• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21 
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24 
page_array_alloc(struct inode * inode,int nr)25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 	unsigned int size = sizeof(struct page *) * nr;
29 
30 	if (likely(size <= sbi->page_array_slab_size))
31 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
33 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35 
page_array_free(struct inode * inode,void * pages,int nr)36 static void page_array_free(struct inode *inode, void *pages, int nr)
37 {
38 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 	unsigned int size = sizeof(struct page *) * nr;
40 
41 	if (!pages)
42 		return;
43 
44 	if (likely(size <= sbi->page_array_slab_size))
45 		kmem_cache_free(sbi->page_array_slab, pages);
46 	else
47 		kfree(pages);
48 }
49 
50 struct f2fs_compress_ops {
51 	int (*init_compress_ctx)(struct compress_ctx *cc);
52 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
53 	int (*compress_pages)(struct compress_ctx *cc);
54 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
55 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
56 	int (*decompress_pages)(struct decompress_io_ctx *dic);
57 };
58 
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 	return index & (cc->cluster_size - 1);
62 }
63 
cluster_idx(struct compress_ctx * cc,pgoff_t index)64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 	return index >> cc->log_cluster_size;
67 }
68 
start_idx_of_cluster(struct compress_ctx * cc)69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 	return cc->cluster_idx << cc->log_cluster_size;
72 }
73 
f2fs_is_compressed_page(struct page * page)74 bool f2fs_is_compressed_page(struct page *page)
75 {
76 	if (!PagePrivate(page))
77 		return false;
78 	if (!page_private(page))
79 		return false;
80 	if (page_private_nonpointer(page))
81 		return false;
82 
83 	f2fs_bug_on(F2FS_M_SB(page->mapping),
84 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
85 	return true;
86 }
87 
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)88 static void f2fs_set_compressed_page(struct page *page,
89 		struct inode *inode, pgoff_t index, void *data)
90 {
91 	attach_page_private(page, (void *)data);
92 
93 	/* i_crypto_info and iv index */
94 	page->index = index;
95 	page->mapping = inode->i_mapping;
96 }
97 
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 	int i;
101 
102 	for (i = 0; i < len; i++) {
103 		if (!cc->rpages[i])
104 			continue;
105 		if (unlock)
106 			unlock_page(cc->rpages[i]);
107 		else
108 			put_page(cc->rpages[i]);
109 	}
110 }
111 
f2fs_put_rpages(struct compress_ctx * cc)112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 	f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116 
f2fs_unlock_rpages(struct compress_ctx * cc,int len)117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 	f2fs_drop_rpages(cc, len, true);
120 }
121 
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 		struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 	unsigned int i;
126 
127 	for (i = 0; i < cc->cluster_size; i++) {
128 		if (!cc->rpages[i])
129 			continue;
130 		if (redirty)
131 			redirty_page_for_writepage(wbc, cc->rpages[i]);
132 		f2fs_put_page(cc->rpages[i], unlock);
133 	}
134 }
135 
f2fs_compress_control_page(struct page * page)136 struct page *f2fs_compress_control_page(struct page *page)
137 {
138 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
139 }
140 
f2fs_init_compress_ctx(struct compress_ctx * cc)141 int f2fs_init_compress_ctx(struct compress_ctx *cc)
142 {
143 	if (cc->rpages)
144 		return 0;
145 
146 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
147 	return cc->rpages ? 0 : -ENOMEM;
148 }
149 
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)150 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
151 {
152 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
153 	cc->rpages = NULL;
154 	cc->nr_rpages = 0;
155 	cc->nr_cpages = 0;
156 	cc->valid_nr_cpages = 0;
157 	if (!reuse)
158 		cc->cluster_idx = NULL_CLUSTER;
159 }
160 
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
162 {
163 	unsigned int cluster_ofs;
164 
165 	if (!f2fs_cluster_can_merge_page(cc, page->index))
166 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
167 
168 	cluster_ofs = offset_in_cluster(cc, page->index);
169 	cc->rpages[cluster_ofs] = page;
170 	cc->nr_rpages++;
171 	cc->cluster_idx = cluster_idx(cc, page->index);
172 }
173 
174 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)175 static int lzo_init_compress_ctx(struct compress_ctx *cc)
176 {
177 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
178 				LZO1X_MEM_COMPRESS, GFP_NOFS);
179 	if (!cc->private)
180 		return -ENOMEM;
181 
182 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
183 	return 0;
184 }
185 
lzo_destroy_compress_ctx(struct compress_ctx * cc)186 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
187 {
188 	kvfree(cc->private);
189 	cc->private = NULL;
190 }
191 
lzo_compress_pages(struct compress_ctx * cc)192 static int lzo_compress_pages(struct compress_ctx *cc)
193 {
194 	int ret;
195 
196 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
197 					&cc->clen, cc->private);
198 	if (ret != LZO_E_OK) {
199 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
200 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
201 		return -EIO;
202 	}
203 	return 0;
204 }
205 
lzo_decompress_pages(struct decompress_io_ctx * dic)206 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
207 {
208 	int ret;
209 
210 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
211 						dic->rbuf, &dic->rlen);
212 	if (ret != LZO_E_OK) {
213 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
214 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
215 		return -EIO;
216 	}
217 
218 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
219 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
220 					"expected:%lu\n", KERN_ERR,
221 					F2FS_I_SB(dic->inode)->sb->s_id,
222 					dic->rlen,
223 					PAGE_SIZE << dic->log_cluster_size);
224 		return -EIO;
225 	}
226 	return 0;
227 }
228 
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 	.init_compress_ctx	= lzo_init_compress_ctx,
231 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
232 	.compress_pages		= lzo_compress_pages,
233 	.decompress_pages	= lzo_decompress_pages,
234 };
235 #endif
236 
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 	unsigned int size = LZ4_MEM_COMPRESS;
241 
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
244 		size = LZ4HC_MEM_COMPRESS;
245 #endif
246 
247 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 	if (!cc->private)
249 		return -ENOMEM;
250 
251 	/*
252 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 	 * adapt worst compress case, because lz4 compressor can handle
254 	 * output budget properly.
255 	 */
256 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 	return 0;
258 }
259 
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 	kvfree(cc->private);
263 	cc->private = NULL;
264 }
265 
266 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)267 static int lz4hc_compress_pages(struct compress_ctx *cc)
268 {
269 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
270 						COMPRESS_LEVEL_OFFSET;
271 	int len;
272 
273 	if (level)
274 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 					cc->clen, level, cc->private);
276 	else
277 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 						cc->clen, cc->private);
279 	if (!len)
280 		return -EAGAIN;
281 
282 	cc->clen = len;
283 	return 0;
284 }
285 #endif
286 
lz4_compress_pages(struct compress_ctx * cc)287 static int lz4_compress_pages(struct compress_ctx *cc)
288 {
289 	int len;
290 
291 #ifdef CONFIG_F2FS_FS_LZ4HC
292 	return lz4hc_compress_pages(cc);
293 #endif
294 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
295 						cc->clen, cc->private);
296 	if (!len)
297 		return -EAGAIN;
298 
299 	cc->clen = len;
300 	return 0;
301 }
302 
lz4_decompress_pages(struct decompress_io_ctx * dic)303 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
304 {
305 	int ret;
306 
307 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
308 						dic->clen, dic->rlen);
309 	if (ret < 0) {
310 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
311 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
312 		return -EIO;
313 	}
314 
315 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
316 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
317 					"expected:%lu\n", KERN_ERR,
318 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
319 					PAGE_SIZE << dic->log_cluster_size);
320 		return -EIO;
321 	}
322 	return 0;
323 }
324 
325 static const struct f2fs_compress_ops f2fs_lz4_ops = {
326 	.init_compress_ctx	= lz4_init_compress_ctx,
327 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
328 	.compress_pages		= lz4_compress_pages,
329 	.decompress_pages	= lz4_decompress_pages,
330 };
331 #endif
332 
333 #ifdef CONFIG_F2FS_FS_ZSTD
334 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
335 
zstd_init_compress_ctx(struct compress_ctx * cc)336 static int zstd_init_compress_ctx(struct compress_ctx *cc)
337 {
338 	ZSTD_parameters params;
339 	ZSTD_CStream *stream;
340 	void *workspace;
341 	unsigned int workspace_size;
342 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
343 						COMPRESS_LEVEL_OFFSET;
344 
345 	if (!level)
346 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
347 
348 	params = ZSTD_getParams(level, cc->rlen, 0);
349 	workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
350 
351 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
352 					workspace_size, GFP_NOFS);
353 	if (!workspace)
354 		return -ENOMEM;
355 
356 	stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
357 	if (!stream) {
358 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
359 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
360 				__func__);
361 		kvfree(workspace);
362 		return -EIO;
363 	}
364 
365 	cc->private = workspace;
366 	cc->private2 = stream;
367 
368 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
369 	return 0;
370 }
371 
zstd_destroy_compress_ctx(struct compress_ctx * cc)372 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
373 {
374 	kvfree(cc->private);
375 	cc->private = NULL;
376 	cc->private2 = NULL;
377 }
378 
zstd_compress_pages(struct compress_ctx * cc)379 static int zstd_compress_pages(struct compress_ctx *cc)
380 {
381 	ZSTD_CStream *stream = cc->private2;
382 	ZSTD_inBuffer inbuf;
383 	ZSTD_outBuffer outbuf;
384 	int src_size = cc->rlen;
385 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
386 	int ret;
387 
388 	inbuf.pos = 0;
389 	inbuf.src = cc->rbuf;
390 	inbuf.size = src_size;
391 
392 	outbuf.pos = 0;
393 	outbuf.dst = cc->cbuf->cdata;
394 	outbuf.size = dst_size;
395 
396 	ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
397 	if (ZSTD_isError(ret)) {
398 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
399 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
400 				__func__, ZSTD_getErrorCode(ret));
401 		return -EIO;
402 	}
403 
404 	ret = ZSTD_endStream(stream, &outbuf);
405 	if (ZSTD_isError(ret)) {
406 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
407 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
408 				__func__, ZSTD_getErrorCode(ret));
409 		return -EIO;
410 	}
411 
412 	/*
413 	 * there is compressed data remained in intermediate buffer due to
414 	 * no more space in cbuf.cdata
415 	 */
416 	if (ret)
417 		return -EAGAIN;
418 
419 	cc->clen = outbuf.pos;
420 	return 0;
421 }
422 
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)423 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
424 {
425 	ZSTD_DStream *stream;
426 	void *workspace;
427 	unsigned int workspace_size;
428 	unsigned int max_window_size =
429 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
430 
431 	workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
432 
433 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
434 					workspace_size, GFP_NOFS);
435 	if (!workspace)
436 		return -ENOMEM;
437 
438 	stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
439 	if (!stream) {
440 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
441 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
442 				__func__);
443 		kvfree(workspace);
444 		return -EIO;
445 	}
446 
447 	dic->private = workspace;
448 	dic->private2 = stream;
449 
450 	return 0;
451 }
452 
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)453 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
454 {
455 	kvfree(dic->private);
456 	dic->private = NULL;
457 	dic->private2 = NULL;
458 }
459 
zstd_decompress_pages(struct decompress_io_ctx * dic)460 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
461 {
462 	ZSTD_DStream *stream = dic->private2;
463 	ZSTD_inBuffer inbuf;
464 	ZSTD_outBuffer outbuf;
465 	int ret;
466 
467 	inbuf.pos = 0;
468 	inbuf.src = dic->cbuf->cdata;
469 	inbuf.size = dic->clen;
470 
471 	outbuf.pos = 0;
472 	outbuf.dst = dic->rbuf;
473 	outbuf.size = dic->rlen;
474 
475 	ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
476 	if (ZSTD_isError(ret)) {
477 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
478 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
479 				__func__, ZSTD_getErrorCode(ret));
480 		return -EIO;
481 	}
482 
483 	if (dic->rlen != outbuf.pos) {
484 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
485 				"expected:%lu\n", KERN_ERR,
486 				F2FS_I_SB(dic->inode)->sb->s_id,
487 				__func__, dic->rlen,
488 				PAGE_SIZE << dic->log_cluster_size);
489 		return -EIO;
490 	}
491 
492 	return 0;
493 }
494 
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 	.init_compress_ctx	= zstd_init_compress_ctx,
497 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
498 	.compress_pages		= zstd_compress_pages,
499 	.init_decompress_ctx	= zstd_init_decompress_ctx,
500 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
501 	.decompress_pages	= zstd_decompress_pages,
502 };
503 #endif
504 
505 #ifdef CONFIG_F2FS_FS_LZO
506 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)507 static int lzorle_compress_pages(struct compress_ctx *cc)
508 {
509 	int ret;
510 
511 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
512 					&cc->clen, cc->private);
513 	if (ret != LZO_E_OK) {
514 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
515 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
516 		return -EIO;
517 	}
518 	return 0;
519 }
520 
521 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
522 	.init_compress_ctx	= lzo_init_compress_ctx,
523 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
524 	.compress_pages		= lzorle_compress_pages,
525 	.decompress_pages	= lzo_decompress_pages,
526 };
527 #endif
528 #endif
529 
530 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
531 #ifdef CONFIG_F2FS_FS_LZO
532 	&f2fs_lzo_ops,
533 #else
534 	NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_LZ4
537 	&f2fs_lz4_ops,
538 #else
539 	NULL,
540 #endif
541 #ifdef CONFIG_F2FS_FS_ZSTD
542 	&f2fs_zstd_ops,
543 #else
544 	NULL,
545 #endif
546 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
547 	&f2fs_lzorle_ops,
548 #else
549 	NULL,
550 #endif
551 };
552 
f2fs_is_compress_backend_ready(struct inode * inode)553 bool f2fs_is_compress_backend_ready(struct inode *inode)
554 {
555 	if (!f2fs_compressed_file(inode))
556 		return true;
557 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
558 }
559 
560 static mempool_t *compress_page_pool;
561 static int num_compress_pages = 512;
562 module_param(num_compress_pages, uint, 0444);
563 MODULE_PARM_DESC(num_compress_pages,
564 		"Number of intermediate compress pages to preallocate");
565 
f2fs_init_compress_mempool(void)566 int f2fs_init_compress_mempool(void)
567 {
568 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
569 	if (!compress_page_pool)
570 		return -ENOMEM;
571 
572 	return 0;
573 }
574 
f2fs_destroy_compress_mempool(void)575 void f2fs_destroy_compress_mempool(void)
576 {
577 	mempool_destroy(compress_page_pool);
578 }
579 
f2fs_compress_alloc_page(void)580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 	struct page *page;
583 
584 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 	lock_page(page);
586 
587 	return page;
588 }
589 
f2fs_compress_free_page(struct page * page)590 static void f2fs_compress_free_page(struct page *page)
591 {
592 	if (!page)
593 		return;
594 	detach_page_private(page);
595 	page->mapping = NULL;
596 	unlock_page(page);
597 	mempool_free(page, compress_page_pool);
598 }
599 
600 #define MAX_VMAP_RETRIES	3
601 
f2fs_vmap(struct page ** pages,unsigned int count)602 static void *f2fs_vmap(struct page **pages, unsigned int count)
603 {
604 	int i;
605 	void *buf = NULL;
606 
607 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
608 		buf = vm_map_ram(pages, count, -1);
609 		if (buf)
610 			break;
611 		vm_unmap_aliases();
612 	}
613 	return buf;
614 }
615 
f2fs_compress_pages(struct compress_ctx * cc)616 static int f2fs_compress_pages(struct compress_ctx *cc)
617 {
618 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
619 	const struct f2fs_compress_ops *cops =
620 				f2fs_cops[fi->i_compress_algorithm];
621 	unsigned int max_len, new_nr_cpages;
622 	u32 chksum = 0;
623 	int i, ret;
624 
625 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
626 				cc->cluster_size, fi->i_compress_algorithm);
627 
628 	if (cops->init_compress_ctx) {
629 		ret = cops->init_compress_ctx(cc);
630 		if (ret)
631 			goto out;
632 	}
633 
634 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
635 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
636 	cc->valid_nr_cpages = cc->nr_cpages;
637 
638 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
639 	if (!cc->cpages) {
640 		ret = -ENOMEM;
641 		goto destroy_compress_ctx;
642 	}
643 
644 	for (i = 0; i < cc->nr_cpages; i++) {
645 		cc->cpages[i] = f2fs_compress_alloc_page();
646 		if (!cc->cpages[i]) {
647 			ret = -ENOMEM;
648 			goto out_free_cpages;
649 		}
650 	}
651 
652 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
653 	if (!cc->rbuf) {
654 		ret = -ENOMEM;
655 		goto out_free_cpages;
656 	}
657 
658 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
659 	if (!cc->cbuf) {
660 		ret = -ENOMEM;
661 		goto out_vunmap_rbuf;
662 	}
663 
664 	ret = cops->compress_pages(cc);
665 	if (ret)
666 		goto out_vunmap_cbuf;
667 
668 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
669 
670 	if (cc->clen > max_len) {
671 		ret = -EAGAIN;
672 		goto out_vunmap_cbuf;
673 	}
674 
675 	cc->cbuf->clen = cpu_to_le32(cc->clen);
676 
677 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
678 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
679 					cc->cbuf->cdata, cc->clen);
680 	cc->cbuf->chksum = cpu_to_le32(chksum);
681 
682 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
683 		cc->cbuf->reserved[i] = cpu_to_le32(0);
684 
685 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
686 
687 	/* zero out any unused part of the last page */
688 	memset(&cc->cbuf->cdata[cc->clen], 0,
689 			(new_nr_cpages * PAGE_SIZE) -
690 			(cc->clen + COMPRESS_HEADER_SIZE));
691 
692 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
693 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
694 
695 	for (i = 0; i < cc->nr_cpages; i++) {
696 		if (i < new_nr_cpages)
697 			continue;
698 		f2fs_compress_free_page(cc->cpages[i]);
699 		cc->cpages[i] = NULL;
700 	}
701 
702 	if (cops->destroy_compress_ctx)
703 		cops->destroy_compress_ctx(cc);
704 
705 	cc->valid_nr_cpages = new_nr_cpages;
706 
707 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
708 							cc->clen, ret);
709 	return 0;
710 
711 out_vunmap_cbuf:
712 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
713 out_vunmap_rbuf:
714 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
715 out_free_cpages:
716 	for (i = 0; i < cc->nr_cpages; i++) {
717 		if (cc->cpages[i])
718 			f2fs_compress_free_page(cc->cpages[i]);
719 	}
720 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
721 	cc->cpages = NULL;
722 destroy_compress_ctx:
723 	if (cops->destroy_compress_ctx)
724 		cops->destroy_compress_ctx(cc);
725 out:
726 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
727 							cc->clen, ret);
728 	return ret;
729 }
730 
731 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
732 		bool pre_alloc);
733 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
734 		bool bypass_destroy_callback, bool pre_alloc);
735 
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)736 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
737 {
738 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
739 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
740 	const struct f2fs_compress_ops *cops =
741 			f2fs_cops[fi->i_compress_algorithm];
742 	bool bypass_callback = false;
743 	int ret;
744 
745 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
746 				dic->cluster_size, fi->i_compress_algorithm);
747 
748 	if (dic->failed) {
749 		ret = -EIO;
750 		goto out_end_io;
751 	}
752 
753 	ret = f2fs_prepare_decomp_mem(dic, false);
754 	if (ret) {
755 		bypass_callback = true;
756 		goto out_release;
757 	}
758 
759 	dic->clen = le32_to_cpu(dic->cbuf->clen);
760 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
761 
762 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
763 		ret = -EFSCORRUPTED;
764 		goto out_release;
765 	}
766 
767 	ret = cops->decompress_pages(dic);
768 
769 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
770 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
771 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
772 
773 		if (provided != calculated) {
774 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
775 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
776 				printk_ratelimited(
777 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
778 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
779 					provided, calculated);
780 			}
781 			set_sbi_flag(sbi, SBI_NEED_FSCK);
782 		}
783 	}
784 
785 out_release:
786 	f2fs_release_decomp_mem(dic, bypass_callback, false);
787 
788 out_end_io:
789 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
790 							dic->clen, ret);
791 	f2fs_decompress_end_io(dic, ret, in_task);
792 }
793 
794 /*
795  * This is called when a page of a compressed cluster has been read from disk
796  * (or failed to be read from disk).  It checks whether this page was the last
797  * page being waited on in the cluster, and if so, it decompresses the cluster
798  * (or in the case of a failure, cleans up without actually decompressing).
799  */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)800 void f2fs_end_read_compressed_page(struct page *page, bool failed,
801 		block_t blkaddr, bool in_task)
802 {
803 	struct decompress_io_ctx *dic =
804 			(struct decompress_io_ctx *)page_private(page);
805 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
806 
807 	dec_page_count(sbi, F2FS_RD_DATA);
808 
809 	if (failed)
810 		WRITE_ONCE(dic->failed, true);
811 	else if (blkaddr && in_task)
812 		f2fs_cache_compressed_page(sbi, page,
813 					dic->inode->i_ino, blkaddr);
814 
815 	if (atomic_dec_and_test(&dic->remaining_pages))
816 		f2fs_decompress_cluster(dic, in_task);
817 }
818 
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)819 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
820 {
821 	if (cc->cluster_idx == NULL_CLUSTER)
822 		return true;
823 	return cc->cluster_idx == cluster_idx(cc, index);
824 }
825 
f2fs_cluster_is_empty(struct compress_ctx * cc)826 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
827 {
828 	return cc->nr_rpages == 0;
829 }
830 
f2fs_cluster_is_full(struct compress_ctx * cc)831 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
832 {
833 	return cc->cluster_size == cc->nr_rpages;
834 }
835 
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)836 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
837 {
838 	if (f2fs_cluster_is_empty(cc))
839 		return true;
840 	return is_page_in_cluster(cc, index);
841 }
842 
f2fs_all_cluster_page_loaded(struct compress_ctx * cc,struct pagevec * pvec,int index,int nr_pages)843 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
844 				int index, int nr_pages)
845 {
846 	unsigned long pgidx;
847 	int i;
848 
849 	if (nr_pages - index < cc->cluster_size)
850 		return false;
851 
852 	pgidx = pvec->pages[index]->index;
853 
854 	for (i = 1; i < cc->cluster_size; i++) {
855 		if (pvec->pages[index + i]->index != pgidx + i)
856 			return false;
857 	}
858 
859 	return true;
860 }
861 
cluster_has_invalid_data(struct compress_ctx * cc)862 static bool cluster_has_invalid_data(struct compress_ctx *cc)
863 {
864 	loff_t i_size = i_size_read(cc->inode);
865 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
866 	int i;
867 
868 	for (i = 0; i < cc->cluster_size; i++) {
869 		struct page *page = cc->rpages[i];
870 
871 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
872 
873 		/* beyond EOF */
874 		if (page->index >= nr_pages)
875 			return true;
876 	}
877 	return false;
878 }
879 
f2fs_sanity_check_cluster(struct dnode_of_data * dn)880 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
881 {
882 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
883 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
884 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
885 	int cluster_end = 0;
886 	int i;
887 	char *reason = "";
888 
889 	if (!compressed)
890 		return false;
891 
892 	/* [..., COMPR_ADDR, ...] */
893 	if (dn->ofs_in_node % cluster_size) {
894 		reason = "[*|C|*|*]";
895 		goto out;
896 	}
897 
898 	for (i = 1; i < cluster_size; i++) {
899 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
900 							dn->ofs_in_node + i);
901 
902 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
903 		if (blkaddr == COMPRESS_ADDR) {
904 			reason = "[C|*|C|*]";
905 			goto out;
906 		}
907 		if (compressed) {
908 			if (!__is_valid_data_blkaddr(blkaddr)) {
909 				if (!cluster_end)
910 					cluster_end = i;
911 				continue;
912 			}
913 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
914 			if (cluster_end) {
915 				reason = "[C|N|N|V]";
916 				goto out;
917 			}
918 		}
919 	}
920 	return false;
921 out:
922 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
923 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
924 	set_sbi_flag(sbi, SBI_NEED_FSCK);
925 	return true;
926 }
927 
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)928 static int __f2fs_cluster_blocks(struct inode *inode,
929 				unsigned int cluster_idx, bool compr)
930 {
931 	struct dnode_of_data dn;
932 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
933 	unsigned int start_idx = cluster_idx <<
934 				F2FS_I(inode)->i_log_cluster_size;
935 	int ret;
936 
937 	set_new_dnode(&dn, inode, NULL, NULL, 0);
938 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
939 	if (ret) {
940 		if (ret == -ENOENT)
941 			ret = 0;
942 		goto fail;
943 	}
944 
945 	if (f2fs_sanity_check_cluster(&dn)) {
946 		ret = -EFSCORRUPTED;
947 		goto fail;
948 	}
949 
950 	if (dn.data_blkaddr == COMPRESS_ADDR) {
951 		int i;
952 
953 		ret = 1;
954 		for (i = 1; i < cluster_size; i++) {
955 			block_t blkaddr;
956 
957 			blkaddr = data_blkaddr(dn.inode,
958 					dn.node_page, dn.ofs_in_node + i);
959 			if (compr) {
960 				if (__is_valid_data_blkaddr(blkaddr))
961 					ret++;
962 			} else {
963 				if (blkaddr != NULL_ADDR)
964 					ret++;
965 			}
966 		}
967 
968 		f2fs_bug_on(F2FS_I_SB(inode),
969 			!compr && ret != cluster_size &&
970 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
971 	}
972 fail:
973 	f2fs_put_dnode(&dn);
974 	return ret;
975 }
976 
977 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)978 static int f2fs_compressed_blocks(struct compress_ctx *cc)
979 {
980 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
981 }
982 
983 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)984 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
985 {
986 	return __f2fs_cluster_blocks(inode,
987 		index >> F2FS_I(inode)->i_log_cluster_size,
988 		false);
989 }
990 
cluster_may_compress(struct compress_ctx * cc)991 static bool cluster_may_compress(struct compress_ctx *cc)
992 {
993 	if (!f2fs_need_compress_data(cc->inode))
994 		return false;
995 	if (f2fs_is_atomic_file(cc->inode))
996 		return false;
997 	if (!f2fs_cluster_is_full(cc))
998 		return false;
999 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1000 		return false;
1001 	return !cluster_has_invalid_data(cc);
1002 }
1003 
set_cluster_writeback(struct compress_ctx * cc)1004 static void set_cluster_writeback(struct compress_ctx *cc)
1005 {
1006 	int i;
1007 
1008 	for (i = 0; i < cc->cluster_size; i++) {
1009 		if (cc->rpages[i])
1010 			set_page_writeback(cc->rpages[i]);
1011 	}
1012 }
1013 
set_cluster_dirty(struct compress_ctx * cc)1014 static void set_cluster_dirty(struct compress_ctx *cc)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < cc->cluster_size; i++)
1019 		if (cc->rpages[i]) {
1020 			set_page_dirty(cc->rpages[i]);
1021 			set_page_private_gcing(cc->rpages[i]);
1022 		}
1023 }
1024 
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1025 static int prepare_compress_overwrite(struct compress_ctx *cc,
1026 		struct page **pagep, pgoff_t index, void **fsdata)
1027 {
1028 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1029 	struct address_space *mapping = cc->inode->i_mapping;
1030 	struct page *page;
1031 	sector_t last_block_in_bio;
1032 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1033 	pgoff_t start_idx = start_idx_of_cluster(cc);
1034 	int i, ret;
1035 
1036 retry:
1037 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1038 	if (ret <= 0)
1039 		return ret;
1040 
1041 	ret = f2fs_init_compress_ctx(cc);
1042 	if (ret)
1043 		return ret;
1044 
1045 	/* keep page reference to avoid page reclaim */
1046 	for (i = 0; i < cc->cluster_size; i++) {
1047 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1048 							fgp_flag, GFP_NOFS);
1049 		if (!page) {
1050 			ret = -ENOMEM;
1051 			goto unlock_pages;
1052 		}
1053 
1054 		if (PageUptodate(page))
1055 			f2fs_put_page(page, 1);
1056 		else
1057 			f2fs_compress_ctx_add_page(cc, page);
1058 	}
1059 
1060 	if (!f2fs_cluster_is_empty(cc)) {
1061 		struct bio *bio = NULL;
1062 
1063 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1064 					&last_block_in_bio, false, true);
1065 		f2fs_put_rpages(cc);
1066 		f2fs_destroy_compress_ctx(cc, true);
1067 		if (ret)
1068 			goto out;
1069 		if (bio)
1070 			f2fs_submit_bio(sbi, bio, DATA);
1071 
1072 		ret = f2fs_init_compress_ctx(cc);
1073 		if (ret)
1074 			goto out;
1075 	}
1076 
1077 	for (i = 0; i < cc->cluster_size; i++) {
1078 		f2fs_bug_on(sbi, cc->rpages[i]);
1079 
1080 		page = find_lock_page(mapping, start_idx + i);
1081 		if (!page) {
1082 			/* page can be truncated */
1083 			goto release_and_retry;
1084 		}
1085 
1086 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1087 		f2fs_compress_ctx_add_page(cc, page);
1088 
1089 		if (!PageUptodate(page)) {
1090 release_and_retry:
1091 			f2fs_put_rpages(cc);
1092 			f2fs_unlock_rpages(cc, i + 1);
1093 			f2fs_destroy_compress_ctx(cc, true);
1094 			goto retry;
1095 		}
1096 	}
1097 
1098 	if (likely(!ret)) {
1099 		*fsdata = cc->rpages;
1100 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1101 		return cc->cluster_size;
1102 	}
1103 
1104 unlock_pages:
1105 	f2fs_put_rpages(cc);
1106 	f2fs_unlock_rpages(cc, i);
1107 	f2fs_destroy_compress_ctx(cc, true);
1108 out:
1109 	return ret;
1110 }
1111 
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1112 int f2fs_prepare_compress_overwrite(struct inode *inode,
1113 		struct page **pagep, pgoff_t index, void **fsdata)
1114 {
1115 	struct compress_ctx cc = {
1116 		.inode = inode,
1117 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1118 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1119 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1120 		.rpages = NULL,
1121 		.nr_rpages = 0,
1122 	};
1123 
1124 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1125 }
1126 
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1127 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1128 					pgoff_t index, unsigned copied)
1129 
1130 {
1131 	struct compress_ctx cc = {
1132 		.inode = inode,
1133 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1134 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1135 		.rpages = fsdata,
1136 	};
1137 	bool first_index = (index == cc.rpages[0]->index);
1138 
1139 	if (copied)
1140 		set_cluster_dirty(&cc);
1141 
1142 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1143 	f2fs_destroy_compress_ctx(&cc, false);
1144 
1145 	return first_index;
1146 }
1147 
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1148 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1149 {
1150 	void *fsdata = NULL;
1151 	struct page *pagep;
1152 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1153 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1154 							log_cluster_size;
1155 	int err;
1156 
1157 	err = f2fs_is_compressed_cluster(inode, start_idx);
1158 	if (err < 0)
1159 		return err;
1160 
1161 	/* truncate normal cluster */
1162 	if (!err)
1163 		return f2fs_do_truncate_blocks(inode, from, lock);
1164 
1165 	/* truncate compressed cluster */
1166 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1167 						start_idx, &fsdata);
1168 
1169 	/* should not be a normal cluster */
1170 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1171 
1172 	if (err <= 0)
1173 		return err;
1174 
1175 	if (err > 0) {
1176 		struct page **rpages = fsdata;
1177 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1178 		int i;
1179 
1180 		for (i = cluster_size - 1; i >= 0; i--) {
1181 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1182 
1183 			if (from <= start) {
1184 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1185 			} else {
1186 				zero_user_segment(rpages[i], from - start,
1187 								PAGE_SIZE);
1188 				break;
1189 			}
1190 		}
1191 
1192 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1193 	}
1194 	return 0;
1195 }
1196 
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1197 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1198 					int *submitted,
1199 					struct writeback_control *wbc,
1200 					enum iostat_type io_type)
1201 {
1202 	struct inode *inode = cc->inode;
1203 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1204 	struct f2fs_inode_info *fi = F2FS_I(inode);
1205 	struct f2fs_io_info fio = {
1206 		.sbi = sbi,
1207 		.ino = cc->inode->i_ino,
1208 		.type = DATA,
1209 		.op = REQ_OP_WRITE,
1210 		.op_flags = wbc_to_write_flags(wbc),
1211 		.old_blkaddr = NEW_ADDR,
1212 		.page = NULL,
1213 		.encrypted_page = NULL,
1214 		.compressed_page = NULL,
1215 		.submitted = false,
1216 		.io_type = io_type,
1217 		.io_wbc = wbc,
1218 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1219 	};
1220 	struct dnode_of_data dn;
1221 	struct node_info ni;
1222 	struct compress_io_ctx *cic;
1223 	pgoff_t start_idx = start_idx_of_cluster(cc);
1224 	unsigned int last_index = cc->cluster_size - 1;
1225 	loff_t psize;
1226 	int i, err;
1227 
1228 	/* we should bypass data pages to proceed the kworkder jobs */
1229 	if (unlikely(f2fs_cp_error(sbi))) {
1230 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1231 		goto out_free;
1232 	}
1233 
1234 	if (IS_NOQUOTA(inode)) {
1235 		/*
1236 		 * We need to wait for node_write to avoid block allocation during
1237 		 * checkpoint. This can only happen to quota writes which can cause
1238 		 * the below discard race condition.
1239 		 */
1240 		f2fs_down_read(&sbi->node_write);
1241 	} else if (!f2fs_trylock_op(sbi)) {
1242 		goto out_free;
1243 	}
1244 
1245 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1246 
1247 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1248 	if (err)
1249 		goto out_unlock_op;
1250 
1251 	for (i = 0; i < cc->cluster_size; i++) {
1252 		if (data_blkaddr(dn.inode, dn.node_page,
1253 					dn.ofs_in_node + i) == NULL_ADDR)
1254 			goto out_put_dnode;
1255 	}
1256 
1257 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1258 
1259 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1260 	if (err)
1261 		goto out_put_dnode;
1262 
1263 	fio.version = ni.version;
1264 
1265 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1266 	if (!cic)
1267 		goto out_put_dnode;
1268 
1269 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1270 	cic->inode = inode;
1271 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1272 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1273 	if (!cic->rpages)
1274 		goto out_put_cic;
1275 
1276 	cic->nr_rpages = cc->cluster_size;
1277 
1278 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1279 		f2fs_set_compressed_page(cc->cpages[i], inode,
1280 					cc->rpages[i + 1]->index, cic);
1281 		fio.compressed_page = cc->cpages[i];
1282 
1283 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1284 						dn.ofs_in_node + i + 1);
1285 
1286 		/* wait for GCed page writeback via META_MAPPING */
1287 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1288 
1289 		if (fio.encrypted) {
1290 			fio.page = cc->rpages[i + 1];
1291 			err = f2fs_encrypt_one_page(&fio);
1292 			if (err)
1293 				goto out_destroy_crypt;
1294 			cc->cpages[i] = fio.encrypted_page;
1295 		}
1296 	}
1297 
1298 	set_cluster_writeback(cc);
1299 
1300 	for (i = 0; i < cc->cluster_size; i++)
1301 		cic->rpages[i] = cc->rpages[i];
1302 
1303 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1304 		block_t blkaddr;
1305 
1306 		blkaddr = f2fs_data_blkaddr(&dn);
1307 		fio.page = cc->rpages[i];
1308 		fio.old_blkaddr = blkaddr;
1309 
1310 		/* cluster header */
1311 		if (i == 0) {
1312 			if (blkaddr == COMPRESS_ADDR)
1313 				fio.compr_blocks++;
1314 			if (__is_valid_data_blkaddr(blkaddr))
1315 				f2fs_invalidate_blocks(sbi, blkaddr);
1316 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1317 			goto unlock_continue;
1318 		}
1319 
1320 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1321 			fio.compr_blocks++;
1322 
1323 		if (i > cc->valid_nr_cpages) {
1324 			if (__is_valid_data_blkaddr(blkaddr)) {
1325 				f2fs_invalidate_blocks(sbi, blkaddr);
1326 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1327 			}
1328 			goto unlock_continue;
1329 		}
1330 
1331 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1332 
1333 		if (fio.encrypted)
1334 			fio.encrypted_page = cc->cpages[i - 1];
1335 		else
1336 			fio.compressed_page = cc->cpages[i - 1];
1337 
1338 		cc->cpages[i - 1] = NULL;
1339 		f2fs_outplace_write_data(&dn, &fio);
1340 		(*submitted)++;
1341 unlock_continue:
1342 		inode_dec_dirty_pages(cc->inode);
1343 		unlock_page(fio.page);
1344 	}
1345 
1346 	if (fio.compr_blocks)
1347 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1348 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1349 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1350 
1351 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1352 	if (cc->cluster_idx == 0)
1353 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1354 
1355 	f2fs_put_dnode(&dn);
1356 	if (IS_NOQUOTA(inode))
1357 		f2fs_up_read(&sbi->node_write);
1358 	else
1359 		f2fs_unlock_op(sbi);
1360 
1361 	spin_lock(&fi->i_size_lock);
1362 	if (fi->last_disk_size < psize)
1363 		fi->last_disk_size = psize;
1364 	spin_unlock(&fi->i_size_lock);
1365 
1366 	f2fs_put_rpages(cc);
1367 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1368 	cc->cpages = NULL;
1369 	f2fs_destroy_compress_ctx(cc, false);
1370 	return 0;
1371 
1372 out_destroy_crypt:
1373 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1374 
1375 	for (--i; i >= 0; i--)
1376 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1377 out_put_cic:
1378 	kmem_cache_free(cic_entry_slab, cic);
1379 out_put_dnode:
1380 	f2fs_put_dnode(&dn);
1381 out_unlock_op:
1382 	if (IS_NOQUOTA(inode))
1383 		f2fs_up_read(&sbi->node_write);
1384 	else
1385 		f2fs_unlock_op(sbi);
1386 out_free:
1387 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1388 		f2fs_compress_free_page(cc->cpages[i]);
1389 		cc->cpages[i] = NULL;
1390 	}
1391 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1392 	cc->cpages = NULL;
1393 	return -EAGAIN;
1394 }
1395 
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1396 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1397 {
1398 	struct f2fs_sb_info *sbi = bio->bi_private;
1399 	struct compress_io_ctx *cic =
1400 			(struct compress_io_ctx *)page_private(page);
1401 	int i;
1402 
1403 	if (unlikely(bio->bi_status))
1404 		mapping_set_error(cic->inode->i_mapping, -EIO);
1405 
1406 	f2fs_compress_free_page(page);
1407 
1408 	dec_page_count(sbi, F2FS_WB_DATA);
1409 
1410 	if (atomic_dec_return(&cic->pending_pages))
1411 		return;
1412 
1413 	for (i = 0; i < cic->nr_rpages; i++) {
1414 		WARN_ON(!cic->rpages[i]);
1415 		clear_page_private_gcing(cic->rpages[i]);
1416 		end_page_writeback(cic->rpages[i]);
1417 	}
1418 
1419 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1420 	kmem_cache_free(cic_entry_slab, cic);
1421 }
1422 
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1423 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1424 					int *submitted,
1425 					struct writeback_control *wbc,
1426 					enum iostat_type io_type)
1427 {
1428 	struct address_space *mapping = cc->inode->i_mapping;
1429 	int _submitted, compr_blocks, ret, i;
1430 
1431 	compr_blocks = f2fs_compressed_blocks(cc);
1432 
1433 	for (i = 0; i < cc->cluster_size; i++) {
1434 		if (!cc->rpages[i])
1435 			continue;
1436 
1437 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1438 		unlock_page(cc->rpages[i]);
1439 	}
1440 
1441 	if (compr_blocks < 0)
1442 		return compr_blocks;
1443 
1444 	for (i = 0; i < cc->cluster_size; i++) {
1445 		if (!cc->rpages[i])
1446 			continue;
1447 retry_write:
1448 		lock_page(cc->rpages[i]);
1449 
1450 		if (cc->rpages[i]->mapping != mapping) {
1451 continue_unlock:
1452 			unlock_page(cc->rpages[i]);
1453 			continue;
1454 		}
1455 
1456 		if (!PageDirty(cc->rpages[i]))
1457 			goto continue_unlock;
1458 
1459 		if (PageWriteback(cc->rpages[i])) {
1460 			if (wbc->sync_mode == WB_SYNC_NONE)
1461 				goto continue_unlock;
1462 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1463 		}
1464 
1465 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1466 			goto continue_unlock;
1467 
1468 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1469 						NULL, NULL, wbc, io_type,
1470 						compr_blocks, false);
1471 		if (ret) {
1472 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1473 				unlock_page(cc->rpages[i]);
1474 				ret = 0;
1475 			} else if (ret == -EAGAIN) {
1476 				/*
1477 				 * for quota file, just redirty left pages to
1478 				 * avoid deadlock caused by cluster update race
1479 				 * from foreground operation.
1480 				 */
1481 				if (IS_NOQUOTA(cc->inode))
1482 					return 0;
1483 				ret = 0;
1484 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1485 				goto retry_write;
1486 			}
1487 			return ret;
1488 		}
1489 
1490 		*submitted += _submitted;
1491 	}
1492 
1493 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1494 
1495 	return 0;
1496 }
1497 
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1498 int f2fs_write_multi_pages(struct compress_ctx *cc,
1499 					int *submitted,
1500 					struct writeback_control *wbc,
1501 					enum iostat_type io_type)
1502 {
1503 	int err;
1504 
1505 	*submitted = 0;
1506 	if (cluster_may_compress(cc)) {
1507 		err = f2fs_compress_pages(cc);
1508 		if (err == -EAGAIN) {
1509 			add_compr_block_stat(cc->inode, cc->cluster_size);
1510 			goto write;
1511 		} else if (err) {
1512 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1513 			goto destroy_out;
1514 		}
1515 
1516 		err = f2fs_write_compressed_pages(cc, submitted,
1517 							wbc, io_type);
1518 		if (!err)
1519 			return 0;
1520 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1521 	}
1522 write:
1523 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1524 
1525 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1526 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1527 destroy_out:
1528 	f2fs_destroy_compress_ctx(cc, false);
1529 	return err;
1530 }
1531 
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1532 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1533 		bool pre_alloc)
1534 {
1535 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1536 }
1537 
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1538 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1539 		bool pre_alloc)
1540 {
1541 	const struct f2fs_compress_ops *cops =
1542 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1543 	int i;
1544 
1545 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1546 		return 0;
1547 
1548 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1549 	if (!dic->tpages)
1550 		return -ENOMEM;
1551 
1552 	for (i = 0; i < dic->cluster_size; i++) {
1553 		if (dic->rpages[i]) {
1554 			dic->tpages[i] = dic->rpages[i];
1555 			continue;
1556 		}
1557 
1558 		dic->tpages[i] = f2fs_compress_alloc_page();
1559 		if (!dic->tpages[i])
1560 			return -ENOMEM;
1561 	}
1562 
1563 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1564 	if (!dic->rbuf)
1565 		return -ENOMEM;
1566 
1567 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1568 	if (!dic->cbuf)
1569 		return -ENOMEM;
1570 
1571 	if (cops->init_decompress_ctx) {
1572 		int ret = cops->init_decompress_ctx(dic);
1573 
1574 		if (ret)
1575 			return ret;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1581 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1582 		bool bypass_destroy_callback, bool pre_alloc)
1583 {
1584 	const struct f2fs_compress_ops *cops =
1585 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1586 
1587 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1588 		return;
1589 
1590 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1591 		cops->destroy_decompress_ctx(dic);
1592 
1593 	if (dic->cbuf)
1594 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1595 
1596 	if (dic->rbuf)
1597 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1598 }
1599 
1600 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1601 		bool bypass_destroy_callback);
1602 
f2fs_alloc_dic(struct compress_ctx * cc)1603 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1604 {
1605 	struct decompress_io_ctx *dic;
1606 	pgoff_t start_idx = start_idx_of_cluster(cc);
1607 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1608 	int i, ret;
1609 
1610 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1611 	if (!dic)
1612 		return ERR_PTR(-ENOMEM);
1613 
1614 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1615 	if (!dic->rpages) {
1616 		kmem_cache_free(dic_entry_slab, dic);
1617 		return ERR_PTR(-ENOMEM);
1618 	}
1619 
1620 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1621 	dic->inode = cc->inode;
1622 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1623 	dic->cluster_idx = cc->cluster_idx;
1624 	dic->cluster_size = cc->cluster_size;
1625 	dic->log_cluster_size = cc->log_cluster_size;
1626 	dic->nr_cpages = cc->nr_cpages;
1627 	refcount_set(&dic->refcnt, 1);
1628 	dic->failed = false;
1629 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1630 
1631 	for (i = 0; i < dic->cluster_size; i++)
1632 		dic->rpages[i] = cc->rpages[i];
1633 	dic->nr_rpages = cc->cluster_size;
1634 
1635 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1636 	if (!dic->cpages) {
1637 		ret = -ENOMEM;
1638 		goto out_free;
1639 	}
1640 
1641 	for (i = 0; i < dic->nr_cpages; i++) {
1642 		struct page *page;
1643 
1644 		page = f2fs_compress_alloc_page();
1645 		if (!page) {
1646 			ret = -ENOMEM;
1647 			goto out_free;
1648 		}
1649 
1650 		f2fs_set_compressed_page(page, cc->inode,
1651 					start_idx + i + 1, dic);
1652 		dic->cpages[i] = page;
1653 	}
1654 
1655 	ret = f2fs_prepare_decomp_mem(dic, true);
1656 	if (ret)
1657 		goto out_free;
1658 
1659 	return dic;
1660 
1661 out_free:
1662 	f2fs_free_dic(dic, true);
1663 	return ERR_PTR(ret);
1664 }
1665 
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1666 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1667 		bool bypass_destroy_callback)
1668 {
1669 	int i;
1670 
1671 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1672 
1673 	if (dic->tpages) {
1674 		for (i = 0; i < dic->cluster_size; i++) {
1675 			if (dic->rpages[i])
1676 				continue;
1677 			if (!dic->tpages[i])
1678 				continue;
1679 			f2fs_compress_free_page(dic->tpages[i]);
1680 		}
1681 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1682 	}
1683 
1684 	if (dic->cpages) {
1685 		for (i = 0; i < dic->nr_cpages; i++) {
1686 			if (!dic->cpages[i])
1687 				continue;
1688 			f2fs_compress_free_page(dic->cpages[i]);
1689 		}
1690 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1691 	}
1692 
1693 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1694 	kmem_cache_free(dic_entry_slab, dic);
1695 }
1696 
f2fs_late_free_dic(struct work_struct * work)1697 static void f2fs_late_free_dic(struct work_struct *work)
1698 {
1699 	struct decompress_io_ctx *dic =
1700 		container_of(work, struct decompress_io_ctx, free_work);
1701 
1702 	f2fs_free_dic(dic, false);
1703 }
1704 
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1705 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1706 {
1707 	if (refcount_dec_and_test(&dic->refcnt)) {
1708 		if (in_task) {
1709 			f2fs_free_dic(dic, false);
1710 		} else {
1711 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1712 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1713 					&dic->free_work);
1714 		}
1715 	}
1716 }
1717 
1718 /*
1719  * Update and unlock the cluster's pagecache pages, and release the reference to
1720  * the decompress_io_ctx that was being held for I/O completion.
1721  */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1722 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1723 				bool in_task)
1724 {
1725 	int i;
1726 
1727 	for (i = 0; i < dic->cluster_size; i++) {
1728 		struct page *rpage = dic->rpages[i];
1729 
1730 		if (!rpage)
1731 			continue;
1732 
1733 		/* PG_error was set if verity failed. */
1734 		if (failed || PageError(rpage)) {
1735 			ClearPageUptodate(rpage);
1736 			/* will re-read again later */
1737 			ClearPageError(rpage);
1738 		} else {
1739 			SetPageUptodate(rpage);
1740 		}
1741 		unlock_page(rpage);
1742 	}
1743 
1744 	f2fs_put_dic(dic, in_task);
1745 }
1746 
f2fs_verify_cluster(struct work_struct * work)1747 static void f2fs_verify_cluster(struct work_struct *work)
1748 {
1749 	struct decompress_io_ctx *dic =
1750 		container_of(work, struct decompress_io_ctx, verity_work);
1751 	int i;
1752 
1753 	/* Verify the cluster's decompressed pages with fs-verity. */
1754 	for (i = 0; i < dic->cluster_size; i++) {
1755 		struct page *rpage = dic->rpages[i];
1756 
1757 		if (rpage && !fsverity_verify_page(rpage))
1758 			SetPageError(rpage);
1759 	}
1760 
1761 	__f2fs_decompress_end_io(dic, false, true);
1762 }
1763 
1764 /*
1765  * This is called when a compressed cluster has been decompressed
1766  * (or failed to be read and/or decompressed).
1767  */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1768 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1769 				bool in_task)
1770 {
1771 	if (!failed && dic->need_verity) {
1772 		/*
1773 		 * Note that to avoid deadlocks, the verity work can't be done
1774 		 * on the decompression workqueue.  This is because verifying
1775 		 * the data pages can involve reading metadata pages from the
1776 		 * file, and these metadata pages may be compressed.
1777 		 */
1778 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1779 		fsverity_enqueue_verify_work(&dic->verity_work);
1780 	} else {
1781 		__f2fs_decompress_end_io(dic, failed, in_task);
1782 	}
1783 }
1784 
1785 /*
1786  * Put a reference to a compressed page's decompress_io_ctx.
1787  *
1788  * This is called when the page is no longer needed and can be freed.
1789  */
f2fs_put_page_dic(struct page * page,bool in_task)1790 void f2fs_put_page_dic(struct page *page, bool in_task)
1791 {
1792 	struct decompress_io_ctx *dic =
1793 			(struct decompress_io_ctx *)page_private(page);
1794 
1795 	f2fs_put_dic(dic, in_task);
1796 }
1797 
1798 /*
1799  * check whether cluster blocks are contiguous, and add extent cache entry
1800  * only if cluster blocks are logically and physically contiguous.
1801  */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1803 {
1804 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1805 	int i = compressed ? 1 : 0;
1806 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1807 						dn->ofs_in_node + i);
1808 
1809 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1810 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1811 						dn->ofs_in_node + i);
1812 
1813 		if (!__is_valid_data_blkaddr(blkaddr))
1814 			break;
1815 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1816 			return 0;
1817 	}
1818 
1819 	return compressed ? i - 1 : i;
1820 }
1821 
1822 const struct address_space_operations f2fs_compress_aops = {
1823 	.releasepage = f2fs_release_page,
1824 	.invalidatepage = f2fs_invalidate_page,
1825 };
1826 
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1827 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1828 {
1829 	return sbi->compress_inode->i_mapping;
1830 }
1831 
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1832 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1833 {
1834 	if (!sbi->compress_inode)
1835 		return;
1836 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1837 }
1838 
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1839 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1840 						nid_t ino, block_t blkaddr)
1841 {
1842 	struct page *cpage;
1843 	int ret;
1844 
1845 	if (!test_opt(sbi, COMPRESS_CACHE))
1846 		return;
1847 
1848 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1849 		return;
1850 
1851 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1852 		return;
1853 
1854 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1855 	if (cpage) {
1856 		f2fs_put_page(cpage, 0);
1857 		return;
1858 	}
1859 
1860 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1861 	if (!cpage)
1862 		return;
1863 
1864 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1865 						blkaddr, GFP_NOFS);
1866 	if (ret) {
1867 		f2fs_put_page(cpage, 0);
1868 		return;
1869 	}
1870 
1871 	set_page_private_data(cpage, ino);
1872 
1873 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1874 		goto out;
1875 
1876 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1877 	SetPageUptodate(cpage);
1878 out:
1879 	f2fs_put_page(cpage, 1);
1880 }
1881 
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1882 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1883 								block_t blkaddr)
1884 {
1885 	struct page *cpage;
1886 	bool hitted = false;
1887 
1888 	if (!test_opt(sbi, COMPRESS_CACHE))
1889 		return false;
1890 
1891 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1892 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1893 	if (cpage) {
1894 		if (PageUptodate(cpage)) {
1895 			atomic_inc(&sbi->compress_page_hit);
1896 			memcpy(page_address(page),
1897 				page_address(cpage), PAGE_SIZE);
1898 			hitted = true;
1899 		}
1900 		f2fs_put_page(cpage, 1);
1901 	}
1902 
1903 	return hitted;
1904 }
1905 
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1906 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1907 {
1908 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1909 	struct pagevec pvec;
1910 	pgoff_t index = 0;
1911 	pgoff_t end = MAX_BLKADDR(sbi);
1912 
1913 	if (!mapping->nrpages)
1914 		return;
1915 
1916 	pagevec_init(&pvec);
1917 
1918 	do {
1919 		unsigned int nr_pages;
1920 		int i;
1921 
1922 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1923 						&index, end - 1);
1924 		if (!nr_pages)
1925 			break;
1926 
1927 		for (i = 0; i < nr_pages; i++) {
1928 			struct page *page = pvec.pages[i];
1929 
1930 			if (page->index > end)
1931 				break;
1932 
1933 			lock_page(page);
1934 			if (page->mapping != mapping) {
1935 				unlock_page(page);
1936 				continue;
1937 			}
1938 
1939 			if (ino != get_page_private_data(page)) {
1940 				unlock_page(page);
1941 				continue;
1942 			}
1943 
1944 			generic_error_remove_page(mapping, page);
1945 			unlock_page(page);
1946 		}
1947 		pagevec_release(&pvec);
1948 		cond_resched();
1949 	} while (index < end);
1950 }
1951 
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1952 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1953 {
1954 	struct inode *inode;
1955 
1956 	if (!test_opt(sbi, COMPRESS_CACHE))
1957 		return 0;
1958 
1959 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1960 	if (IS_ERR(inode))
1961 		return PTR_ERR(inode);
1962 	sbi->compress_inode = inode;
1963 
1964 	sbi->compress_percent = COMPRESS_PERCENT;
1965 	sbi->compress_watermark = COMPRESS_WATERMARK;
1966 
1967 	atomic_set(&sbi->compress_page_hit, 0);
1968 
1969 	return 0;
1970 }
1971 
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1972 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1973 {
1974 	if (!sbi->compress_inode)
1975 		return;
1976 	iput(sbi->compress_inode);
1977 	sbi->compress_inode = NULL;
1978 }
1979 
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1980 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1981 {
1982 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1983 	char slab_name[35];
1984 
1985 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1986 
1987 	sbi->page_array_slab_size = sizeof(struct page *) <<
1988 					F2FS_OPTION(sbi).compress_log_size;
1989 
1990 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1991 					sbi->page_array_slab_size);
1992 	if (!sbi->page_array_slab)
1993 		return -ENOMEM;
1994 	return 0;
1995 }
1996 
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1997 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1998 {
1999 	kmem_cache_destroy(sbi->page_array_slab);
2000 }
2001 
f2fs_init_cic_cache(void)2002 static int __init f2fs_init_cic_cache(void)
2003 {
2004 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2005 					sizeof(struct compress_io_ctx));
2006 	if (!cic_entry_slab)
2007 		return -ENOMEM;
2008 	return 0;
2009 }
2010 
f2fs_destroy_cic_cache(void)2011 static void f2fs_destroy_cic_cache(void)
2012 {
2013 	kmem_cache_destroy(cic_entry_slab);
2014 }
2015 
f2fs_init_dic_cache(void)2016 static int __init f2fs_init_dic_cache(void)
2017 {
2018 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2019 					sizeof(struct decompress_io_ctx));
2020 	if (!dic_entry_slab)
2021 		return -ENOMEM;
2022 	return 0;
2023 }
2024 
f2fs_destroy_dic_cache(void)2025 static void f2fs_destroy_dic_cache(void)
2026 {
2027 	kmem_cache_destroy(dic_entry_slab);
2028 }
2029 
f2fs_init_compress_cache(void)2030 int __init f2fs_init_compress_cache(void)
2031 {
2032 	int err;
2033 
2034 	err = f2fs_init_cic_cache();
2035 	if (err)
2036 		goto out;
2037 	err = f2fs_init_dic_cache();
2038 	if (err)
2039 		goto free_cic;
2040 	return 0;
2041 free_cic:
2042 	f2fs_destroy_cic_cache();
2043 out:
2044 	return -ENOMEM;
2045 }
2046 
f2fs_destroy_compress_cache(void)2047 void f2fs_destroy_compress_cache(void)
2048 {
2049 	f2fs_destroy_dic_cache();
2050 	f2fs_destroy_cic_cache();
2051 }
2052