1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20
21 #define FS_CRYPTO_BLOCK_SIZE 16
22
23 union fscrypt_policy;
24 struct fscrypt_info;
25 struct seq_file;
26
27 struct fscrypt_str {
28 unsigned char *name;
29 u32 len;
30 };
31
32 struct fscrypt_name {
33 const struct qstr *usr_fname;
34 struct fscrypt_str disk_name;
35 u32 hash;
36 u32 minor_hash;
37 struct fscrypt_str crypto_buf;
38 bool is_nokey_name;
39 };
40
41 #define FSTR_INIT(n, l) { .name = n, .len = l }
42 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
43 #define fname_name(p) ((p)->disk_name.name)
44 #define fname_len(p) ((p)->disk_name.len)
45
46 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
47 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
48
49 #ifdef CONFIG_FS_ENCRYPTION
50
51 /*
52 * If set, the fscrypt bounce page pool won't be allocated (unless another
53 * filesystem needs it). Set this if the filesystem always uses its own bounce
54 * pages for writes and therefore won't need the fscrypt bounce page pool.
55 */
56 #define FS_CFLG_OWN_PAGES (1U << 1)
57
58 /* Crypto operations for filesystems */
59 struct fscrypt_operations {
60
61 /* Set of optional flags; see above for allowed flags */
62 unsigned int flags;
63
64 /*
65 * If set, this is a filesystem-specific key description prefix that
66 * will be accepted for "logon" keys for v1 fscrypt policies, in
67 * addition to the generic prefix "fscrypt:". This functionality is
68 * deprecated, so new filesystems shouldn't set this field.
69 */
70 const char *key_prefix;
71
72 /*
73 * Get the fscrypt context of the given inode.
74 *
75 * @inode: the inode whose context to get
76 * @ctx: the buffer into which to get the context
77 * @len: length of the @ctx buffer in bytes
78 *
79 * Return: On success, returns the length of the context in bytes; this
80 * may be less than @len. On failure, returns -ENODATA if the
81 * inode doesn't have a context, -ERANGE if the context is
82 * longer than @len, or another -errno code.
83 */
84 int (*get_context)(struct inode *inode, void *ctx, size_t len);
85
86 /*
87 * Set an fscrypt context on the given inode.
88 *
89 * @inode: the inode whose context to set. The inode won't already have
90 * an fscrypt context.
91 * @ctx: the context to set
92 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
93 * @fs_data: If called from fscrypt_set_context(), this will be the
94 * value the filesystem passed to fscrypt_set_context().
95 * Otherwise (i.e. when called from
96 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
97 *
98 * i_rwsem will be held for write.
99 *
100 * Return: 0 on success, -errno on failure.
101 */
102 int (*set_context)(struct inode *inode, const void *ctx, size_t len,
103 void *fs_data);
104
105 /*
106 * Get the dummy fscrypt policy in use on the filesystem (if any).
107 *
108 * Filesystems only need to implement this function if they support the
109 * test_dummy_encryption mount option.
110 *
111 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
112 * mounted with test_dummy_encryption; otherwise NULL.
113 */
114 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
115
116 /*
117 * Check whether a directory is empty. i_rwsem will be held for write.
118 */
119 bool (*empty_dir)(struct inode *inode);
120
121 /*
122 * Check whether the filesystem's inode numbers and UUID are stable,
123 * meaning that they will never be changed even by offline operations
124 * such as filesystem shrinking and therefore can be used in the
125 * encryption without the possibility of files becoming unreadable.
126 *
127 * Filesystems only need to implement this function if they want to
128 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
129 * flags are designed to work around the limitations of UFS and eMMC
130 * inline crypto hardware, and they shouldn't be used in scenarios where
131 * such hardware isn't being used.
132 *
133 * Leaving this NULL is equivalent to always returning false.
134 */
135 bool (*has_stable_inodes)(struct super_block *sb);
136
137 /*
138 * Get the number of bits that the filesystem uses to represent inode
139 * numbers and file logical block numbers.
140 *
141 * By default, both of these are assumed to be 64-bit. This function
142 * can be implemented to declare that either or both of these numbers is
143 * shorter, which may allow the use of the
144 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
145 * inline crypto hardware whose maximum DUN length is less than 64 bits
146 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs
147 * to be implemented if support for one of these features is needed.
148 */
149 void (*get_ino_and_lblk_bits)(struct super_block *sb,
150 int *ino_bits_ret, int *lblk_bits_ret);
151
152 /*
153 * Return the number of block devices to which the filesystem may write
154 * encrypted file contents.
155 *
156 * If the filesystem can use multiple block devices (other than block
157 * devices that aren't used for encrypted file contents, such as
158 * external journal devices), and wants to support inline encryption,
159 * then it must implement this function. Otherwise it's not needed.
160 */
161 int (*get_num_devices)(struct super_block *sb);
162
163 /*
164 * If ->get_num_devices() returns a value greater than 1, then this
165 * function is called to get the array of request_queues that the
166 * filesystem is using -- one per block device. (There may be duplicate
167 * entries in this array, as block devices can share a request_queue.)
168 */
169 void (*get_devices)(struct super_block *sb,
170 struct request_queue **devs);
171
172 ANDROID_KABI_RESERVE(1);
173 ANDROID_KABI_RESERVE(2);
174 ANDROID_KABI_RESERVE(3);
175 ANDROID_KABI_RESERVE(4);
176
177 ANDROID_OEM_DATA_ARRAY(1, 4);
178 };
179
fscrypt_get_info(const struct inode * inode)180 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
181 {
182 /*
183 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
184 * I.e., another task may publish ->i_crypt_info concurrently, executing
185 * a RELEASE barrier. We need to use smp_load_acquire() here to safely
186 * ACQUIRE the memory the other task published.
187 */
188 return smp_load_acquire(&inode->i_crypt_info);
189 }
190
191 /**
192 * fscrypt_needs_contents_encryption() - check whether an inode needs
193 * contents encryption
194 * @inode: the inode to check
195 *
196 * Return: %true iff the inode is an encrypted regular file and the kernel was
197 * built with fscrypt support.
198 *
199 * If you need to know whether the encrypt bit is set even when the kernel was
200 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
201 */
fscrypt_needs_contents_encryption(const struct inode * inode)202 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
203 {
204 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
205 }
206
207 /*
208 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
209 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
210 * cleared. Note that we don't have to support arbitrary moves of this flag
211 * because fscrypt doesn't allow no-key names to be the source or target of a
212 * rename().
213 */
fscrypt_handle_d_move(struct dentry * dentry)214 static inline void fscrypt_handle_d_move(struct dentry *dentry)
215 {
216 dentry->d_flags &= ~DCACHE_NOKEY_NAME;
217 }
218
219 /**
220 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
221 * @dentry: the dentry to check
222 *
223 * This returns true if the dentry is a no-key dentry. A no-key dentry is a
224 * dentry that was created in an encrypted directory that hasn't had its
225 * encryption key added yet. Such dentries may be either positive or negative.
226 *
227 * When a filesystem is asked to create a new filename in an encrypted directory
228 * and the new filename's dentry is a no-key dentry, it must fail the operation
229 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
230 * ->rename(), and ->link(). (However, ->rename() and ->link() are already
231 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
232 *
233 * This is necessary because creating a filename requires the directory's
234 * encryption key, but just checking for the key on the directory inode during
235 * the final filesystem operation doesn't guarantee that the key was available
236 * during the preceding dentry lookup. And the key must have already been
237 * available during the dentry lookup in order for it to have been checked
238 * whether the filename already exists in the directory and for the new file's
239 * dentry not to be invalidated due to it incorrectly having the no-key flag.
240 *
241 * Return: %true if the dentry is a no-key name
242 */
fscrypt_is_nokey_name(const struct dentry * dentry)243 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
244 {
245 return dentry->d_flags & DCACHE_NOKEY_NAME;
246 }
247
248 /* crypto.c */
249 void fscrypt_enqueue_decrypt_work(struct work_struct *);
250
251 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
252 unsigned int len,
253 unsigned int offs,
254 gfp_t gfp_flags);
255 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
256 unsigned int len, unsigned int offs,
257 u64 lblk_num, gfp_t gfp_flags);
258
259 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
260 unsigned int offs);
261 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
262 unsigned int len, unsigned int offs,
263 u64 lblk_num);
264
fscrypt_is_bounce_page(struct page * page)265 static inline bool fscrypt_is_bounce_page(struct page *page)
266 {
267 return page->mapping == NULL;
268 }
269
fscrypt_pagecache_page(struct page * bounce_page)270 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
271 {
272 return (struct page *)page_private(bounce_page);
273 }
274
275 void fscrypt_free_bounce_page(struct page *bounce_page);
276
277 /* policy.c */
278 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
279 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
280 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
281 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
282 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
283 int fscrypt_set_context(struct inode *inode, void *fs_data);
284
285 struct fscrypt_dummy_policy {
286 const union fscrypt_policy *policy;
287 };
288
289 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
290 struct fscrypt_dummy_policy *dummy_policy);
291 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
292 struct super_block *sb);
293 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)294 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
295 {
296 kfree(dummy_policy->policy);
297 dummy_policy->policy = NULL;
298 }
299
300 /* keyring.c */
301 void fscrypt_destroy_keyring(struct super_block *sb);
302 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
303 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
304 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
305 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
306
307 /* keysetup.c */
308 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
309 bool *encrypt_ret);
310 void fscrypt_put_encryption_info(struct inode *inode);
311 void fscrypt_free_inode(struct inode *inode);
312 int fscrypt_drop_inode(struct inode *inode);
313
314 /* fname.c */
315 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
316 int lookup, struct fscrypt_name *fname);
317
fscrypt_free_filename(struct fscrypt_name * fname)318 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
319 {
320 kfree(fname->crypto_buf.name);
321 }
322
323 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
324 struct fscrypt_str *crypto_str);
325 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
326 int fscrypt_fname_disk_to_usr(const struct inode *inode,
327 u32 hash, u32 minor_hash,
328 const struct fscrypt_str *iname,
329 struct fscrypt_str *oname);
330 bool fscrypt_match_name(const struct fscrypt_name *fname,
331 const u8 *de_name, u32 de_name_len);
332 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
333 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
334
335 /* bio.c */
336 void fscrypt_decrypt_bio(struct bio *bio);
337 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
338 sector_t pblk, unsigned int len);
339
340 /* hooks.c */
341 int fscrypt_file_open(struct inode *inode, struct file *filp);
342 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
343 struct dentry *dentry);
344 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
345 struct inode *new_dir, struct dentry *new_dentry,
346 unsigned int flags);
347 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
348 struct fscrypt_name *fname);
349 int __fscrypt_prepare_readdir(struct inode *dir);
350 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
351 int fscrypt_prepare_setflags(struct inode *inode,
352 unsigned int oldflags, unsigned int flags);
353 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
354 unsigned int len, unsigned int max_len,
355 struct fscrypt_str *disk_link);
356 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
357 unsigned int len, struct fscrypt_str *disk_link);
358 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
359 unsigned int max_size,
360 struct delayed_call *done);
361 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)362 static inline void fscrypt_set_ops(struct super_block *sb,
363 const struct fscrypt_operations *s_cop)
364 {
365 sb->s_cop = s_cop;
366 }
367 #else /* !CONFIG_FS_ENCRYPTION */
368
fscrypt_get_info(const struct inode * inode)369 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
370 {
371 return NULL;
372 }
373
fscrypt_needs_contents_encryption(const struct inode * inode)374 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
375 {
376 return false;
377 }
378
fscrypt_handle_d_move(struct dentry * dentry)379 static inline void fscrypt_handle_d_move(struct dentry *dentry)
380 {
381 }
382
fscrypt_is_nokey_name(const struct dentry * dentry)383 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
384 {
385 return false;
386 }
387
388 /* crypto.c */
fscrypt_enqueue_decrypt_work(struct work_struct * work)389 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
390 {
391 }
392
fscrypt_encrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs,gfp_t gfp_flags)393 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
394 unsigned int len,
395 unsigned int offs,
396 gfp_t gfp_flags)
397 {
398 return ERR_PTR(-EOPNOTSUPP);
399 }
400
fscrypt_encrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)401 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
402 struct page *page,
403 unsigned int len,
404 unsigned int offs, u64 lblk_num,
405 gfp_t gfp_flags)
406 {
407 return -EOPNOTSUPP;
408 }
409
fscrypt_decrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs)410 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
411 unsigned int len,
412 unsigned int offs)
413 {
414 return -EOPNOTSUPP;
415 }
416
fscrypt_decrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)417 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
418 struct page *page,
419 unsigned int len,
420 unsigned int offs, u64 lblk_num)
421 {
422 return -EOPNOTSUPP;
423 }
424
fscrypt_is_bounce_page(struct page * page)425 static inline bool fscrypt_is_bounce_page(struct page *page)
426 {
427 return false;
428 }
429
fscrypt_pagecache_page(struct page * bounce_page)430 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
431 {
432 WARN_ON_ONCE(1);
433 return ERR_PTR(-EINVAL);
434 }
435
fscrypt_free_bounce_page(struct page * bounce_page)436 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
437 {
438 }
439
440 /* policy.c */
fscrypt_ioctl_set_policy(struct file * filp,const void __user * arg)441 static inline int fscrypt_ioctl_set_policy(struct file *filp,
442 const void __user *arg)
443 {
444 return -EOPNOTSUPP;
445 }
446
fscrypt_ioctl_get_policy(struct file * filp,void __user * arg)447 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
448 {
449 return -EOPNOTSUPP;
450 }
451
fscrypt_ioctl_get_policy_ex(struct file * filp,void __user * arg)452 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
453 void __user *arg)
454 {
455 return -EOPNOTSUPP;
456 }
457
fscrypt_ioctl_get_nonce(struct file * filp,void __user * arg)458 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
459 {
460 return -EOPNOTSUPP;
461 }
462
fscrypt_has_permitted_context(struct inode * parent,struct inode * child)463 static inline int fscrypt_has_permitted_context(struct inode *parent,
464 struct inode *child)
465 {
466 return 0;
467 }
468
fscrypt_set_context(struct inode * inode,void * fs_data)469 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
470 {
471 return -EOPNOTSUPP;
472 }
473
474 struct fscrypt_dummy_policy {
475 };
476
fscrypt_show_test_dummy_encryption(struct seq_file * seq,char sep,struct super_block * sb)477 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
478 char sep,
479 struct super_block *sb)
480 {
481 }
482
483 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)484 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
485 {
486 }
487
488 /* keyring.c */
fscrypt_destroy_keyring(struct super_block * sb)489 static inline void fscrypt_destroy_keyring(struct super_block *sb)
490 {
491 }
492
fscrypt_ioctl_add_key(struct file * filp,void __user * arg)493 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
494 {
495 return -EOPNOTSUPP;
496 }
497
fscrypt_ioctl_remove_key(struct file * filp,void __user * arg)498 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
499 {
500 return -EOPNOTSUPP;
501 }
502
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * arg)503 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
504 void __user *arg)
505 {
506 return -EOPNOTSUPP;
507 }
508
fscrypt_ioctl_get_key_status(struct file * filp,void __user * arg)509 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
510 void __user *arg)
511 {
512 return -EOPNOTSUPP;
513 }
514
515 /* keysetup.c */
516
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)517 static inline int fscrypt_prepare_new_inode(struct inode *dir,
518 struct inode *inode,
519 bool *encrypt_ret)
520 {
521 if (IS_ENCRYPTED(dir))
522 return -EOPNOTSUPP;
523 return 0;
524 }
525
fscrypt_put_encryption_info(struct inode * inode)526 static inline void fscrypt_put_encryption_info(struct inode *inode)
527 {
528 return;
529 }
530
fscrypt_free_inode(struct inode * inode)531 static inline void fscrypt_free_inode(struct inode *inode)
532 {
533 }
534
fscrypt_drop_inode(struct inode * inode)535 static inline int fscrypt_drop_inode(struct inode *inode)
536 {
537 return 0;
538 }
539
540 /* fname.c */
fscrypt_setup_filename(struct inode * dir,const struct qstr * iname,int lookup,struct fscrypt_name * fname)541 static inline int fscrypt_setup_filename(struct inode *dir,
542 const struct qstr *iname,
543 int lookup, struct fscrypt_name *fname)
544 {
545 if (IS_ENCRYPTED(dir))
546 return -EOPNOTSUPP;
547
548 memset(fname, 0, sizeof(*fname));
549 fname->usr_fname = iname;
550 fname->disk_name.name = (unsigned char *)iname->name;
551 fname->disk_name.len = iname->len;
552 return 0;
553 }
554
fscrypt_free_filename(struct fscrypt_name * fname)555 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
556 {
557 return;
558 }
559
fscrypt_fname_alloc_buffer(u32 max_encrypted_len,struct fscrypt_str * crypto_str)560 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
561 struct fscrypt_str *crypto_str)
562 {
563 return -EOPNOTSUPP;
564 }
565
fscrypt_fname_free_buffer(struct fscrypt_str * crypto_str)566 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
567 {
568 return;
569 }
570
fscrypt_fname_disk_to_usr(const struct inode * inode,u32 hash,u32 minor_hash,const struct fscrypt_str * iname,struct fscrypt_str * oname)571 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
572 u32 hash, u32 minor_hash,
573 const struct fscrypt_str *iname,
574 struct fscrypt_str *oname)
575 {
576 return -EOPNOTSUPP;
577 }
578
fscrypt_match_name(const struct fscrypt_name * fname,const u8 * de_name,u32 de_name_len)579 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
580 const u8 *de_name, u32 de_name_len)
581 {
582 /* Encryption support disabled; use standard comparison */
583 if (de_name_len != fname->disk_name.len)
584 return false;
585 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
586 }
587
fscrypt_fname_siphash(const struct inode * dir,const struct qstr * name)588 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
589 const struct qstr *name)
590 {
591 WARN_ON_ONCE(1);
592 return 0;
593 }
594
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)595 static inline int fscrypt_d_revalidate(struct dentry *dentry,
596 unsigned int flags)
597 {
598 return 1;
599 }
600
601 /* bio.c */
fscrypt_decrypt_bio(struct bio * bio)602 static inline void fscrypt_decrypt_bio(struct bio *bio)
603 {
604 }
605
fscrypt_zeroout_range(const struct inode * inode,pgoff_t lblk,sector_t pblk,unsigned int len)606 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
607 sector_t pblk, unsigned int len)
608 {
609 return -EOPNOTSUPP;
610 }
611
612 /* hooks.c */
613
fscrypt_file_open(struct inode * inode,struct file * filp)614 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
615 {
616 if (IS_ENCRYPTED(inode))
617 return -EOPNOTSUPP;
618 return 0;
619 }
620
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)621 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
622 struct dentry *dentry)
623 {
624 return -EOPNOTSUPP;
625 }
626
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)627 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
628 struct dentry *old_dentry,
629 struct inode *new_dir,
630 struct dentry *new_dentry,
631 unsigned int flags)
632 {
633 return -EOPNOTSUPP;
634 }
635
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)636 static inline int __fscrypt_prepare_lookup(struct inode *dir,
637 struct dentry *dentry,
638 struct fscrypt_name *fname)
639 {
640 return -EOPNOTSUPP;
641 }
642
__fscrypt_prepare_readdir(struct inode * dir)643 static inline int __fscrypt_prepare_readdir(struct inode *dir)
644 {
645 return -EOPNOTSUPP;
646 }
647
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)648 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
649 struct iattr *attr)
650 {
651 return -EOPNOTSUPP;
652 }
653
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)654 static inline int fscrypt_prepare_setflags(struct inode *inode,
655 unsigned int oldflags,
656 unsigned int flags)
657 {
658 return 0;
659 }
660
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)661 static inline int fscrypt_prepare_symlink(struct inode *dir,
662 const char *target,
663 unsigned int len,
664 unsigned int max_len,
665 struct fscrypt_str *disk_link)
666 {
667 if (IS_ENCRYPTED(dir))
668 return -EOPNOTSUPP;
669 disk_link->name = (unsigned char *)target;
670 disk_link->len = len + 1;
671 if (disk_link->len > max_len)
672 return -ENAMETOOLONG;
673 return 0;
674 }
675
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)676 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
677 const char *target,
678 unsigned int len,
679 struct fscrypt_str *disk_link)
680 {
681 return -EOPNOTSUPP;
682 }
683
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)684 static inline const char *fscrypt_get_symlink(struct inode *inode,
685 const void *caddr,
686 unsigned int max_size,
687 struct delayed_call *done)
688 {
689 return ERR_PTR(-EOPNOTSUPP);
690 }
691
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)692 static inline int fscrypt_symlink_getattr(const struct path *path,
693 struct kstat *stat)
694 {
695 return -EOPNOTSUPP;
696 }
697
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)698 static inline void fscrypt_set_ops(struct super_block *sb,
699 const struct fscrypt_operations *s_cop)
700 {
701 }
702
703 #endif /* !CONFIG_FS_ENCRYPTION */
704
705 /* inline_crypt.c */
706 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
707
708 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
709
710 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
711 const struct inode *inode, u64 first_lblk,
712 gfp_t gfp_mask);
713
714 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
715 const struct buffer_head *first_bh,
716 gfp_t gfp_mask);
717
718 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
719 u64 next_lblk);
720
721 bool fscrypt_mergeable_bio_bh(struct bio *bio,
722 const struct buffer_head *next_bh);
723
724 bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter);
725
726 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
727
728 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
729
__fscrypt_inode_uses_inline_crypto(const struct inode * inode)730 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
731 {
732 return false;
733 }
734
fscrypt_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,u64 first_lblk,gfp_t gfp_mask)735 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
736 const struct inode *inode,
737 u64 first_lblk, gfp_t gfp_mask) { }
738
fscrypt_set_bio_crypt_ctx_bh(struct bio * bio,const struct buffer_head * first_bh,gfp_t gfp_mask)739 static inline void fscrypt_set_bio_crypt_ctx_bh(
740 struct bio *bio,
741 const struct buffer_head *first_bh,
742 gfp_t gfp_mask) { }
743
fscrypt_mergeable_bio(struct bio * bio,const struct inode * inode,u64 next_lblk)744 static inline bool fscrypt_mergeable_bio(struct bio *bio,
745 const struct inode *inode,
746 u64 next_lblk)
747 {
748 return true;
749 }
750
fscrypt_mergeable_bio_bh(struct bio * bio,const struct buffer_head * next_bh)751 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
752 const struct buffer_head *next_bh)
753 {
754 return true;
755 }
756
fscrypt_dio_supported(struct kiocb * iocb,struct iov_iter * iter)757 static inline bool fscrypt_dio_supported(struct kiocb *iocb,
758 struct iov_iter *iter)
759 {
760 const struct inode *inode = file_inode(iocb->ki_filp);
761
762 return !fscrypt_needs_contents_encryption(inode);
763 }
764
fscrypt_limit_io_blocks(const struct inode * inode,u64 lblk,u64 nr_blocks)765 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
766 u64 nr_blocks)
767 {
768 return nr_blocks;
769 }
770 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
771
772 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
773 static inline bool
fscrypt_inode_should_skip_dm_default_key(const struct inode * inode)774 fscrypt_inode_should_skip_dm_default_key(const struct inode *inode)
775 {
776 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
777 }
778 #else
779 static inline bool
fscrypt_inode_should_skip_dm_default_key(const struct inode * inode)780 fscrypt_inode_should_skip_dm_default_key(const struct inode *inode)
781 {
782 return false;
783 }
784 #endif
785
786 /**
787 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
788 * encryption
789 * @inode: an inode. If encrypted, its key must be set up.
790 *
791 * Return: true if the inode requires file contents encryption and if the
792 * encryption should be done in the block layer via blk-crypto rather
793 * than in the filesystem layer.
794 */
fscrypt_inode_uses_inline_crypto(const struct inode * inode)795 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
796 {
797 return fscrypt_needs_contents_encryption(inode) &&
798 __fscrypt_inode_uses_inline_crypto(inode);
799 }
800
801 /**
802 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
803 * encryption
804 * @inode: an inode. If encrypted, its key must be set up.
805 *
806 * Return: true if the inode requires file contents encryption and if the
807 * encryption should be done in the filesystem layer rather than in the
808 * block layer via blk-crypto.
809 */
fscrypt_inode_uses_fs_layer_crypto(const struct inode * inode)810 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
811 {
812 return fscrypt_needs_contents_encryption(inode) &&
813 !__fscrypt_inode_uses_inline_crypto(inode);
814 }
815
816 /**
817 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
818 * @inode: the inode to check
819 *
820 * Return: %true if the inode has had its encryption key set up, else %false.
821 *
822 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
823 * set up the key first.
824 */
fscrypt_has_encryption_key(const struct inode * inode)825 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
826 {
827 return fscrypt_get_info(inode) != NULL;
828 }
829
830 /**
831 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
832 * directory
833 * @old_dentry: an existing dentry for the inode being linked
834 * @dir: the target directory
835 * @dentry: negative dentry for the target filename
836 *
837 * A new link can only be added to an encrypted directory if the directory's
838 * encryption key is available --- since otherwise we'd have no way to encrypt
839 * the filename.
840 *
841 * We also verify that the link will not violate the constraint that all files
842 * in an encrypted directory tree use the same encryption policy.
843 *
844 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
845 * -EXDEV if the link would result in an inconsistent encryption policy, or
846 * another -errno code.
847 */
fscrypt_prepare_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)848 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
849 struct inode *dir,
850 struct dentry *dentry)
851 {
852 if (IS_ENCRYPTED(dir))
853 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
854 return 0;
855 }
856
857 /**
858 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
859 * directories
860 * @old_dir: source directory
861 * @old_dentry: dentry for source file
862 * @new_dir: target directory
863 * @new_dentry: dentry for target location (may be negative unless exchanging)
864 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
865 *
866 * Prepare for ->rename() where the source and/or target directories may be
867 * encrypted. A new link can only be added to an encrypted directory if the
868 * directory's encryption key is available --- since otherwise we'd have no way
869 * to encrypt the filename. A rename to an existing name, on the other hand,
870 * *is* cryptographically possible without the key. However, we take the more
871 * conservative approach and just forbid all no-key renames.
872 *
873 * We also verify that the rename will not violate the constraint that all files
874 * in an encrypted directory tree use the same encryption policy.
875 *
876 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
877 * rename would cause inconsistent encryption policies, or another -errno code.
878 */
fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)879 static inline int fscrypt_prepare_rename(struct inode *old_dir,
880 struct dentry *old_dentry,
881 struct inode *new_dir,
882 struct dentry *new_dentry,
883 unsigned int flags)
884 {
885 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
886 return __fscrypt_prepare_rename(old_dir, old_dentry,
887 new_dir, new_dentry, flags);
888 return 0;
889 }
890
891 /**
892 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
893 * directory
894 * @dir: directory being searched
895 * @dentry: filename being looked up
896 * @fname: (output) the name to use to search the on-disk directory
897 *
898 * Prepare for ->lookup() in a directory which may be encrypted by determining
899 * the name that will actually be used to search the directory on-disk. If the
900 * directory's encryption policy is supported by this kernel and its encryption
901 * key is available, then the lookup is assumed to be by plaintext name;
902 * otherwise, it is assumed to be by no-key name.
903 *
904 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
905 * name. In this case the filesystem must assign the dentry a dentry_operations
906 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
907 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
908 * directory's encryption key is later added.
909 *
910 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
911 * filename isn't a valid no-key name, so a negative dentry should be created;
912 * or another -errno code.
913 */
fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)914 static inline int fscrypt_prepare_lookup(struct inode *dir,
915 struct dentry *dentry,
916 struct fscrypt_name *fname)
917 {
918 if (IS_ENCRYPTED(dir))
919 return __fscrypt_prepare_lookup(dir, dentry, fname);
920
921 memset(fname, 0, sizeof(*fname));
922 fname->usr_fname = &dentry->d_name;
923 fname->disk_name.name = (unsigned char *)dentry->d_name.name;
924 fname->disk_name.len = dentry->d_name.len;
925 return 0;
926 }
927
928 /**
929 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
930 * @dir: the directory inode
931 *
932 * If the directory is encrypted and it doesn't already have its encryption key
933 * set up, try to set it up so that the filenames will be listed in plaintext
934 * form rather than in no-key form.
935 *
936 * Return: 0 on success; -errno on error. Note that the encryption key being
937 * unavailable is not considered an error. It is also not an error if
938 * the encryption policy is unsupported by this kernel; that is treated
939 * like the key being unavailable, so that files can still be deleted.
940 */
fscrypt_prepare_readdir(struct inode * dir)941 static inline int fscrypt_prepare_readdir(struct inode *dir)
942 {
943 if (IS_ENCRYPTED(dir))
944 return __fscrypt_prepare_readdir(dir);
945 return 0;
946 }
947
948 /**
949 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
950 * attributes
951 * @dentry: dentry through which the inode is being changed
952 * @attr: attributes to change
953 *
954 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
955 * most attribute changes are allowed even without the encryption key. However,
956 * without the encryption key we do have to forbid truncates. This is needed
957 * because the size being truncated to may not be a multiple of the filesystem
958 * block size, and in that case we'd have to decrypt the final block, zero the
959 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
960 * filesystem block boundary, but it's simpler to just forbid all truncates ---
961 * and we already forbid all other contents modifications without the key.)
962 *
963 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
964 * if a problem occurred while setting up the encryption key.
965 */
fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)966 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
967 struct iattr *attr)
968 {
969 if (IS_ENCRYPTED(d_inode(dentry)))
970 return __fscrypt_prepare_setattr(dentry, attr);
971 return 0;
972 }
973
974 /**
975 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
976 * @inode: symlink inode
977 * @target: plaintext symlink target
978 * @len: length of @target excluding null terminator
979 * @disk_link: (in/out) the on-disk symlink target being prepared
980 *
981 * If the symlink target needs to be encrypted, then this function encrypts it
982 * into @disk_link->name. fscrypt_prepare_symlink() must have been called
983 * previously to compute @disk_link->len. If the filesystem did not allocate a
984 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
985 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
986 *
987 * Return: 0 on success, -errno on failure
988 */
fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)989 static inline int fscrypt_encrypt_symlink(struct inode *inode,
990 const char *target,
991 unsigned int len,
992 struct fscrypt_str *disk_link)
993 {
994 if (IS_ENCRYPTED(inode))
995 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
996 return 0;
997 }
998
999 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
fscrypt_finalize_bounce_page(struct page ** pagep)1000 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1001 {
1002 struct page *page = *pagep;
1003
1004 if (fscrypt_is_bounce_page(page)) {
1005 *pagep = fscrypt_pagecache_page(page);
1006 fscrypt_free_bounce_page(page);
1007 }
1008 }
1009
1010 #endif /* _LINUX_FSCRYPT_H */
1011