• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17 
18 /*
19  *	SERIALIZATION of the Block Allocation Map.
20  *
21  *	the working state of the block allocation map is accessed in
22  *	two directions:
23  *
24  *	1) allocation and free requests that start at the dmap
25  *	   level and move up through the dmap control pages (i.e.
26  *	   the vast majority of requests).
27  *
28  *	2) allocation requests that start at dmap control page
29  *	   level and work down towards the dmaps.
30  *
31  *	the serialization scheme used here is as follows.
32  *
33  *	requests which start at the bottom are serialized against each
34  *	other through buffers and each requests holds onto its buffers
35  *	as it works it way up from a single dmap to the required level
36  *	of dmap control page.
37  *	requests that start at the top are serialized against each other
38  *	and request that start from the bottom by the multiple read/single
39  *	write inode lock of the bmap inode. requests starting at the top
40  *	take this lock in write mode while request starting at the bottom
41  *	take the lock in read mode.  a single top-down request may proceed
42  *	exclusively while multiple bottoms-up requests may proceed
43  *	simultaneously (under the protection of busy buffers).
44  *
45  *	in addition to information found in dmaps and dmap control pages,
46  *	the working state of the block allocation map also includes read/
47  *	write information maintained in the bmap descriptor (i.e. total
48  *	free block count, allocation group level free block counts).
49  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *	in the face of multiple-bottoms up requests.
51  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *	accesses to the persistent state of the block allocation map (limited
54  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56 
57 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60 
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 			int nblocks);
66 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 		    int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 		       int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 		       int nblocks,
77 		       int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 		       int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 			  int l2nb,
82 			  s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 		     s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 		      s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		      int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 		      int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97 
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 			 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *	buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:	dbMount()
138  *
139  * FUNCTION:	initializate the block allocation map.
140  *
141  *		memory is allocated for the in-core bmap descriptor and
142  *		the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *	ipbmap	- pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *	0	- success
149  *	-ENOMEM	- insufficient memory
150  *	-EIO	- i/o error
151  *	-EINVAL - wrong bmap data
152  */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 	struct bmap *bmp;
156 	struct dbmap_disk *dbmp_le;
157 	struct metapage *mp;
158 	int i, err;
159 
160 	/*
161 	 * allocate/initialize the in-memory bmap descriptor
162 	 */
163 	/* allocate memory for the in-memory bmap descriptor */
164 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 	if (bmp == NULL)
166 		return -ENOMEM;
167 
168 	/* read the on-disk bmap descriptor. */
169 	mp = read_metapage(ipbmap,
170 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 			   PSIZE, 0);
172 	if (mp == NULL) {
173 		err = -EIO;
174 		goto err_kfree_bmp;
175 	}
176 
177 	/* copy the on-disk bmap descriptor to its in-memory version. */
178 	dbmp_le = (struct dbmap_disk *) mp->data;
179 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 
182 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183 	if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE ||
184 		bmp->db_l2nbperpage < 0) {
185 		err = -EINVAL;
186 		goto err_release_metapage;
187 	}
188 
189 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
190 	if (!bmp->db_numag) {
191 		err = -EINVAL;
192 		goto err_release_metapage;
193 	}
194 
195 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
196 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
197 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
198 	if (bmp->db_maxag >= MAXAG || bmp->db_maxag < 0 ||
199 		bmp->db_agpref >= MAXAG || bmp->db_agpref < 0) {
200 		err = -EINVAL;
201 		goto err_release_metapage;
202 	}
203 
204 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
205 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
206 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
207 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
208 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
209 	if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
210 	    bmp->db_agl2size < 0) {
211 		err = -EINVAL;
212 		goto err_release_metapage;
213 	}
214 
215 	if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
216 		err = -EINVAL;
217 		goto err_release_metapage;
218 	}
219 
220 	for (i = 0; i < MAXAG; i++)
221 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
222 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
223 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
224 
225 	/* release the buffer. */
226 	release_metapage(mp);
227 
228 	/* bind the bmap inode and the bmap descriptor to each other. */
229 	bmp->db_ipbmap = ipbmap;
230 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
231 
232 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
233 
234 	/*
235 	 * allocate/initialize the bmap lock
236 	 */
237 	BMAP_LOCK_INIT(bmp);
238 
239 	return (0);
240 
241 err_release_metapage:
242 	release_metapage(mp);
243 err_kfree_bmp:
244 	kfree(bmp);
245 	return err;
246 }
247 
248 
249 /*
250  * NAME:	dbUnmount()
251  *
252  * FUNCTION:	terminate the block allocation map in preparation for
253  *		file system unmount.
254  *
255  *		the in-core bmap descriptor is written to disk and
256  *		the memory for this descriptor is freed.
257  *
258  * PARAMETERS:
259  *	ipbmap	- pointer to in-core inode for the block map.
260  *
261  * RETURN VALUES:
262  *	0	- success
263  *	-EIO	- i/o error
264  */
dbUnmount(struct inode * ipbmap,int mounterror)265 int dbUnmount(struct inode *ipbmap, int mounterror)
266 {
267 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
268 
269 	if (!(mounterror || isReadOnly(ipbmap)))
270 		dbSync(ipbmap);
271 
272 	/*
273 	 * Invalidate the page cache buffers
274 	 */
275 	truncate_inode_pages(ipbmap->i_mapping, 0);
276 
277 	/* free the memory for the in-memory bmap. */
278 	kfree(bmp);
279 	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
280 
281 	return (0);
282 }
283 
284 /*
285  *	dbSync()
286  */
dbSync(struct inode * ipbmap)287 int dbSync(struct inode *ipbmap)
288 {
289 	struct dbmap_disk *dbmp_le;
290 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
291 	struct metapage *mp;
292 	int i;
293 
294 	/*
295 	 * write bmap global control page
296 	 */
297 	/* get the buffer for the on-disk bmap descriptor. */
298 	mp = read_metapage(ipbmap,
299 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
300 			   PSIZE, 0);
301 	if (mp == NULL) {
302 		jfs_err("dbSync: read_metapage failed!");
303 		return -EIO;
304 	}
305 	/* copy the in-memory version of the bmap to the on-disk version */
306 	dbmp_le = (struct dbmap_disk *) mp->data;
307 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
308 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
309 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
310 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
311 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
312 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
313 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
314 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
315 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
316 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
317 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
318 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
319 	for (i = 0; i < MAXAG; i++)
320 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
321 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
322 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
323 
324 	/* write the buffer */
325 	write_metapage(mp);
326 
327 	/*
328 	 * write out dirty pages of bmap
329 	 */
330 	filemap_write_and_wait(ipbmap->i_mapping);
331 
332 	diWriteSpecial(ipbmap, 0);
333 
334 	return (0);
335 }
336 
337 /*
338  * NAME:	dbFree()
339  *
340  * FUNCTION:	free the specified block range from the working block
341  *		allocation map.
342  *
343  *		the blocks will be free from the working map one dmap
344  *		at a time.
345  *
346  * PARAMETERS:
347  *	ip	- pointer to in-core inode;
348  *	blkno	- starting block number to be freed.
349  *	nblocks	- number of blocks to be freed.
350  *
351  * RETURN VALUES:
352  *	0	- success
353  *	-EIO	- i/o error
354  */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)355 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
356 {
357 	struct metapage *mp;
358 	struct dmap *dp;
359 	int nb, rc;
360 	s64 lblkno, rem;
361 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
362 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
363 	struct super_block *sb = ipbmap->i_sb;
364 
365 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
366 
367 	/* block to be freed better be within the mapsize. */
368 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
369 		IREAD_UNLOCK(ipbmap);
370 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
371 		       (unsigned long long) blkno,
372 		       (unsigned long long) nblocks);
373 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
374 		return -EIO;
375 	}
376 
377 	/**
378 	 * TRIM the blocks, when mounted with discard option
379 	 */
380 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
381 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
382 			jfs_issue_discard(ipbmap, blkno, nblocks);
383 
384 	/*
385 	 * free the blocks a dmap at a time.
386 	 */
387 	mp = NULL;
388 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
389 		/* release previous dmap if any */
390 		if (mp) {
391 			write_metapage(mp);
392 		}
393 
394 		/* get the buffer for the current dmap. */
395 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
396 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
397 		if (mp == NULL) {
398 			IREAD_UNLOCK(ipbmap);
399 			return -EIO;
400 		}
401 		dp = (struct dmap *) mp->data;
402 
403 		/* determine the number of blocks to be freed from
404 		 * this dmap.
405 		 */
406 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
407 
408 		/* free the blocks. */
409 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
410 			jfs_error(ip->i_sb, "error in block map\n");
411 			release_metapage(mp);
412 			IREAD_UNLOCK(ipbmap);
413 			return (rc);
414 		}
415 	}
416 
417 	/* write the last buffer. */
418 	if (mp)
419 		write_metapage(mp);
420 
421 	IREAD_UNLOCK(ipbmap);
422 
423 	return (0);
424 }
425 
426 
427 /*
428  * NAME:	dbUpdatePMap()
429  *
430  * FUNCTION:	update the allocation state (free or allocate) of the
431  *		specified block range in the persistent block allocation map.
432  *
433  *		the blocks will be updated in the persistent map one
434  *		dmap at a time.
435  *
436  * PARAMETERS:
437  *	ipbmap	- pointer to in-core inode for the block map.
438  *	free	- 'true' if block range is to be freed from the persistent
439  *		  map; 'false' if it is to be allocated.
440  *	blkno	- starting block number of the range.
441  *	nblocks	- number of contiguous blocks in the range.
442  *	tblk	- transaction block;
443  *
444  * RETURN VALUES:
445  *	0	- success
446  *	-EIO	- i/o error
447  */
448 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)449 dbUpdatePMap(struct inode *ipbmap,
450 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
451 {
452 	int nblks, dbitno, wbitno, rbits;
453 	int word, nbits, nwords;
454 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
455 	s64 lblkno, rem, lastlblkno;
456 	u32 mask;
457 	struct dmap *dp;
458 	struct metapage *mp;
459 	struct jfs_log *log;
460 	int lsn, difft, diffp;
461 	unsigned long flags;
462 
463 	/* the blocks better be within the mapsize. */
464 	if (blkno + nblocks > bmp->db_mapsize) {
465 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
466 		       (unsigned long long) blkno,
467 		       (unsigned long long) nblocks);
468 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
469 		return -EIO;
470 	}
471 
472 	/* compute delta of transaction lsn from log syncpt */
473 	lsn = tblk->lsn;
474 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
475 	logdiff(difft, lsn, log);
476 
477 	/*
478 	 * update the block state a dmap at a time.
479 	 */
480 	mp = NULL;
481 	lastlblkno = 0;
482 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
483 		/* get the buffer for the current dmap. */
484 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
485 		if (lblkno != lastlblkno) {
486 			if (mp) {
487 				write_metapage(mp);
488 			}
489 
490 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
491 					   0);
492 			if (mp == NULL)
493 				return -EIO;
494 			metapage_wait_for_io(mp);
495 		}
496 		dp = (struct dmap *) mp->data;
497 
498 		/* determine the bit number and word within the dmap of
499 		 * the starting block.  also determine how many blocks
500 		 * are to be updated within this dmap.
501 		 */
502 		dbitno = blkno & (BPERDMAP - 1);
503 		word = dbitno >> L2DBWORD;
504 		nblks = min(rem, (s64)BPERDMAP - dbitno);
505 
506 		/* update the bits of the dmap words. the first and last
507 		 * words may only have a subset of their bits updated. if
508 		 * this is the case, we'll work against that word (i.e.
509 		 * partial first and/or last) only in a single pass.  a
510 		 * single pass will also be used to update all words that
511 		 * are to have all their bits updated.
512 		 */
513 		for (rbits = nblks; rbits > 0;
514 		     rbits -= nbits, dbitno += nbits) {
515 			/* determine the bit number within the word and
516 			 * the number of bits within the word.
517 			 */
518 			wbitno = dbitno & (DBWORD - 1);
519 			nbits = min(rbits, DBWORD - wbitno);
520 
521 			/* check if only part of the word is to be updated. */
522 			if (nbits < DBWORD) {
523 				/* update (free or allocate) the bits
524 				 * in this word.
525 				 */
526 				mask =
527 				    (ONES << (DBWORD - nbits) >> wbitno);
528 				if (free)
529 					dp->pmap[word] &=
530 					    cpu_to_le32(~mask);
531 				else
532 					dp->pmap[word] |=
533 					    cpu_to_le32(mask);
534 
535 				word += 1;
536 			} else {
537 				/* one or more words are to have all
538 				 * their bits updated.  determine how
539 				 * many words and how many bits.
540 				 */
541 				nwords = rbits >> L2DBWORD;
542 				nbits = nwords << L2DBWORD;
543 
544 				/* update (free or allocate) the bits
545 				 * in these words.
546 				 */
547 				if (free)
548 					memset(&dp->pmap[word], 0,
549 					       nwords * 4);
550 				else
551 					memset(&dp->pmap[word], (int) ONES,
552 					       nwords * 4);
553 
554 				word += nwords;
555 			}
556 		}
557 
558 		/*
559 		 * update dmap lsn
560 		 */
561 		if (lblkno == lastlblkno)
562 			continue;
563 
564 		lastlblkno = lblkno;
565 
566 		LOGSYNC_LOCK(log, flags);
567 		if (mp->lsn != 0) {
568 			/* inherit older/smaller lsn */
569 			logdiff(diffp, mp->lsn, log);
570 			if (difft < diffp) {
571 				mp->lsn = lsn;
572 
573 				/* move bp after tblock in logsync list */
574 				list_move(&mp->synclist, &tblk->synclist);
575 			}
576 
577 			/* inherit younger/larger clsn */
578 			logdiff(difft, tblk->clsn, log);
579 			logdiff(diffp, mp->clsn, log);
580 			if (difft > diffp)
581 				mp->clsn = tblk->clsn;
582 		} else {
583 			mp->log = log;
584 			mp->lsn = lsn;
585 
586 			/* insert bp after tblock in logsync list */
587 			log->count++;
588 			list_add(&mp->synclist, &tblk->synclist);
589 
590 			mp->clsn = tblk->clsn;
591 		}
592 		LOGSYNC_UNLOCK(log, flags);
593 	}
594 
595 	/* write the last buffer. */
596 	if (mp) {
597 		write_metapage(mp);
598 	}
599 
600 	return (0);
601 }
602 
603 
604 /*
605  * NAME:	dbNextAG()
606  *
607  * FUNCTION:	find the preferred allocation group for new allocations.
608  *
609  *		Within the allocation groups, we maintain a preferred
610  *		allocation group which consists of a group with at least
611  *		average free space.  It is the preferred group that we target
612  *		new inode allocation towards.  The tie-in between inode
613  *		allocation and block allocation occurs as we allocate the
614  *		first (data) block of an inode and specify the inode (block)
615  *		as the allocation hint for this block.
616  *
617  *		We try to avoid having more than one open file growing in
618  *		an allocation group, as this will lead to fragmentation.
619  *		This differs from the old OS/2 method of trying to keep
620  *		empty ags around for large allocations.
621  *
622  * PARAMETERS:
623  *	ipbmap	- pointer to in-core inode for the block map.
624  *
625  * RETURN VALUES:
626  *	the preferred allocation group number.
627  */
dbNextAG(struct inode * ipbmap)628 int dbNextAG(struct inode *ipbmap)
629 {
630 	s64 avgfree;
631 	int agpref;
632 	s64 hwm = 0;
633 	int i;
634 	int next_best = -1;
635 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
636 
637 	BMAP_LOCK(bmp);
638 
639 	/* determine the average number of free blocks within the ags. */
640 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
641 
642 	/*
643 	 * if the current preferred ag does not have an active allocator
644 	 * and has at least average freespace, return it
645 	 */
646 	agpref = bmp->db_agpref;
647 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
648 	    (bmp->db_agfree[agpref] >= avgfree))
649 		goto unlock;
650 
651 	/* From the last preferred ag, find the next one with at least
652 	 * average free space.
653 	 */
654 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
655 		if (agpref == bmp->db_numag)
656 			agpref = 0;
657 
658 		if (atomic_read(&bmp->db_active[agpref]))
659 			/* open file is currently growing in this ag */
660 			continue;
661 		if (bmp->db_agfree[agpref] >= avgfree) {
662 			/* Return this one */
663 			bmp->db_agpref = agpref;
664 			goto unlock;
665 		} else if (bmp->db_agfree[agpref] > hwm) {
666 			/* Less than avg. freespace, but best so far */
667 			hwm = bmp->db_agfree[agpref];
668 			next_best = agpref;
669 		}
670 	}
671 
672 	/*
673 	 * If no inactive ag was found with average freespace, use the
674 	 * next best
675 	 */
676 	if (next_best != -1)
677 		bmp->db_agpref = next_best;
678 	/* else leave db_agpref unchanged */
679 unlock:
680 	BMAP_UNLOCK(bmp);
681 
682 	/* return the preferred group.
683 	 */
684 	return (bmp->db_agpref);
685 }
686 
687 /*
688  * NAME:	dbAlloc()
689  *
690  * FUNCTION:	attempt to allocate a specified number of contiguous free
691  *		blocks from the working allocation block map.
692  *
693  *		the block allocation policy uses hints and a multi-step
694  *		approach.
695  *
696  *		for allocation requests smaller than the number of blocks
697  *		per dmap, we first try to allocate the new blocks
698  *		immediately following the hint.  if these blocks are not
699  *		available, we try to allocate blocks near the hint.  if
700  *		no blocks near the hint are available, we next try to
701  *		allocate within the same dmap as contains the hint.
702  *
703  *		if no blocks are available in the dmap or the allocation
704  *		request is larger than the dmap size, we try to allocate
705  *		within the same allocation group as contains the hint. if
706  *		this does not succeed, we finally try to allocate anywhere
707  *		within the aggregate.
708  *
709  *		we also try to allocate anywhere within the aggregate
710  *		for allocation requests larger than the allocation group
711  *		size or requests that specify no hint value.
712  *
713  * PARAMETERS:
714  *	ip	- pointer to in-core inode;
715  *	hint	- allocation hint.
716  *	nblocks	- number of contiguous blocks in the range.
717  *	results	- on successful return, set to the starting block number
718  *		  of the newly allocated contiguous range.
719  *
720  * RETURN VALUES:
721  *	0	- success
722  *	-ENOSPC	- insufficient disk resources
723  *	-EIO	- i/o error
724  */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)725 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
726 {
727 	int rc, agno;
728 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
729 	struct bmap *bmp;
730 	struct metapage *mp;
731 	s64 lblkno, blkno;
732 	struct dmap *dp;
733 	int l2nb;
734 	s64 mapSize;
735 	int writers;
736 
737 	/* assert that nblocks is valid */
738 	assert(nblocks > 0);
739 
740 	/* get the log2 number of blocks to be allocated.
741 	 * if the number of blocks is not a log2 multiple,
742 	 * it will be rounded up to the next log2 multiple.
743 	 */
744 	l2nb = BLKSTOL2(nblocks);
745 
746 	bmp = JFS_SBI(ip->i_sb)->bmap;
747 
748 	mapSize = bmp->db_mapsize;
749 
750 	/* the hint should be within the map */
751 	if (hint >= mapSize) {
752 		jfs_error(ip->i_sb, "the hint is outside the map\n");
753 		return -EIO;
754 	}
755 
756 	/* if the number of blocks to be allocated is greater than the
757 	 * allocation group size, try to allocate anywhere.
758 	 */
759 	if (l2nb > bmp->db_agl2size) {
760 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
761 
762 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
763 
764 		goto write_unlock;
765 	}
766 
767 	/*
768 	 * If no hint, let dbNextAG recommend an allocation group
769 	 */
770 	if (hint == 0)
771 		goto pref_ag;
772 
773 	/* we would like to allocate close to the hint.  adjust the
774 	 * hint to the block following the hint since the allocators
775 	 * will start looking for free space starting at this point.
776 	 */
777 	blkno = hint + 1;
778 
779 	if (blkno >= bmp->db_mapsize)
780 		goto pref_ag;
781 
782 	agno = blkno >> bmp->db_agl2size;
783 
784 	/* check if blkno crosses over into a new allocation group.
785 	 * if so, check if we should allow allocations within this
786 	 * allocation group.
787 	 */
788 	if ((blkno & (bmp->db_agsize - 1)) == 0)
789 		/* check if the AG is currently being written to.
790 		 * if so, call dbNextAG() to find a non-busy
791 		 * AG with sufficient free space.
792 		 */
793 		if (atomic_read(&bmp->db_active[agno]))
794 			goto pref_ag;
795 
796 	/* check if the allocation request size can be satisfied from a
797 	 * single dmap.  if so, try to allocate from the dmap containing
798 	 * the hint using a tiered strategy.
799 	 */
800 	if (nblocks <= BPERDMAP) {
801 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
802 
803 		/* get the buffer for the dmap containing the hint.
804 		 */
805 		rc = -EIO;
806 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
807 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
808 		if (mp == NULL)
809 			goto read_unlock;
810 
811 		dp = (struct dmap *) mp->data;
812 
813 		/* first, try to satisfy the allocation request with the
814 		 * blocks beginning at the hint.
815 		 */
816 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
817 		    != -ENOSPC) {
818 			if (rc == 0) {
819 				*results = blkno;
820 				mark_metapage_dirty(mp);
821 			}
822 
823 			release_metapage(mp);
824 			goto read_unlock;
825 		}
826 
827 		writers = atomic_read(&bmp->db_active[agno]);
828 		if ((writers > 1) ||
829 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
830 			/*
831 			 * Someone else is writing in this allocation
832 			 * group.  To avoid fragmenting, try another ag
833 			 */
834 			release_metapage(mp);
835 			IREAD_UNLOCK(ipbmap);
836 			goto pref_ag;
837 		}
838 
839 		/* next, try to satisfy the allocation request with blocks
840 		 * near the hint.
841 		 */
842 		if ((rc =
843 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
844 		    != -ENOSPC) {
845 			if (rc == 0)
846 				mark_metapage_dirty(mp);
847 
848 			release_metapage(mp);
849 			goto read_unlock;
850 		}
851 
852 		/* try to satisfy the allocation request with blocks within
853 		 * the same dmap as the hint.
854 		 */
855 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
856 		    != -ENOSPC) {
857 			if (rc == 0)
858 				mark_metapage_dirty(mp);
859 
860 			release_metapage(mp);
861 			goto read_unlock;
862 		}
863 
864 		release_metapage(mp);
865 		IREAD_UNLOCK(ipbmap);
866 	}
867 
868 	/* try to satisfy the allocation request with blocks within
869 	 * the same allocation group as the hint.
870 	 */
871 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
872 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
873 		goto write_unlock;
874 
875 	IWRITE_UNLOCK(ipbmap);
876 
877 
878       pref_ag:
879 	/*
880 	 * Let dbNextAG recommend a preferred allocation group
881 	 */
882 	agno = dbNextAG(ipbmap);
883 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
884 
885 	/* Try to allocate within this allocation group.  if that fails, try to
886 	 * allocate anywhere in the map.
887 	 */
888 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
889 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
890 
891       write_unlock:
892 	IWRITE_UNLOCK(ipbmap);
893 
894 	return (rc);
895 
896       read_unlock:
897 	IREAD_UNLOCK(ipbmap);
898 
899 	return (rc);
900 }
901 
902 #ifdef _NOTYET
903 /*
904  * NAME:	dbAllocExact()
905  *
906  * FUNCTION:	try to allocate the requested extent;
907  *
908  * PARAMETERS:
909  *	ip	- pointer to in-core inode;
910  *	blkno	- extent address;
911  *	nblocks	- extent length;
912  *
913  * RETURN VALUES:
914  *	0	- success
915  *	-ENOSPC	- insufficient disk resources
916  *	-EIO	- i/o error
917  */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)918 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
919 {
920 	int rc;
921 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
922 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
923 	struct dmap *dp;
924 	s64 lblkno;
925 	struct metapage *mp;
926 
927 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
928 
929 	/*
930 	 * validate extent request:
931 	 *
932 	 * note: defragfs policy:
933 	 *  max 64 blocks will be moved.
934 	 *  allocation request size must be satisfied from a single dmap.
935 	 */
936 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
937 		IREAD_UNLOCK(ipbmap);
938 		return -EINVAL;
939 	}
940 
941 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
942 		/* the free space is no longer available */
943 		IREAD_UNLOCK(ipbmap);
944 		return -ENOSPC;
945 	}
946 
947 	/* read in the dmap covering the extent */
948 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
949 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
950 	if (mp == NULL) {
951 		IREAD_UNLOCK(ipbmap);
952 		return -EIO;
953 	}
954 	dp = (struct dmap *) mp->data;
955 
956 	/* try to allocate the requested extent */
957 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
958 
959 	IREAD_UNLOCK(ipbmap);
960 
961 	if (rc == 0)
962 		mark_metapage_dirty(mp);
963 
964 	release_metapage(mp);
965 
966 	return (rc);
967 }
968 #endif /* _NOTYET */
969 
970 /*
971  * NAME:	dbReAlloc()
972  *
973  * FUNCTION:	attempt to extend a current allocation by a specified
974  *		number of blocks.
975  *
976  *		this routine attempts to satisfy the allocation request
977  *		by first trying to extend the existing allocation in
978  *		place by allocating the additional blocks as the blocks
979  *		immediately following the current allocation.  if these
980  *		blocks are not available, this routine will attempt to
981  *		allocate a new set of contiguous blocks large enough
982  *		to cover the existing allocation plus the additional
983  *		number of blocks required.
984  *
985  * PARAMETERS:
986  *	ip	    -  pointer to in-core inode requiring allocation.
987  *	blkno	    -  starting block of the current allocation.
988  *	nblocks	    -  number of contiguous blocks within the current
989  *		       allocation.
990  *	addnblocks  -  number of blocks to add to the allocation.
991  *	results	-      on successful return, set to the starting block number
992  *		       of the existing allocation if the existing allocation
993  *		       was extended in place or to a newly allocated contiguous
994  *		       range if the existing allocation could not be extended
995  *		       in place.
996  *
997  * RETURN VALUES:
998  *	0	- success
999  *	-ENOSPC	- insufficient disk resources
1000  *	-EIO	- i/o error
1001  */
1002 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)1003 dbReAlloc(struct inode *ip,
1004 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1005 {
1006 	int rc;
1007 
1008 	/* try to extend the allocation in place.
1009 	 */
1010 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1011 		*results = blkno;
1012 		return (0);
1013 	} else {
1014 		if (rc != -ENOSPC)
1015 			return (rc);
1016 	}
1017 
1018 	/* could not extend the allocation in place, so allocate a
1019 	 * new set of blocks for the entire request (i.e. try to get
1020 	 * a range of contiguous blocks large enough to cover the
1021 	 * existing allocation plus the additional blocks.)
1022 	 */
1023 	return (dbAlloc
1024 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1025 }
1026 
1027 
1028 /*
1029  * NAME:	dbExtend()
1030  *
1031  * FUNCTION:	attempt to extend a current allocation by a specified
1032  *		number of blocks.
1033  *
1034  *		this routine attempts to satisfy the allocation request
1035  *		by first trying to extend the existing allocation in
1036  *		place by allocating the additional blocks as the blocks
1037  *		immediately following the current allocation.
1038  *
1039  * PARAMETERS:
1040  *	ip	    -  pointer to in-core inode requiring allocation.
1041  *	blkno	    -  starting block of the current allocation.
1042  *	nblocks	    -  number of contiguous blocks within the current
1043  *		       allocation.
1044  *	addnblocks  -  number of blocks to add to the allocation.
1045  *
1046  * RETURN VALUES:
1047  *	0	- success
1048  *	-ENOSPC	- insufficient disk resources
1049  *	-EIO	- i/o error
1050  */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1051 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1052 {
1053 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1054 	s64 lblkno, lastblkno, extblkno;
1055 	uint rel_block;
1056 	struct metapage *mp;
1057 	struct dmap *dp;
1058 	int rc;
1059 	struct inode *ipbmap = sbi->ipbmap;
1060 	struct bmap *bmp;
1061 
1062 	/*
1063 	 * We don't want a non-aligned extent to cross a page boundary
1064 	 */
1065 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1066 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1067 		return -ENOSPC;
1068 
1069 	/* get the last block of the current allocation */
1070 	lastblkno = blkno + nblocks - 1;
1071 
1072 	/* determine the block number of the block following
1073 	 * the existing allocation.
1074 	 */
1075 	extblkno = lastblkno + 1;
1076 
1077 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1078 
1079 	/* better be within the file system */
1080 	bmp = sbi->bmap;
1081 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1082 		IREAD_UNLOCK(ipbmap);
1083 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1084 		return -EIO;
1085 	}
1086 
1087 	/* we'll attempt to extend the current allocation in place by
1088 	 * allocating the additional blocks as the blocks immediately
1089 	 * following the current allocation.  we only try to extend the
1090 	 * current allocation in place if the number of additional blocks
1091 	 * can fit into a dmap, the last block of the current allocation
1092 	 * is not the last block of the file system, and the start of the
1093 	 * inplace extension is not on an allocation group boundary.
1094 	 */
1095 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1096 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1097 		IREAD_UNLOCK(ipbmap);
1098 		return -ENOSPC;
1099 	}
1100 
1101 	/* get the buffer for the dmap containing the first block
1102 	 * of the extension.
1103 	 */
1104 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1105 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1106 	if (mp == NULL) {
1107 		IREAD_UNLOCK(ipbmap);
1108 		return -EIO;
1109 	}
1110 
1111 	dp = (struct dmap *) mp->data;
1112 
1113 	/* try to allocate the blocks immediately following the
1114 	 * current allocation.
1115 	 */
1116 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1117 
1118 	IREAD_UNLOCK(ipbmap);
1119 
1120 	/* were we successful ? */
1121 	if (rc == 0)
1122 		write_metapage(mp);
1123 	else
1124 		/* we were not successful */
1125 		release_metapage(mp);
1126 
1127 	return (rc);
1128 }
1129 
1130 
1131 /*
1132  * NAME:	dbAllocNext()
1133  *
1134  * FUNCTION:	attempt to allocate the blocks of the specified block
1135  *		range within a dmap.
1136  *
1137  * PARAMETERS:
1138  *	bmp	-  pointer to bmap descriptor
1139  *	dp	-  pointer to dmap.
1140  *	blkno	-  starting block number of the range.
1141  *	nblocks	-  number of contiguous free blocks of the range.
1142  *
1143  * RETURN VALUES:
1144  *	0	- success
1145  *	-ENOSPC	- insufficient disk resources
1146  *	-EIO	- i/o error
1147  *
1148  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1149  */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1150 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1151 		       int nblocks)
1152 {
1153 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1154 	int l2size;
1155 	s8 *leaf;
1156 	u32 mask;
1157 
1158 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1159 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1160 		return -EIO;
1161 	}
1162 
1163 	/* pick up a pointer to the leaves of the dmap tree.
1164 	 */
1165 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1166 
1167 	/* determine the bit number and word within the dmap of the
1168 	 * starting block.
1169 	 */
1170 	dbitno = blkno & (BPERDMAP - 1);
1171 	word = dbitno >> L2DBWORD;
1172 
1173 	/* check if the specified block range is contained within
1174 	 * this dmap.
1175 	 */
1176 	if (dbitno + nblocks > BPERDMAP)
1177 		return -ENOSPC;
1178 
1179 	/* check if the starting leaf indicates that anything
1180 	 * is free.
1181 	 */
1182 	if (leaf[word] == NOFREE)
1183 		return -ENOSPC;
1184 
1185 	/* check the dmaps words corresponding to block range to see
1186 	 * if the block range is free.  not all bits of the first and
1187 	 * last words may be contained within the block range.  if this
1188 	 * is the case, we'll work against those words (i.e. partial first
1189 	 * and/or last) on an individual basis (a single pass) and examine
1190 	 * the actual bits to determine if they are free.  a single pass
1191 	 * will be used for all dmap words fully contained within the
1192 	 * specified range.  within this pass, the leaves of the dmap
1193 	 * tree will be examined to determine if the blocks are free. a
1194 	 * single leaf may describe the free space of multiple dmap
1195 	 * words, so we may visit only a subset of the actual leaves
1196 	 * corresponding to the dmap words of the block range.
1197 	 */
1198 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1199 		/* determine the bit number within the word and
1200 		 * the number of bits within the word.
1201 		 */
1202 		wbitno = dbitno & (DBWORD - 1);
1203 		nb = min(rembits, DBWORD - wbitno);
1204 
1205 		/* check if only part of the word is to be examined.
1206 		 */
1207 		if (nb < DBWORD) {
1208 			/* check if the bits are free.
1209 			 */
1210 			mask = (ONES << (DBWORD - nb) >> wbitno);
1211 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1212 				return -ENOSPC;
1213 
1214 			word += 1;
1215 		} else {
1216 			/* one or more dmap words are fully contained
1217 			 * within the block range.  determine how many
1218 			 * words and how many bits.
1219 			 */
1220 			nwords = rembits >> L2DBWORD;
1221 			nb = nwords << L2DBWORD;
1222 
1223 			/* now examine the appropriate leaves to determine
1224 			 * if the blocks are free.
1225 			 */
1226 			while (nwords > 0) {
1227 				/* does the leaf describe any free space ?
1228 				 */
1229 				if (leaf[word] < BUDMIN)
1230 					return -ENOSPC;
1231 
1232 				/* determine the l2 number of bits provided
1233 				 * by this leaf.
1234 				 */
1235 				l2size =
1236 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1237 
1238 				/* determine how many words were handled.
1239 				 */
1240 				nw = BUDSIZE(l2size, BUDMIN);
1241 
1242 				nwords -= nw;
1243 				word += nw;
1244 			}
1245 		}
1246 	}
1247 
1248 	/* allocate the blocks.
1249 	 */
1250 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1251 }
1252 
1253 
1254 /*
1255  * NAME:	dbAllocNear()
1256  *
1257  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1258  *		a specified block (hint) within a dmap.
1259  *
1260  *		starting with the dmap leaf that covers the hint, we'll
1261  *		check the next four contiguous leaves for sufficient free
1262  *		space.  if sufficient free space is found, we'll allocate
1263  *		the desired free space.
1264  *
1265  * PARAMETERS:
1266  *	bmp	-  pointer to bmap descriptor
1267  *	dp	-  pointer to dmap.
1268  *	blkno	-  block number to allocate near.
1269  *	nblocks	-  actual number of contiguous free blocks desired.
1270  *	l2nb	-  log2 number of contiguous free blocks desired.
1271  *	results	-  on successful return, set to the starting block number
1272  *		   of the newly allocated range.
1273  *
1274  * RETURN VALUES:
1275  *	0	- success
1276  *	-ENOSPC	- insufficient disk resources
1277  *	-EIO	- i/o error
1278  *
1279  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1280  */
1281 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1282 dbAllocNear(struct bmap * bmp,
1283 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1284 {
1285 	int word, lword, rc;
1286 	s8 *leaf;
1287 
1288 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1289 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1290 		return -EIO;
1291 	}
1292 
1293 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1294 
1295 	/* determine the word within the dmap that holds the hint
1296 	 * (i.e. blkno).  also, determine the last word in the dmap
1297 	 * that we'll include in our examination.
1298 	 */
1299 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1300 	lword = min(word + 4, LPERDMAP);
1301 
1302 	/* examine the leaves for sufficient free space.
1303 	 */
1304 	for (; word < lword; word++) {
1305 		/* does the leaf describe sufficient free space ?
1306 		 */
1307 		if (leaf[word] < l2nb)
1308 			continue;
1309 
1310 		/* determine the block number within the file system
1311 		 * of the first block described by this dmap word.
1312 		 */
1313 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1314 
1315 		/* if not all bits of the dmap word are free, get the
1316 		 * starting bit number within the dmap word of the required
1317 		 * string of free bits and adjust the block number with the
1318 		 * value.
1319 		 */
1320 		if (leaf[word] < BUDMIN)
1321 			blkno +=
1322 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1323 
1324 		/* allocate the blocks.
1325 		 */
1326 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1327 			*results = blkno;
1328 
1329 		return (rc);
1330 	}
1331 
1332 	return -ENOSPC;
1333 }
1334 
1335 
1336 /*
1337  * NAME:	dbAllocAG()
1338  *
1339  * FUNCTION:	attempt to allocate the specified number of contiguous
1340  *		free blocks within the specified allocation group.
1341  *
1342  *		unless the allocation group size is equal to the number
1343  *		of blocks per dmap, the dmap control pages will be used to
1344  *		find the required free space, if available.  we start the
1345  *		search at the highest dmap control page level which
1346  *		distinctly describes the allocation group's free space
1347  *		(i.e. the highest level at which the allocation group's
1348  *		free space is not mixed in with that of any other group).
1349  *		in addition, we start the search within this level at a
1350  *		height of the dmapctl dmtree at which the nodes distinctly
1351  *		describe the allocation group's free space.  at this height,
1352  *		the allocation group's free space may be represented by 1
1353  *		or two sub-trees, depending on the allocation group size.
1354  *		we search the top nodes of these subtrees left to right for
1355  *		sufficient free space.  if sufficient free space is found,
1356  *		the subtree is searched to find the leftmost leaf that
1357  *		has free space.  once we have made it to the leaf, we
1358  *		move the search to the next lower level dmap control page
1359  *		corresponding to this leaf.  we continue down the dmap control
1360  *		pages until we find the dmap that contains or starts the
1361  *		sufficient free space and we allocate at this dmap.
1362  *
1363  *		if the allocation group size is equal to the dmap size,
1364  *		we'll start at the dmap corresponding to the allocation
1365  *		group and attempt the allocation at this level.
1366  *
1367  *		the dmap control page search is also not performed if the
1368  *		allocation group is completely free and we go to the first
1369  *		dmap of the allocation group to do the allocation.  this is
1370  *		done because the allocation group may be part (not the first
1371  *		part) of a larger binary buddy system, causing the dmap
1372  *		control pages to indicate no free space (NOFREE) within
1373  *		the allocation group.
1374  *
1375  * PARAMETERS:
1376  *	bmp	-  pointer to bmap descriptor
1377  *	agno	- allocation group number.
1378  *	nblocks	-  actual number of contiguous free blocks desired.
1379  *	l2nb	-  log2 number of contiguous free blocks desired.
1380  *	results	-  on successful return, set to the starting block number
1381  *		   of the newly allocated range.
1382  *
1383  * RETURN VALUES:
1384  *	0	- success
1385  *	-ENOSPC	- insufficient disk resources
1386  *	-EIO	- i/o error
1387  *
1388  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1389  */
1390 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1391 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1392 {
1393 	struct metapage *mp;
1394 	struct dmapctl *dcp;
1395 	int rc, ti, i, k, m, n, agperlev;
1396 	s64 blkno, lblkno;
1397 	int budmin;
1398 
1399 	/* allocation request should not be for more than the
1400 	 * allocation group size.
1401 	 */
1402 	if (l2nb > bmp->db_agl2size) {
1403 		jfs_error(bmp->db_ipbmap->i_sb,
1404 			  "allocation request is larger than the allocation group size\n");
1405 		return -EIO;
1406 	}
1407 
1408 	/* determine the starting block number of the allocation
1409 	 * group.
1410 	 */
1411 	blkno = (s64) agno << bmp->db_agl2size;
1412 
1413 	/* check if the allocation group size is the minimum allocation
1414 	 * group size or if the allocation group is completely free. if
1415 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1416 	 * 1 dmap), there is no need to search the dmap control page (below)
1417 	 * that fully describes the allocation group since the allocation
1418 	 * group is already fully described by a dmap.  in this case, we
1419 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1420 	 * required space if available.
1421 	 *
1422 	 * if the allocation group is completely free, dbAllocCtl() is
1423 	 * also called to allocate the required space.  this is done for
1424 	 * two reasons.  first, it makes no sense searching the dmap control
1425 	 * pages for free space when we know that free space exists.  second,
1426 	 * the dmap control pages may indicate that the allocation group
1427 	 * has no free space if the allocation group is part (not the first
1428 	 * part) of a larger binary buddy system.
1429 	 */
1430 	if (bmp->db_agsize == BPERDMAP
1431 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1432 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1433 		if ((rc == -ENOSPC) &&
1434 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1435 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1436 			       (unsigned long long) blkno,
1437 			       (unsigned long long) nblocks);
1438 			jfs_error(bmp->db_ipbmap->i_sb,
1439 				  "dbAllocCtl failed in free AG\n");
1440 		}
1441 		return (rc);
1442 	}
1443 
1444 	/* the buffer for the dmap control page that fully describes the
1445 	 * allocation group.
1446 	 */
1447 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1448 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1449 	if (mp == NULL)
1450 		return -EIO;
1451 	dcp = (struct dmapctl *) mp->data;
1452 	budmin = dcp->budmin;
1453 
1454 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1455 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1456 		release_metapage(mp);
1457 		return -EIO;
1458 	}
1459 
1460 	/* search the subtree(s) of the dmap control page that describes
1461 	 * the allocation group, looking for sufficient free space.  to begin,
1462 	 * determine how many allocation groups are represented in a dmap
1463 	 * control page at the control page level (i.e. L0, L1, L2) that
1464 	 * fully describes an allocation group. next, determine the starting
1465 	 * tree index of this allocation group within the control page.
1466 	 */
1467 	agperlev =
1468 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1469 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1470 
1471 	/* dmap control page trees fan-out by 4 and a single allocation
1472 	 * group may be described by 1 or 2 subtrees within the ag level
1473 	 * dmap control page, depending upon the ag size. examine the ag's
1474 	 * subtrees for sufficient free space, starting with the leftmost
1475 	 * subtree.
1476 	 */
1477 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1478 		/* is there sufficient free space ?
1479 		 */
1480 		if (l2nb > dcp->stree[ti])
1481 			continue;
1482 
1483 		/* sufficient free space found in a subtree. now search down
1484 		 * the subtree to find the leftmost leaf that describes this
1485 		 * free space.
1486 		 */
1487 		for (k = bmp->db_agheight; k > 0; k--) {
1488 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1489 				if (l2nb <= dcp->stree[m + n]) {
1490 					ti = m + n;
1491 					break;
1492 				}
1493 			}
1494 			if (n == 4) {
1495 				jfs_error(bmp->db_ipbmap->i_sb,
1496 					  "failed descending stree\n");
1497 				release_metapage(mp);
1498 				return -EIO;
1499 			}
1500 		}
1501 
1502 		/* determine the block number within the file system
1503 		 * that corresponds to this leaf.
1504 		 */
1505 		if (bmp->db_aglevel == 2)
1506 			blkno = 0;
1507 		else if (bmp->db_aglevel == 1)
1508 			blkno &= ~(MAXL1SIZE - 1);
1509 		else		/* bmp->db_aglevel == 0 */
1510 			blkno &= ~(MAXL0SIZE - 1);
1511 
1512 		blkno +=
1513 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1514 
1515 		/* release the buffer in preparation for going down
1516 		 * the next level of dmap control pages.
1517 		 */
1518 		release_metapage(mp);
1519 
1520 		/* check if we need to continue to search down the lower
1521 		 * level dmap control pages.  we need to if the number of
1522 		 * blocks required is less than maximum number of blocks
1523 		 * described at the next lower level.
1524 		 */
1525 		if (l2nb < budmin) {
1526 
1527 			/* search the lower level dmap control pages to get
1528 			 * the starting block number of the dmap that
1529 			 * contains or starts off the free space.
1530 			 */
1531 			if ((rc =
1532 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1533 				       &blkno))) {
1534 				if (rc == -ENOSPC) {
1535 					jfs_error(bmp->db_ipbmap->i_sb,
1536 						  "control page inconsistent\n");
1537 					return -EIO;
1538 				}
1539 				return (rc);
1540 			}
1541 		}
1542 
1543 		/* allocate the blocks.
1544 		 */
1545 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1546 		if (rc == -ENOSPC) {
1547 			jfs_error(bmp->db_ipbmap->i_sb,
1548 				  "unable to allocate blocks\n");
1549 			rc = -EIO;
1550 		}
1551 		return (rc);
1552 	}
1553 
1554 	/* no space in the allocation group.  release the buffer and
1555 	 * return -ENOSPC.
1556 	 */
1557 	release_metapage(mp);
1558 
1559 	return -ENOSPC;
1560 }
1561 
1562 
1563 /*
1564  * NAME:	dbAllocAny()
1565  *
1566  * FUNCTION:	attempt to allocate the specified number of contiguous
1567  *		free blocks anywhere in the file system.
1568  *
1569  *		dbAllocAny() attempts to find the sufficient free space by
1570  *		searching down the dmap control pages, starting with the
1571  *		highest level (i.e. L0, L1, L2) control page.  if free space
1572  *		large enough to satisfy the desired free space is found, the
1573  *		desired free space is allocated.
1574  *
1575  * PARAMETERS:
1576  *	bmp	-  pointer to bmap descriptor
1577  *	nblocks	 -  actual number of contiguous free blocks desired.
1578  *	l2nb	 -  log2 number of contiguous free blocks desired.
1579  *	results	-  on successful return, set to the starting block number
1580  *		   of the newly allocated range.
1581  *
1582  * RETURN VALUES:
1583  *	0	- success
1584  *	-ENOSPC	- insufficient disk resources
1585  *	-EIO	- i/o error
1586  *
1587  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1588  */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1589 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1590 {
1591 	int rc;
1592 	s64 blkno = 0;
1593 
1594 	/* starting with the top level dmap control page, search
1595 	 * down the dmap control levels for sufficient free space.
1596 	 * if free space is found, dbFindCtl() returns the starting
1597 	 * block number of the dmap that contains or starts off the
1598 	 * range of free space.
1599 	 */
1600 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1601 		return (rc);
1602 
1603 	/* allocate the blocks.
1604 	 */
1605 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1606 	if (rc == -ENOSPC) {
1607 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1608 		return -EIO;
1609 	}
1610 	return (rc);
1611 }
1612 
1613 
1614 /*
1615  * NAME:	dbDiscardAG()
1616  *
1617  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1618  *
1619  *		algorithm:
1620  *		1) allocate blocks, as large as possible and save them
1621  *		   while holding IWRITE_LOCK on ipbmap
1622  *		2) trim all these saved block/length values
1623  *		3) mark the blocks free again
1624  *
1625  *		benefit:
1626  *		- we work only on one ag at some time, minimizing how long we
1627  *		  need to lock ipbmap
1628  *		- reading / writing the fs is possible most time, even on
1629  *		  trimming
1630  *
1631  *		downside:
1632  *		- we write two times to the dmapctl and dmap pages
1633  *		- but for me, this seems the best way, better ideas?
1634  *		/TR 2012
1635  *
1636  * PARAMETERS:
1637  *	ip	- pointer to in-core inode
1638  *	agno	- ag to trim
1639  *	minlen	- minimum value of contiguous blocks
1640  *
1641  * RETURN VALUES:
1642  *	s64	- actual number of blocks trimmed
1643  */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1644 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1645 {
1646 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1647 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1648 	s64 nblocks, blkno;
1649 	u64 trimmed = 0;
1650 	int rc, l2nb;
1651 	struct super_block *sb = ipbmap->i_sb;
1652 
1653 	struct range2trim {
1654 		u64 blkno;
1655 		u64 nblocks;
1656 	} *totrim, *tt;
1657 
1658 	/* max blkno / nblocks pairs to trim */
1659 	int count = 0, range_cnt;
1660 	u64 max_ranges;
1661 
1662 	/* prevent others from writing new stuff here, while trimming */
1663 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1664 
1665 	nblocks = bmp->db_agfree[agno];
1666 	max_ranges = nblocks;
1667 	do_div(max_ranges, minlen);
1668 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1669 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1670 	if (totrim == NULL) {
1671 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1672 		IWRITE_UNLOCK(ipbmap);
1673 		return 0;
1674 	}
1675 
1676 	tt = totrim;
1677 	while (nblocks >= minlen) {
1678 		l2nb = BLKSTOL2(nblocks);
1679 
1680 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1681 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1682 		if (rc == 0) {
1683 			tt->blkno = blkno;
1684 			tt->nblocks = nblocks;
1685 			tt++; count++;
1686 
1687 			/* the whole ag is free, trim now */
1688 			if (bmp->db_agfree[agno] == 0)
1689 				break;
1690 
1691 			/* give a hint for the next while */
1692 			nblocks = bmp->db_agfree[agno];
1693 			continue;
1694 		} else if (rc == -ENOSPC) {
1695 			/* search for next smaller log2 block */
1696 			l2nb = BLKSTOL2(nblocks) - 1;
1697 			nblocks = 1LL << l2nb;
1698 		} else {
1699 			/* Trim any already allocated blocks */
1700 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1701 			break;
1702 		}
1703 
1704 		/* check, if our trim array is full */
1705 		if (unlikely(count >= range_cnt - 1))
1706 			break;
1707 	}
1708 	IWRITE_UNLOCK(ipbmap);
1709 
1710 	tt->nblocks = 0; /* mark the current end */
1711 	for (tt = totrim; tt->nblocks != 0; tt++) {
1712 		/* when mounted with online discard, dbFree() will
1713 		 * call jfs_issue_discard() itself */
1714 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1715 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1716 		dbFree(ip, tt->blkno, tt->nblocks);
1717 		trimmed += tt->nblocks;
1718 	}
1719 	kfree(totrim);
1720 
1721 	return trimmed;
1722 }
1723 
1724 /*
1725  * NAME:	dbFindCtl()
1726  *
1727  * FUNCTION:	starting at a specified dmap control page level and block
1728  *		number, search down the dmap control levels for a range of
1729  *		contiguous free blocks large enough to satisfy an allocation
1730  *		request for the specified number of free blocks.
1731  *
1732  *		if sufficient contiguous free blocks are found, this routine
1733  *		returns the starting block number within a dmap page that
1734  *		contains or starts a range of contiqious free blocks that
1735  *		is sufficient in size.
1736  *
1737  * PARAMETERS:
1738  *	bmp	-  pointer to bmap descriptor
1739  *	level	-  starting dmap control page level.
1740  *	l2nb	-  log2 number of contiguous free blocks desired.
1741  *	*blkno	-  on entry, starting block number for conducting the search.
1742  *		   on successful return, the first block within a dmap page
1743  *		   that contains or starts a range of contiguous free blocks.
1744  *
1745  * RETURN VALUES:
1746  *	0	- success
1747  *	-ENOSPC	- insufficient disk resources
1748  *	-EIO	- i/o error
1749  *
1750  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1751  */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1752 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1753 {
1754 	int rc, leafidx, lev;
1755 	s64 b, lblkno;
1756 	struct dmapctl *dcp;
1757 	int budmin;
1758 	struct metapage *mp;
1759 
1760 	/* starting at the specified dmap control page level and block
1761 	 * number, search down the dmap control levels for the starting
1762 	 * block number of a dmap page that contains or starts off
1763 	 * sufficient free blocks.
1764 	 */
1765 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1766 		/* get the buffer of the dmap control page for the block
1767 		 * number and level (i.e. L0, L1, L2).
1768 		 */
1769 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1770 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1771 		if (mp == NULL)
1772 			return -EIO;
1773 		dcp = (struct dmapctl *) mp->data;
1774 		budmin = dcp->budmin;
1775 
1776 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1777 			jfs_error(bmp->db_ipbmap->i_sb,
1778 				  "Corrupt dmapctl page\n");
1779 			release_metapage(mp);
1780 			return -EIO;
1781 		}
1782 
1783 		/* search the tree within the dmap control page for
1784 		 * sufficient free space.  if sufficient free space is found,
1785 		 * dbFindLeaf() returns the index of the leaf at which
1786 		 * free space was found.
1787 		 */
1788 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1789 
1790 		/* release the buffer.
1791 		 */
1792 		release_metapage(mp);
1793 
1794 		/* space found ?
1795 		 */
1796 		if (rc) {
1797 			if (lev != level) {
1798 				jfs_error(bmp->db_ipbmap->i_sb,
1799 					  "dmap inconsistent\n");
1800 				return -EIO;
1801 			}
1802 			return -ENOSPC;
1803 		}
1804 
1805 		/* adjust the block number to reflect the location within
1806 		 * the dmap control page (i.e. the leaf) at which free
1807 		 * space was found.
1808 		 */
1809 		b += (((s64) leafidx) << budmin);
1810 
1811 		/* we stop the search at this dmap control page level if
1812 		 * the number of blocks required is greater than or equal
1813 		 * to the maximum number of blocks described at the next
1814 		 * (lower) level.
1815 		 */
1816 		if (l2nb >= budmin)
1817 			break;
1818 	}
1819 
1820 	*blkno = b;
1821 	return (0);
1822 }
1823 
1824 
1825 /*
1826  * NAME:	dbAllocCtl()
1827  *
1828  * FUNCTION:	attempt to allocate a specified number of contiguous
1829  *		blocks starting within a specific dmap.
1830  *
1831  *		this routine is called by higher level routines that search
1832  *		the dmap control pages above the actual dmaps for contiguous
1833  *		free space.  the result of successful searches by these
1834  *		routines are the starting block numbers within dmaps, with
1835  *		the dmaps themselves containing the desired contiguous free
1836  *		space or starting a contiguous free space of desired size
1837  *		that is made up of the blocks of one or more dmaps. these
1838  *		calls should not fail due to insufficent resources.
1839  *
1840  *		this routine is called in some cases where it is not known
1841  *		whether it will fail due to insufficient resources.  more
1842  *		specifically, this occurs when allocating from an allocation
1843  *		group whose size is equal to the number of blocks per dmap.
1844  *		in this case, the dmap control pages are not examined prior
1845  *		to calling this routine (to save pathlength) and the call
1846  *		might fail.
1847  *
1848  *		for a request size that fits within a dmap, this routine relies
1849  *		upon the dmap's dmtree to find the requested contiguous free
1850  *		space.  for request sizes that are larger than a dmap, the
1851  *		requested free space will start at the first block of the
1852  *		first dmap (i.e. blkno).
1853  *
1854  * PARAMETERS:
1855  *	bmp	-  pointer to bmap descriptor
1856  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1857  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1858  *	blkno	 -  starting block number of the dmap to start the allocation
1859  *		    from.
1860  *	results	-  on successful return, set to the starting block number
1861  *		   of the newly allocated range.
1862  *
1863  * RETURN VALUES:
1864  *	0	- success
1865  *	-ENOSPC	- insufficient disk resources
1866  *	-EIO	- i/o error
1867  *
1868  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1869  */
1870 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1871 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1872 {
1873 	int rc, nb;
1874 	s64 b, lblkno, n;
1875 	struct metapage *mp;
1876 	struct dmap *dp;
1877 
1878 	/* check if the allocation request is confined to a single dmap.
1879 	 */
1880 	if (l2nb <= L2BPERDMAP) {
1881 		/* get the buffer for the dmap.
1882 		 */
1883 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1884 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1885 		if (mp == NULL)
1886 			return -EIO;
1887 		dp = (struct dmap *) mp->data;
1888 
1889 		/* try to allocate the blocks.
1890 		 */
1891 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1892 		if (rc == 0)
1893 			mark_metapage_dirty(mp);
1894 
1895 		release_metapage(mp);
1896 
1897 		return (rc);
1898 	}
1899 
1900 	/* allocation request involving multiple dmaps. it must start on
1901 	 * a dmap boundary.
1902 	 */
1903 	assert((blkno & (BPERDMAP - 1)) == 0);
1904 
1905 	/* allocate the blocks dmap by dmap.
1906 	 */
1907 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1908 		/* get the buffer for the dmap.
1909 		 */
1910 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1911 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1912 		if (mp == NULL) {
1913 			rc = -EIO;
1914 			goto backout;
1915 		}
1916 		dp = (struct dmap *) mp->data;
1917 
1918 		/* the dmap better be all free.
1919 		 */
1920 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1921 			release_metapage(mp);
1922 			jfs_error(bmp->db_ipbmap->i_sb,
1923 				  "the dmap is not all free\n");
1924 			rc = -EIO;
1925 			goto backout;
1926 		}
1927 
1928 		/* determine how many blocks to allocate from this dmap.
1929 		 */
1930 		nb = min_t(s64, n, BPERDMAP);
1931 
1932 		/* allocate the blocks from the dmap.
1933 		 */
1934 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1935 			release_metapage(mp);
1936 			goto backout;
1937 		}
1938 
1939 		/* write the buffer.
1940 		 */
1941 		write_metapage(mp);
1942 	}
1943 
1944 	/* set the results (starting block number) and return.
1945 	 */
1946 	*results = blkno;
1947 	return (0);
1948 
1949 	/* something failed in handling an allocation request involving
1950 	 * multiple dmaps.  we'll try to clean up by backing out any
1951 	 * allocation that has already happened for this request.  if
1952 	 * we fail in backing out the allocation, we'll mark the file
1953 	 * system to indicate that blocks have been leaked.
1954 	 */
1955       backout:
1956 
1957 	/* try to backout the allocations dmap by dmap.
1958 	 */
1959 	for (n = nblocks - n, b = blkno; n > 0;
1960 	     n -= BPERDMAP, b += BPERDMAP) {
1961 		/* get the buffer for this dmap.
1962 		 */
1963 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1964 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1965 		if (mp == NULL) {
1966 			/* could not back out.  mark the file system
1967 			 * to indicate that we have leaked blocks.
1968 			 */
1969 			jfs_error(bmp->db_ipbmap->i_sb,
1970 				  "I/O Error: Block Leakage\n");
1971 			continue;
1972 		}
1973 		dp = (struct dmap *) mp->data;
1974 
1975 		/* free the blocks is this dmap.
1976 		 */
1977 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1978 			/* could not back out.  mark the file system
1979 			 * to indicate that we have leaked blocks.
1980 			 */
1981 			release_metapage(mp);
1982 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1983 			continue;
1984 		}
1985 
1986 		/* write the buffer.
1987 		 */
1988 		write_metapage(mp);
1989 	}
1990 
1991 	return (rc);
1992 }
1993 
1994 
1995 /*
1996  * NAME:	dbAllocDmapLev()
1997  *
1998  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1999  *		from a specified dmap.
2000  *
2001  *		this routine checks if the contiguous blocks are available.
2002  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
2003  *		returned.
2004  *
2005  * PARAMETERS:
2006  *	mp	-  pointer to bmap descriptor
2007  *	dp	-  pointer to dmap to attempt to allocate blocks from.
2008  *	l2nb	-  log2 number of contiguous block desired.
2009  *	nblocks	-  actual number of contiguous block desired.
2010  *	results	-  on successful return, set to the starting block number
2011  *		   of the newly allocated range.
2012  *
2013  * RETURN VALUES:
2014  *	0	- success
2015  *	-ENOSPC	- insufficient disk resources
2016  *	-EIO	- i/o error
2017  *
2018  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2019  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2020  */
2021 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)2022 dbAllocDmapLev(struct bmap * bmp,
2023 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
2024 {
2025 	s64 blkno;
2026 	int leafidx, rc;
2027 
2028 	/* can't be more than a dmaps worth of blocks */
2029 	assert(l2nb <= L2BPERDMAP);
2030 
2031 	/* search the tree within the dmap page for sufficient
2032 	 * free space.  if sufficient free space is found, dbFindLeaf()
2033 	 * returns the index of the leaf at which free space was found.
2034 	 */
2035 	if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
2036 		return -ENOSPC;
2037 
2038 	if (leafidx < 0)
2039 		return -EIO;
2040 
2041 	/* determine the block number within the file system corresponding
2042 	 * to the leaf at which free space was found.
2043 	 */
2044 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2045 
2046 	/* if not all bits of the dmap word are free, get the starting
2047 	 * bit number within the dmap word of the required string of free
2048 	 * bits and adjust the block number with this value.
2049 	 */
2050 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2051 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2052 
2053 	/* allocate the blocks */
2054 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2055 		*results = blkno;
2056 
2057 	return (rc);
2058 }
2059 
2060 
2061 /*
2062  * NAME:	dbAllocDmap()
2063  *
2064  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2065  *		of a specified block range within a dmap.
2066  *
2067  *		this routine allocates the specified blocks from the dmap
2068  *		through a call to dbAllocBits(). if the allocation of the
2069  *		block range causes the maximum string of free blocks within
2070  *		the dmap to change (i.e. the value of the root of the dmap's
2071  *		dmtree), this routine will cause this change to be reflected
2072  *		up through the appropriate levels of the dmap control pages
2073  *		by a call to dbAdjCtl() for the L0 dmap control page that
2074  *		covers this dmap.
2075  *
2076  * PARAMETERS:
2077  *	bmp	-  pointer to bmap descriptor
2078  *	dp	-  pointer to dmap to allocate the block range from.
2079  *	blkno	-  starting block number of the block to be allocated.
2080  *	nblocks	-  number of blocks to be allocated.
2081  *
2082  * RETURN VALUES:
2083  *	0	- success
2084  *	-EIO	- i/o error
2085  *
2086  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2087  */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2088 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2089 		       int nblocks)
2090 {
2091 	s8 oldroot;
2092 	int rc;
2093 
2094 	/* save the current value of the root (i.e. maximum free string)
2095 	 * of the dmap tree.
2096 	 */
2097 	oldroot = dp->tree.stree[ROOT];
2098 
2099 	/* allocate the specified (blocks) bits */
2100 	dbAllocBits(bmp, dp, blkno, nblocks);
2101 
2102 	/* if the root has not changed, done. */
2103 	if (dp->tree.stree[ROOT] == oldroot)
2104 		return (0);
2105 
2106 	/* root changed. bubble the change up to the dmap control pages.
2107 	 * if the adjustment of the upper level control pages fails,
2108 	 * backout the bit allocation (thus making everything consistent).
2109 	 */
2110 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2111 		dbFreeBits(bmp, dp, blkno, nblocks);
2112 
2113 	return (rc);
2114 }
2115 
2116 
2117 /*
2118  * NAME:	dbFreeDmap()
2119  *
2120  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2121  *		of a specified block range within a dmap.
2122  *
2123  *		this routine frees the specified blocks from the dmap through
2124  *		a call to dbFreeBits(). if the deallocation of the block range
2125  *		causes the maximum string of free blocks within the dmap to
2126  *		change (i.e. the value of the root of the dmap's dmtree), this
2127  *		routine will cause this change to be reflected up through the
2128  *		appropriate levels of the dmap control pages by a call to
2129  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2130  *
2131  * PARAMETERS:
2132  *	bmp	-  pointer to bmap descriptor
2133  *	dp	-  pointer to dmap to free the block range from.
2134  *	blkno	-  starting block number of the block to be freed.
2135  *	nblocks	-  number of blocks to be freed.
2136  *
2137  * RETURN VALUES:
2138  *	0	- success
2139  *	-EIO	- i/o error
2140  *
2141  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2142  */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2143 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2144 		      int nblocks)
2145 {
2146 	s8 oldroot;
2147 	int rc = 0, word;
2148 
2149 	/* save the current value of the root (i.e. maximum free string)
2150 	 * of the dmap tree.
2151 	 */
2152 	oldroot = dp->tree.stree[ROOT];
2153 
2154 	/* free the specified (blocks) bits */
2155 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2156 
2157 	/* if error or the root has not changed, done. */
2158 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2159 		return (rc);
2160 
2161 	/* root changed. bubble the change up to the dmap control pages.
2162 	 * if the adjustment of the upper level control pages fails,
2163 	 * backout the deallocation.
2164 	 */
2165 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2166 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2167 
2168 		/* as part of backing out the deallocation, we will have
2169 		 * to back split the dmap tree if the deallocation caused
2170 		 * the freed blocks to become part of a larger binary buddy
2171 		 * system.
2172 		 */
2173 		if (dp->tree.stree[word] == NOFREE)
2174 			dbBackSplit((dmtree_t *)&dp->tree, word, false);
2175 
2176 		dbAllocBits(bmp, dp, blkno, nblocks);
2177 	}
2178 
2179 	return (rc);
2180 }
2181 
2182 
2183 /*
2184  * NAME:	dbAllocBits()
2185  *
2186  * FUNCTION:	allocate a specified block range from a dmap.
2187  *
2188  *		this routine updates the dmap to reflect the working
2189  *		state allocation of the specified block range. it directly
2190  *		updates the bits of the working map and causes the adjustment
2191  *		of the binary buddy system described by the dmap's dmtree
2192  *		leaves to reflect the bits allocated.  it also causes the
2193  *		dmap's dmtree, as a whole, to reflect the allocated range.
2194  *
2195  * PARAMETERS:
2196  *	bmp	-  pointer to bmap descriptor
2197  *	dp	-  pointer to dmap to allocate bits from.
2198  *	blkno	-  starting block number of the bits to be allocated.
2199  *	nblocks	-  number of bits to be allocated.
2200  *
2201  * RETURN VALUES: none
2202  *
2203  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2204  */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2205 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2206 			int nblocks)
2207 {
2208 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2209 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2210 	int size;
2211 	s8 *leaf;
2212 
2213 	/* pick up a pointer to the leaves of the dmap tree */
2214 	leaf = dp->tree.stree + LEAFIND;
2215 
2216 	/* determine the bit number and word within the dmap of the
2217 	 * starting block.
2218 	 */
2219 	dbitno = blkno & (BPERDMAP - 1);
2220 	word = dbitno >> L2DBWORD;
2221 
2222 	/* block range better be within the dmap */
2223 	assert(dbitno + nblocks <= BPERDMAP);
2224 
2225 	/* allocate the bits of the dmap's words corresponding to the block
2226 	 * range. not all bits of the first and last words may be contained
2227 	 * within the block range.  if this is the case, we'll work against
2228 	 * those words (i.e. partial first and/or last) on an individual basis
2229 	 * (a single pass), allocating the bits of interest by hand and
2230 	 * updating the leaf corresponding to the dmap word. a single pass
2231 	 * will be used for all dmap words fully contained within the
2232 	 * specified range.  within this pass, the bits of all fully contained
2233 	 * dmap words will be marked as free in a single shot and the leaves
2234 	 * will be updated. a single leaf may describe the free space of
2235 	 * multiple dmap words, so we may update only a subset of the actual
2236 	 * leaves corresponding to the dmap words of the block range.
2237 	 */
2238 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2239 		/* determine the bit number within the word and
2240 		 * the number of bits within the word.
2241 		 */
2242 		wbitno = dbitno & (DBWORD - 1);
2243 		nb = min(rembits, DBWORD - wbitno);
2244 
2245 		/* check if only part of a word is to be allocated.
2246 		 */
2247 		if (nb < DBWORD) {
2248 			/* allocate (set to 1) the appropriate bits within
2249 			 * this dmap word.
2250 			 */
2251 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2252 						      >> wbitno);
2253 
2254 			/* update the leaf for this dmap word. in addition
2255 			 * to setting the leaf value to the binary buddy max
2256 			 * of the updated dmap word, dbSplit() will split
2257 			 * the binary system of the leaves if need be.
2258 			 */
2259 			dbSplit(tp, word, BUDMIN,
2260 				dbMaxBud((u8 *)&dp->wmap[word]), false);
2261 
2262 			word += 1;
2263 		} else {
2264 			/* one or more dmap words are fully contained
2265 			 * within the block range.  determine how many
2266 			 * words and allocate (set to 1) the bits of these
2267 			 * words.
2268 			 */
2269 			nwords = rembits >> L2DBWORD;
2270 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2271 
2272 			/* determine how many bits.
2273 			 */
2274 			nb = nwords << L2DBWORD;
2275 
2276 			/* now update the appropriate leaves to reflect
2277 			 * the allocated words.
2278 			 */
2279 			for (; nwords > 0; nwords -= nw) {
2280 				if (leaf[word] < BUDMIN) {
2281 					jfs_error(bmp->db_ipbmap->i_sb,
2282 						  "leaf page corrupt\n");
2283 					break;
2284 				}
2285 
2286 				/* determine what the leaf value should be
2287 				 * updated to as the minimum of the l2 number
2288 				 * of bits being allocated and the l2 number
2289 				 * of bits currently described by this leaf.
2290 				 */
2291 				size = min_t(int, leaf[word],
2292 					     NLSTOL2BSZ(nwords));
2293 
2294 				/* update the leaf to reflect the allocation.
2295 				 * in addition to setting the leaf value to
2296 				 * NOFREE, dbSplit() will split the binary
2297 				 * system of the leaves to reflect the current
2298 				 * allocation (size).
2299 				 */
2300 				dbSplit(tp, word, size, NOFREE, false);
2301 
2302 				/* get the number of dmap words handled */
2303 				nw = BUDSIZE(size, BUDMIN);
2304 				word += nw;
2305 			}
2306 		}
2307 	}
2308 
2309 	/* update the free count for this dmap */
2310 	le32_add_cpu(&dp->nfree, -nblocks);
2311 
2312 	BMAP_LOCK(bmp);
2313 
2314 	/* if this allocation group is completely free,
2315 	 * update the maximum allocation group number if this allocation
2316 	 * group is the new max.
2317 	 */
2318 	agno = blkno >> bmp->db_agl2size;
2319 	if (agno > bmp->db_maxag)
2320 		bmp->db_maxag = agno;
2321 
2322 	/* update the free count for the allocation group and map */
2323 	bmp->db_agfree[agno] -= nblocks;
2324 	bmp->db_nfree -= nblocks;
2325 
2326 	BMAP_UNLOCK(bmp);
2327 }
2328 
2329 
2330 /*
2331  * NAME:	dbFreeBits()
2332  *
2333  * FUNCTION:	free a specified block range from a dmap.
2334  *
2335  *		this routine updates the dmap to reflect the working
2336  *		state allocation of the specified block range. it directly
2337  *		updates the bits of the working map and causes the adjustment
2338  *		of the binary buddy system described by the dmap's dmtree
2339  *		leaves to reflect the bits freed.  it also causes the dmap's
2340  *		dmtree, as a whole, to reflect the deallocated range.
2341  *
2342  * PARAMETERS:
2343  *	bmp	-  pointer to bmap descriptor
2344  *	dp	-  pointer to dmap to free bits from.
2345  *	blkno	-  starting block number of the bits to be freed.
2346  *	nblocks	-  number of bits to be freed.
2347  *
2348  * RETURN VALUES: 0 for success
2349  *
2350  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2351  */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2352 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2353 		       int nblocks)
2354 {
2355 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2356 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2357 	int rc = 0;
2358 	int size;
2359 
2360 	/* determine the bit number and word within the dmap of the
2361 	 * starting block.
2362 	 */
2363 	dbitno = blkno & (BPERDMAP - 1);
2364 	word = dbitno >> L2DBWORD;
2365 
2366 	/* block range better be within the dmap.
2367 	 */
2368 	assert(dbitno + nblocks <= BPERDMAP);
2369 
2370 	/* free the bits of the dmaps words corresponding to the block range.
2371 	 * not all bits of the first and last words may be contained within
2372 	 * the block range.  if this is the case, we'll work against those
2373 	 * words (i.e. partial first and/or last) on an individual basis
2374 	 * (a single pass), freeing the bits of interest by hand and updating
2375 	 * the leaf corresponding to the dmap word. a single pass will be used
2376 	 * for all dmap words fully contained within the specified range.
2377 	 * within this pass, the bits of all fully contained dmap words will
2378 	 * be marked as free in a single shot and the leaves will be updated. a
2379 	 * single leaf may describe the free space of multiple dmap words,
2380 	 * so we may update only a subset of the actual leaves corresponding
2381 	 * to the dmap words of the block range.
2382 	 *
2383 	 * dbJoin() is used to update leaf values and will join the binary
2384 	 * buddy system of the leaves if the new leaf values indicate this
2385 	 * should be done.
2386 	 */
2387 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2388 		/* determine the bit number within the word and
2389 		 * the number of bits within the word.
2390 		 */
2391 		wbitno = dbitno & (DBWORD - 1);
2392 		nb = min(rembits, DBWORD - wbitno);
2393 
2394 		/* check if only part of a word is to be freed.
2395 		 */
2396 		if (nb < DBWORD) {
2397 			/* free (zero) the appropriate bits within this
2398 			 * dmap word.
2399 			 */
2400 			dp->wmap[word] &=
2401 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2402 					  >> wbitno));
2403 
2404 			/* update the leaf for this dmap word.
2405 			 */
2406 			rc = dbJoin(tp, word,
2407 				    dbMaxBud((u8 *)&dp->wmap[word]), false);
2408 			if (rc)
2409 				return rc;
2410 
2411 			word += 1;
2412 		} else {
2413 			/* one or more dmap words are fully contained
2414 			 * within the block range.  determine how many
2415 			 * words and free (zero) the bits of these words.
2416 			 */
2417 			nwords = rembits >> L2DBWORD;
2418 			memset(&dp->wmap[word], 0, nwords * 4);
2419 
2420 			/* determine how many bits.
2421 			 */
2422 			nb = nwords << L2DBWORD;
2423 
2424 			/* now update the appropriate leaves to reflect
2425 			 * the freed words.
2426 			 */
2427 			for (; nwords > 0; nwords -= nw) {
2428 				/* determine what the leaf value should be
2429 				 * updated to as the minimum of the l2 number
2430 				 * of bits being freed and the l2 (max) number
2431 				 * of bits that can be described by this leaf.
2432 				 */
2433 				size =
2434 				    min(LITOL2BSZ
2435 					(word, L2LPERDMAP, BUDMIN),
2436 					NLSTOL2BSZ(nwords));
2437 
2438 				/* update the leaf.
2439 				 */
2440 				rc = dbJoin(tp, word, size, false);
2441 				if (rc)
2442 					return rc;
2443 
2444 				/* get the number of dmap words handled.
2445 				 */
2446 				nw = BUDSIZE(size, BUDMIN);
2447 				word += nw;
2448 			}
2449 		}
2450 	}
2451 
2452 	/* update the free count for this dmap.
2453 	 */
2454 	le32_add_cpu(&dp->nfree, nblocks);
2455 
2456 	BMAP_LOCK(bmp);
2457 
2458 	/* update the free count for the allocation group and
2459 	 * map.
2460 	 */
2461 	agno = blkno >> bmp->db_agl2size;
2462 	bmp->db_nfree += nblocks;
2463 	bmp->db_agfree[agno] += nblocks;
2464 
2465 	/* check if this allocation group is not completely free and
2466 	 * if it is currently the maximum (rightmost) allocation group.
2467 	 * if so, establish the new maximum allocation group number by
2468 	 * searching left for the first allocation group with allocation.
2469 	 */
2470 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2471 	    (agno == bmp->db_numag - 1 &&
2472 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2473 		while (bmp->db_maxag > 0) {
2474 			bmp->db_maxag -= 1;
2475 			if (bmp->db_agfree[bmp->db_maxag] !=
2476 			    bmp->db_agsize)
2477 				break;
2478 		}
2479 
2480 		/* re-establish the allocation group preference if the
2481 		 * current preference is right of the maximum allocation
2482 		 * group.
2483 		 */
2484 		if (bmp->db_agpref > bmp->db_maxag)
2485 			bmp->db_agpref = bmp->db_maxag;
2486 	}
2487 
2488 	BMAP_UNLOCK(bmp);
2489 
2490 	return 0;
2491 }
2492 
2493 
2494 /*
2495  * NAME:	dbAdjCtl()
2496  *
2497  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2498  *		the change in a lower level dmap or dmap control page's
2499  *		maximum string of free blocks (i.e. a change in the root
2500  *		of the lower level object's dmtree) due to the allocation
2501  *		or deallocation of a range of blocks with a single dmap.
2502  *
2503  *		on entry, this routine is provided with the new value of
2504  *		the lower level dmap or dmap control page root and the
2505  *		starting block number of the block range whose allocation
2506  *		or deallocation resulted in the root change.  this range
2507  *		is respresented by a single leaf of the current dmapctl
2508  *		and the leaf will be updated with this value, possibly
2509  *		causing a binary buddy system within the leaves to be
2510  *		split or joined.  the update may also cause the dmapctl's
2511  *		dmtree to be updated.
2512  *
2513  *		if the adjustment of the dmap control page, itself, causes its
2514  *		root to change, this change will be bubbled up to the next dmap
2515  *		control level by a recursive call to this routine, specifying
2516  *		the new root value and the next dmap control page level to
2517  *		be adjusted.
2518  * PARAMETERS:
2519  *	bmp	-  pointer to bmap descriptor
2520  *	blkno	-  the first block of a block range within a dmap.  it is
2521  *		   the allocation or deallocation of this block range that
2522  *		   requires the dmap control page to be adjusted.
2523  *	newval	-  the new value of the lower level dmap or dmap control
2524  *		   page root.
2525  *	alloc	-  'true' if adjustment is due to an allocation.
2526  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2527  *		   be adjusted.
2528  *
2529  * RETURN VALUES:
2530  *	0	- success
2531  *	-EIO	- i/o error
2532  *
2533  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2534  */
2535 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2536 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2537 {
2538 	struct metapage *mp;
2539 	s8 oldroot;
2540 	int oldval;
2541 	s64 lblkno;
2542 	struct dmapctl *dcp;
2543 	int rc, leafno, ti;
2544 
2545 	/* get the buffer for the dmap control page for the specified
2546 	 * block number and control page level.
2547 	 */
2548 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2549 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2550 	if (mp == NULL)
2551 		return -EIO;
2552 	dcp = (struct dmapctl *) mp->data;
2553 
2554 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2555 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2556 		release_metapage(mp);
2557 		return -EIO;
2558 	}
2559 
2560 	/* determine the leaf number corresponding to the block and
2561 	 * the index within the dmap control tree.
2562 	 */
2563 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2564 	ti = leafno + le32_to_cpu(dcp->leafidx);
2565 
2566 	/* save the current leaf value and the current root level (i.e.
2567 	 * maximum l2 free string described by this dmapctl).
2568 	 */
2569 	oldval = dcp->stree[ti];
2570 	oldroot = dcp->stree[ROOT];
2571 
2572 	/* check if this is a control page update for an allocation.
2573 	 * if so, update the leaf to reflect the new leaf value using
2574 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2575 	 * the leaf with the new value.  in addition to updating the
2576 	 * leaf, dbSplit() will also split the binary buddy system of
2577 	 * the leaves, if required, and bubble new values within the
2578 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2579 	 * the binary buddy system of leaves and bubble new values up
2580 	 * the dmapctl tree as required by the new leaf value.
2581 	 */
2582 	if (alloc) {
2583 		/* check if we are in the middle of a binary buddy
2584 		 * system.  this happens when we are performing the
2585 		 * first allocation out of an allocation group that
2586 		 * is part (not the first part) of a larger binary
2587 		 * buddy system.  if we are in the middle, back split
2588 		 * the system prior to calling dbSplit() which assumes
2589 		 * that it is at the front of a binary buddy system.
2590 		 */
2591 		if (oldval == NOFREE) {
2592 			rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2593 			if (rc) {
2594 				release_metapage(mp);
2595 				return rc;
2596 			}
2597 			oldval = dcp->stree[ti];
2598 		}
2599 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2600 	} else {
2601 		rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2602 		if (rc) {
2603 			release_metapage(mp);
2604 			return rc;
2605 		}
2606 	}
2607 
2608 	/* check if the root of the current dmap control page changed due
2609 	 * to the update and if the current dmap control page is not at
2610 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2611 	 * root changed and this is not the top level), call this routine
2612 	 * again (recursion) for the next higher level of the mapping to
2613 	 * reflect the change in root for the current dmap control page.
2614 	 */
2615 	if (dcp->stree[ROOT] != oldroot) {
2616 		/* are we below the top level of the map.  if so,
2617 		 * bubble the root up to the next higher level.
2618 		 */
2619 		if (level < bmp->db_maxlevel) {
2620 			/* bubble up the new root of this dmap control page to
2621 			 * the next level.
2622 			 */
2623 			if ((rc =
2624 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2625 				      level + 1))) {
2626 				/* something went wrong in bubbling up the new
2627 				 * root value, so backout the changes to the
2628 				 * current dmap control page.
2629 				 */
2630 				if (alloc) {
2631 					dbJoin((dmtree_t *) dcp, leafno,
2632 					       oldval, true);
2633 				} else {
2634 					/* the dbJoin() above might have
2635 					 * caused a larger binary buddy system
2636 					 * to form and we may now be in the
2637 					 * middle of it.  if this is the case,
2638 					 * back split the buddies.
2639 					 */
2640 					if (dcp->stree[ti] == NOFREE)
2641 						dbBackSplit((dmtree_t *)
2642 							    dcp, leafno, true);
2643 					dbSplit((dmtree_t *) dcp, leafno,
2644 						dcp->budmin, oldval, true);
2645 				}
2646 
2647 				/* release the buffer and return the error.
2648 				 */
2649 				release_metapage(mp);
2650 				return (rc);
2651 			}
2652 		} else {
2653 			/* we're at the top level of the map. update
2654 			 * the bmap control page to reflect the size
2655 			 * of the maximum free buddy system.
2656 			 */
2657 			assert(level == bmp->db_maxlevel);
2658 			if (bmp->db_maxfreebud != oldroot) {
2659 				jfs_error(bmp->db_ipbmap->i_sb,
2660 					  "the maximum free buddy is not the old root\n");
2661 			}
2662 			bmp->db_maxfreebud = dcp->stree[ROOT];
2663 		}
2664 	}
2665 
2666 	/* write the buffer.
2667 	 */
2668 	write_metapage(mp);
2669 
2670 	return (0);
2671 }
2672 
2673 
2674 /*
2675  * NAME:	dbSplit()
2676  *
2677  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2678  *		the leaf from the binary buddy system of the dmtree's
2679  *		leaves, as required.
2680  *
2681  * PARAMETERS:
2682  *	tp	- pointer to the tree containing the leaf.
2683  *	leafno	- the number of the leaf to be updated.
2684  *	splitsz	- the size the binary buddy system starting at the leaf
2685  *		  must be split to, specified as the log2 number of blocks.
2686  *	newval	- the new value for the leaf.
2687  *
2688  * RETURN VALUES: none
2689  *
2690  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2691  */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval,bool is_ctl)2692 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2693 {
2694 	int budsz;
2695 	int cursz;
2696 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2697 
2698 	/* check if the leaf needs to be split.
2699 	 */
2700 	if (leaf[leafno] > tp->dmt_budmin) {
2701 		/* the split occurs by cutting the buddy system in half
2702 		 * at the specified leaf until we reach the specified
2703 		 * size.  pick up the starting split size (current size
2704 		 * - 1 in l2) and the corresponding buddy size.
2705 		 */
2706 		cursz = leaf[leafno] - 1;
2707 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2708 
2709 		/* split until we reach the specified size.
2710 		 */
2711 		while (cursz >= splitsz) {
2712 			/* update the buddy's leaf with its new value.
2713 			 */
2714 			dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2715 
2716 			/* on to the next size and buddy.
2717 			 */
2718 			cursz -= 1;
2719 			budsz >>= 1;
2720 		}
2721 	}
2722 
2723 	/* adjust the dmap tree to reflect the specified leaf's new
2724 	 * value.
2725 	 */
2726 	dbAdjTree(tp, leafno, newval, is_ctl);
2727 }
2728 
2729 
2730 /*
2731  * NAME:	dbBackSplit()
2732  *
2733  * FUNCTION:	back split the binary buddy system of dmtree leaves
2734  *		that hold a specified leaf until the specified leaf
2735  *		starts its own binary buddy system.
2736  *
2737  *		the allocators typically perform allocations at the start
2738  *		of binary buddy systems and dbSplit() is used to accomplish
2739  *		any required splits.  in some cases, however, allocation
2740  *		may occur in the middle of a binary system and requires a
2741  *		back split, with the split proceeding out from the middle of
2742  *		the system (less efficient) rather than the start of the
2743  *		system (more efficient).  the cases in which a back split
2744  *		is required are rare and are limited to the first allocation
2745  *		within an allocation group which is a part (not first part)
2746  *		of a larger binary buddy system and a few exception cases
2747  *		in which a previous join operation must be backed out.
2748  *
2749  * PARAMETERS:
2750  *	tp	- pointer to the tree containing the leaf.
2751  *	leafno	- the number of the leaf to be updated.
2752  *
2753  * RETURN VALUES: none
2754  *
2755  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2756  */
dbBackSplit(dmtree_t * tp,int leafno,bool is_ctl)2757 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2758 {
2759 	int budsz, bud, w, bsz, size;
2760 	int cursz;
2761 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2762 
2763 	/* leaf should be part (not first part) of a binary
2764 	 * buddy system.
2765 	 */
2766 	assert(leaf[leafno] == NOFREE);
2767 
2768 	/* the back split is accomplished by iteratively finding the leaf
2769 	 * that starts the buddy system that contains the specified leaf and
2770 	 * splitting that system in two.  this iteration continues until
2771 	 * the specified leaf becomes the start of a buddy system.
2772 	 *
2773 	 * determine maximum possible l2 size for the specified leaf.
2774 	 */
2775 	size =
2776 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2777 		      tp->dmt_budmin);
2778 
2779 	/* determine the number of leaves covered by this size.  this
2780 	 * is the buddy size that we will start with as we search for
2781 	 * the buddy system that contains the specified leaf.
2782 	 */
2783 	budsz = BUDSIZE(size, tp->dmt_budmin);
2784 
2785 	/* back split.
2786 	 */
2787 	while (leaf[leafno] == NOFREE) {
2788 		/* find the leftmost buddy leaf.
2789 		 */
2790 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2791 		     w = (w < bud) ? w : bud) {
2792 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2793 				jfs_err("JFS: block map error in dbBackSplit");
2794 				return -EIO;
2795 			}
2796 
2797 			/* determine the buddy.
2798 			 */
2799 			bud = w ^ bsz;
2800 
2801 			/* check if this buddy is the start of the system.
2802 			 */
2803 			if (leaf[bud] != NOFREE) {
2804 				/* split the leaf at the start of the
2805 				 * system in two.
2806 				 */
2807 				cursz = leaf[bud] - 1;
2808 				dbSplit(tp, bud, cursz, cursz, is_ctl);
2809 				break;
2810 			}
2811 		}
2812 	}
2813 
2814 	if (leaf[leafno] != size) {
2815 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2816 		return -EIO;
2817 	}
2818 	return 0;
2819 }
2820 
2821 
2822 /*
2823  * NAME:	dbJoin()
2824  *
2825  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2826  *		the leaf with other leaves of the dmtree into a multi-leaf
2827  *		binary buddy system, as required.
2828  *
2829  * PARAMETERS:
2830  *	tp	- pointer to the tree containing the leaf.
2831  *	leafno	- the number of the leaf to be updated.
2832  *	newval	- the new value for the leaf.
2833  *
2834  * RETURN VALUES: none
2835  */
dbJoin(dmtree_t * tp,int leafno,int newval,bool is_ctl)2836 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2837 {
2838 	int budsz, buddy;
2839 	s8 *leaf;
2840 
2841 	/* can the new leaf value require a join with other leaves ?
2842 	 */
2843 	if (newval >= tp->dmt_budmin) {
2844 		/* pickup a pointer to the leaves of the tree.
2845 		 */
2846 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2847 
2848 		/* try to join the specified leaf into a large binary
2849 		 * buddy system.  the join proceeds by attempting to join
2850 		 * the specified leafno with its buddy (leaf) at new value.
2851 		 * if the join occurs, we attempt to join the left leaf
2852 		 * of the joined buddies with its buddy at new value + 1.
2853 		 * we continue to join until we find a buddy that cannot be
2854 		 * joined (does not have a value equal to the size of the
2855 		 * last join) or until all leaves have been joined into a
2856 		 * single system.
2857 		 *
2858 		 * get the buddy size (number of words covered) of
2859 		 * the new value.
2860 		 */
2861 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2862 
2863 		/* try to join.
2864 		 */
2865 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2866 			/* get the buddy leaf.
2867 			 */
2868 			buddy = leafno ^ budsz;
2869 
2870 			/* if the leaf's new value is greater than its
2871 			 * buddy's value, we join no more.
2872 			 */
2873 			if (newval > leaf[buddy])
2874 				break;
2875 
2876 			/* It shouldn't be less */
2877 			if (newval < leaf[buddy])
2878 				return -EIO;
2879 
2880 			/* check which (leafno or buddy) is the left buddy.
2881 			 * the left buddy gets to claim the blocks resulting
2882 			 * from the join while the right gets to claim none.
2883 			 * the left buddy is also eligible to participate in
2884 			 * a join at the next higher level while the right
2885 			 * is not.
2886 			 *
2887 			 */
2888 			if (leafno < buddy) {
2889 				/* leafno is the left buddy.
2890 				 */
2891 				dbAdjTree(tp, buddy, NOFREE, is_ctl);
2892 			} else {
2893 				/* buddy is the left buddy and becomes
2894 				 * leafno.
2895 				 */
2896 				dbAdjTree(tp, leafno, NOFREE, is_ctl);
2897 				leafno = buddy;
2898 			}
2899 
2900 			/* on to try the next join.
2901 			 */
2902 			newval += 1;
2903 			budsz <<= 1;
2904 		}
2905 	}
2906 
2907 	/* update the leaf value.
2908 	 */
2909 	dbAdjTree(tp, leafno, newval, is_ctl);
2910 
2911 	return 0;
2912 }
2913 
2914 
2915 /*
2916  * NAME:	dbAdjTree()
2917  *
2918  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2919  *		the dmtree, as required, to reflect the new leaf value.
2920  *		the combination of any buddies must already be done before
2921  *		this is called.
2922  *
2923  * PARAMETERS:
2924  *	tp	- pointer to the tree to be adjusted.
2925  *	leafno	- the number of the leaf to be updated.
2926  *	newval	- the new value for the leaf.
2927  *
2928  * RETURN VALUES: none
2929  */
dbAdjTree(dmtree_t * tp,int leafno,int newval,bool is_ctl)2930 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2931 {
2932 	int lp, pp, k;
2933 	int max, size;
2934 
2935 	size = is_ctl ? CTLTREESIZE : TREESIZE;
2936 
2937 	/* pick up the index of the leaf for this leafno.
2938 	 */
2939 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2940 
2941 	if (WARN_ON_ONCE(lp >= size || lp < 0))
2942 		return;
2943 
2944 	/* is the current value the same as the old value ?  if so,
2945 	 * there is nothing to do.
2946 	 */
2947 	if (tp->dmt_stree[lp] == newval)
2948 		return;
2949 
2950 	/* set the new value.
2951 	 */
2952 	tp->dmt_stree[lp] = newval;
2953 
2954 	/* bubble the new value up the tree as required.
2955 	 */
2956 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2957 		/* get the index of the first leaf of the 4 leaf
2958 		 * group containing the specified leaf (leafno).
2959 		 */
2960 		lp = ((lp - 1) & ~0x03) + 1;
2961 
2962 		/* get the index of the parent of this 4 leaf group.
2963 		 */
2964 		pp = (lp - 1) >> 2;
2965 
2966 		/* determine the maximum of the 4 leaves.
2967 		 */
2968 		max = TREEMAX(&tp->dmt_stree[lp]);
2969 
2970 		/* if the maximum of the 4 is the same as the
2971 		 * parent's value, we're done.
2972 		 */
2973 		if (tp->dmt_stree[pp] == max)
2974 			break;
2975 
2976 		/* parent gets new value.
2977 		 */
2978 		tp->dmt_stree[pp] = max;
2979 
2980 		/* parent becomes leaf for next go-round.
2981 		 */
2982 		lp = pp;
2983 	}
2984 }
2985 
2986 
2987 /*
2988  * NAME:	dbFindLeaf()
2989  *
2990  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2991  *		the index of a leaf describing the free blocks if
2992  *		sufficient free blocks are found.
2993  *
2994  *		the search starts at the top of the dmtree_t tree and
2995  *		proceeds down the tree to the leftmost leaf with sufficient
2996  *		free space.
2997  *
2998  * PARAMETERS:
2999  *	tp	- pointer to the tree to be searched.
3000  *	l2nb	- log2 number of free blocks to search for.
3001  *	leafidx	- return pointer to be set to the index of the leaf
3002  *		  describing at least l2nb free blocks if sufficient
3003  *		  free blocks are found.
3004  *	is_ctl	- determines if the tree is of type ctl
3005  *
3006  * RETURN VALUES:
3007  *	0	- success
3008  *	-ENOSPC	- insufficient free blocks.
3009  */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx,bool is_ctl)3010 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
3011 {
3012 	int ti, n = 0, k, x = 0;
3013 	int max_size;
3014 
3015 	max_size = is_ctl ? CTLTREESIZE : TREESIZE;
3016 
3017 	/* first check the root of the tree to see if there is
3018 	 * sufficient free space.
3019 	 */
3020 	if (l2nb > tp->dmt_stree[ROOT])
3021 		return -ENOSPC;
3022 
3023 	/* sufficient free space available. now search down the tree
3024 	 * starting at the next level for the leftmost leaf that
3025 	 * describes sufficient free space.
3026 	 */
3027 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
3028 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
3029 		/* search the four nodes at this level, starting from
3030 		 * the left.
3031 		 */
3032 		for (x = ti, n = 0; n < 4; n++) {
3033 			/* sufficient free space found.  move to the next
3034 			 * level (or quit if this is the last level).
3035 			 */
3036 			if (x + n > max_size)
3037 				return -ENOSPC;
3038 			if (l2nb <= tp->dmt_stree[x + n])
3039 				break;
3040 		}
3041 
3042 		/* better have found something since the higher
3043 		 * levels of the tree said it was here.
3044 		 */
3045 		assert(n < 4);
3046 	}
3047 
3048 	/* set the return to the leftmost leaf describing sufficient
3049 	 * free space.
3050 	 */
3051 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3052 
3053 	return (0);
3054 }
3055 
3056 
3057 /*
3058  * NAME:	dbFindBits()
3059  *
3060  * FUNCTION:	find a specified number of binary buddy free bits within a
3061  *		dmap bitmap word value.
3062  *
3063  *		this routine searches the bitmap value for (1 << l2nb) free
3064  *		bits at (1 << l2nb) alignments within the value.
3065  *
3066  * PARAMETERS:
3067  *	word	-  dmap bitmap word value.
3068  *	l2nb	-  number of free bits specified as a log2 number.
3069  *
3070  * RETURN VALUES:
3071  *	starting bit number of free bits.
3072  */
dbFindBits(u32 word,int l2nb)3073 static int dbFindBits(u32 word, int l2nb)
3074 {
3075 	int bitno, nb;
3076 	u32 mask;
3077 
3078 	/* get the number of bits.
3079 	 */
3080 	nb = 1 << l2nb;
3081 	assert(nb <= DBWORD);
3082 
3083 	/* complement the word so we can use a mask (i.e. 0s represent
3084 	 * free bits) and compute the mask.
3085 	 */
3086 	word = ~word;
3087 	mask = ONES << (DBWORD - nb);
3088 
3089 	/* scan the word for nb free bits at nb alignments.
3090 	 */
3091 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3092 		if ((mask & word) == mask)
3093 			break;
3094 	}
3095 
3096 	ASSERT(bitno < 32);
3097 
3098 	/* return the bit number.
3099 	 */
3100 	return (bitno);
3101 }
3102 
3103 
3104 /*
3105  * NAME:	dbMaxBud(u8 *cp)
3106  *
3107  * FUNCTION:	determine the largest binary buddy string of free
3108  *		bits within 32-bits of the map.
3109  *
3110  * PARAMETERS:
3111  *	cp	-  pointer to the 32-bit value.
3112  *
3113  * RETURN VALUES:
3114  *	largest binary buddy of free bits within a dmap word.
3115  */
dbMaxBud(u8 * cp)3116 static int dbMaxBud(u8 * cp)
3117 {
3118 	signed char tmp1, tmp2;
3119 
3120 	/* check if the wmap word is all free. if so, the
3121 	 * free buddy size is BUDMIN.
3122 	 */
3123 	if (*((uint *) cp) == 0)
3124 		return (BUDMIN);
3125 
3126 	/* check if the wmap word is half free. if so, the
3127 	 * free buddy size is BUDMIN-1.
3128 	 */
3129 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3130 		return (BUDMIN - 1);
3131 
3132 	/* not all free or half free. determine the free buddy
3133 	 * size thru table lookup using quarters of the wmap word.
3134 	 */
3135 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3136 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3137 	return (max(tmp1, tmp2));
3138 }
3139 
3140 
3141 /*
3142  * NAME:	cnttz(uint word)
3143  *
3144  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3145  *		value.
3146  *
3147  * PARAMETERS:
3148  *	value	-  32-bit value to be examined.
3149  *
3150  * RETURN VALUES:
3151  *	count of trailing zeros
3152  */
cnttz(u32 word)3153 static int cnttz(u32 word)
3154 {
3155 	int n;
3156 
3157 	for (n = 0; n < 32; n++, word >>= 1) {
3158 		if (word & 0x01)
3159 			break;
3160 	}
3161 
3162 	return (n);
3163 }
3164 
3165 
3166 /*
3167  * NAME:	cntlz(u32 value)
3168  *
3169  * FUNCTION:	determine the number of leading zeros within a 32-bit
3170  *		value.
3171  *
3172  * PARAMETERS:
3173  *	value	-  32-bit value to be examined.
3174  *
3175  * RETURN VALUES:
3176  *	count of leading zeros
3177  */
cntlz(u32 value)3178 static int cntlz(u32 value)
3179 {
3180 	int n;
3181 
3182 	for (n = 0; n < 32; n++, value <<= 1) {
3183 		if (value & HIGHORDER)
3184 			break;
3185 	}
3186 	return (n);
3187 }
3188 
3189 
3190 /*
3191  * NAME:	blkstol2(s64 nb)
3192  *
3193  * FUNCTION:	convert a block count to its log2 value. if the block
3194  *		count is not a l2 multiple, it is rounded up to the next
3195  *		larger l2 multiple.
3196  *
3197  * PARAMETERS:
3198  *	nb	-  number of blocks
3199  *
3200  * RETURN VALUES:
3201  *	log2 number of blocks
3202  */
blkstol2(s64 nb)3203 static int blkstol2(s64 nb)
3204 {
3205 	int l2nb;
3206 	s64 mask;		/* meant to be signed */
3207 
3208 	mask = (s64) 1 << (64 - 1);
3209 
3210 	/* count the leading bits.
3211 	 */
3212 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3213 		/* leading bit found.
3214 		 */
3215 		if (nb & mask) {
3216 			/* determine the l2 value.
3217 			 */
3218 			l2nb = (64 - 1) - l2nb;
3219 
3220 			/* check if we need to round up.
3221 			 */
3222 			if (~mask & nb)
3223 				l2nb++;
3224 
3225 			return (l2nb);
3226 		}
3227 	}
3228 	assert(0);
3229 	return 0;		/* fix compiler warning */
3230 }
3231 
3232 
3233 /*
3234  * NAME:	dbAllocBottomUp()
3235  *
3236  * FUNCTION:	alloc the specified block range from the working block
3237  *		allocation map.
3238  *
3239  *		the blocks will be alloc from the working map one dmap
3240  *		at a time.
3241  *
3242  * PARAMETERS:
3243  *	ip	-  pointer to in-core inode;
3244  *	blkno	-  starting block number to be freed.
3245  *	nblocks	-  number of blocks to be freed.
3246  *
3247  * RETURN VALUES:
3248  *	0	- success
3249  *	-EIO	- i/o error
3250  */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3251 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3252 {
3253 	struct metapage *mp;
3254 	struct dmap *dp;
3255 	int nb, rc;
3256 	s64 lblkno, rem;
3257 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3258 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3259 
3260 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3261 
3262 	/* block to be allocated better be within the mapsize. */
3263 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3264 
3265 	/*
3266 	 * allocate the blocks a dmap at a time.
3267 	 */
3268 	mp = NULL;
3269 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3270 		/* release previous dmap if any */
3271 		if (mp) {
3272 			write_metapage(mp);
3273 		}
3274 
3275 		/* get the buffer for the current dmap. */
3276 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3277 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3278 		if (mp == NULL) {
3279 			IREAD_UNLOCK(ipbmap);
3280 			return -EIO;
3281 		}
3282 		dp = (struct dmap *) mp->data;
3283 
3284 		/* determine the number of blocks to be allocated from
3285 		 * this dmap.
3286 		 */
3287 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3288 
3289 		/* allocate the blocks. */
3290 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3291 			release_metapage(mp);
3292 			IREAD_UNLOCK(ipbmap);
3293 			return (rc);
3294 		}
3295 	}
3296 
3297 	/* write the last buffer. */
3298 	write_metapage(mp);
3299 
3300 	IREAD_UNLOCK(ipbmap);
3301 
3302 	return (0);
3303 }
3304 
3305 
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3306 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3307 			 int nblocks)
3308 {
3309 	int rc;
3310 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3311 	s8 oldroot;
3312 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3313 
3314 	/* save the current value of the root (i.e. maximum free string)
3315 	 * of the dmap tree.
3316 	 */
3317 	oldroot = tp->stree[ROOT];
3318 
3319 	/* determine the bit number and word within the dmap of the
3320 	 * starting block.
3321 	 */
3322 	dbitno = blkno & (BPERDMAP - 1);
3323 	word = dbitno >> L2DBWORD;
3324 
3325 	/* block range better be within the dmap */
3326 	assert(dbitno + nblocks <= BPERDMAP);
3327 
3328 	/* allocate the bits of the dmap's words corresponding to the block
3329 	 * range. not all bits of the first and last words may be contained
3330 	 * within the block range.  if this is the case, we'll work against
3331 	 * those words (i.e. partial first and/or last) on an individual basis
3332 	 * (a single pass), allocating the bits of interest by hand and
3333 	 * updating the leaf corresponding to the dmap word. a single pass
3334 	 * will be used for all dmap words fully contained within the
3335 	 * specified range.  within this pass, the bits of all fully contained
3336 	 * dmap words will be marked as free in a single shot and the leaves
3337 	 * will be updated. a single leaf may describe the free space of
3338 	 * multiple dmap words, so we may update only a subset of the actual
3339 	 * leaves corresponding to the dmap words of the block range.
3340 	 */
3341 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3342 		/* determine the bit number within the word and
3343 		 * the number of bits within the word.
3344 		 */
3345 		wbitno = dbitno & (DBWORD - 1);
3346 		nb = min(rembits, DBWORD - wbitno);
3347 
3348 		/* check if only part of a word is to be allocated.
3349 		 */
3350 		if (nb < DBWORD) {
3351 			/* allocate (set to 1) the appropriate bits within
3352 			 * this dmap word.
3353 			 */
3354 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3355 						      >> wbitno);
3356 
3357 			word++;
3358 		} else {
3359 			/* one or more dmap words are fully contained
3360 			 * within the block range.  determine how many
3361 			 * words and allocate (set to 1) the bits of these
3362 			 * words.
3363 			 */
3364 			nwords = rembits >> L2DBWORD;
3365 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3366 
3367 			/* determine how many bits */
3368 			nb = nwords << L2DBWORD;
3369 			word += nwords;
3370 		}
3371 	}
3372 
3373 	/* update the free count for this dmap */
3374 	le32_add_cpu(&dp->nfree, -nblocks);
3375 
3376 	/* reconstruct summary tree */
3377 	dbInitDmapTree(dp);
3378 
3379 	BMAP_LOCK(bmp);
3380 
3381 	/* if this allocation group is completely free,
3382 	 * update the highest active allocation group number
3383 	 * if this allocation group is the new max.
3384 	 */
3385 	agno = blkno >> bmp->db_agl2size;
3386 	if (agno > bmp->db_maxag)
3387 		bmp->db_maxag = agno;
3388 
3389 	/* update the free count for the allocation group and map */
3390 	bmp->db_agfree[agno] -= nblocks;
3391 	bmp->db_nfree -= nblocks;
3392 
3393 	BMAP_UNLOCK(bmp);
3394 
3395 	/* if the root has not changed, done. */
3396 	if (tp->stree[ROOT] == oldroot)
3397 		return (0);
3398 
3399 	/* root changed. bubble the change up to the dmap control pages.
3400 	 * if the adjustment of the upper level control pages fails,
3401 	 * backout the bit allocation (thus making everything consistent).
3402 	 */
3403 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3404 		dbFreeBits(bmp, dp, blkno, nblocks);
3405 
3406 	return (rc);
3407 }
3408 
3409 
3410 /*
3411  * NAME:	dbExtendFS()
3412  *
3413  * FUNCTION:	extend bmap from blkno for nblocks;
3414  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3415  *
3416  * L2
3417  *  |
3418  *   L1---------------------------------L1
3419  *    |					 |
3420  *     L0---------L0---------L0		  L0---------L0---------L0
3421  *      |	   |	      |		   |	      |		 |
3422  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3423  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3424  *
3425  * <---old---><----------------------------extend----------------------->
3426  */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3427 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3428 {
3429 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3430 	int nbperpage = sbi->nbperpage;
3431 	int i, i0 = true, j, j0 = true, k, n;
3432 	s64 newsize;
3433 	s64 p;
3434 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3435 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3436 	struct dmap *dp;
3437 	s8 *l0leaf, *l1leaf, *l2leaf;
3438 	struct bmap *bmp = sbi->bmap;
3439 	int agno, l2agsize, oldl2agsize;
3440 	s64 ag_rem;
3441 
3442 	newsize = blkno + nblocks;
3443 
3444 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3445 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3446 
3447 	/*
3448 	 *	initialize bmap control page.
3449 	 *
3450 	 * all the data in bmap control page should exclude
3451 	 * the mkfs hidden dmap page.
3452 	 */
3453 
3454 	/* update mapsize */
3455 	bmp->db_mapsize = newsize;
3456 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3457 
3458 	/* compute new AG size */
3459 	l2agsize = dbGetL2AGSize(newsize);
3460 	oldl2agsize = bmp->db_agl2size;
3461 
3462 	bmp->db_agl2size = l2agsize;
3463 	bmp->db_agsize = 1 << l2agsize;
3464 
3465 	/* compute new number of AG */
3466 	agno = bmp->db_numag;
3467 	bmp->db_numag = newsize >> l2agsize;
3468 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3469 
3470 	/*
3471 	 *	reconfigure db_agfree[]
3472 	 * from old AG configuration to new AG configuration;
3473 	 *
3474 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3475 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3476 	 * note: new AG size = old AG size * (2**x).
3477 	 */
3478 	if (l2agsize == oldl2agsize)
3479 		goto extend;
3480 	k = 1 << (l2agsize - oldl2agsize);
3481 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3482 	for (i = 0, n = 0; i < agno; n++) {
3483 		bmp->db_agfree[n] = 0;	/* init collection point */
3484 
3485 		/* coalesce contiguous k AGs; */
3486 		for (j = 0; j < k && i < agno; j++, i++) {
3487 			/* merge AGi to AGn */
3488 			bmp->db_agfree[n] += bmp->db_agfree[i];
3489 		}
3490 	}
3491 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3492 
3493 	for (; n < MAXAG; n++)
3494 		bmp->db_agfree[n] = 0;
3495 
3496 	/*
3497 	 * update highest active ag number
3498 	 */
3499 
3500 	bmp->db_maxag = bmp->db_maxag / k;
3501 
3502 	/*
3503 	 *	extend bmap
3504 	 *
3505 	 * update bit maps and corresponding level control pages;
3506 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3507 	 */
3508       extend:
3509 	/* get L2 page */
3510 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3511 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3512 	if (!l2mp) {
3513 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3514 		return -EIO;
3515 	}
3516 	l2dcp = (struct dmapctl *) l2mp->data;
3517 
3518 	/* compute start L1 */
3519 	k = blkno >> L2MAXL1SIZE;
3520 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3521 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3522 
3523 	/*
3524 	 * extend each L1 in L2
3525 	 */
3526 	for (; k < LPERCTL; k++, p += nbperpage) {
3527 		/* get L1 page */
3528 		if (j0) {
3529 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3530 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3531 			if (l1mp == NULL)
3532 				goto errout;
3533 			l1dcp = (struct dmapctl *) l1mp->data;
3534 
3535 			/* compute start L0 */
3536 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3537 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3538 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3539 			j0 = false;
3540 		} else {
3541 			/* assign/init L1 page */
3542 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3543 			if (l1mp == NULL)
3544 				goto errout;
3545 
3546 			l1dcp = (struct dmapctl *) l1mp->data;
3547 
3548 			/* compute start L0 */
3549 			j = 0;
3550 			l1leaf = l1dcp->stree + CTLLEAFIND;
3551 			p += nbperpage;	/* 1st L0 of L1.k */
3552 		}
3553 
3554 		/*
3555 		 * extend each L0 in L1
3556 		 */
3557 		for (; j < LPERCTL; j++) {
3558 			/* get L0 page */
3559 			if (i0) {
3560 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3561 
3562 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3563 				if (l0mp == NULL)
3564 					goto errout;
3565 				l0dcp = (struct dmapctl *) l0mp->data;
3566 
3567 				/* compute start dmap */
3568 				i = (blkno & (MAXL0SIZE - 1)) >>
3569 				    L2BPERDMAP;
3570 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3571 				p = BLKTODMAP(blkno,
3572 					      sbi->l2nbperpage);
3573 				i0 = false;
3574 			} else {
3575 				/* assign/init L0 page */
3576 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3577 				if (l0mp == NULL)
3578 					goto errout;
3579 
3580 				l0dcp = (struct dmapctl *) l0mp->data;
3581 
3582 				/* compute start dmap */
3583 				i = 0;
3584 				l0leaf = l0dcp->stree + CTLLEAFIND;
3585 				p += nbperpage;	/* 1st dmap of L0.j */
3586 			}
3587 
3588 			/*
3589 			 * extend each dmap in L0
3590 			 */
3591 			for (; i < LPERCTL; i++) {
3592 				/*
3593 				 * reconstruct the dmap page, and
3594 				 * initialize corresponding parent L0 leaf
3595 				 */
3596 				if ((n = blkno & (BPERDMAP - 1))) {
3597 					/* read in dmap page: */
3598 					mp = read_metapage(ipbmap, p,
3599 							   PSIZE, 0);
3600 					if (mp == NULL)
3601 						goto errout;
3602 					n = min(nblocks, (s64)BPERDMAP - n);
3603 				} else {
3604 					/* assign/init dmap page */
3605 					mp = read_metapage(ipbmap, p,
3606 							   PSIZE, 0);
3607 					if (mp == NULL)
3608 						goto errout;
3609 
3610 					n = min_t(s64, nblocks, BPERDMAP);
3611 				}
3612 
3613 				dp = (struct dmap *) mp->data;
3614 				*l0leaf = dbInitDmap(dp, blkno, n);
3615 
3616 				bmp->db_nfree += n;
3617 				agno = le64_to_cpu(dp->start) >> l2agsize;
3618 				bmp->db_agfree[agno] += n;
3619 
3620 				write_metapage(mp);
3621 
3622 				l0leaf++;
3623 				p += nbperpage;
3624 
3625 				blkno += n;
3626 				nblocks -= n;
3627 				if (nblocks == 0)
3628 					break;
3629 			}	/* for each dmap in a L0 */
3630 
3631 			/*
3632 			 * build current L0 page from its leaves, and
3633 			 * initialize corresponding parent L1 leaf
3634 			 */
3635 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3636 			write_metapage(l0mp);
3637 			l0mp = NULL;
3638 
3639 			if (nblocks)
3640 				l1leaf++;	/* continue for next L0 */
3641 			else {
3642 				/* more than 1 L0 ? */
3643 				if (j > 0)
3644 					break;	/* build L1 page */
3645 				else {
3646 					/* summarize in global bmap page */
3647 					bmp->db_maxfreebud = *l1leaf;
3648 					release_metapage(l1mp);
3649 					release_metapage(l2mp);
3650 					goto finalize;
3651 				}
3652 			}
3653 		}		/* for each L0 in a L1 */
3654 
3655 		/*
3656 		 * build current L1 page from its leaves, and
3657 		 * initialize corresponding parent L2 leaf
3658 		 */
3659 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3660 		write_metapage(l1mp);
3661 		l1mp = NULL;
3662 
3663 		if (nblocks)
3664 			l2leaf++;	/* continue for next L1 */
3665 		else {
3666 			/* more than 1 L1 ? */
3667 			if (k > 0)
3668 				break;	/* build L2 page */
3669 			else {
3670 				/* summarize in global bmap page */
3671 				bmp->db_maxfreebud = *l2leaf;
3672 				release_metapage(l2mp);
3673 				goto finalize;
3674 			}
3675 		}
3676 	}			/* for each L1 in a L2 */
3677 
3678 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3679 errout:
3680 	if (l0mp)
3681 		release_metapage(l0mp);
3682 	if (l1mp)
3683 		release_metapage(l1mp);
3684 	release_metapage(l2mp);
3685 	return -EIO;
3686 
3687 	/*
3688 	 *	finalize bmap control page
3689 	 */
3690 finalize:
3691 
3692 	return 0;
3693 }
3694 
3695 
3696 /*
3697  *	dbFinalizeBmap()
3698  */
dbFinalizeBmap(struct inode * ipbmap)3699 void dbFinalizeBmap(struct inode *ipbmap)
3700 {
3701 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3702 	int actags, inactags, l2nl;
3703 	s64 ag_rem, actfree, inactfree, avgfree;
3704 	int i, n;
3705 
3706 	/*
3707 	 *	finalize bmap control page
3708 	 */
3709 //finalize:
3710 	/*
3711 	 * compute db_agpref: preferred ag to allocate from
3712 	 * (the leftmost ag with average free space in it);
3713 	 */
3714 //agpref:
3715 	/* get the number of active ags and inactive ags */
3716 	actags = bmp->db_maxag + 1;
3717 	inactags = bmp->db_numag - actags;
3718 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3719 
3720 	/* determine how many blocks are in the inactive allocation
3721 	 * groups. in doing this, we must account for the fact that
3722 	 * the rightmost group might be a partial group (i.e. file
3723 	 * system size is not a multiple of the group size).
3724 	 */
3725 	inactfree = (inactags && ag_rem) ?
3726 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3727 	    : inactags << bmp->db_agl2size;
3728 
3729 	/* determine how many free blocks are in the active
3730 	 * allocation groups plus the average number of free blocks
3731 	 * within the active ags.
3732 	 */
3733 	actfree = bmp->db_nfree - inactfree;
3734 	avgfree = (u32) actfree / (u32) actags;
3735 
3736 	/* if the preferred allocation group has not average free space.
3737 	 * re-establish the preferred group as the leftmost
3738 	 * group with average free space.
3739 	 */
3740 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3741 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3742 		     bmp->db_agpref++) {
3743 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3744 				break;
3745 		}
3746 		if (bmp->db_agpref >= bmp->db_numag) {
3747 			jfs_error(ipbmap->i_sb,
3748 				  "cannot find ag with average freespace\n");
3749 		}
3750 	}
3751 
3752 	/*
3753 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3754 	 * an ag is covered in aglevel dmapctl summary tree,
3755 	 * at agheight level height (from leaf) with agwidth number of nodes
3756 	 * each, which starts at agstart index node of the smmary tree node
3757 	 * array;
3758 	 */
3759 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3760 	l2nl =
3761 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3762 	bmp->db_agheight = l2nl >> 1;
3763 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3764 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3765 	     i--) {
3766 		bmp->db_agstart += n;
3767 		n <<= 2;
3768 	}
3769 
3770 }
3771 
3772 
3773 /*
3774  * NAME:	dbInitDmap()/ujfs_idmap_page()
3775  *
3776  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3777  *		for the specified number of blocks:
3778  *
3779  *		at entry, the bitmaps had been initialized as free (ZEROS);
3780  *		The number of blocks will only account for the actually
3781  *		existing blocks. Blocks which don't actually exist in
3782  *		the aggregate will be marked as allocated (ONES);
3783  *
3784  * PARAMETERS:
3785  *	dp	- pointer to page of map
3786  *	nblocks	- number of blocks this page
3787  *
3788  * RETURNS: NONE
3789  */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3790 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3791 {
3792 	int blkno, w, b, r, nw, nb, i;
3793 
3794 	/* starting block number within the dmap */
3795 	blkno = Blkno & (BPERDMAP - 1);
3796 
3797 	if (blkno == 0) {
3798 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3799 		dp->start = cpu_to_le64(Blkno);
3800 
3801 		if (nblocks == BPERDMAP) {
3802 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3803 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3804 			goto initTree;
3805 		}
3806 	} else {
3807 		le32_add_cpu(&dp->nblocks, nblocks);
3808 		le32_add_cpu(&dp->nfree, nblocks);
3809 	}
3810 
3811 	/* word number containing start block number */
3812 	w = blkno >> L2DBWORD;
3813 
3814 	/*
3815 	 * free the bits corresponding to the block range (ZEROS):
3816 	 * note: not all bits of the first and last words may be contained
3817 	 * within the block range.
3818 	 */
3819 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3820 		/* number of bits preceding range to be freed in the word */
3821 		b = blkno & (DBWORD - 1);
3822 		/* number of bits to free in the word */
3823 		nb = min(r, DBWORD - b);
3824 
3825 		/* is partial word to be freed ? */
3826 		if (nb < DBWORD) {
3827 			/* free (set to 0) from the bitmap word */
3828 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3829 						     >> b));
3830 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3831 						     >> b));
3832 
3833 			/* skip the word freed */
3834 			w++;
3835 		} else {
3836 			/* free (set to 0) contiguous bitmap words */
3837 			nw = r >> L2DBWORD;
3838 			memset(&dp->wmap[w], 0, nw * 4);
3839 			memset(&dp->pmap[w], 0, nw * 4);
3840 
3841 			/* skip the words freed */
3842 			nb = nw << L2DBWORD;
3843 			w += nw;
3844 		}
3845 	}
3846 
3847 	/*
3848 	 * mark bits following the range to be freed (non-existing
3849 	 * blocks) as allocated (ONES)
3850 	 */
3851 
3852 	if (blkno == BPERDMAP)
3853 		goto initTree;
3854 
3855 	/* the first word beyond the end of existing blocks */
3856 	w = blkno >> L2DBWORD;
3857 
3858 	/* does nblocks fall on a 32-bit boundary ? */
3859 	b = blkno & (DBWORD - 1);
3860 	if (b) {
3861 		/* mark a partial word allocated */
3862 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3863 		w++;
3864 	}
3865 
3866 	/* set the rest of the words in the page to allocated (ONES) */
3867 	for (i = w; i < LPERDMAP; i++)
3868 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3869 
3870 	/*
3871 	 * init tree
3872 	 */
3873       initTree:
3874 	return (dbInitDmapTree(dp));
3875 }
3876 
3877 
3878 /*
3879  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3880  *
3881  * FUNCTION:	initialize summary tree of the specified dmap:
3882  *
3883  *		at entry, bitmap of the dmap has been initialized;
3884  *
3885  * PARAMETERS:
3886  *	dp	- dmap to complete
3887  *	blkno	- starting block number for this dmap
3888  *	treemax	- will be filled in with max free for this dmap
3889  *
3890  * RETURNS:	max free string at the root of the tree
3891  */
dbInitDmapTree(struct dmap * dp)3892 static int dbInitDmapTree(struct dmap * dp)
3893 {
3894 	struct dmaptree *tp;
3895 	s8 *cp;
3896 	int i;
3897 
3898 	/* init fixed info of tree */
3899 	tp = &dp->tree;
3900 	tp->nleafs = cpu_to_le32(LPERDMAP);
3901 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3902 	tp->leafidx = cpu_to_le32(LEAFIND);
3903 	tp->height = cpu_to_le32(4);
3904 	tp->budmin = BUDMIN;
3905 
3906 	/* init each leaf from corresponding wmap word:
3907 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3908 	 * bitmap word are allocated.
3909 	 */
3910 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3911 	for (i = 0; i < LPERDMAP; i++)
3912 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3913 
3914 	/* build the dmap's binary buddy summary tree */
3915 	return (dbInitTree(tp));
3916 }
3917 
3918 
3919 /*
3920  * NAME:	dbInitTree()/ujfs_adjtree()
3921  *
3922  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3923  *
3924  *		at entry, the leaves of the tree has been initialized
3925  *		from corresponding bitmap word or root of summary tree
3926  *		of the child control page;
3927  *		configure binary buddy system at the leaf level, then
3928  *		bubble up the values of the leaf nodes up the tree.
3929  *
3930  * PARAMETERS:
3931  *	cp	- Pointer to the root of the tree
3932  *	l2leaves- Number of leaf nodes as a power of 2
3933  *	l2min	- Number of blocks that can be covered by a leaf
3934  *		  as a power of 2
3935  *
3936  * RETURNS: max free string at the root of the tree
3937  */
dbInitTree(struct dmaptree * dtp)3938 static int dbInitTree(struct dmaptree * dtp)
3939 {
3940 	int l2max, l2free, bsize, nextb, i;
3941 	int child, parent, nparent;
3942 	s8 *tp, *cp, *cp1;
3943 
3944 	tp = dtp->stree;
3945 
3946 	/* Determine the maximum free string possible for the leaves */
3947 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3948 
3949 	/*
3950 	 * configure the leaf levevl into binary buddy system
3951 	 *
3952 	 * Try to combine buddies starting with a buddy size of 1
3953 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3954 	 * can be combined if both buddies have a maximum free of l2min;
3955 	 * the combination will result in the left-most buddy leaf having
3956 	 * a maximum free of l2min+1.
3957 	 * After processing all buddies for a given size, process buddies
3958 	 * at the next higher buddy size (i.e. current size * 2) and
3959 	 * the next maximum free (current free + 1).
3960 	 * This continues until the maximum possible buddy combination
3961 	 * yields maximum free.
3962 	 */
3963 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3964 	     l2free++, bsize = nextb) {
3965 		/* get next buddy size == current buddy pair size */
3966 		nextb = bsize << 1;
3967 
3968 		/* scan each adjacent buddy pair at current buddy size */
3969 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3970 		     i < le32_to_cpu(dtp->nleafs);
3971 		     i += nextb, cp += nextb) {
3972 			/* coalesce if both adjacent buddies are max free */
3973 			if (*cp == l2free && *(cp + bsize) == l2free) {
3974 				*cp = l2free + 1;	/* left take right */
3975 				*(cp + bsize) = -1;	/* right give left */
3976 			}
3977 		}
3978 	}
3979 
3980 	/*
3981 	 * bubble summary information of leaves up the tree.
3982 	 *
3983 	 * Starting at the leaf node level, the four nodes described by
3984 	 * the higher level parent node are compared for a maximum free and
3985 	 * this maximum becomes the value of the parent node.
3986 	 * when all lower level nodes are processed in this fashion then
3987 	 * move up to the next level (parent becomes a lower level node) and
3988 	 * continue the process for that level.
3989 	 */
3990 	for (child = le32_to_cpu(dtp->leafidx),
3991 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3992 	     nparent > 0; nparent >>= 2, child = parent) {
3993 		/* get index of 1st node of parent level */
3994 		parent = (child - 1) >> 2;
3995 
3996 		/* set the value of the parent node as the maximum
3997 		 * of the four nodes of the current level.
3998 		 */
3999 		for (i = 0, cp = tp + child, cp1 = tp + parent;
4000 		     i < nparent; i++, cp += 4, cp1++)
4001 			*cp1 = TREEMAX(cp);
4002 	}
4003 
4004 	return (*tp);
4005 }
4006 
4007 
4008 /*
4009  *	dbInitDmapCtl()
4010  *
4011  * function: initialize dmapctl page
4012  */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)4013 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
4014 {				/* start leaf index not covered by range */
4015 	s8 *cp;
4016 
4017 	dcp->nleafs = cpu_to_le32(LPERCTL);
4018 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
4019 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
4020 	dcp->height = cpu_to_le32(5);
4021 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
4022 
4023 	/*
4024 	 * initialize the leaves of current level that were not covered
4025 	 * by the specified input block range (i.e. the leaves have no
4026 	 * low level dmapctl or dmap).
4027 	 */
4028 	cp = &dcp->stree[CTLLEAFIND + i];
4029 	for (; i < LPERCTL; i++)
4030 		*cp++ = NOFREE;
4031 
4032 	/* build the dmap's binary buddy summary tree */
4033 	return (dbInitTree((struct dmaptree *) dcp));
4034 }
4035 
4036 
4037 /*
4038  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
4039  *
4040  * FUNCTION:	Determine log2(allocation group size) from aggregate size
4041  *
4042  * PARAMETERS:
4043  *	nblocks	- Number of blocks in aggregate
4044  *
4045  * RETURNS: log2(allocation group size) in aggregate blocks
4046  */
dbGetL2AGSize(s64 nblocks)4047 static int dbGetL2AGSize(s64 nblocks)
4048 {
4049 	s64 sz;
4050 	s64 m;
4051 	int l2sz;
4052 
4053 	if (nblocks < BPERDMAP * MAXAG)
4054 		return (L2BPERDMAP);
4055 
4056 	/* round up aggregate size to power of 2 */
4057 	m = ((u64) 1 << (64 - 1));
4058 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4059 		if (m & nblocks)
4060 			break;
4061 	}
4062 
4063 	sz = (s64) 1 << l2sz;
4064 	if (sz < nblocks)
4065 		l2sz += 1;
4066 
4067 	/* agsize = roundupSize/max_number_of_ag */
4068 	return (l2sz - L2MAXAG);
4069 }
4070 
4071 
4072 /*
4073  * NAME:	dbMapFileSizeToMapSize()
4074  *
4075  * FUNCTION:	compute number of blocks the block allocation map file
4076  *		can cover from the map file size;
4077  *
4078  * RETURNS:	Number of blocks which can be covered by this block map file;
4079  */
4080 
4081 /*
4082  * maximum number of map pages at each level including control pages
4083  */
4084 #define MAXL0PAGES	(1 + LPERCTL)
4085 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4086 
4087 /*
4088  * convert number of map pages to the zero origin top dmapctl level
4089  */
4090 #define BMAPPGTOLEV(npages)	\
4091 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4092 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4093 
dbMapFileSizeToMapSize(struct inode * ipbmap)4094 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4095 {
4096 	struct super_block *sb = ipbmap->i_sb;
4097 	s64 nblocks;
4098 	s64 npages, ndmaps;
4099 	int level, i;
4100 	int complete, factor;
4101 
4102 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4103 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4104 	level = BMAPPGTOLEV(npages);
4105 
4106 	/* At each level, accumulate the number of dmap pages covered by
4107 	 * the number of full child levels below it;
4108 	 * repeat for the last incomplete child level.
4109 	 */
4110 	ndmaps = 0;
4111 	npages--;		/* skip the first global control page */
4112 	/* skip higher level control pages above top level covered by map */
4113 	npages -= (2 - level);
4114 	npages--;		/* skip top level's control page */
4115 	for (i = level; i >= 0; i--) {
4116 		factor =
4117 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4118 		complete = (u32) npages / factor;
4119 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4120 				      ((i == 1) ? LPERCTL : 1));
4121 
4122 		/* pages in last/incomplete child */
4123 		npages = (u32) npages % factor;
4124 		/* skip incomplete child's level control page */
4125 		npages--;
4126 	}
4127 
4128 	/* convert the number of dmaps into the number of blocks
4129 	 * which can be covered by the dmaps;
4130 	 */
4131 	nblocks = ndmaps << L2BPERDMAP;
4132 
4133 	return (nblocks);
4134 }
4135