1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24
page_array_alloc(struct inode * inode,int nr)25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
33 return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35
page_array_free(struct inode * inode,void * pages,int nr)36 static void page_array_free(struct inode *inode, void *pages, int nr)
37 {
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 unsigned int size = sizeof(struct page *) * nr;
40
41 if (!pages)
42 return;
43
44 if (likely(size <= sbi->page_array_slab_size))
45 kmem_cache_free(sbi->page_array_slab, pages);
46 else
47 kfree(pages);
48 }
49
50 struct f2fs_compress_ops {
51 int (*init_compress_ctx)(struct compress_ctx *cc);
52 void (*destroy_compress_ctx)(struct compress_ctx *cc);
53 int (*compress_pages)(struct compress_ctx *cc);
54 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
55 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
56 int (*decompress_pages)(struct decompress_io_ctx *dic);
57 };
58
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 return index & (cc->cluster_size - 1);
62 }
63
cluster_idx(struct compress_ctx * cc,pgoff_t index)64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 return index >> cc->log_cluster_size;
67 }
68
start_idx_of_cluster(struct compress_ctx * cc)69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 return cc->cluster_idx << cc->log_cluster_size;
72 }
73
f2fs_is_compressed_page(struct page * page)74 bool f2fs_is_compressed_page(struct page *page)
75 {
76 if (!PagePrivate(page))
77 return false;
78 if (!page_private(page))
79 return false;
80 if (page_private_nonpointer(page))
81 return false;
82
83 f2fs_bug_on(F2FS_M_SB(page->mapping),
84 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
85 return true;
86 }
87
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)88 static void f2fs_set_compressed_page(struct page *page,
89 struct inode *inode, pgoff_t index, void *data)
90 {
91 attach_page_private(page, (void *)data);
92
93 /* i_crypto_info and iv index */
94 page->index = index;
95 page->mapping = inode->i_mapping;
96 }
97
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 int i;
101
102 for (i = 0; i < len; i++) {
103 if (!cc->rpages[i])
104 continue;
105 if (unlock)
106 unlock_page(cc->rpages[i]);
107 else
108 put_page(cc->rpages[i]);
109 }
110 }
111
f2fs_put_rpages(struct compress_ctx * cc)112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116
f2fs_unlock_rpages(struct compress_ctx * cc,int len)117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 f2fs_drop_rpages(cc, len, true);
120 }
121
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 unsigned int i;
126
127 for (i = 0; i < cc->cluster_size; i++) {
128 if (!cc->rpages[i])
129 continue;
130 if (redirty)
131 redirty_page_for_writepage(wbc, cc->rpages[i]);
132 f2fs_put_page(cc->rpages[i], unlock);
133 }
134 }
135
f2fs_compress_control_page(struct page * page)136 struct page *f2fs_compress_control_page(struct page *page)
137 {
138 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
139 }
140
f2fs_init_compress_ctx(struct compress_ctx * cc)141 int f2fs_init_compress_ctx(struct compress_ctx *cc)
142 {
143 if (cc->rpages)
144 return 0;
145
146 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
147 return cc->rpages ? 0 : -ENOMEM;
148 }
149
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)150 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
151 {
152 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
153 cc->rpages = NULL;
154 cc->nr_rpages = 0;
155 cc->nr_cpages = 0;
156 cc->valid_nr_cpages = 0;
157 if (!reuse)
158 cc->cluster_idx = NULL_CLUSTER;
159 }
160
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 unsigned int cluster_ofs;
164
165 if (!f2fs_cluster_can_merge_page(cc, page->index))
166 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167
168 cluster_ofs = offset_in_cluster(cc, page->index);
169 cc->rpages[cluster_ofs] = page;
170 cc->nr_rpages++;
171 cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173
174 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 LZO1X_MEM_COMPRESS, GFP_NOFS);
179 if (!cc->private)
180 return -ENOMEM;
181
182 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 return 0;
184 }
185
lzo_destroy_compress_ctx(struct compress_ctx * cc)186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 kvfree(cc->private);
189 cc->private = NULL;
190 }
191
lzo_compress_pages(struct compress_ctx * cc)192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 int ret;
195
196 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 &cc->clen, cc->private);
198 if (ret != LZO_E_OK) {
199 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 return -EIO;
202 }
203 return 0;
204 }
205
lzo_decompress_pages(struct decompress_io_ctx * dic)206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 int ret;
209
210 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 dic->rbuf, &dic->rlen);
212 if (ret != LZO_E_OK) {
213 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 return -EIO;
216 }
217
218 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 "expected:%lu\n", KERN_ERR,
221 F2FS_I_SB(dic->inode)->sb->s_id,
222 dic->rlen,
223 PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 kvfree(cc->private);
263 cc->private = NULL;
264 }
265
266 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)267 static int lz4hc_compress_pages(struct compress_ctx *cc)
268 {
269 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
270 COMPRESS_LEVEL_OFFSET;
271 int len;
272
273 if (level)
274 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 cc->clen, level, cc->private);
276 else
277 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 cc->clen, cc->private);
279 if (!len)
280 return -EAGAIN;
281
282 cc->clen = len;
283 return 0;
284 }
285 #endif
286
lz4_compress_pages(struct compress_ctx * cc)287 static int lz4_compress_pages(struct compress_ctx *cc)
288 {
289 int len;
290
291 #ifdef CONFIG_F2FS_FS_LZ4HC
292 return lz4hc_compress_pages(cc);
293 #endif
294 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
295 cc->clen, cc->private);
296 if (!len)
297 return -EAGAIN;
298
299 cc->clen = len;
300 return 0;
301 }
302
lz4_decompress_pages(struct decompress_io_ctx * dic)303 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
304 {
305 int ret;
306
307 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
308 dic->clen, dic->rlen);
309 if (ret < 0) {
310 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
311 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
312 return -EIO;
313 }
314
315 if (ret != PAGE_SIZE << dic->log_cluster_size) {
316 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
317 "expected:%lu\n", KERN_ERR,
318 F2FS_I_SB(dic->inode)->sb->s_id, ret,
319 PAGE_SIZE << dic->log_cluster_size);
320 return -EIO;
321 }
322 return 0;
323 }
324
325 static const struct f2fs_compress_ops f2fs_lz4_ops = {
326 .init_compress_ctx = lz4_init_compress_ctx,
327 .destroy_compress_ctx = lz4_destroy_compress_ctx,
328 .compress_pages = lz4_compress_pages,
329 .decompress_pages = lz4_decompress_pages,
330 };
331 #endif
332
333 #ifdef CONFIG_F2FS_FS_ZSTD
334 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
335
zstd_init_compress_ctx(struct compress_ctx * cc)336 static int zstd_init_compress_ctx(struct compress_ctx *cc)
337 {
338 ZSTD_parameters params;
339 ZSTD_CStream *stream;
340 void *workspace;
341 unsigned int workspace_size;
342 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
343 COMPRESS_LEVEL_OFFSET;
344
345 if (!level)
346 level = F2FS_ZSTD_DEFAULT_CLEVEL;
347
348 params = ZSTD_getParams(level, cc->rlen, 0);
349 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
350
351 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
352 workspace_size, GFP_NOFS);
353 if (!workspace)
354 return -ENOMEM;
355
356 stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
357 if (!stream) {
358 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
359 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
360 __func__);
361 kvfree(workspace);
362 return -EIO;
363 }
364
365 cc->private = workspace;
366 cc->private2 = stream;
367
368 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
369 return 0;
370 }
371
zstd_destroy_compress_ctx(struct compress_ctx * cc)372 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
373 {
374 kvfree(cc->private);
375 cc->private = NULL;
376 cc->private2 = NULL;
377 }
378
zstd_compress_pages(struct compress_ctx * cc)379 static int zstd_compress_pages(struct compress_ctx *cc)
380 {
381 ZSTD_CStream *stream = cc->private2;
382 ZSTD_inBuffer inbuf;
383 ZSTD_outBuffer outbuf;
384 int src_size = cc->rlen;
385 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
386 int ret;
387
388 inbuf.pos = 0;
389 inbuf.src = cc->rbuf;
390 inbuf.size = src_size;
391
392 outbuf.pos = 0;
393 outbuf.dst = cc->cbuf->cdata;
394 outbuf.size = dst_size;
395
396 ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
397 if (ZSTD_isError(ret)) {
398 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
399 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
400 __func__, ZSTD_getErrorCode(ret));
401 return -EIO;
402 }
403
404 ret = ZSTD_endStream(stream, &outbuf);
405 if (ZSTD_isError(ret)) {
406 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
407 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
408 __func__, ZSTD_getErrorCode(ret));
409 return -EIO;
410 }
411
412 /*
413 * there is compressed data remained in intermediate buffer due to
414 * no more space in cbuf.cdata
415 */
416 if (ret)
417 return -EAGAIN;
418
419 cc->clen = outbuf.pos;
420 return 0;
421 }
422
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)423 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
424 {
425 ZSTD_DStream *stream;
426 void *workspace;
427 unsigned int workspace_size;
428 unsigned int max_window_size =
429 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
430
431 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
432
433 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
434 workspace_size, GFP_NOFS);
435 if (!workspace)
436 return -ENOMEM;
437
438 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
439 if (!stream) {
440 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
441 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
442 __func__);
443 kvfree(workspace);
444 return -EIO;
445 }
446
447 dic->private = workspace;
448 dic->private2 = stream;
449
450 return 0;
451 }
452
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)453 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
454 {
455 kvfree(dic->private);
456 dic->private = NULL;
457 dic->private2 = NULL;
458 }
459
zstd_decompress_pages(struct decompress_io_ctx * dic)460 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
461 {
462 ZSTD_DStream *stream = dic->private2;
463 ZSTD_inBuffer inbuf;
464 ZSTD_outBuffer outbuf;
465 int ret;
466
467 inbuf.pos = 0;
468 inbuf.src = dic->cbuf->cdata;
469 inbuf.size = dic->clen;
470
471 outbuf.pos = 0;
472 outbuf.dst = dic->rbuf;
473 outbuf.size = dic->rlen;
474
475 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
476 if (ZSTD_isError(ret)) {
477 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
478 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
479 __func__, ZSTD_getErrorCode(ret));
480 return -EIO;
481 }
482
483 if (dic->rlen != outbuf.pos) {
484 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
485 "expected:%lu\n", KERN_ERR,
486 F2FS_I_SB(dic->inode)->sb->s_id,
487 __func__, dic->rlen,
488 PAGE_SIZE << dic->log_cluster_size);
489 return -EIO;
490 }
491
492 return 0;
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 .init_compress_ctx = zstd_init_compress_ctx,
497 .destroy_compress_ctx = zstd_destroy_compress_ctx,
498 .compress_pages = zstd_compress_pages,
499 .init_decompress_ctx = zstd_init_decompress_ctx,
500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501 .decompress_pages = zstd_decompress_pages,
502 };
503 #endif
504
505 #ifdef CONFIG_F2FS_FS_LZO
506 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)507 static int lzorle_compress_pages(struct compress_ctx *cc)
508 {
509 int ret;
510
511 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
512 &cc->clen, cc->private);
513 if (ret != LZO_E_OK) {
514 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
515 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
516 return -EIO;
517 }
518 return 0;
519 }
520
521 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
522 .init_compress_ctx = lzo_init_compress_ctx,
523 .destroy_compress_ctx = lzo_destroy_compress_ctx,
524 .compress_pages = lzorle_compress_pages,
525 .decompress_pages = lzo_decompress_pages,
526 };
527 #endif
528 #endif
529
530 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
531 #ifdef CONFIG_F2FS_FS_LZO
532 &f2fs_lzo_ops,
533 #else
534 NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_LZ4
537 &f2fs_lz4_ops,
538 #else
539 NULL,
540 #endif
541 #ifdef CONFIG_F2FS_FS_ZSTD
542 &f2fs_zstd_ops,
543 #else
544 NULL,
545 #endif
546 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
547 &f2fs_lzorle_ops,
548 #else
549 NULL,
550 #endif
551 };
552
f2fs_is_compress_backend_ready(struct inode * inode)553 bool f2fs_is_compress_backend_ready(struct inode *inode)
554 {
555 if (!f2fs_compressed_file(inode))
556 return true;
557 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
558 }
559
560 static mempool_t *compress_page_pool;
561 static int num_compress_pages = 512;
562 module_param(num_compress_pages, uint, 0444);
563 MODULE_PARM_DESC(num_compress_pages,
564 "Number of intermediate compress pages to preallocate");
565
f2fs_init_compress_mempool(void)566 int f2fs_init_compress_mempool(void)
567 {
568 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
569 if (!compress_page_pool)
570 return -ENOMEM;
571
572 return 0;
573 }
574
f2fs_destroy_compress_mempool(void)575 void f2fs_destroy_compress_mempool(void)
576 {
577 mempool_destroy(compress_page_pool);
578 }
579
f2fs_compress_alloc_page(void)580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 struct page *page;
583
584 page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 lock_page(page);
586
587 return page;
588 }
589
f2fs_compress_free_page(struct page * page)590 static void f2fs_compress_free_page(struct page *page)
591 {
592 if (!page)
593 return;
594 detach_page_private(page);
595 page->mapping = NULL;
596 unlock_page(page);
597 mempool_free(page, compress_page_pool);
598 }
599
600 #define MAX_VMAP_RETRIES 3
601
f2fs_vmap(struct page ** pages,unsigned int count)602 static void *f2fs_vmap(struct page **pages, unsigned int count)
603 {
604 int i;
605 void *buf = NULL;
606
607 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
608 buf = vm_map_ram(pages, count, -1);
609 if (buf)
610 break;
611 vm_unmap_aliases();
612 }
613 return buf;
614 }
615
f2fs_compress_pages(struct compress_ctx * cc)616 static int f2fs_compress_pages(struct compress_ctx *cc)
617 {
618 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
619 const struct f2fs_compress_ops *cops =
620 f2fs_cops[fi->i_compress_algorithm];
621 unsigned int max_len, new_nr_cpages;
622 u32 chksum = 0;
623 int i, ret;
624
625 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
626 cc->cluster_size, fi->i_compress_algorithm);
627
628 if (cops->init_compress_ctx) {
629 ret = cops->init_compress_ctx(cc);
630 if (ret)
631 goto out;
632 }
633
634 max_len = COMPRESS_HEADER_SIZE + cc->clen;
635 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
636 cc->valid_nr_cpages = cc->nr_cpages;
637
638 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
639 if (!cc->cpages) {
640 ret = -ENOMEM;
641 goto destroy_compress_ctx;
642 }
643
644 for (i = 0; i < cc->nr_cpages; i++) {
645 cc->cpages[i] = f2fs_compress_alloc_page();
646 if (!cc->cpages[i]) {
647 ret = -ENOMEM;
648 goto out_free_cpages;
649 }
650 }
651
652 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
653 if (!cc->rbuf) {
654 ret = -ENOMEM;
655 goto out_free_cpages;
656 }
657
658 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
659 if (!cc->cbuf) {
660 ret = -ENOMEM;
661 goto out_vunmap_rbuf;
662 }
663
664 ret = cops->compress_pages(cc);
665 if (ret)
666 goto out_vunmap_cbuf;
667
668 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
669
670 if (cc->clen > max_len) {
671 ret = -EAGAIN;
672 goto out_vunmap_cbuf;
673 }
674
675 cc->cbuf->clen = cpu_to_le32(cc->clen);
676
677 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
678 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
679 cc->cbuf->cdata, cc->clen);
680 cc->cbuf->chksum = cpu_to_le32(chksum);
681
682 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
683 cc->cbuf->reserved[i] = cpu_to_le32(0);
684
685 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
686
687 /* zero out any unused part of the last page */
688 memset(&cc->cbuf->cdata[cc->clen], 0,
689 (new_nr_cpages * PAGE_SIZE) -
690 (cc->clen + COMPRESS_HEADER_SIZE));
691
692 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
693 vm_unmap_ram(cc->rbuf, cc->cluster_size);
694
695 for (i = 0; i < cc->nr_cpages; i++) {
696 if (i < new_nr_cpages)
697 continue;
698 f2fs_compress_free_page(cc->cpages[i]);
699 cc->cpages[i] = NULL;
700 }
701
702 if (cops->destroy_compress_ctx)
703 cops->destroy_compress_ctx(cc);
704
705 cc->valid_nr_cpages = new_nr_cpages;
706
707 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
708 cc->clen, ret);
709 return 0;
710
711 out_vunmap_cbuf:
712 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
713 out_vunmap_rbuf:
714 vm_unmap_ram(cc->rbuf, cc->cluster_size);
715 out_free_cpages:
716 for (i = 0; i < cc->nr_cpages; i++) {
717 if (cc->cpages[i])
718 f2fs_compress_free_page(cc->cpages[i]);
719 }
720 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
721 cc->cpages = NULL;
722 destroy_compress_ctx:
723 if (cops->destroy_compress_ctx)
724 cops->destroy_compress_ctx(cc);
725 out:
726 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
727 cc->clen, ret);
728 return ret;
729 }
730
731 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
732 bool pre_alloc);
733 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
734 bool bypass_destroy_callback, bool pre_alloc);
735
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)736 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
737 {
738 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
739 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
740 const struct f2fs_compress_ops *cops =
741 f2fs_cops[fi->i_compress_algorithm];
742 bool bypass_callback = false;
743 int ret;
744
745 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
746 dic->cluster_size, fi->i_compress_algorithm);
747
748 if (dic->failed) {
749 ret = -EIO;
750 goto out_end_io;
751 }
752
753 ret = f2fs_prepare_decomp_mem(dic, false);
754 if (ret) {
755 bypass_callback = true;
756 goto out_release;
757 }
758
759 dic->clen = le32_to_cpu(dic->cbuf->clen);
760 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
761
762 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
763 ret = -EFSCORRUPTED;
764 goto out_release;
765 }
766
767 ret = cops->decompress_pages(dic);
768
769 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
770 u32 provided = le32_to_cpu(dic->cbuf->chksum);
771 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
772
773 if (provided != calculated) {
774 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
775 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
776 printk_ratelimited(
777 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
778 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
779 provided, calculated);
780 }
781 set_sbi_flag(sbi, SBI_NEED_FSCK);
782 }
783 }
784
785 out_release:
786 f2fs_release_decomp_mem(dic, bypass_callback, false);
787
788 out_end_io:
789 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
790 dic->clen, ret);
791 f2fs_decompress_end_io(dic, ret, in_task);
792 }
793
794 /*
795 * This is called when a page of a compressed cluster has been read from disk
796 * (or failed to be read from disk). It checks whether this page was the last
797 * page being waited on in the cluster, and if so, it decompresses the cluster
798 * (or in the case of a failure, cleans up without actually decompressing).
799 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)800 void f2fs_end_read_compressed_page(struct page *page, bool failed,
801 block_t blkaddr, bool in_task)
802 {
803 struct decompress_io_ctx *dic =
804 (struct decompress_io_ctx *)page_private(page);
805 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
806
807 dec_page_count(sbi, F2FS_RD_DATA);
808
809 if (failed)
810 WRITE_ONCE(dic->failed, true);
811 else if (blkaddr && in_task)
812 f2fs_cache_compressed_page(sbi, page,
813 dic->inode->i_ino, blkaddr);
814
815 if (atomic_dec_and_test(&dic->remaining_pages))
816 f2fs_decompress_cluster(dic, in_task);
817 }
818
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)819 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
820 {
821 if (cc->cluster_idx == NULL_CLUSTER)
822 return true;
823 return cc->cluster_idx == cluster_idx(cc, index);
824 }
825
f2fs_cluster_is_empty(struct compress_ctx * cc)826 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
827 {
828 return cc->nr_rpages == 0;
829 }
830
f2fs_cluster_is_full(struct compress_ctx * cc)831 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
832 {
833 return cc->cluster_size == cc->nr_rpages;
834 }
835
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)836 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
837 {
838 if (f2fs_cluster_is_empty(cc))
839 return true;
840 return is_page_in_cluster(cc, index);
841 }
842
f2fs_all_cluster_page_loaded(struct compress_ctx * cc,struct pagevec * pvec,int index,int nr_pages)843 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
844 int index, int nr_pages)
845 {
846 unsigned long pgidx;
847 int i;
848
849 if (nr_pages - index < cc->cluster_size)
850 return false;
851
852 pgidx = pvec->pages[index]->index;
853
854 for (i = 1; i < cc->cluster_size; i++) {
855 if (pvec->pages[index + i]->index != pgidx + i)
856 return false;
857 }
858
859 return true;
860 }
861
cluster_has_invalid_data(struct compress_ctx * cc)862 static bool cluster_has_invalid_data(struct compress_ctx *cc)
863 {
864 loff_t i_size = i_size_read(cc->inode);
865 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
866 int i;
867
868 for (i = 0; i < cc->cluster_size; i++) {
869 struct page *page = cc->rpages[i];
870
871 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
872
873 /* beyond EOF */
874 if (page->index >= nr_pages)
875 return true;
876 }
877 return false;
878 }
879
f2fs_sanity_check_cluster(struct dnode_of_data * dn)880 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
881 {
882 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
883 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
884 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
885 int cluster_end = 0;
886 int i;
887 char *reason = "";
888
889 if (!compressed)
890 return false;
891
892 /* [..., COMPR_ADDR, ...] */
893 if (dn->ofs_in_node % cluster_size) {
894 reason = "[*|C|*|*]";
895 goto out;
896 }
897
898 for (i = 1; i < cluster_size; i++) {
899 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
900 dn->ofs_in_node + i);
901
902 /* [COMPR_ADDR, ..., COMPR_ADDR] */
903 if (blkaddr == COMPRESS_ADDR) {
904 reason = "[C|*|C|*]";
905 goto out;
906 }
907 if (compressed) {
908 if (!__is_valid_data_blkaddr(blkaddr)) {
909 if (!cluster_end)
910 cluster_end = i;
911 continue;
912 }
913 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
914 if (cluster_end) {
915 reason = "[C|N|N|V]";
916 goto out;
917 }
918 }
919 }
920 return false;
921 out:
922 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
923 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
924 set_sbi_flag(sbi, SBI_NEED_FSCK);
925 return true;
926 }
927
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)928 static int __f2fs_cluster_blocks(struct inode *inode,
929 unsigned int cluster_idx, bool compr)
930 {
931 struct dnode_of_data dn;
932 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
933 unsigned int start_idx = cluster_idx <<
934 F2FS_I(inode)->i_log_cluster_size;
935 int ret;
936
937 set_new_dnode(&dn, inode, NULL, NULL, 0);
938 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
939 if (ret) {
940 if (ret == -ENOENT)
941 ret = 0;
942 goto fail;
943 }
944
945 if (f2fs_sanity_check_cluster(&dn)) {
946 ret = -EFSCORRUPTED;
947 goto fail;
948 }
949
950 if (dn.data_blkaddr == COMPRESS_ADDR) {
951 int i;
952
953 ret = 1;
954 for (i = 1; i < cluster_size; i++) {
955 block_t blkaddr;
956
957 blkaddr = data_blkaddr(dn.inode,
958 dn.node_page, dn.ofs_in_node + i);
959 if (compr) {
960 if (__is_valid_data_blkaddr(blkaddr))
961 ret++;
962 } else {
963 if (blkaddr != NULL_ADDR)
964 ret++;
965 }
966 }
967
968 f2fs_bug_on(F2FS_I_SB(inode),
969 !compr && ret != cluster_size &&
970 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
971 }
972 fail:
973 f2fs_put_dnode(&dn);
974 return ret;
975 }
976
977 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)978 static int f2fs_compressed_blocks(struct compress_ctx *cc)
979 {
980 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
981 }
982
983 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)984 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
985 {
986 return __f2fs_cluster_blocks(inode,
987 index >> F2FS_I(inode)->i_log_cluster_size,
988 false);
989 }
990
cluster_may_compress(struct compress_ctx * cc)991 static bool cluster_may_compress(struct compress_ctx *cc)
992 {
993 if (!f2fs_need_compress_data(cc->inode))
994 return false;
995 if (f2fs_is_atomic_file(cc->inode))
996 return false;
997 if (!f2fs_cluster_is_full(cc))
998 return false;
999 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1000 return false;
1001 return !cluster_has_invalid_data(cc);
1002 }
1003
set_cluster_writeback(struct compress_ctx * cc)1004 static void set_cluster_writeback(struct compress_ctx *cc)
1005 {
1006 int i;
1007
1008 for (i = 0; i < cc->cluster_size; i++) {
1009 if (cc->rpages[i])
1010 set_page_writeback(cc->rpages[i]);
1011 }
1012 }
1013
set_cluster_dirty(struct compress_ctx * cc)1014 static void set_cluster_dirty(struct compress_ctx *cc)
1015 {
1016 int i;
1017
1018 for (i = 0; i < cc->cluster_size; i++)
1019 if (cc->rpages[i]) {
1020 set_page_dirty(cc->rpages[i]);
1021 set_page_private_gcing(cc->rpages[i]);
1022 }
1023 }
1024
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1025 static int prepare_compress_overwrite(struct compress_ctx *cc,
1026 struct page **pagep, pgoff_t index, void **fsdata)
1027 {
1028 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1029 struct address_space *mapping = cc->inode->i_mapping;
1030 struct page *page;
1031 sector_t last_block_in_bio;
1032 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1033 pgoff_t start_idx = start_idx_of_cluster(cc);
1034 int i, ret;
1035
1036 retry:
1037 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1038 if (ret <= 0)
1039 return ret;
1040
1041 ret = f2fs_init_compress_ctx(cc);
1042 if (ret)
1043 return ret;
1044
1045 /* keep page reference to avoid page reclaim */
1046 for (i = 0; i < cc->cluster_size; i++) {
1047 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1048 fgp_flag, GFP_NOFS);
1049 if (!page) {
1050 ret = -ENOMEM;
1051 goto unlock_pages;
1052 }
1053
1054 if (PageUptodate(page))
1055 f2fs_put_page(page, 1);
1056 else
1057 f2fs_compress_ctx_add_page(cc, page);
1058 }
1059
1060 if (!f2fs_cluster_is_empty(cc)) {
1061 struct bio *bio = NULL;
1062
1063 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1064 &last_block_in_bio, false, true);
1065 f2fs_put_rpages(cc);
1066 f2fs_destroy_compress_ctx(cc, true);
1067 if (ret)
1068 goto out;
1069 if (bio)
1070 f2fs_submit_bio(sbi, bio, DATA);
1071
1072 ret = f2fs_init_compress_ctx(cc);
1073 if (ret)
1074 goto out;
1075 }
1076
1077 for (i = 0; i < cc->cluster_size; i++) {
1078 f2fs_bug_on(sbi, cc->rpages[i]);
1079
1080 page = find_lock_page(mapping, start_idx + i);
1081 if (!page) {
1082 /* page can be truncated */
1083 goto release_and_retry;
1084 }
1085
1086 f2fs_wait_on_page_writeback(page, DATA, true, true);
1087 f2fs_compress_ctx_add_page(cc, page);
1088
1089 if (!PageUptodate(page)) {
1090 release_and_retry:
1091 f2fs_put_rpages(cc);
1092 f2fs_unlock_rpages(cc, i + 1);
1093 f2fs_destroy_compress_ctx(cc, true);
1094 goto retry;
1095 }
1096 }
1097
1098 if (likely(!ret)) {
1099 *fsdata = cc->rpages;
1100 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1101 return cc->cluster_size;
1102 }
1103
1104 unlock_pages:
1105 f2fs_put_rpages(cc);
1106 f2fs_unlock_rpages(cc, i);
1107 f2fs_destroy_compress_ctx(cc, true);
1108 out:
1109 return ret;
1110 }
1111
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1112 int f2fs_prepare_compress_overwrite(struct inode *inode,
1113 struct page **pagep, pgoff_t index, void **fsdata)
1114 {
1115 struct compress_ctx cc = {
1116 .inode = inode,
1117 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1118 .cluster_size = F2FS_I(inode)->i_cluster_size,
1119 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1120 .rpages = NULL,
1121 .nr_rpages = 0,
1122 };
1123
1124 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1125 }
1126
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1127 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1128 pgoff_t index, unsigned copied)
1129
1130 {
1131 struct compress_ctx cc = {
1132 .inode = inode,
1133 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1134 .cluster_size = F2FS_I(inode)->i_cluster_size,
1135 .rpages = fsdata,
1136 };
1137 bool first_index = (index == cc.rpages[0]->index);
1138
1139 if (copied)
1140 set_cluster_dirty(&cc);
1141
1142 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1143 f2fs_destroy_compress_ctx(&cc, false);
1144
1145 return first_index;
1146 }
1147
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1148 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1149 {
1150 void *fsdata = NULL;
1151 struct page *pagep;
1152 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1153 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1154 log_cluster_size;
1155 int err;
1156
1157 err = f2fs_is_compressed_cluster(inode, start_idx);
1158 if (err < 0)
1159 return err;
1160
1161 /* truncate normal cluster */
1162 if (!err)
1163 return f2fs_do_truncate_blocks(inode, from, lock);
1164
1165 /* truncate compressed cluster */
1166 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1167 start_idx, &fsdata);
1168
1169 /* should not be a normal cluster */
1170 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1171
1172 if (err <= 0)
1173 return err;
1174
1175 if (err > 0) {
1176 struct page **rpages = fsdata;
1177 int cluster_size = F2FS_I(inode)->i_cluster_size;
1178 int i;
1179
1180 for (i = cluster_size - 1; i >= 0; i--) {
1181 loff_t start = rpages[i]->index << PAGE_SHIFT;
1182
1183 if (from <= start) {
1184 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1185 } else {
1186 zero_user_segment(rpages[i], from - start,
1187 PAGE_SIZE);
1188 break;
1189 }
1190 }
1191
1192 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1193 }
1194 return 0;
1195 }
1196
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1197 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1198 int *submitted,
1199 struct writeback_control *wbc,
1200 enum iostat_type io_type)
1201 {
1202 struct inode *inode = cc->inode;
1203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1204 struct f2fs_inode_info *fi = F2FS_I(inode);
1205 struct f2fs_io_info fio = {
1206 .sbi = sbi,
1207 .ino = cc->inode->i_ino,
1208 .type = DATA,
1209 .op = REQ_OP_WRITE,
1210 .op_flags = wbc_to_write_flags(wbc),
1211 .old_blkaddr = NEW_ADDR,
1212 .page = NULL,
1213 .encrypted_page = NULL,
1214 .compressed_page = NULL,
1215 .submitted = false,
1216 .io_type = io_type,
1217 .io_wbc = wbc,
1218 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1219 };
1220 struct dnode_of_data dn;
1221 struct node_info ni;
1222 struct compress_io_ctx *cic;
1223 pgoff_t start_idx = start_idx_of_cluster(cc);
1224 unsigned int last_index = cc->cluster_size - 1;
1225 loff_t psize;
1226 int i, err;
1227
1228 /* we should bypass data pages to proceed the kworkder jobs */
1229 if (unlikely(f2fs_cp_error(sbi))) {
1230 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1231 goto out_free;
1232 }
1233
1234 if (IS_NOQUOTA(inode)) {
1235 /*
1236 * We need to wait for node_write to avoid block allocation during
1237 * checkpoint. This can only happen to quota writes which can cause
1238 * the below discard race condition.
1239 */
1240 f2fs_down_read(&sbi->node_write);
1241 } else if (!f2fs_trylock_op(sbi)) {
1242 goto out_free;
1243 }
1244
1245 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1246
1247 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1248 if (err)
1249 goto out_unlock_op;
1250
1251 for (i = 0; i < cc->cluster_size; i++) {
1252 if (data_blkaddr(dn.inode, dn.node_page,
1253 dn.ofs_in_node + i) == NULL_ADDR)
1254 goto out_put_dnode;
1255 }
1256
1257 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1258
1259 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1260 if (err)
1261 goto out_put_dnode;
1262
1263 fio.version = ni.version;
1264
1265 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1266 if (!cic)
1267 goto out_put_dnode;
1268
1269 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1270 cic->inode = inode;
1271 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1272 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1273 if (!cic->rpages)
1274 goto out_put_cic;
1275
1276 cic->nr_rpages = cc->cluster_size;
1277
1278 for (i = 0; i < cc->valid_nr_cpages; i++) {
1279 f2fs_set_compressed_page(cc->cpages[i], inode,
1280 cc->rpages[i + 1]->index, cic);
1281 fio.compressed_page = cc->cpages[i];
1282
1283 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1284 dn.ofs_in_node + i + 1);
1285
1286 /* wait for GCed page writeback via META_MAPPING */
1287 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1288
1289 if (fio.encrypted) {
1290 fio.page = cc->rpages[i + 1];
1291 err = f2fs_encrypt_one_page(&fio);
1292 if (err)
1293 goto out_destroy_crypt;
1294 cc->cpages[i] = fio.encrypted_page;
1295 }
1296 }
1297
1298 set_cluster_writeback(cc);
1299
1300 for (i = 0; i < cc->cluster_size; i++)
1301 cic->rpages[i] = cc->rpages[i];
1302
1303 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1304 block_t blkaddr;
1305
1306 blkaddr = f2fs_data_blkaddr(&dn);
1307 fio.page = cc->rpages[i];
1308 fio.old_blkaddr = blkaddr;
1309
1310 /* cluster header */
1311 if (i == 0) {
1312 if (blkaddr == COMPRESS_ADDR)
1313 fio.compr_blocks++;
1314 if (__is_valid_data_blkaddr(blkaddr))
1315 f2fs_invalidate_blocks(sbi, blkaddr);
1316 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1317 goto unlock_continue;
1318 }
1319
1320 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1321 fio.compr_blocks++;
1322
1323 if (i > cc->valid_nr_cpages) {
1324 if (__is_valid_data_blkaddr(blkaddr)) {
1325 f2fs_invalidate_blocks(sbi, blkaddr);
1326 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1327 }
1328 goto unlock_continue;
1329 }
1330
1331 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1332
1333 if (fio.encrypted)
1334 fio.encrypted_page = cc->cpages[i - 1];
1335 else
1336 fio.compressed_page = cc->cpages[i - 1];
1337
1338 cc->cpages[i - 1] = NULL;
1339 f2fs_outplace_write_data(&dn, &fio);
1340 (*submitted)++;
1341 unlock_continue:
1342 inode_dec_dirty_pages(cc->inode);
1343 unlock_page(fio.page);
1344 }
1345
1346 if (fio.compr_blocks)
1347 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1348 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1349 add_compr_block_stat(inode, cc->valid_nr_cpages);
1350
1351 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1352 if (cc->cluster_idx == 0)
1353 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1354
1355 f2fs_put_dnode(&dn);
1356 if (IS_NOQUOTA(inode))
1357 f2fs_up_read(&sbi->node_write);
1358 else
1359 f2fs_unlock_op(sbi);
1360
1361 spin_lock(&fi->i_size_lock);
1362 if (fi->last_disk_size < psize)
1363 fi->last_disk_size = psize;
1364 spin_unlock(&fi->i_size_lock);
1365
1366 f2fs_put_rpages(cc);
1367 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1368 cc->cpages = NULL;
1369 f2fs_destroy_compress_ctx(cc, false);
1370 return 0;
1371
1372 out_destroy_crypt:
1373 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1374
1375 for (--i; i >= 0; i--)
1376 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1377 out_put_cic:
1378 kmem_cache_free(cic_entry_slab, cic);
1379 out_put_dnode:
1380 f2fs_put_dnode(&dn);
1381 out_unlock_op:
1382 if (IS_NOQUOTA(inode))
1383 f2fs_up_read(&sbi->node_write);
1384 else
1385 f2fs_unlock_op(sbi);
1386 out_free:
1387 for (i = 0; i < cc->valid_nr_cpages; i++) {
1388 f2fs_compress_free_page(cc->cpages[i]);
1389 cc->cpages[i] = NULL;
1390 }
1391 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1392 cc->cpages = NULL;
1393 return -EAGAIN;
1394 }
1395
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1396 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1397 {
1398 struct f2fs_sb_info *sbi = bio->bi_private;
1399 struct compress_io_ctx *cic =
1400 (struct compress_io_ctx *)page_private(page);
1401 int i;
1402
1403 if (unlikely(bio->bi_status))
1404 mapping_set_error(cic->inode->i_mapping, -EIO);
1405
1406 f2fs_compress_free_page(page);
1407
1408 dec_page_count(sbi, F2FS_WB_DATA);
1409
1410 if (atomic_dec_return(&cic->pending_pages))
1411 return;
1412
1413 for (i = 0; i < cic->nr_rpages; i++) {
1414 WARN_ON(!cic->rpages[i]);
1415 clear_page_private_gcing(cic->rpages[i]);
1416 end_page_writeback(cic->rpages[i]);
1417 }
1418
1419 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1420 kmem_cache_free(cic_entry_slab, cic);
1421 }
1422
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1423 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1424 int *submitted,
1425 struct writeback_control *wbc,
1426 enum iostat_type io_type)
1427 {
1428 struct address_space *mapping = cc->inode->i_mapping;
1429 int _submitted, compr_blocks, ret, i;
1430
1431 compr_blocks = f2fs_compressed_blocks(cc);
1432
1433 for (i = 0; i < cc->cluster_size; i++) {
1434 if (!cc->rpages[i])
1435 continue;
1436
1437 redirty_page_for_writepage(wbc, cc->rpages[i]);
1438 unlock_page(cc->rpages[i]);
1439 }
1440
1441 if (compr_blocks < 0)
1442 return compr_blocks;
1443
1444 for (i = 0; i < cc->cluster_size; i++) {
1445 if (!cc->rpages[i])
1446 continue;
1447 retry_write:
1448 lock_page(cc->rpages[i]);
1449
1450 if (cc->rpages[i]->mapping != mapping) {
1451 continue_unlock:
1452 unlock_page(cc->rpages[i]);
1453 continue;
1454 }
1455
1456 if (!PageDirty(cc->rpages[i]))
1457 goto continue_unlock;
1458
1459 if (PageWriteback(cc->rpages[i])) {
1460 if (wbc->sync_mode == WB_SYNC_NONE)
1461 goto continue_unlock;
1462 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1463 }
1464
1465 if (!clear_page_dirty_for_io(cc->rpages[i]))
1466 goto continue_unlock;
1467
1468 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1469 NULL, NULL, wbc, io_type,
1470 compr_blocks, false);
1471 if (ret) {
1472 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1473 unlock_page(cc->rpages[i]);
1474 ret = 0;
1475 } else if (ret == -EAGAIN) {
1476 /*
1477 * for quota file, just redirty left pages to
1478 * avoid deadlock caused by cluster update race
1479 * from foreground operation.
1480 */
1481 if (IS_NOQUOTA(cc->inode))
1482 return 0;
1483 ret = 0;
1484 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1485 goto retry_write;
1486 }
1487 return ret;
1488 }
1489
1490 *submitted += _submitted;
1491 }
1492
1493 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1494
1495 return 0;
1496 }
1497
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1498 int f2fs_write_multi_pages(struct compress_ctx *cc,
1499 int *submitted,
1500 struct writeback_control *wbc,
1501 enum iostat_type io_type)
1502 {
1503 int err;
1504
1505 *submitted = 0;
1506 if (cluster_may_compress(cc)) {
1507 err = f2fs_compress_pages(cc);
1508 if (err == -EAGAIN) {
1509 add_compr_block_stat(cc->inode, cc->cluster_size);
1510 goto write;
1511 } else if (err) {
1512 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1513 goto destroy_out;
1514 }
1515
1516 err = f2fs_write_compressed_pages(cc, submitted,
1517 wbc, io_type);
1518 if (!err)
1519 return 0;
1520 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1521 }
1522 write:
1523 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1524
1525 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1526 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1527 destroy_out:
1528 f2fs_destroy_compress_ctx(cc, false);
1529 return err;
1530 }
1531
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1532 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1533 bool pre_alloc)
1534 {
1535 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1536 }
1537
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1538 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1539 bool pre_alloc)
1540 {
1541 const struct f2fs_compress_ops *cops =
1542 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1543 int i;
1544
1545 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1546 return 0;
1547
1548 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1549 if (!dic->tpages)
1550 return -ENOMEM;
1551
1552 for (i = 0; i < dic->cluster_size; i++) {
1553 if (dic->rpages[i]) {
1554 dic->tpages[i] = dic->rpages[i];
1555 continue;
1556 }
1557
1558 dic->tpages[i] = f2fs_compress_alloc_page();
1559 if (!dic->tpages[i])
1560 return -ENOMEM;
1561 }
1562
1563 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1564 if (!dic->rbuf)
1565 return -ENOMEM;
1566
1567 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1568 if (!dic->cbuf)
1569 return -ENOMEM;
1570
1571 if (cops->init_decompress_ctx) {
1572 int ret = cops->init_decompress_ctx(dic);
1573
1574 if (ret)
1575 return ret;
1576 }
1577
1578 return 0;
1579 }
1580
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1581 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1582 bool bypass_destroy_callback, bool pre_alloc)
1583 {
1584 const struct f2fs_compress_ops *cops =
1585 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1586
1587 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1588 return;
1589
1590 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1591 cops->destroy_decompress_ctx(dic);
1592
1593 if (dic->cbuf)
1594 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1595
1596 if (dic->rbuf)
1597 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1598 }
1599
1600 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1601 bool bypass_destroy_callback);
1602
f2fs_alloc_dic(struct compress_ctx * cc)1603 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1604 {
1605 struct decompress_io_ctx *dic;
1606 pgoff_t start_idx = start_idx_of_cluster(cc);
1607 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1608 int i, ret;
1609
1610 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1611 if (!dic)
1612 return ERR_PTR(-ENOMEM);
1613
1614 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1615 if (!dic->rpages) {
1616 kmem_cache_free(dic_entry_slab, dic);
1617 return ERR_PTR(-ENOMEM);
1618 }
1619
1620 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1621 dic->inode = cc->inode;
1622 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1623 dic->cluster_idx = cc->cluster_idx;
1624 dic->cluster_size = cc->cluster_size;
1625 dic->log_cluster_size = cc->log_cluster_size;
1626 dic->nr_cpages = cc->nr_cpages;
1627 refcount_set(&dic->refcnt, 1);
1628 dic->failed = false;
1629 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1630
1631 for (i = 0; i < dic->cluster_size; i++)
1632 dic->rpages[i] = cc->rpages[i];
1633 dic->nr_rpages = cc->cluster_size;
1634
1635 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1636 if (!dic->cpages) {
1637 ret = -ENOMEM;
1638 goto out_free;
1639 }
1640
1641 for (i = 0; i < dic->nr_cpages; i++) {
1642 struct page *page;
1643
1644 page = f2fs_compress_alloc_page();
1645 if (!page) {
1646 ret = -ENOMEM;
1647 goto out_free;
1648 }
1649
1650 f2fs_set_compressed_page(page, cc->inode,
1651 start_idx + i + 1, dic);
1652 dic->cpages[i] = page;
1653 }
1654
1655 ret = f2fs_prepare_decomp_mem(dic, true);
1656 if (ret)
1657 goto out_free;
1658
1659 return dic;
1660
1661 out_free:
1662 f2fs_free_dic(dic, true);
1663 return ERR_PTR(ret);
1664 }
1665
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1666 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1667 bool bypass_destroy_callback)
1668 {
1669 int i;
1670
1671 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1672
1673 if (dic->tpages) {
1674 for (i = 0; i < dic->cluster_size; i++) {
1675 if (dic->rpages[i])
1676 continue;
1677 if (!dic->tpages[i])
1678 continue;
1679 f2fs_compress_free_page(dic->tpages[i]);
1680 }
1681 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1682 }
1683
1684 if (dic->cpages) {
1685 for (i = 0; i < dic->nr_cpages; i++) {
1686 if (!dic->cpages[i])
1687 continue;
1688 f2fs_compress_free_page(dic->cpages[i]);
1689 }
1690 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1691 }
1692
1693 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1694 kmem_cache_free(dic_entry_slab, dic);
1695 }
1696
f2fs_late_free_dic(struct work_struct * work)1697 static void f2fs_late_free_dic(struct work_struct *work)
1698 {
1699 struct decompress_io_ctx *dic =
1700 container_of(work, struct decompress_io_ctx, free_work);
1701
1702 f2fs_free_dic(dic, false);
1703 }
1704
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1705 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1706 {
1707 if (refcount_dec_and_test(&dic->refcnt)) {
1708 if (in_task) {
1709 f2fs_free_dic(dic, false);
1710 } else {
1711 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1712 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1713 &dic->free_work);
1714 }
1715 }
1716 }
1717
1718 /*
1719 * Update and unlock the cluster's pagecache pages, and release the reference to
1720 * the decompress_io_ctx that was being held for I/O completion.
1721 */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1722 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1723 bool in_task)
1724 {
1725 int i;
1726
1727 for (i = 0; i < dic->cluster_size; i++) {
1728 struct page *rpage = dic->rpages[i];
1729
1730 if (!rpage)
1731 continue;
1732
1733 /* PG_error was set if verity failed. */
1734 if (failed || PageError(rpage)) {
1735 ClearPageUptodate(rpage);
1736 /* will re-read again later */
1737 ClearPageError(rpage);
1738 } else {
1739 SetPageUptodate(rpage);
1740 }
1741 unlock_page(rpage);
1742 }
1743
1744 f2fs_put_dic(dic, in_task);
1745 }
1746
f2fs_verify_cluster(struct work_struct * work)1747 static void f2fs_verify_cluster(struct work_struct *work)
1748 {
1749 struct decompress_io_ctx *dic =
1750 container_of(work, struct decompress_io_ctx, verity_work);
1751 int i;
1752
1753 /* Verify the cluster's decompressed pages with fs-verity. */
1754 for (i = 0; i < dic->cluster_size; i++) {
1755 struct page *rpage = dic->rpages[i];
1756
1757 if (rpage && !fsverity_verify_page(rpage))
1758 SetPageError(rpage);
1759 }
1760
1761 __f2fs_decompress_end_io(dic, false, true);
1762 }
1763
1764 /*
1765 * This is called when a compressed cluster has been decompressed
1766 * (or failed to be read and/or decompressed).
1767 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1768 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1769 bool in_task)
1770 {
1771 if (!failed && dic->need_verity) {
1772 /*
1773 * Note that to avoid deadlocks, the verity work can't be done
1774 * on the decompression workqueue. This is because verifying
1775 * the data pages can involve reading metadata pages from the
1776 * file, and these metadata pages may be compressed.
1777 */
1778 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1779 fsverity_enqueue_verify_work(&dic->verity_work);
1780 } else {
1781 __f2fs_decompress_end_io(dic, failed, in_task);
1782 }
1783 }
1784
1785 /*
1786 * Put a reference to a compressed page's decompress_io_ctx.
1787 *
1788 * This is called when the page is no longer needed and can be freed.
1789 */
f2fs_put_page_dic(struct page * page,bool in_task)1790 void f2fs_put_page_dic(struct page *page, bool in_task)
1791 {
1792 struct decompress_io_ctx *dic =
1793 (struct decompress_io_ctx *)page_private(page);
1794
1795 f2fs_put_dic(dic, in_task);
1796 }
1797
1798 /*
1799 * check whether cluster blocks are contiguous, and add extent cache entry
1800 * only if cluster blocks are logically and physically contiguous.
1801 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1803 {
1804 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1805 int i = compressed ? 1 : 0;
1806 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1807 dn->ofs_in_node + i);
1808
1809 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1810 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1811 dn->ofs_in_node + i);
1812
1813 if (!__is_valid_data_blkaddr(blkaddr))
1814 break;
1815 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1816 return 0;
1817 }
1818
1819 return compressed ? i - 1 : i;
1820 }
1821
1822 const struct address_space_operations f2fs_compress_aops = {
1823 .releasepage = f2fs_release_page,
1824 .invalidatepage = f2fs_invalidate_page,
1825 };
1826
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1827 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1828 {
1829 return sbi->compress_inode->i_mapping;
1830 }
1831
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1832 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1833 {
1834 if (!sbi->compress_inode)
1835 return;
1836 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1837 }
1838
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1839 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1840 nid_t ino, block_t blkaddr)
1841 {
1842 struct page *cpage;
1843 int ret;
1844
1845 if (!test_opt(sbi, COMPRESS_CACHE))
1846 return;
1847
1848 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1849 return;
1850
1851 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1852 return;
1853
1854 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1855 if (cpage) {
1856 f2fs_put_page(cpage, 0);
1857 return;
1858 }
1859
1860 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1861 if (!cpage)
1862 return;
1863
1864 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1865 blkaddr, GFP_NOFS);
1866 if (ret) {
1867 f2fs_put_page(cpage, 0);
1868 return;
1869 }
1870
1871 set_page_private_data(cpage, ino);
1872
1873 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1874 goto out;
1875
1876 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1877 SetPageUptodate(cpage);
1878 out:
1879 f2fs_put_page(cpage, 1);
1880 }
1881
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1882 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1883 block_t blkaddr)
1884 {
1885 struct page *cpage;
1886 bool hitted = false;
1887
1888 if (!test_opt(sbi, COMPRESS_CACHE))
1889 return false;
1890
1891 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1892 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1893 if (cpage) {
1894 if (PageUptodate(cpage)) {
1895 atomic_inc(&sbi->compress_page_hit);
1896 memcpy(page_address(page),
1897 page_address(cpage), PAGE_SIZE);
1898 hitted = true;
1899 }
1900 f2fs_put_page(cpage, 1);
1901 }
1902
1903 return hitted;
1904 }
1905
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1906 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1907 {
1908 struct address_space *mapping = sbi->compress_inode->i_mapping;
1909 struct pagevec pvec;
1910 pgoff_t index = 0;
1911 pgoff_t end = MAX_BLKADDR(sbi);
1912
1913 if (!mapping->nrpages)
1914 return;
1915
1916 pagevec_init(&pvec);
1917
1918 do {
1919 unsigned int nr_pages;
1920 int i;
1921
1922 nr_pages = pagevec_lookup_range(&pvec, mapping,
1923 &index, end - 1);
1924 if (!nr_pages)
1925 break;
1926
1927 for (i = 0; i < nr_pages; i++) {
1928 struct page *page = pvec.pages[i];
1929
1930 if (page->index > end)
1931 break;
1932
1933 lock_page(page);
1934 if (page->mapping != mapping) {
1935 unlock_page(page);
1936 continue;
1937 }
1938
1939 if (ino != get_page_private_data(page)) {
1940 unlock_page(page);
1941 continue;
1942 }
1943
1944 generic_error_remove_page(mapping, page);
1945 unlock_page(page);
1946 }
1947 pagevec_release(&pvec);
1948 cond_resched();
1949 } while (index < end);
1950 }
1951
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1952 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1953 {
1954 struct inode *inode;
1955
1956 if (!test_opt(sbi, COMPRESS_CACHE))
1957 return 0;
1958
1959 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1960 if (IS_ERR(inode))
1961 return PTR_ERR(inode);
1962 sbi->compress_inode = inode;
1963
1964 sbi->compress_percent = COMPRESS_PERCENT;
1965 sbi->compress_watermark = COMPRESS_WATERMARK;
1966
1967 atomic_set(&sbi->compress_page_hit, 0);
1968
1969 return 0;
1970 }
1971
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1972 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1973 {
1974 if (!sbi->compress_inode)
1975 return;
1976 iput(sbi->compress_inode);
1977 sbi->compress_inode = NULL;
1978 }
1979
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1980 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1981 {
1982 dev_t dev = sbi->sb->s_bdev->bd_dev;
1983 char slab_name[35];
1984
1985 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1986
1987 sbi->page_array_slab_size = sizeof(struct page *) <<
1988 F2FS_OPTION(sbi).compress_log_size;
1989
1990 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1991 sbi->page_array_slab_size);
1992 if (!sbi->page_array_slab)
1993 return -ENOMEM;
1994 return 0;
1995 }
1996
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1997 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1998 {
1999 kmem_cache_destroy(sbi->page_array_slab);
2000 }
2001
f2fs_init_cic_cache(void)2002 static int __init f2fs_init_cic_cache(void)
2003 {
2004 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2005 sizeof(struct compress_io_ctx));
2006 if (!cic_entry_slab)
2007 return -ENOMEM;
2008 return 0;
2009 }
2010
f2fs_destroy_cic_cache(void)2011 static void f2fs_destroy_cic_cache(void)
2012 {
2013 kmem_cache_destroy(cic_entry_slab);
2014 }
2015
f2fs_init_dic_cache(void)2016 static int __init f2fs_init_dic_cache(void)
2017 {
2018 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2019 sizeof(struct decompress_io_ctx));
2020 if (!dic_entry_slab)
2021 return -ENOMEM;
2022 return 0;
2023 }
2024
f2fs_destroy_dic_cache(void)2025 static void f2fs_destroy_dic_cache(void)
2026 {
2027 kmem_cache_destroy(dic_entry_slab);
2028 }
2029
f2fs_init_compress_cache(void)2030 int __init f2fs_init_compress_cache(void)
2031 {
2032 int err;
2033
2034 err = f2fs_init_cic_cache();
2035 if (err)
2036 goto out;
2037 err = f2fs_init_dic_cache();
2038 if (err)
2039 goto free_cic;
2040 return 0;
2041 free_cic:
2042 f2fs_destroy_cic_cache();
2043 out:
2044 return -ENOMEM;
2045 }
2046
f2fs_destroy_compress_cache(void)2047 void f2fs_destroy_compress_cache(void)
2048 {
2049 f2fs_destroy_dic_cache();
2050 f2fs_destroy_cic_cache();
2051 }
2052