* None of the ping-pong buffers are ready currently */
460 		return -EAGAIN;
461 	}
462 
463 	return xudc_start_dma(ep, src, dst, length);
464 }
465 
466 /**
467  * xudc_eptxrx - Transmits or receives data to or from an endpoint.
468  * @ep: pointer to the usb endpoint configuration structure.
469  * @req: pointer to the usb request structure.
470  * @bufferptr: pointer to buffer containing the data to be sent.
471  * @bufferlen: The number of data bytes to be sent.
472  *
473  * Return: 0 on success, -EAGAIN if no buffer is free.
474  *
475  * This function copies the transmit/receive data to/from the end point buffer
476  * and enables the buffer for transmission/reception.
477  */
xudc_eptxrx(struct xusb_ep * ep,struct xusb_req * req,u8 * bufferptr,u32 bufferlen)478 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
479 		       u8 *bufferptr, u32 bufferlen)
480 {
481 	u32 *eprambase;
482 	u32 bytestosend;
483 	int rc = 0;
484 	struct xusb_udc *udc = ep->udc;
485 
486 	bytestosend = bufferlen;
487 	if (udc->dma_enabled) {
488 		if (ep->is_in)
489 			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
490 		else
491 			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
492 		return rc;
493 	}
494 	/* Put the transmit buffer into the correct ping-pong buffer.*/
495 	if (!ep->curbufnum && !ep->buffer0ready) {
496 		/* Get the Buffer address and copy the transmit data.*/
497 		eprambase = (u32 __force *)(udc->addr + ep->rambase);
498 		if (ep->is_in) {
499 			memcpy_toio((void __iomem *)eprambase, bufferptr,
500 				    bytestosend);
501 			udc->write_fn(udc->addr, ep->offset +
502 				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
503 		} else {
504 			memcpy_toio((void __iomem *)bufferptr, eprambase,
505 				    bytestosend);
506 		}
507 		/*
508 		 * Enable the buffer for transmission.
509 		 */
510 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
511 			      1 << ep->epnumber);
512 		ep->buffer0ready = 1;
513 		ep->curbufnum = 1;
514 	} else if (ep->curbufnum && !ep->buffer1ready) {
515 		/* Get the Buffer address and copy the transmit data.*/
516 		eprambase = (u32 __force *)(udc->addr + ep->rambase +
517 			     ep->ep_usb.maxpacket);
518 		if (ep->is_in) {
519 			memcpy_toio((void __iomem *)eprambase, bufferptr,
520 				    bytestosend);
521 			udc->write_fn(udc->addr, ep->offset +
522 				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
523 		} else {
524 			memcpy_toio((void __iomem *)bufferptr, eprambase,
525 				    bytestosend);
526 		}
527 		/*
528 		 * Enable the buffer for transmission.
529 		 */
530 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
531 			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
532 		ep->buffer1ready = 1;
533 		ep->curbufnum = 0;
534 	} else {
535 		/* None of the ping-pong buffers are ready currently */
536 		return -EAGAIN;
537 	}
538 	return rc;
539 }
540 
541 /**
542  * xudc_done - Exeutes the endpoint data transfer completion tasks.
543  * @ep: pointer to the usb device endpoint structure.
544  * @req: pointer to the usb request structure.
545  * @status: Status of the data transfer.
546  *
547  * Deletes the message from the queue and updates data transfer completion
548  * status.
549  */
xudc_done(struct xusb_ep * ep,struct xusb_req * req,int status)550 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
551 {
552 	struct xusb_udc *udc = ep->udc;
553 
554 	list_del_init(&req->queue);
555 
556 	if (req->usb_req.status == -EINPROGRESS)
557 		req->usb_req.status = status;
558 	else
559 		status = req->usb_req.status;
560 
561 	if (status && status != -ESHUTDOWN)
562 		dev_dbg(udc->dev, "%s done %p, status %d\n",
563 			ep->ep_usb.name, req, status);
564 	/* unmap request if DMA is present*/
565 	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
566 		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
567 					 ep->is_in);
568 
569 	if (req->usb_req.complete) {
570 		spin_unlock(&udc->lock);
571 		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
572 		spin_lock(&udc->lock);
573 	}
574 }
575 
576 /**
577  * xudc_read_fifo - Reads the data from the given endpoint buffer.
578  * @ep: pointer to the usb device endpoint structure.
579  * @req: pointer to the usb request structure.
580  *
581  * Return: 0 if request is completed and -EAGAIN if not completed.
582  *
583  * Pulls OUT packet data from the endpoint buffer.
584  */
xudc_read_fifo(struct xusb_ep * ep,struct xusb_req * req)585 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
586 {
587 	u8 *buf;
588 	u32 is_short, count, bufferspace;
589 	u8 bufoffset;
590 	u8 two_pkts = 0;
591 	int ret;
592 	int retval = -EAGAIN;
593 	struct xusb_udc *udc = ep->udc;
594 
595 	if (ep->buffer0ready && ep->buffer1ready) {
596 		dev_dbg(udc->dev, "Packet NOT ready!\n");
597 		return retval;
598 	}
599 top:
600 	if (ep->curbufnum)
601 		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
602 	else
603 		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
604 
605 	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
606 
607 	if (!ep->buffer0ready && !ep->buffer1ready)
608 		two_pkts = 1;
609 
610 	buf = req->usb_req.buf + req->usb_req.actual;
611 	prefetchw(buf);
612 	bufferspace = req->usb_req.length - req->usb_req.actual;
613 	is_short = count < ep->ep_usb.maxpacket;
614 
615 	if (unlikely(!bufferspace)) {
616 		/*
617 		 * This happens when the driver's buffer
618 		 * is smaller than what the host sent.
619 		 * discard the extra data.
620 		 */
621 		if (req->usb_req.status != -EOVERFLOW)
622 			dev_dbg(udc->dev, "%s overflow %d\n",
623 				ep->ep_usb.name, count);
624 		req->usb_req.status = -EOVERFLOW;
625 		xudc_done(ep, req, -EOVERFLOW);
626 		return 0;
627 	}
628 
629 	ret = xudc_eptxrx(ep, req, buf, count);
630 	switch (ret) {
631 	case 0:
632 		req->usb_req.actual += min(count, bufferspace);
633 		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
634 			ep->ep_usb.name, count, is_short ? "/S" : "", req,
635 			req->usb_req.actual, req->usb_req.length);
636 		bufferspace -= count;
637 		/* Completion */
638 		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
639 			if (udc->dma_enabled && req->usb_req.length)
640 				dma_sync_single_for_cpu(udc->dev,
641 							req->usb_req.dma,
642 							req->usb_req.actual,
643 							DMA_FROM_DEVICE);
644 			xudc_done(ep, req, 0);
645 			return 0;
646 		}
647 		if (two_pkts) {
648 			two_pkts = 0;
649 			goto top;
650 		}
651 		break;
652 	case -EAGAIN:
653 		dev_dbg(udc->dev, "receive busy\n");
654 		break;
655 	case -EINVAL:
656 	case -ETIMEDOUT:
657 		/* DMA error, dequeue the request */
658 		xudc_done(ep, req, -ECONNRESET);
659 		retval = 0;
660 		break;
661 	}
662 
663 	return retval;
664 }
665 
666 /**
667  * xudc_write_fifo - Writes data into the given endpoint buffer.
668  * @ep: pointer to the usb device endpoint structure.
669  * @req: pointer to the usb request structure.
670  *
671  * Return: 0 if request is completed and -EAGAIN if not completed.
672  *
673  * Loads endpoint buffer for an IN packet.
674  */
xudc_write_fifo(struct xusb_ep * ep,struct xusb_req * req)675 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
676 {
677 	u32 max;
678 	u32 length;
679 	int ret;
680 	int retval = -EAGAIN;
681 	struct xusb_udc *udc = ep->udc;
682 	int is_last, is_short = 0;
683 	u8 *buf;
684 
685 	max = le16_to_cpu(ep->desc->wMaxPacketSize);
686 	buf = req->usb_req.buf + req->usb_req.actual;
687 	prefetch(buf);
688 	length = req->usb_req.length - req->usb_req.actual;
689 	length = min(length, max);
690 
691 	ret = xudc_eptxrx(ep, req, buf, length);
692 	switch (ret) {
693 	case 0:
694 		req->usb_req.actual += length;
695 		if (unlikely(length != max)) {
696 			is_last = is_short = 1;
697 		} else {
698 			if (likely(req->usb_req.length !=
699 				   req->usb_req.actual) || req->usb_req.zero)
700 				is_last = 0;
701 			else
702 				is_last = 1;
703 		}
704 		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
705 			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
706 			is_short ? "/S" : "",
707 			req->usb_req.length - req->usb_req.actual, req);
708 		/* completion */
709 		if (is_last) {
710 			xudc_done(ep, req, 0);
711 			retval = 0;
712 		}
713 		break;
714 	case -EAGAIN:
715 		dev_dbg(udc->dev, "Send busy\n");
716 		break;
717 	case -EINVAL:
718 	case -ETIMEDOUT:
719 		/* DMA error, dequeue the request */
720 		xudc_done(ep, req, -ECONNRESET);
721 		retval = 0;
722 		break;
723 	}
724 
725 	return retval;
726 }
727 
728 /**
729  * xudc_nuke - Cleans up the data transfer message list.
730  * @ep: pointer to the usb device endpoint structure.
731  * @status: Status of the data transfer.
732  */
xudc_nuke(struct xusb_ep * ep,int status)733 static void xudc_nuke(struct xusb_ep *ep, int status)
734 {
735 	struct xusb_req *req;
736 
737 	while (!list_empty(&ep->queue)) {
738 		req = list_first_entry(&ep->queue, struct xusb_req, queue);
739 		xudc_done(ep, req, status);
740 	}
741 }
742 
743 /**
744  * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
745  * @_ep: pointer to the usb device endpoint structure.
746  * @value: value to indicate stall/unstall.
747  *
748  * Return: 0 for success and error value on failure
749  */
xudc_ep_set_halt(struct usb_ep * _ep,int value)750 static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
751 {
752 	struct xusb_ep *ep = to_xusb_ep(_ep);
753 	struct xusb_udc *udc;
754 	unsigned long flags;
755 	u32 epcfgreg;
756 
757 	if (!_ep || (!ep->desc && ep->epnumber)) {
758 		pr_debug("%s: bad ep or descriptor\n", __func__);
759 		return -EINVAL;
760 	}
761 	udc = ep->udc;
762 
763 	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
764 		dev_dbg(udc->dev, "requests pending can't halt\n");
765 		return -EAGAIN;
766 	}
767 
768 	if (ep->buffer0ready || ep->buffer1ready) {
769 		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
770 		return -EAGAIN;
771 	}
772 
773 	spin_lock_irqsave(&udc->lock, flags);
774 
775 	if (value) {
776 		/* Stall the device.*/
777 		epcfgreg = udc->read_fn(udc->addr + ep->offset);
778 		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
779 		udc->write_fn(udc->addr, ep->offset, epcfgreg);
780 	} else {
781 		/* Unstall the device.*/
782 		epcfgreg = udc->read_fn(udc->addr + ep->offset);
783 		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
784 		udc->write_fn(udc->addr, ep->offset, epcfgreg);
785 		if (ep->epnumber) {
786 			/* Reset the toggle bit.*/
787 			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
788 			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
789 			udc->write_fn(udc->addr, ep->offset, epcfgreg);
790 		}
791 	}
792 
793 	spin_unlock_irqrestore(&udc->lock, flags);
794 	return 0;
795 }
796 
797 /**
798  * __xudc_ep_enable - Enables the given endpoint.
799  * @ep: pointer to the xusb endpoint structure.
800  * @desc: pointer to usb endpoint descriptor.
801  *
802  * Return: 0 for success and error value on failure
803  */
__xudc_ep_enable(struct xusb_ep * ep,const struct usb_endpoint_descriptor * desc)804 static int __xudc_ep_enable(struct xusb_ep *ep,
805 			    const struct usb_endpoint_descriptor *desc)
806 {
807 	struct xusb_udc *udc = ep->udc;
808 	u32 tmp;
809 	u32 epcfg;
810 	u32 ier;
811 	u16 maxpacket;
812 
813 	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
814 	/* Bit 3...0:endpoint number */
815 	ep->epnumber = (desc->bEndpointAddress & 0x0f);
816 	ep->desc = desc;
817 	ep->ep_usb.desc = desc;
818 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
819 	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
820 
821 	switch (tmp) {
822 	case USB_ENDPOINT_XFER_CONTROL:
823 		dev_dbg(udc->dev, "only one control endpoint\n");
824 		/* NON- ISO */
825 		ep->is_iso = 0;
826 		return -EINVAL;
827 	case USB_ENDPOINT_XFER_INT:
828 		/* NON- ISO */
829 		ep->is_iso = 0;
830 		if (maxpacket > 64) {
831 			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
832 			return -EINVAL;
833 		}
834 		break;
835 	case USB_ENDPOINT_XFER_BULK:
836 		/* NON- ISO */
837 		ep->is_iso = 0;
838 		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
839 				maxpacket <= 512)) {
840 			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
841 			return -EINVAL;
842 		}
843 		break;
844 	case USB_ENDPOINT_XFER_ISOC:
845 		/* ISO */
846 		ep->is_iso = 1;
847 		break;
848 	}
849 
850 	ep->buffer0ready = false;
851 	ep->buffer1ready = false;
852 	ep->curbufnum = 0;
853 	ep->rambase = rambase[ep->epnumber];
854 	xudc_epconfig(ep, udc);
855 
856 	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
857 		ep->epnumber, maxpacket);
858 
859 	/* Enable the End point.*/
860 	epcfg = udc->read_fn(udc->addr + ep->offset);
861 	epcfg |= XUSB_EP_CFG_VALID_MASK;
862 	udc->write_fn(udc->addr, ep->offset, epcfg);
863 	if (ep->epnumber)
864 		ep->rambase <<= 2;
865 
866 	/* Enable buffer completion interrupts for endpoint */
867 	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
868 	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
869 	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
870 
871 	/* for OUT endpoint set buffers ready to receive */
872 	if (ep->epnumber && !ep->is_in) {
873 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
874 			      1 << ep->epnumber);
875 		ep->buffer0ready = true;
876 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
877 			     (1 << (ep->epnumber +
878 			      XUSB_STATUS_EP_BUFF2_SHIFT)));
879 		ep->buffer1ready = true;
880 	}
881 
882 	return 0;
883 }
884 
885 /**
886  * xudc_ep_enable - Enables the given endpoint.
887  * @_ep: pointer to the usb endpoint structure.
888  * @desc: pointer to usb endpoint descriptor.
889  *
890  * Return: 0 for success and error value on failure
891  */
xudc_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)892 static int xudc_ep_enable(struct usb_ep *_ep,
893 			  const struct usb_endpoint_descriptor *desc)
894 {
895 	struct xusb_ep *ep;
896 	struct xusb_udc *udc;
897 	unsigned long flags;
898 	int ret;
899 
900 	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
901 		pr_debug("%s: bad ep or descriptor\n", __func__);
902 		return -EINVAL;
903 	}
904 
905 	ep = to_xusb_ep(_ep);
906 	udc = ep->udc;
907 
908 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
909 		dev_dbg(udc->dev, "bogus device state\n");
910 		return -ESHUTDOWN;
911 	}
912 
913 	spin_lock_irqsave(&udc->lock, flags);
914 	ret = __xudc_ep_enable(ep, desc);
915 	spin_unlock_irqrestore(&udc->lock, flags);
916 
917 	return ret;
918 }
919 
920 /**
921  * xudc_ep_disable - Disables the given endpoint.
922  * @_ep: pointer to the usb endpoint structure.
923  *
924  * Return: 0 for success and error value on failure
925  */
xudc_ep_disable(struct usb_ep * _ep)926 static int xudc_ep_disable(struct usb_ep *_ep)
927 {
928 	struct xusb_ep *ep;
929 	unsigned long flags;
930 	u32 epcfg;
931 	struct xusb_udc *udc;
932 
933 	if (!_ep) {
934 		pr_debug("%s: invalid ep\n", __func__);
935 		return -EINVAL;
936 	}
937 
938 	ep = to_xusb_ep(_ep);
939 	udc = ep->udc;
940 
941 	spin_lock_irqsave(&udc->lock, flags);
942 
943 	xudc_nuke(ep, -ESHUTDOWN);
944 
945 	/* Restore the endpoint's pristine config */
946 	ep->desc = NULL;
947 	ep->ep_usb.desc = NULL;
948 
949 	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
950 	/* Disable the endpoint.*/
951 	epcfg = udc->read_fn(udc->addr + ep->offset);
952 	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
953 	udc->write_fn(udc->addr, ep->offset, epcfg);
954 
955 	spin_unlock_irqrestore(&udc->lock, flags);
956 	return 0;
957 }
958 
959 /**
960  * xudc_ep_alloc_request - Initializes the request queue.
961  * @_ep: pointer to the usb endpoint structure.
962  * @gfp_flags: Flags related to the request call.
963  *
964  * Return: pointer to request structure on success and a NULL on failure.
965  */
xudc_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)966 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
967 						 gfp_t gfp_flags)
968 {
969 	struct xusb_ep *ep = to_xusb_ep(_ep);
970 	struct xusb_req *req;
971 
972 	req = kzalloc(sizeof(*req), gfp_flags);
973 	if (!req)
974 		return NULL;
975 
976 	req->ep = ep;
977 	INIT_LIST_HEAD(&req->queue);
978 	return &req->usb_req;
979 }
980 
981 /**
982  * xudc_free_request - Releases the request from queue.
983  * @_ep: pointer to the usb device endpoint structure.
984  * @_req: pointer to the usb request structure.
985  */
xudc_free_request(struct usb_ep * _ep,struct usb_request * _req)986 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
987 {
988 	struct xusb_req *req = to_xusb_req(_req);
989 
990 	kfree(req);
991 }
992 
993 /**
994  * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
995  * @ep0: pointer to the xusb endpoint 0 structure.
996  * @req: pointer to the xusb request structure.
997  *
998  * Return: 0 for success and error value on failure
999  */
__xudc_ep0_queue(struct xusb_ep * ep0,struct xusb_req * req)1000 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1001 {
1002 	struct xusb_udc *udc = ep0->udc;
1003 	u32 length;
1004 	u8 *corebuf;
1005 
1006 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1007 		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1008 		return -EINVAL;
1009 	}
1010 	if (!list_empty(&ep0->queue)) {
1011 		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1012 		return -EBUSY;
1013 	}
1014 
1015 	req->usb_req.status = -EINPROGRESS;
1016 	req->usb_req.actual = 0;
1017 
1018 	list_add_tail(&req->queue, &ep0->queue);
1019 
1020 	if (udc->setup.bRequestType & USB_DIR_IN) {
1021 		prefetch(req->usb_req.buf);
1022 		length = req->usb_req.length;
1023 		corebuf = (void __force *) ((ep0->rambase << 2) +
1024 			   udc->addr);
1025 		length = req->usb_req.actual = min_t(u32, length,
1026 						     EP0_MAX_PACKET);
1027 		memcpy_toio((void __iomem *)corebuf, req->usb_req.buf, length);
1028 		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1029 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1030 	} else {
1031 		if (udc->setup.wLength) {
1032 			/* Enable EP0 buffer to receive data */
1033 			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1034 			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1035 		} else {
1036 			xudc_wrstatus(udc);
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1045  * @_ep: pointer to the usb endpoint 0 structure.
1046  * @_req: pointer to the usb request structure.
1047  * @gfp_flags: Flags related to the request call.
1048  *
1049  * Return: 0 for success and error value on failure
1050  */
xudc_ep0_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1051 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1052 			  gfp_t gfp_flags)
1053 {
1054 	struct xusb_req *req	= to_xusb_req(_req);
1055 	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1056 	struct xusb_udc *udc	= ep0->udc;
1057 	unsigned long flags;
1058 	int ret;
1059 
1060 	spin_lock_irqsave(&udc->lock, flags);
1061 	ret = __xudc_ep0_queue(ep0, req);
1062 	spin_unlock_irqrestore(&udc->lock, flags);
1063 
1064 	return ret;
1065 }
1066 
1067 /**
1068  * xudc_ep_queue - Adds the request to endpoint queue.
1069  * @_ep: pointer to the usb endpoint structure.
1070  * @_req: pointer to the usb request structure.
1071  * @gfp_flags: Flags related to the request call.
1072  *
1073  * Return: 0 for success and error value on failure
1074  */
xudc_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1075 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1076 			 gfp_t gfp_flags)
1077 {
1078 	struct xusb_req *req = to_xusb_req(_req);
1079 	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1080 	struct xusb_udc *udc = ep->udc;
1081 	int  ret;
1082 	unsigned long flags;
1083 
1084 	if (!ep->desc) {
1085 		dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1086 			__func__, ep->name);
1087 		return -ESHUTDOWN;
1088 	}
1089 
1090 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1091 		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1092 		return -EINVAL;
1093 	}
1094 
1095 	spin_lock_irqsave(&udc->lock, flags);
1096 
1097 	_req->status = -EINPROGRESS;
1098 	_req->actual = 0;
1099 
1100 	if (udc->dma_enabled) {
1101 		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1102 					     ep->is_in);
1103 		if (ret) {
1104 			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1105 				ep->epnumber);
1106 			spin_unlock_irqrestore(&udc->lock, flags);
1107 			return -EAGAIN;
1108 		}
1109 	}
1110 
1111 	if (list_empty(&ep->queue)) {
1112 		if (ep->is_in) {
1113 			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1114 			if (!xudc_write_fifo(ep, req))
1115 				req = NULL;
1116 		} else {
1117 			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1118 			if (!xudc_read_fifo(ep, req))
1119 				req = NULL;
1120 		}
1121 	}
1122 
1123 	if (req != NULL)
1124 		list_add_tail(&req->queue, &ep->queue);
1125 
1126 	spin_unlock_irqrestore(&udc->lock, flags);
1127 	return 0;
1128 }
1129 
1130 /**
1131  * xudc_ep_dequeue - Removes the request from the queue.
1132  * @_ep: pointer to the usb device endpoint structure.
1133  * @_req: pointer to the usb request structure.
1134  *
1135  * Return: 0 for success and error value on failure
1136  */
xudc_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1137 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1138 {
1139 	struct xusb_ep *ep	= to_xusb_ep(_ep);
1140 	struct xusb_req *req	= to_xusb_req(_req);
1141 	struct xusb_udc *udc	= ep->udc;
1142 	unsigned long flags;
1143 
1144 	spin_lock_irqsave(&udc->lock, flags);
1145 	/* Make sure it's actually queued on this endpoint */
1146 	list_for_each_entry(req, &ep->queue, queue) {
1147 		if (&req->usb_req == _req)
1148 			break;
1149 	}
1150 	if (&req->usb_req != _req) {
1151 		spin_unlock_irqrestore(&udc->lock, flags);
1152 		return -EINVAL;
1153 	}
1154 	xudc_done(ep, req, -ECONNRESET);
1155 	spin_unlock_irqrestore(&udc->lock, flags);
1156 
1157 	return 0;
1158 }
1159 
1160 /**
1161  * xudc_ep0_enable - Enables the given endpoint.
1162  * @ep: pointer to the usb endpoint structure.
1163  * @desc: pointer to usb endpoint descriptor.
1164  *
1165  * Return: error always.
1166  *
1167  * endpoint 0 enable should not be called by gadget layer.
1168  */
xudc_ep0_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1169 static int xudc_ep0_enable(struct usb_ep *ep,
1170 			   const struct usb_endpoint_descriptor *desc)
1171 {
1172 	return -EINVAL;
1173 }
1174 
1175 /**
1176  * xudc_ep0_disable - Disables the given endpoint.
1177  * @ep: pointer to the usb endpoint structure.
1178  *
1179  * Return: error always.
1180  *
1181  * endpoint 0 disable should not be called by gadget layer.
1182  */
xudc_ep0_disable(struct usb_ep * ep)1183 static int xudc_ep0_disable(struct usb_ep *ep)
1184 {
1185 	return -EINVAL;
1186 }
1187 
1188 static const struct usb_ep_ops xusb_ep0_ops = {
1189 	.enable		= xudc_ep0_enable,
1190 	.disable	= xudc_ep0_disable,
1191 	.alloc_request	= xudc_ep_alloc_request,
1192 	.free_request	= xudc_free_request,
1193 	.queue		= xudc_ep0_queue,
1194 	.dequeue	= xudc_ep_dequeue,
1195 	.set_halt	= xudc_ep_set_halt,
1196 };
1197 
1198 static const struct usb_ep_ops xusb_ep_ops = {
1199 	.enable		= xudc_ep_enable,
1200 	.disable	= xudc_ep_disable,
1201 	.alloc_request	= xudc_ep_alloc_request,
1202 	.free_request	= xudc_free_request,
1203 	.queue		= xudc_ep_queue,
1204 	.dequeue	= xudc_ep_dequeue,
1205 	.set_halt	= xudc_ep_set_halt,
1206 };
1207 
1208 /**
1209  * xudc_get_frame - Reads the current usb frame number.
1210  * @gadget: pointer to the usb gadget structure.
1211  *
1212  * Return: current frame number for success and error value on failure.
1213  */
xudc_get_frame(struct usb_gadget * gadget)1214 static int xudc_get_frame(struct usb_gadget *gadget)
1215 {
1216 	struct xusb_udc *udc;
1217 	int frame;
1218 
1219 	if (!gadget)
1220 		return -ENODEV;
1221 
1222 	udc = to_udc(gadget);
1223 	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1224 	return frame;
1225 }
1226 
1227 /**
1228  * xudc_wakeup - Send remote wakeup signal to host
1229  * @gadget: pointer to the usb gadget structure.
1230  *
1231  * Return: 0 on success and error on failure
1232  */
xudc_wakeup(struct usb_gadget * gadget)1233 static int xudc_wakeup(struct usb_gadget *gadget)
1234 {
1235 	struct xusb_udc *udc = to_udc(gadget);
1236 	u32 crtlreg;
1237 	int status = -EINVAL;
1238 	unsigned long flags;
1239 
1240 	spin_lock_irqsave(&udc->lock, flags);
1241 
1242 	/* Remote wake up not enabled by host */
1243 	if (!udc->remote_wkp)
1244 		goto done;
1245 
1246 	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1247 	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1248 	/* set remote wake up bit */
1249 	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1250 	/*
1251 	 * wait for a while and reset remote wake up bit since this bit
1252 	 * is not cleared by HW after sending remote wakeup to host.
1253 	 */
1254 	mdelay(2);
1255 
1256 	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1257 	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1258 	status = 0;
1259 done:
1260 	spin_unlock_irqrestore(&udc->lock, flags);
1261 	return status;
1262 }
1263 
1264 /**
1265  * xudc_pullup - start/stop USB traffic
1266  * @gadget: pointer to the usb gadget structure.
1267  * @is_on: flag to start or stop
1268  *
1269  * Return: 0 always
1270  *
1271  * This function starts/stops SIE engine of IP based on is_on.
1272  */
xudc_pullup(struct usb_gadget * gadget,int is_on)1273 static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1274 {
1275 	struct xusb_udc *udc = to_udc(gadget);
1276 	unsigned long flags;
1277 	u32 crtlreg;
1278 
1279 	spin_lock_irqsave(&udc->lock, flags);
1280 
1281 	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1282 	if (is_on)
1283 		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1284 	else
1285 		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1286 
1287 	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1288 
1289 	spin_unlock_irqrestore(&udc->lock, flags);
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * xudc_eps_init - initialize endpoints.
1296  * @udc: pointer to the usb device controller structure.
1297  */
xudc_eps_init(struct xusb_udc * udc)1298 static void xudc_eps_init(struct xusb_udc *udc)
1299 {
1300 	u32 ep_number;
1301 
1302 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1303 
1304 	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1305 		struct xusb_ep *ep = &udc->ep[ep_number];
1306 
1307 		if (ep_number) {
1308 			list_add_tail(&ep->ep_usb.ep_list,
1309 				      &udc->gadget.ep_list);
1310 			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1311 						  (unsigned short) ~0);
1312 			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1313 			ep->ep_usb.name = ep->name;
1314 			ep->ep_usb.ops = &xusb_ep_ops;
1315 
1316 			ep->ep_usb.caps.type_iso = true;
1317 			ep->ep_usb.caps.type_bulk = true;
1318 			ep->ep_usb.caps.type_int = true;
1319 		} else {
1320 			ep->ep_usb.name = ep0name;
1321 			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1322 			ep->ep_usb.ops = &xusb_ep0_ops;
1323 
1324 			ep->ep_usb.caps.type_control = true;
1325 		}
1326 
1327 		ep->ep_usb.caps.dir_in = true;
1328 		ep->ep_usb.caps.dir_out = true;
1329 
1330 		ep->udc = udc;
1331 		ep->epnumber = ep_number;
1332 		ep->desc = NULL;
1333 		/*
1334 		 * The configuration register address offset between
1335 		 * each endpoint is 0x10.
1336 		 */
1337 		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1338 		ep->is_in = 0;
1339 		ep->is_iso = 0;
1340 		ep->maxpacket = 0;
1341 		xudc_epconfig(ep, udc);
1342 
1343 		/* Initialize one queue per endpoint */
1344 		INIT_LIST_HEAD(&ep->queue);
1345 	}
1346 }
1347 
1348 /**
1349  * xudc_stop_activity - Stops any further activity on the device.
1350  * @udc: pointer to the usb device controller structure.
1351  */
xudc_stop_activity(struct xusb_udc * udc)1352 static void xudc_stop_activity(struct xusb_udc *udc)
1353 {
1354 	int i;
1355 	struct xusb_ep *ep;
1356 
1357 	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1358 		ep = &udc->ep[i];
1359 		xudc_nuke(ep, -ESHUTDOWN);
1360 	}
1361 }
1362 
1363 /**
1364  * xudc_start - Starts the device.
1365  * @gadget: pointer to the usb gadget structure
1366  * @driver: pointer to gadget driver structure
1367  *
1368  * Return: zero on success and error on failure
1369  */
xudc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1370 static int xudc_start(struct usb_gadget *gadget,
1371 		      struct usb_gadget_driver *driver)
1372 {
1373 	struct xusb_udc *udc	= to_udc(gadget);
1374 	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1375 	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1376 	unsigned long flags;
1377 	int ret = 0;
1378 
1379 	spin_lock_irqsave(&udc->lock, flags);
1380 
1381 	if (udc->driver) {
1382 		dev_err(udc->dev, "%s is already bound to %s\n",
1383 			udc->gadget.name, udc->driver->driver.name);
1384 		ret = -EBUSY;
1385 		goto err;
1386 	}
1387 
1388 	/* hook up the driver */
1389 	udc->driver = driver;
1390 	udc->gadget.speed = driver->max_speed;
1391 
1392 	/* Enable the control endpoint. */
1393 	ret = __xudc_ep_enable(ep0, desc);
1394 
1395 	/* Set device address and remote wakeup to 0 */
1396 	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1397 	udc->remote_wkp = 0;
1398 err:
1399 	spin_unlock_irqrestore(&udc->lock, flags);
1400 	return ret;
1401 }
1402 
1403 /**
1404  * xudc_stop - stops the device.
1405  * @gadget: pointer to the usb gadget structure
1406  *
1407  * Return: zero always
1408  */
xudc_stop(struct usb_gadget * gadget)1409 static int xudc_stop(struct usb_gadget *gadget)
1410 {
1411 	struct xusb_udc *udc = to_udc(gadget);
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&udc->lock, flags);
1415 
1416 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1417 	udc->driver = NULL;
1418 
1419 	/* Set device address and remote wakeup to 0 */
1420 	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1421 	udc->remote_wkp = 0;
1422 
1423 	xudc_stop_activity(udc);
1424 
1425 	spin_unlock_irqrestore(&udc->lock, flags);
1426 
1427 	return 0;
1428 }
1429 
1430 static const struct usb_gadget_ops xusb_udc_ops = {
1431 	.get_frame	= xudc_get_frame,
1432 	.wakeup		= xudc_wakeup,
1433 	.pullup		= xudc_pullup,
1434 	.udc_start	= xudc_start,
1435 	.udc_stop	= xudc_stop,
1436 };
1437 
1438 /**
1439  * xudc_clear_stall_all_ep - clears stall of every endpoint.
1440  * @udc: pointer to the udc structure.
1441  */
xudc_clear_stall_all_ep(struct xusb_udc * udc)1442 static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1443 {
1444 	struct xusb_ep *ep;
1445 	u32 epcfgreg;
1446 	int i;
1447 
1448 	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1449 		ep = &udc->ep[i];
1450 		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1451 		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1452 		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1453 		if (ep->epnumber) {
1454 			/* Reset the toggle bit.*/
1455 			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1456 			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1457 			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1458 		}
1459 	}
1460 }
1461 
1462 /**
1463  * xudc_startup_handler - The usb device controller interrupt handler.
1464  * @udc: pointer to the udc structure.
1465  * @intrstatus: The mask value containing the interrupt sources.
1466  *
1467  * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1468  */
xudc_startup_handler(struct xusb_udc * udc,u32 intrstatus)1469 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1470 {
1471 	u32 intrreg;
1472 
1473 	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1474 
1475 		dev_dbg(udc->dev, "Reset\n");
1476 
1477 		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1478 			udc->gadget.speed = USB_SPEED_HIGH;
1479 		else
1480 			udc->gadget.speed = USB_SPEED_FULL;
1481 
1482 		xudc_stop_activity(udc);
1483 		xudc_clear_stall_all_ep(udc);
1484 		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1485 
1486 		/* Set device address and remote wakeup to 0 */
1487 		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1488 		udc->remote_wkp = 0;
1489 
1490 		/* Enable the suspend, resume and disconnect */
1491 		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1492 		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1493 			   XUSB_STATUS_DISCONNECT_MASK;
1494 		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1495 	}
1496 	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1497 
1498 		dev_dbg(udc->dev, "Suspend\n");
1499 
1500 		/* Enable the reset, resume and disconnect */
1501 		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1502 		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1503 			   XUSB_STATUS_DISCONNECT_MASK;
1504 		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1505 
1506 		udc->usb_state = USB_STATE_SUSPENDED;
1507 
1508 		if (udc->driver->suspend) {
1509 			spin_unlock(&udc->lock);
1510 			udc->driver->suspend(&udc->gadget);
1511 			spin_lock(&udc->lock);
1512 		}
1513 	}
1514 	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1515 		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1516 
1517 		dev_WARN_ONCE(udc->dev, condition,
1518 				"Resume IRQ while not suspended\n");
1519 
1520 		dev_dbg(udc->dev, "Resume\n");
1521 
1522 		/* Enable the reset, suspend and disconnect */
1523 		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1524 		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1525 			   XUSB_STATUS_DISCONNECT_MASK;
1526 		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1527 
1528 		udc->usb_state = 0;
1529 
1530 		if (udc->driver->resume) {
1531 			spin_unlock(&udc->lock);
1532 			udc->driver->resume(&udc->gadget);
1533 			spin_lock(&udc->lock);
1534 		}
1535 	}
1536 	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1537 
1538 		dev_dbg(udc->dev, "Disconnect\n");
1539 
1540 		/* Enable the reset, resume and suspend */
1541 		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1542 		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1543 			   XUSB_STATUS_SUSPEND_MASK;
1544 		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1545 
1546 		if (udc->driver && udc->driver->disconnect) {
1547 			spin_unlock(&udc->lock);
1548 			udc->driver->disconnect(&udc->gadget);
1549 			spin_lock(&udc->lock);
1550 		}
1551 	}
1552 }
1553 
1554 /**
1555  * xudc_ep0_stall - Stall endpoint zero.
1556  * @udc: pointer to the udc structure.
1557  *
1558  * This function stalls endpoint zero.
1559  */
xudc_ep0_stall(struct xusb_udc * udc)1560 static void xudc_ep0_stall(struct xusb_udc *udc)
1561 {
1562 	u32 epcfgreg;
1563 	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1564 
1565 	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1566 	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1567 	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1568 }
1569 
1570 /**
1571  * xudc_setaddress - executes SET_ADDRESS command
1572  * @udc: pointer to the udc structure.
1573  *
1574  * This function executes USB SET_ADDRESS command
1575  */
xudc_setaddress(struct xusb_udc * udc)1576 static void xudc_setaddress(struct xusb_udc *udc)
1577 {
1578 	struct xusb_ep *ep0	= &udc->ep[0];
1579 	struct xusb_req *req	= udc->req;
1580 	int ret;
1581 
1582 	req->usb_req.length = 0;
1583 	ret = __xudc_ep0_queue(ep0, req);
1584 	if (ret == 0)
1585 		return;
1586 
1587 	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1588 	xudc_ep0_stall(udc);
1589 }
1590 
1591 /**
1592  * xudc_getstatus - executes GET_STATUS command
1593  * @udc: pointer to the udc structure.
1594  *
1595  * This function executes USB GET_STATUS command
1596  */
xudc_getstatus(struct xusb_udc * udc)1597 static void xudc_getstatus(struct xusb_udc *udc)
1598 {
1599 	struct xusb_ep *ep0	= &udc->ep[0];
1600 	struct xusb_req *req	= udc->req;
1601 	struct xusb_ep *target_ep;
1602 	u16 status = 0;
1603 	u32 epcfgreg;
1604 	int epnum;
1605 	u32 halt;
1606 	int ret;
1607 
1608 	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1609 	case USB_RECIP_DEVICE:
1610 		/* Get device status */
1611 		status = 1 << USB_DEVICE_SELF_POWERED;
1612 		if (udc->remote_wkp)
1613 			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1614 		break;
1615 	case USB_RECIP_INTERFACE:
1616 		break;
1617 	case USB_RECIP_ENDPOINT:
1618 		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1619 		if (epnum >= XUSB_MAX_ENDPOINTS)
1620 			goto stall;
1621 		target_ep = &udc->ep[epnum];
1622 		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1623 		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1624 		if (udc->setup.wIndex & USB_DIR_IN) {
1625 			if (!target_ep->is_in)
1626 				goto stall;
1627 		} else {
1628 			if (target_ep->is_in)
1629 				goto stall;
1630 		}
1631 		if (halt)
1632 			status = 1 << USB_ENDPOINT_HALT;
1633 		break;
1634 	default:
1635 		goto stall;
1636 	}
1637 
1638 	req->usb_req.length = 2;
1639 	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1640 	ret = __xudc_ep0_queue(ep0, req);
1641 	if (ret == 0)
1642 		return;
1643 stall:
1644 	dev_err(udc->dev, "Can't respond to getstatus request\n");
1645 	xudc_ep0_stall(udc);
1646 }
1647 
1648 /**
1649  * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1650  * @udc: pointer to the usb device controller structure.
1651  *
1652  * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1653  */
xudc_set_clear_feature(struct xusb_udc * udc)1654 static void xudc_set_clear_feature(struct xusb_udc *udc)
1655 {
1656 	struct xusb_ep *ep0	= &udc->ep[0];
1657 	struct xusb_req *req	= udc->req;
1658 	struct xusb_ep *target_ep;
1659 	u8 endpoint;
1660 	u8 outinbit;
1661 	u32 epcfgreg;
1662 	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1663 	int ret;
1664 
1665 	switch (udc->setup.bRequestType) {
1666 	case USB_RECIP_DEVICE:
1667 		switch (udc->setup.wValue) {
1668 		case USB_DEVICE_TEST_MODE:
1669 			/*
1670 			 * The Test Mode will be executed
1671 			 * after the status phase.
1672 			 */
1673 			break;
1674 		case USB_DEVICE_REMOTE_WAKEUP:
1675 			if (flag)
1676 				udc->remote_wkp = 1;
1677 			else
1678 				udc->remote_wkp = 0;
1679 			break;
1680 		default:
1681 			xudc_ep0_stall(udc);
1682 			break;
1683 		}
1684 		break;
1685 	case USB_RECIP_ENDPOINT:
1686 		if (!udc->setup.wValue) {
1687 			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1688 			if (endpoint >= XUSB_MAX_ENDPOINTS) {
1689 				xudc_ep0_stall(udc);
1690 				return;
1691 			}
1692 			target_ep = &udc->ep[endpoint];
1693 			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1694 			outinbit = outinbit >> 7;
1695 
1696 			/* Make sure direction matches.*/
1697 			if (outinbit != target_ep->is_in) {
1698 				xudc_ep0_stall(udc);
1699 				return;
1700 			}
1701 			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1702 			if (!endpoint) {
1703 				/* Clear the stall.*/
1704 				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1705 				udc->write_fn(udc->addr,
1706 					      target_ep->offset, epcfgreg);
1707 			} else {
1708 				if (flag) {
1709 					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1710 					udc->write_fn(udc->addr,
1711 						      target_ep->offset,
1712 						      epcfgreg);
1713 				} else {
1714 					/* Unstall the endpoint.*/
1715 					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1716 						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1717 					udc->write_fn(udc->addr,
1718 						      target_ep->offset,
1719 						      epcfgreg);
1720 				}
1721 			}
1722 		}
1723 		break;
1724 	default:
1725 		xudc_ep0_stall(udc);
1726 		return;
1727 	}
1728 
1729 	req->usb_req.length = 0;
1730 	ret = __xudc_ep0_queue(ep0, req);
1731 	if (ret == 0)
1732 		return;
1733 
1734 	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1735 	xudc_ep0_stall(udc);
1736 }
1737 
1738 /**
1739  * xudc_handle_setup - Processes the setup packet.
1740  * @udc: pointer to the usb device controller structure.
1741  *
1742  * Process setup packet and delegate to gadget layer.
1743  */
xudc_handle_setup(struct xusb_udc * udc)1744 static void xudc_handle_setup(struct xusb_udc *udc)
1745 	__must_hold(&udc->lock)
1746 {
1747 	struct xusb_ep *ep0 = &udc->ep[0];
1748 	struct usb_ctrlrequest setup;
1749 	u32 *ep0rambase;
1750 
1751 	/* Load up the chapter 9 command buffer.*/
1752 	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1753 	memcpy_toio((void __iomem *)&setup, ep0rambase, 8);
1754 
1755 	udc->setup = setup;
1756 	udc->setup.wValue = cpu_to_le16(setup.wValue);
1757 	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1758 	udc->setup.wLength = cpu_to_le16(setup.wLength);
1759 
1760 	/* Clear previous requests */
1761 	xudc_nuke(ep0, -ECONNRESET);
1762 
1763 	if (udc->setup.bRequestType & USB_DIR_IN) {
1764 		/* Execute the get command.*/
1765 		udc->setupseqrx = STATUS_PHASE;
1766 		udc->setupseqtx = DATA_PHASE;
1767 	} else {
1768 		/* Execute the put command.*/
1769 		udc->setupseqrx = DATA_PHASE;
1770 		udc->setupseqtx = STATUS_PHASE;
1771 	}
1772 
1773 	switch (udc->setup.bRequest) {
1774 	case USB_REQ_GET_STATUS:
1775 		/* Data+Status phase form udc */
1776 		if ((udc->setup.bRequestType &
1777 				(USB_DIR_IN | USB_TYPE_MASK)) !=
1778 				(USB_DIR_IN | USB_TYPE_STANDARD))
1779 			break;
1780 		xudc_getstatus(udc);
1781 		return;
1782 	case USB_REQ_SET_ADDRESS:
1783 		/* Status phase from udc */
1784 		if (udc->setup.bRequestType != (USB_DIR_OUT |
1785 				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1786 			break;
1787 		xudc_setaddress(udc);
1788 		return;
1789 	case USB_REQ_CLEAR_FEATURE:
1790 	case USB_REQ_SET_FEATURE:
1791 		/* Requests with no data phase, status phase from udc */
1792 		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1793 				!= USB_TYPE_STANDARD)
1794 			break;
1795 		xudc_set_clear_feature(udc);
1796 		return;
1797 	default:
1798 		break;
1799 	}
1800 
1801 	spin_unlock(&udc->lock);
1802 	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1803 		xudc_ep0_stall(udc);
1804 	spin_lock(&udc->lock);
1805 }
1806 
1807 /**
1808  * xudc_ep0_out - Processes the endpoint 0 OUT token.
1809  * @udc: pointer to the usb device controller structure.
1810  */
xudc_ep0_out(struct xusb_udc * udc)1811 static void xudc_ep0_out(struct xusb_udc *udc)
1812 {
1813 	struct xusb_ep *ep0 = &udc->ep[0];
1814 	struct xusb_req *req;
1815 	u8 *ep0rambase;
1816 	unsigned int bytes_to_rx;
1817 	void *buffer;
1818 
1819 	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1820 
1821 	switch (udc->setupseqrx) {
1822 	case STATUS_PHASE:
1823 		/*
1824 		 * This resets both state machines for the next
1825 		 * Setup packet.
1826 		 */
1827 		udc->setupseqrx = SETUP_PHASE;
1828 		udc->setupseqtx = SETUP_PHASE;
1829 		req->usb_req.actual = req->usb_req.length;
1830 		xudc_done(ep0, req, 0);
1831 		break;
1832 	case DATA_PHASE:
1833 		bytes_to_rx = udc->read_fn(udc->addr +
1834 					   XUSB_EP_BUF0COUNT_OFFSET);
1835 		/* Copy the data to be received from the DPRAM. */
1836 		ep0rambase = (u8 __force *) (udc->addr +
1837 			     (ep0->rambase << 2));
1838 		buffer = req->usb_req.buf + req->usb_req.actual;
1839 		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1840 		memcpy_toio((void __iomem *)buffer, ep0rambase, bytes_to_rx);
1841 
1842 		if (req->usb_req.length == req->usb_req.actual) {
1843 			/* Data transfer completed get ready for Status stage */
1844 			xudc_wrstatus(udc);
1845 		} else {
1846 			/* Enable EP0 buffer to receive data */
1847 			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1848 			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1849 		}
1850 		break;
1851 	default:
1852 		break;
1853 	}
1854 }
1855 
1856 /**
1857  * xudc_ep0_in - Processes the endpoint 0 IN token.
1858  * @udc: pointer to the usb device controller structure.
1859  */
xudc_ep0_in(struct xusb_udc * udc)1860 static void xudc_ep0_in(struct xusb_udc *udc)
1861 {
1862 	struct xusb_ep *ep0 = &udc->ep[0];
1863 	struct xusb_req *req;
1864 	unsigned int bytes_to_tx;
1865 	void *buffer;
1866 	u32 epcfgreg;
1867 	u16 count = 0;
1868 	u16 length;
1869 	u8 *ep0rambase;
1870 	u8 test_mode = udc->setup.wIndex >> 8;
1871 
1872 	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1873 	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1874 
1875 	switch (udc->setupseqtx) {
1876 	case STATUS_PHASE:
1877 		switch (udc->setup.bRequest) {
1878 		case USB_REQ_SET_ADDRESS:
1879 			/* Set the address of the device.*/
1880 			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1881 				      udc->setup.wValue);
1882 			break;
1883 		case USB_REQ_SET_FEATURE:
1884 			if (udc->setup.bRequestType ==
1885 					USB_RECIP_DEVICE) {
1886 				if (udc->setup.wValue ==
1887 						USB_DEVICE_TEST_MODE)
1888 					udc->write_fn(udc->addr,
1889 						      XUSB_TESTMODE_OFFSET,
1890 						      test_mode);
1891 			}
1892 			break;
1893 		}
1894 		req->usb_req.actual = req->usb_req.length;
1895 		xudc_done(ep0, req, 0);
1896 		break;
1897 	case DATA_PHASE:
1898 		if (!bytes_to_tx) {
1899 			/*
1900 			 * We're done with data transfer, next
1901 			 * will be zero length OUT with data toggle of
1902 			 * 1. Setup data_toggle.
1903 			 */
1904 			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1905 			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1906 			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1907 			udc->setupseqtx = STATUS_PHASE;
1908 		} else {
1909 			length = count = min_t(u32, bytes_to_tx,
1910 					       EP0_MAX_PACKET);
1911 			/* Copy the data to be transmitted into the DPRAM. */
1912 			ep0rambase = (u8 __force *) (udc->addr +
1913 				     (ep0->rambase << 2));
1914 			buffer = req->usb_req.buf + req->usb_req.actual;
1915 			req->usb_req.actual = req->usb_req.actual + length;
1916 			memcpy_toio((void __iomem *)ep0rambase, buffer, length);
1917 		}
1918 		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1919 		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1920 		break;
1921 	default:
1922 		break;
1923 	}
1924 }
1925 
1926 /**
1927  * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1928  * @udc: pointer to the udc structure.
1929  * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1930  *
1931  * Processes the commands received during enumeration phase.
1932  */
xudc_ctrl_ep_handler(struct xusb_udc * udc,u32 intrstatus)1933 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1934 {
1935 
1936 	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1937 		xudc_handle_setup(udc);
1938 	} else {
1939 		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1940 			xudc_ep0_out(udc);
1941 		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1942 			xudc_ep0_in(udc);
1943 	}
1944 }
1945 
1946 /**
1947  * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1948  * @udc: pointer to the udc structure.
1949  * @epnum: End point number for which the interrupt is to be processed
1950  * @intrstatus:	mask value for interrupt sources of endpoints other
1951  *		than endpoint 0.
1952  *
1953  * Processes the buffer completion interrupts.
1954  */
xudc_nonctrl_ep_handler(struct xusb_udc * udc,u8 epnum,u32 intrstatus)1955 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1956 				    u32 intrstatus)
1957 {
1958 
1959 	struct xusb_req *req;
1960 	struct xusb_ep *ep;
1961 
1962 	ep = &udc->ep[epnum];
1963 	/* Process the End point interrupts.*/
1964 	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1965 		ep->buffer0ready = 0;
1966 	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1967 		ep->buffer1ready = false;
1968 
1969 	if (list_empty(&ep->queue))
1970 		return;
1971 
1972 	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1973 
1974 	if (ep->is_in)
1975 		xudc_write_fifo(ep, req);
1976 	else
1977 		xudc_read_fifo(ep, req);
1978 }
1979 
1980 /**
1981  * xudc_irq - The main interrupt handler.
1982  * @irq: The interrupt number.
1983  * @_udc: pointer to the usb device controller structure.
1984  *
1985  * Return: IRQ_HANDLED after the interrupt is handled.
1986  */
xudc_irq(int irq,void * _udc)1987 static irqreturn_t xudc_irq(int irq, void *_udc)
1988 {
1989 	struct xusb_udc *udc = _udc;
1990 	u32 intrstatus;
1991 	u32 ier;
1992 	u8 index;
1993 	u32 bufintr;
1994 	unsigned long flags;
1995 
1996 	spin_lock_irqsave(&udc->lock, flags);
1997 
1998 	/*
1999 	 * Event interrupts are level sensitive hence first disable
2000 	 * IER, read ISR and figure out active interrupts.
2001 	 */
2002 	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2003 	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2004 	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2005 
2006 	/* Read the Interrupt Status Register.*/
2007 	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2008 
2009 	/* Call the handler for the event interrupt.*/
2010 	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2011 		/*
2012 		 * Check if there is any action to be done for :
2013 		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2014 		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2015 		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2016 		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2017 		 */
2018 		xudc_startup_handler(udc, intrstatus);
2019 	}
2020 
2021 	/* Check the buffer completion interrupts */
2022 	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2023 		/* Enable Reset, Suspend, Resume and Disconnect  */
2024 		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2025 		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2026 		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2027 
2028 		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2029 			xudc_ctrl_ep_handler(udc, intrstatus);
2030 
2031 		for (index = 1; index < 8; index++) {
2032 			bufintr = ((intrstatus &
2033 				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2034 				  (index - 1))) || (intrstatus &
2035 				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2036 				  (index - 1))));
2037 			if (bufintr) {
2038 				xudc_nonctrl_ep_handler(udc, index,
2039 							intrstatus);
2040 			}
2041 		}
2042 	}
2043 
2044 	spin_unlock_irqrestore(&udc->lock, flags);
2045 	return IRQ_HANDLED;
2046 }
2047 
2048 /**
2049  * xudc_probe - The device probe function for driver initialization.
2050  * @pdev: pointer to the platform device structure.
2051  *
2052  * Return: 0 for success and error value on failure
2053  */
xudc_probe(struct platform_device * pdev)2054 static int xudc_probe(struct platform_device *pdev)
2055 {
2056 	struct device_node *np = pdev->dev.of_node;
2057 	struct resource *res;
2058 	struct xusb_udc *udc;
2059 	int irq;
2060 	int ret;
2061 	u32 ier;
2062 	u8 *buff;
2063 
2064 	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2065 	if (!udc)
2066 		return -ENOMEM;
2067 
2068 	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2069 	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2070 				GFP_KERNEL);
2071 	if (!udc->req)
2072 		return -ENOMEM;
2073 
2074 	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2075 	if (!buff)
2076 		return -ENOMEM;
2077 
2078 	udc->req->usb_req.buf = buff;
2079 
2080 	/* Map the registers */
2081 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2082 	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2083 	if (IS_ERR(udc->addr))
2084 		return PTR_ERR(udc->addr);
2085 
2086 	irq = platform_get_irq(pdev, 0);
2087 	if (irq < 0)
2088 		return irq;
2089 	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2090 			       dev_name(&pdev->dev), udc);
2091 	if (ret < 0) {
2092 		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2093 		goto fail;
2094 	}
2095 
2096 	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2097 
2098 	/* Setup gadget structure */
2099 	udc->gadget.ops = &xusb_udc_ops;
2100 	udc->gadget.max_speed = USB_SPEED_HIGH;
2101 	udc->gadget.speed = USB_SPEED_UNKNOWN;
2102 	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2103 	udc->gadget.name = driver_name;
2104 
2105 	spin_lock_init(&udc->lock);
2106 
2107 	/* Check for IP endianness */
2108 	udc->write_fn = xudc_write32_be;
2109 	udc->read_fn = xudc_read32_be;
2110 	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2111 	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2112 			!= USB_TEST_J) {
2113 		udc->write_fn = xudc_write32;
2114 		udc->read_fn = xudc_read32;
2115 	}
2116 	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2117 
2118 	xudc_eps_init(udc);
2119 
2120 	/* Set device address to 0.*/
2121 	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2122 
2123 	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2124 	if (ret)
2125 		goto fail;
2126 
2127 	udc->dev = &udc->gadget.dev;
2128 
2129 	/* Enable the interrupts.*/
2130 	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2131 	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2132 	      XUSB_STATUS_SETUP_PACKET_MASK |
2133 	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2134 
2135 	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2136 
2137 	platform_set_drvdata(pdev, udc);
2138 
2139 	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2140 		 driver_name, (u32)res->start, udc->addr,
2141 		 udc->dma_enabled ? "with DMA" : "without DMA");
2142 
2143 	return 0;
2144 fail:
2145 	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2146 	return ret;
2147 }
2148 
2149 /**
2150  * xudc_remove - Releases the resources allocated during the initialization.
2151  * @pdev: pointer to the platform device structure.
2152  *
2153  * Return: 0 always
2154  */
xudc_remove(struct platform_device * pdev)2155 static int xudc_remove(struct platform_device *pdev)
2156 {
2157 	struct xusb_udc *udc = platform_get_drvdata(pdev);
2158 
2159 	usb_del_gadget_udc(&udc->gadget);
2160 
2161 	return 0;
2162 }
2163 
2164 /* Match table for of_platform binding */
2165 static const struct of_device_id usb_of_match[] = {
2166 	{ .compatible = "xlnx,usb2-device-4.00.a", },
2167 	{ /* end of list */ },
2168 };
2169 MODULE_DEVICE_TABLE(of, usb_of_match);
2170 
2171 static struct platform_driver xudc_driver = {
2172 	.driver = {
2173 		.name = driver_name,
2174 		.of_match_table = usb_of_match,
2175 	},
2176 	.probe = xudc_probe,
2177 	.remove = xudc_remove,
2178 };
2179 
2180 module_platform_driver(xudc_driver);
2181 
2182 MODULE_DESCRIPTION("Xilinx udc driver");
2183 MODULE_AUTHOR("Xilinx, Inc");
2184 MODULE_LICENSE("GPL");
2185