1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/ftrace.h>
19 #include <linux/instrumentation.h>
20 #include <linux/preempt.h>
21 #include <linux/msi.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rcupdate.h>
25 #include <linux/ratelimit.h>
26 #include <linux/err.h>
27 #include <linux/irqflags.h>
28 #include <linux/context_tracking.h>
29 #include <linux/irqbypass.h>
30 #include <linux/rcuwait.h>
31 #include <linux/refcount.h>
32 #include <linux/nospec.h>
33 #include <linux/notifier.h>
34 #include <asm/signal.h>
35
36 #include <linux/kvm.h>
37 #include <linux/kvm_para.h>
38
39 #include <linux/kvm_types.h>
40
41 #include <asm/kvm_host.h>
42 #include <linux/kvm_dirty_ring.h>
43
44 #ifndef KVM_MAX_VCPU_ID
45 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
46 #endif
47
48 /*
49 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
50 * in kvm, other bits are visible for userspace which are defined in
51 * include/linux/kvm_h.
52 */
53 #define KVM_MEMSLOT_INVALID (1UL << 16)
54
55 /*
56 * Bit 63 of the memslot generation number is an "update in-progress flag",
57 * e.g. is temporarily set for the duration of install_new_memslots().
58 * This flag effectively creates a unique generation number that is used to
59 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
60 * i.e. may (or may not) have come from the previous memslots generation.
61 *
62 * This is necessary because the actual memslots update is not atomic with
63 * respect to the generation number update. Updating the generation number
64 * first would allow a vCPU to cache a spte from the old memslots using the
65 * new generation number, and updating the generation number after switching
66 * to the new memslots would allow cache hits using the old generation number
67 * to reference the defunct memslots.
68 *
69 * This mechanism is used to prevent getting hits in KVM's caches while a
70 * memslot update is in-progress, and to prevent cache hits *after* updating
71 * the actual generation number against accesses that were inserted into the
72 * cache *before* the memslots were updated.
73 */
74 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
75
76 /* Two fragments for cross MMIO pages. */
77 #define KVM_MAX_MMIO_FRAGMENTS 2
78
79 #ifndef KVM_ADDRESS_SPACE_NUM
80 #define KVM_ADDRESS_SPACE_NUM 1
81 #endif
82
83 /*
84 * For the normal pfn, the highest 12 bits should be zero,
85 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
86 * mask bit 63 to indicate the noslot pfn.
87 */
88 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
89 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
90 #define KVM_PFN_NOSLOT (0x1ULL << 63)
91
92 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
93 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
94 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
95
96 /*
97 * error pfns indicate that the gfn is in slot but faild to
98 * translate it to pfn on host.
99 */
is_error_pfn(kvm_pfn_t pfn)100 static inline bool is_error_pfn(kvm_pfn_t pfn)
101 {
102 return !!(pfn & KVM_PFN_ERR_MASK);
103 }
104
105 /*
106 * error_noslot pfns indicate that the gfn can not be
107 * translated to pfn - it is not in slot or failed to
108 * translate it to pfn.
109 */
is_error_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
113 }
114
115 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)116 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
117 {
118 return pfn == KVM_PFN_NOSLOT;
119 }
120
121 /*
122 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
123 * provide own defines and kvm_is_error_hva
124 */
125 #ifndef KVM_HVA_ERR_BAD
126
127 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
128 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
129
kvm_is_error_hva(unsigned long addr)130 static inline bool kvm_is_error_hva(unsigned long addr)
131 {
132 return addr >= PAGE_OFFSET;
133 }
134
135 #endif
136
137 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
138
is_error_page(struct page * page)139 static inline bool is_error_page(struct page *page)
140 {
141 return IS_ERR(page);
142 }
143
144 #define KVM_REQUEST_MASK GENMASK(7,0)
145 #define KVM_REQUEST_NO_WAKEUP BIT(8)
146 #define KVM_REQUEST_WAIT BIT(9)
147 /*
148 * Architecture-independent vcpu->requests bit members
149 * Bits 4-7 are reserved for more arch-independent bits.
150 */
151 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
152 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
153 #define KVM_REQ_UNBLOCK 2
154 #define KVM_REQ_UNHALT 3
155 #define KVM_REQ_VM_BUGGED (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
156 #define KVM_REQUEST_ARCH_BASE 8
157
158 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
159 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
160 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
161 })
162 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
163
164 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
165 struct kvm_vcpu *except,
166 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
168 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
169 struct kvm_vcpu *except);
170 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
171 unsigned long *vcpu_bitmap);
172
173 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
174 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
175
176 extern struct mutex kvm_lock;
177 extern struct list_head vm_list;
178
179 struct kvm_io_range {
180 gpa_t addr;
181 int len;
182 struct kvm_io_device *dev;
183 };
184
185 #define NR_IOBUS_DEVS 1000
186
187 struct kvm_io_bus {
188 int dev_count;
189 int ioeventfd_count;
190 struct kvm_io_range range[];
191 };
192
193 enum kvm_bus {
194 KVM_MMIO_BUS,
195 KVM_PIO_BUS,
196 KVM_VIRTIO_CCW_NOTIFY_BUS,
197 KVM_FAST_MMIO_BUS,
198 KVM_NR_BUSES
199 };
200
201 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
202 int len, const void *val);
203 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
204 gpa_t addr, int len, const void *val, long cookie);
205 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
206 int len, void *val);
207 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
208 int len, struct kvm_io_device *dev);
209 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
210 struct kvm_io_device *dev);
211 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
212 gpa_t addr);
213
214 #ifdef CONFIG_KVM_ASYNC_PF
215 struct kvm_async_pf {
216 struct work_struct work;
217 struct list_head link;
218 struct list_head queue;
219 struct kvm_vcpu *vcpu;
220 struct mm_struct *mm;
221 gpa_t cr2_or_gpa;
222 unsigned long addr;
223 struct kvm_arch_async_pf arch;
224 bool wakeup_all;
225 bool notpresent_injected;
226 };
227
228 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
229 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
230 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
231 unsigned long hva, struct kvm_arch_async_pf *arch);
232 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
233 #endif
234
235 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
236 struct kvm_gfn_range {
237 struct kvm_memory_slot *slot;
238 gfn_t start;
239 gfn_t end;
240 pte_t pte;
241 bool may_block;
242 };
243 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
244 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
245 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
246 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
247 #endif
248
249 enum {
250 OUTSIDE_GUEST_MODE,
251 IN_GUEST_MODE,
252 EXITING_GUEST_MODE,
253 READING_SHADOW_PAGE_TABLES,
254 };
255
256 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
257
258 struct kvm_host_map {
259 /*
260 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
261 * a 'struct page' for it. When using mem= kernel parameter some memory
262 * can be used as guest memory but they are not managed by host
263 * kernel).
264 * If 'pfn' is not managed by the host kernel, this field is
265 * initialized to KVM_UNMAPPED_PAGE.
266 */
267 struct page *page;
268 void *hva;
269 kvm_pfn_t pfn;
270 kvm_pfn_t gfn;
271 };
272
273 /*
274 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
275 * directly to check for that.
276 */
kvm_vcpu_mapped(struct kvm_host_map * map)277 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
278 {
279 return !!map->hva;
280 }
281
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)282 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
283 {
284 return single_task_running() && !need_resched() && ktime_before(cur, stop);
285 }
286
287 /*
288 * Sometimes a large or cross-page mmio needs to be broken up into separate
289 * exits for userspace servicing.
290 */
291 struct kvm_mmio_fragment {
292 gpa_t gpa;
293 void *data;
294 unsigned len;
295 };
296
297 struct kvm_vcpu {
298 struct kvm *kvm;
299 #ifdef CONFIG_PREEMPT_NOTIFIERS
300 struct preempt_notifier preempt_notifier;
301 #endif
302 int cpu;
303 int vcpu_id; /* id given by userspace at creation */
304 int vcpu_idx; /* index in kvm->vcpus array */
305 int srcu_idx;
306 int mode;
307 u64 requests;
308 unsigned long guest_debug;
309
310 int pre_pcpu;
311 struct list_head blocked_vcpu_list;
312
313 struct mutex mutex;
314 struct kvm_run *run;
315
316 struct rcuwait wait;
317 struct pid __rcu *pid;
318 int sigset_active;
319 sigset_t sigset;
320 unsigned int halt_poll_ns;
321 bool valid_wakeup;
322
323 #ifdef CONFIG_HAS_IOMEM
324 int mmio_needed;
325 int mmio_read_completed;
326 int mmio_is_write;
327 int mmio_cur_fragment;
328 int mmio_nr_fragments;
329 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
330 #endif
331
332 #ifdef CONFIG_KVM_ASYNC_PF
333 struct {
334 u32 queued;
335 struct list_head queue;
336 struct list_head done;
337 spinlock_t lock;
338 } async_pf;
339 #endif
340
341 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
342 /*
343 * Cpu relax intercept or pause loop exit optimization
344 * in_spin_loop: set when a vcpu does a pause loop exit
345 * or cpu relax intercepted.
346 * dy_eligible: indicates whether vcpu is eligible for directed yield.
347 */
348 struct {
349 bool in_spin_loop;
350 bool dy_eligible;
351 } spin_loop;
352 #endif
353 bool preempted;
354 bool ready;
355 struct kvm_vcpu_arch arch;
356 struct kvm_vcpu_stat stat;
357 char stats_id[KVM_STATS_NAME_SIZE];
358 struct kvm_dirty_ring dirty_ring;
359
360 /*
361 * The index of the most recently used memslot by this vCPU. It's ok
362 * if this becomes stale due to memslot changes since we always check
363 * it is a valid slot.
364 */
365 int last_used_slot;
366 };
367
368 /*
369 * Start accounting time towards a guest.
370 * Must be called before entering guest context.
371 */
guest_timing_enter_irqoff(void)372 static __always_inline void guest_timing_enter_irqoff(void)
373 {
374 /*
375 * This is running in ioctl context so its safe to assume that it's the
376 * stime pending cputime to flush.
377 */
378 instrumentation_begin();
379 vtime_account_guest_enter();
380 instrumentation_end();
381 }
382
383 /*
384 * Enter guest context and enter an RCU extended quiescent state.
385 *
386 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
387 * unsafe to use any code which may directly or indirectly use RCU, tracing
388 * (including IRQ flag tracing), or lockdep. All code in this period must be
389 * non-instrumentable.
390 */
guest_context_enter_irqoff(void)391 static __always_inline void guest_context_enter_irqoff(void)
392 {
393 /*
394 * KVM does not hold any references to rcu protected data when it
395 * switches CPU into a guest mode. In fact switching to a guest mode
396 * is very similar to exiting to userspace from rcu point of view. In
397 * addition CPU may stay in a guest mode for quite a long time (up to
398 * one time slice). Lets treat guest mode as quiescent state, just like
399 * we do with user-mode execution.
400 */
401 if (!context_tracking_guest_enter()) {
402 instrumentation_begin();
403 rcu_virt_note_context_switch(smp_processor_id());
404 instrumentation_end();
405 }
406 }
407
408 /*
409 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
410 * guest_state_enter_irqoff().
411 */
guest_enter_irqoff(void)412 static __always_inline void guest_enter_irqoff(void)
413 {
414 guest_timing_enter_irqoff();
415 guest_context_enter_irqoff();
416 }
417
418 /**
419 * guest_state_enter_irqoff - Fixup state when entering a guest
420 *
421 * Entry to a guest will enable interrupts, but the kernel state is interrupts
422 * disabled when this is invoked. Also tell RCU about it.
423 *
424 * 1) Trace interrupts on state
425 * 2) Invoke context tracking if enabled to adjust RCU state
426 * 3) Tell lockdep that interrupts are enabled
427 *
428 * Invoked from architecture specific code before entering a guest.
429 * Must be called with interrupts disabled and the caller must be
430 * non-instrumentable.
431 * The caller has to invoke guest_timing_enter_irqoff() before this.
432 *
433 * Note: this is analogous to exit_to_user_mode().
434 */
guest_state_enter_irqoff(void)435 static __always_inline void guest_state_enter_irqoff(void)
436 {
437 instrumentation_begin();
438 trace_hardirqs_on_prepare();
439 lockdep_hardirqs_on_prepare();
440 instrumentation_end();
441
442 guest_context_enter_irqoff();
443 lockdep_hardirqs_on(CALLER_ADDR0);
444 }
445
446 /*
447 * Exit guest context and exit an RCU extended quiescent state.
448 *
449 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
450 * unsafe to use any code which may directly or indirectly use RCU, tracing
451 * (including IRQ flag tracing), or lockdep. All code in this period must be
452 * non-instrumentable.
453 */
guest_context_exit_irqoff(void)454 static __always_inline void guest_context_exit_irqoff(void)
455 {
456 context_tracking_guest_exit();
457 }
458
459 /*
460 * Stop accounting time towards a guest.
461 * Must be called after exiting guest context.
462 */
guest_timing_exit_irqoff(void)463 static __always_inline void guest_timing_exit_irqoff(void)
464 {
465 instrumentation_begin();
466 /* Flush the guest cputime we spent on the guest */
467 vtime_account_guest_exit();
468 instrumentation_end();
469 }
470
471 /*
472 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
473 * guest_timing_exit_irqoff().
474 */
guest_exit_irqoff(void)475 static __always_inline void guest_exit_irqoff(void)
476 {
477 guest_context_exit_irqoff();
478 guest_timing_exit_irqoff();
479 }
480
guest_exit(void)481 static inline void guest_exit(void)
482 {
483 unsigned long flags;
484
485 local_irq_save(flags);
486 guest_exit_irqoff();
487 local_irq_restore(flags);
488 }
489
490 /**
491 * guest_state_exit_irqoff - Establish state when returning from guest mode
492 *
493 * Entry from a guest disables interrupts, but guest mode is traced as
494 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
495 *
496 * 1) Tell lockdep that interrupts are disabled
497 * 2) Invoke context tracking if enabled to reactivate RCU
498 * 3) Trace interrupts off state
499 *
500 * Invoked from architecture specific code after exiting a guest.
501 * Must be invoked with interrupts disabled and the caller must be
502 * non-instrumentable.
503 * The caller has to invoke guest_timing_exit_irqoff() after this.
504 *
505 * Note: this is analogous to enter_from_user_mode().
506 */
guest_state_exit_irqoff(void)507 static __always_inline void guest_state_exit_irqoff(void)
508 {
509 lockdep_hardirqs_off(CALLER_ADDR0);
510 guest_context_exit_irqoff();
511
512 instrumentation_begin();
513 trace_hardirqs_off_finish();
514 instrumentation_end();
515 }
516
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)517 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
518 {
519 /*
520 * The memory barrier ensures a previous write to vcpu->requests cannot
521 * be reordered with the read of vcpu->mode. It pairs with the general
522 * memory barrier following the write of vcpu->mode in VCPU RUN.
523 */
524 smp_mb__before_atomic();
525 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
526 }
527
528 /*
529 * Some of the bitops functions do not support too long bitmaps.
530 * This number must be determined not to exceed such limits.
531 */
532 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
533
534 struct kvm_memory_slot {
535 gfn_t base_gfn;
536 unsigned long npages;
537 unsigned long *dirty_bitmap;
538 struct kvm_arch_memory_slot arch;
539 unsigned long userspace_addr;
540 u32 flags;
541 short id;
542 u16 as_id;
543 };
544
kvm_slot_dirty_track_enabled(struct kvm_memory_slot * slot)545 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
546 {
547 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
548 }
549
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)550 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
551 {
552 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
553 }
554
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)555 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
556 {
557 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
558
559 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
560 }
561
562 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
563 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
564 #endif
565
566 struct kvm_s390_adapter_int {
567 u64 ind_addr;
568 u64 summary_addr;
569 u64 ind_offset;
570 u32 summary_offset;
571 u32 adapter_id;
572 };
573
574 struct kvm_hv_sint {
575 u32 vcpu;
576 u32 sint;
577 };
578
579 struct kvm_kernel_irq_routing_entry {
580 u32 gsi;
581 u32 type;
582 int (*set)(struct kvm_kernel_irq_routing_entry *e,
583 struct kvm *kvm, int irq_source_id, int level,
584 bool line_status);
585 union {
586 struct {
587 unsigned irqchip;
588 unsigned pin;
589 } irqchip;
590 struct {
591 u32 address_lo;
592 u32 address_hi;
593 u32 data;
594 u32 flags;
595 u32 devid;
596 } msi;
597 struct kvm_s390_adapter_int adapter;
598 struct kvm_hv_sint hv_sint;
599 };
600 struct hlist_node link;
601 };
602
603 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
604 struct kvm_irq_routing_table {
605 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
606 u32 nr_rt_entries;
607 /*
608 * Array indexed by gsi. Each entry contains list of irq chips
609 * the gsi is connected to.
610 */
611 struct hlist_head map[];
612 };
613 #endif
614
615 #ifndef KVM_PRIVATE_MEM_SLOTS
616 #define KVM_PRIVATE_MEM_SLOTS 0
617 #endif
618
619 #define KVM_MEM_SLOTS_NUM SHRT_MAX
620 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
621
622 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)623 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
624 {
625 return 0;
626 }
627 #endif
628
629 /*
630 * Note:
631 * memslots are not sorted by id anymore, please use id_to_memslot()
632 * to get the memslot by its id.
633 */
634 struct kvm_memslots {
635 u64 generation;
636 /* The mapping table from slot id to the index in memslots[]. */
637 short id_to_index[KVM_MEM_SLOTS_NUM];
638 atomic_t last_used_slot;
639 int used_slots;
640 struct kvm_memory_slot memslots[];
641 };
642
643 struct kvm {
644 #ifdef KVM_HAVE_MMU_RWLOCK
645 rwlock_t mmu_lock;
646 #else
647 spinlock_t mmu_lock;
648 #endif /* KVM_HAVE_MMU_RWLOCK */
649
650 struct mutex slots_lock;
651
652 /*
653 * Protects the arch-specific fields of struct kvm_memory_slots in
654 * use by the VM. To be used under the slots_lock (above) or in a
655 * kvm->srcu critical section where acquiring the slots_lock would
656 * lead to deadlock with the synchronize_srcu in
657 * install_new_memslots.
658 */
659 struct mutex slots_arch_lock;
660 struct mm_struct *mm; /* userspace tied to this vm */
661 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
662 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
663
664 /* Used to wait for completion of MMU notifiers. */
665 spinlock_t mn_invalidate_lock;
666 unsigned long mn_active_invalidate_count;
667 struct rcuwait mn_memslots_update_rcuwait;
668
669 /*
670 * created_vcpus is protected by kvm->lock, and is incremented
671 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
672 * incremented after storing the kvm_vcpu pointer in vcpus,
673 * and is accessed atomically.
674 */
675 atomic_t online_vcpus;
676 int created_vcpus;
677 int last_boosted_vcpu;
678 struct list_head vm_list;
679 struct mutex lock;
680 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
681 #ifdef CONFIG_HAVE_KVM_EVENTFD
682 struct {
683 spinlock_t lock;
684 struct list_head items;
685 struct list_head resampler_list;
686 struct mutex resampler_lock;
687 } irqfds;
688 struct list_head ioeventfds;
689 #endif
690 struct kvm_vm_stat stat;
691 struct kvm_arch arch;
692 refcount_t users_count;
693 #ifdef CONFIG_KVM_MMIO
694 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
695 spinlock_t ring_lock;
696 struct list_head coalesced_zones;
697 #endif
698
699 struct mutex irq_lock;
700 #ifdef CONFIG_HAVE_KVM_IRQCHIP
701 /*
702 * Update side is protected by irq_lock.
703 */
704 struct kvm_irq_routing_table __rcu *irq_routing;
705 #endif
706 #ifdef CONFIG_HAVE_KVM_IRQFD
707 struct hlist_head irq_ack_notifier_list;
708 #endif
709
710 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
711 struct mmu_notifier mmu_notifier;
712 unsigned long mmu_notifier_seq;
713 long mmu_notifier_count;
714 unsigned long mmu_notifier_range_start;
715 unsigned long mmu_notifier_range_end;
716 #endif
717 struct list_head devices;
718 u64 manual_dirty_log_protect;
719 struct dentry *debugfs_dentry;
720 struct kvm_stat_data **debugfs_stat_data;
721 struct srcu_struct srcu;
722 struct srcu_struct irq_srcu;
723 pid_t userspace_pid;
724 unsigned int max_halt_poll_ns;
725 u32 dirty_ring_size;
726 bool vm_bugged;
727
728 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
729 struct notifier_block pm_notifier;
730 #endif
731 char stats_id[KVM_STATS_NAME_SIZE];
732 };
733
734 #define kvm_err(fmt, ...) \
735 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
736 #define kvm_info(fmt, ...) \
737 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
738 #define kvm_debug(fmt, ...) \
739 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
740 #define kvm_debug_ratelimited(fmt, ...) \
741 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
742 ## __VA_ARGS__)
743 #define kvm_pr_unimpl(fmt, ...) \
744 pr_err_ratelimited("kvm [%i]: " fmt, \
745 task_tgid_nr(current), ## __VA_ARGS__)
746
747 /* The guest did something we don't support. */
748 #define vcpu_unimpl(vcpu, fmt, ...) \
749 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
750 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
751
752 #define vcpu_debug(vcpu, fmt, ...) \
753 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
754 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
755 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
756 ## __VA_ARGS__)
757 #define vcpu_err(vcpu, fmt, ...) \
758 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
759
kvm_vm_bugged(struct kvm * kvm)760 static inline void kvm_vm_bugged(struct kvm *kvm)
761 {
762 kvm->vm_bugged = true;
763 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED);
764 }
765
766 #define KVM_BUG(cond, kvm, fmt...) \
767 ({ \
768 int __ret = (cond); \
769 \
770 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
771 kvm_vm_bugged(kvm); \
772 unlikely(__ret); \
773 })
774
775 #define KVM_BUG_ON(cond, kvm) \
776 ({ \
777 int __ret = (cond); \
778 \
779 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
780 kvm_vm_bugged(kvm); \
781 unlikely(__ret); \
782 })
783
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)784 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
785 {
786 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
787 }
788
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)789 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
790 {
791 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
792 lockdep_is_held(&kvm->slots_lock) ||
793 !refcount_read(&kvm->users_count));
794 }
795
kvm_get_vcpu(struct kvm * kvm,int i)796 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
797 {
798 int num_vcpus = atomic_read(&kvm->online_vcpus);
799 i = array_index_nospec(i, num_vcpus);
800
801 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
802 smp_rmb();
803 return kvm->vcpus[i];
804 }
805
806 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
807 for (idx = 0; \
808 idx < atomic_read(&kvm->online_vcpus) && \
809 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
810 idx++)
811
kvm_get_vcpu_by_id(struct kvm * kvm,int id)812 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
813 {
814 struct kvm_vcpu *vcpu = NULL;
815 int i;
816
817 if (id < 0)
818 return NULL;
819 if (id < KVM_MAX_VCPUS)
820 vcpu = kvm_get_vcpu(kvm, id);
821 if (vcpu && vcpu->vcpu_id == id)
822 return vcpu;
823 kvm_for_each_vcpu(i, vcpu, kvm)
824 if (vcpu->vcpu_id == id)
825 return vcpu;
826 return NULL;
827 }
828
829 #define kvm_for_each_memslot(memslot, slots) \
830 for (memslot = &slots->memslots[0]; \
831 memslot < slots->memslots + slots->used_slots; memslot++) \
832 if (WARN_ON_ONCE(!memslot->npages)) { \
833 } else
834
835 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
836
837 void vcpu_load(struct kvm_vcpu *vcpu);
838 void vcpu_put(struct kvm_vcpu *vcpu);
839
840 #ifdef __KVM_HAVE_IOAPIC
841 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
842 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
843 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)844 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
845 {
846 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)847 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
848 {
849 }
850 #endif
851
852 #ifdef CONFIG_HAVE_KVM_IRQFD
853 int kvm_irqfd_init(void);
854 void kvm_irqfd_exit(void);
855 #else
kvm_irqfd_init(void)856 static inline int kvm_irqfd_init(void)
857 {
858 return 0;
859 }
860
kvm_irqfd_exit(void)861 static inline void kvm_irqfd_exit(void)
862 {
863 }
864 #endif
865 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
866 struct module *module);
867 void kvm_exit(void);
868
869 void kvm_get_kvm(struct kvm *kvm);
870 bool kvm_get_kvm_safe(struct kvm *kvm);
871 void kvm_put_kvm(struct kvm *kvm);
872 bool file_is_kvm(struct file *file);
873 void kvm_put_kvm_no_destroy(struct kvm *kvm);
874
__kvm_memslots(struct kvm * kvm,int as_id)875 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
876 {
877 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
878 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
879 lockdep_is_held(&kvm->slots_lock) ||
880 !refcount_read(&kvm->users_count));
881 }
882
kvm_memslots(struct kvm * kvm)883 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
884 {
885 return __kvm_memslots(kvm, 0);
886 }
887
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)888 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
889 {
890 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
891
892 return __kvm_memslots(vcpu->kvm, as_id);
893 }
894
895 static inline
id_to_memslot(struct kvm_memslots * slots,int id)896 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
897 {
898 int index = slots->id_to_index[id];
899 struct kvm_memory_slot *slot;
900
901 if (index < 0)
902 return NULL;
903
904 slot = &slots->memslots[index];
905
906 WARN_ON(slot->id != id);
907 return slot;
908 }
909
910 /*
911 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
912 * - create a new memory slot
913 * - delete an existing memory slot
914 * - modify an existing memory slot
915 * -- move it in the guest physical memory space
916 * -- just change its flags
917 *
918 * Since flags can be changed by some of these operations, the following
919 * differentiation is the best we can do for __kvm_set_memory_region():
920 */
921 enum kvm_mr_change {
922 KVM_MR_CREATE,
923 KVM_MR_DELETE,
924 KVM_MR_MOVE,
925 KVM_MR_FLAGS_ONLY,
926 };
927
928 int kvm_set_memory_region(struct kvm *kvm,
929 const struct kvm_userspace_memory_region *mem);
930 int __kvm_set_memory_region(struct kvm *kvm,
931 const struct kvm_userspace_memory_region *mem);
932 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
933 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
934 int kvm_arch_prepare_memory_region(struct kvm *kvm,
935 struct kvm_memory_slot *memslot,
936 const struct kvm_userspace_memory_region *mem,
937 enum kvm_mr_change change);
938 void kvm_arch_commit_memory_region(struct kvm *kvm,
939 const struct kvm_userspace_memory_region *mem,
940 struct kvm_memory_slot *old,
941 const struct kvm_memory_slot *new,
942 enum kvm_mr_change change);
943 /* flush all memory translations */
944 void kvm_arch_flush_shadow_all(struct kvm *kvm);
945 /* flush memory translations pointing to 'slot' */
946 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
947 struct kvm_memory_slot *slot);
948
949 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
950 struct page **pages, int nr_pages);
951
952 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
953 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
954 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
955 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
956 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
957 bool *writable);
958 void kvm_release_page_clean(struct page *page);
959 void kvm_release_page_dirty(struct page *page);
960 void kvm_set_page_accessed(struct page *page);
961
962 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
963 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
964 bool *writable);
965 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
966 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
967 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
968 bool atomic, bool *async, bool write_fault,
969 bool *writable, hva_t *hva);
970
971 void kvm_release_pfn_clean(kvm_pfn_t pfn);
972 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
973 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
974 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
975
976 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
977 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
978 int len);
979 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
980 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
981 void *data, unsigned long len);
982 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
983 void *data, unsigned int offset,
984 unsigned long len);
985 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
986 int offset, int len);
987 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
988 unsigned long len);
989 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
990 void *data, unsigned long len);
991 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
992 void *data, unsigned int offset,
993 unsigned long len);
994 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
995 gpa_t gpa, unsigned long len);
996
997 #define __kvm_get_guest(kvm, gfn, offset, v) \
998 ({ \
999 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1000 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1001 int __ret = -EFAULT; \
1002 \
1003 if (!kvm_is_error_hva(__addr)) \
1004 __ret = get_user(v, __uaddr); \
1005 __ret; \
1006 })
1007
1008 #define kvm_get_guest(kvm, gpa, v) \
1009 ({ \
1010 gpa_t __gpa = gpa; \
1011 struct kvm *__kvm = kvm; \
1012 \
1013 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1014 offset_in_page(__gpa), v); \
1015 })
1016
1017 #define __kvm_put_guest(kvm, gfn, offset, v) \
1018 ({ \
1019 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1020 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1021 int __ret = -EFAULT; \
1022 \
1023 if (!kvm_is_error_hva(__addr)) \
1024 __ret = put_user(v, __uaddr); \
1025 if (!__ret) \
1026 mark_page_dirty(kvm, gfn); \
1027 __ret; \
1028 })
1029
1030 #define kvm_put_guest(kvm, gpa, v) \
1031 ({ \
1032 gpa_t __gpa = gpa; \
1033 struct kvm *__kvm = kvm; \
1034 \
1035 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1036 offset_in_page(__gpa), v); \
1037 })
1038
1039 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1040 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1041 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1042 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1043 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1044 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
1045 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1046
1047 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1048 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1049 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1050 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1051 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1052 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1053 struct gfn_to_pfn_cache *cache, bool atomic);
1054 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1055 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1056 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1057 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
1058 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1059 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1060 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1061 int len);
1062 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1063 unsigned long len);
1064 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1065 unsigned long len);
1066 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1067 int offset, int len);
1068 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1069 unsigned long len);
1070 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1071
1072 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1073 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1074
1075 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
1076 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1077 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1078 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1079 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1080 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1081 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1082
1083 void kvm_flush_remote_tlbs(struct kvm *kvm);
1084 void kvm_reload_remote_mmus(struct kvm *kvm);
1085
1086 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1087 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1088 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1089 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1090 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1091 #endif
1092
1093 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1094 unsigned long end);
1095 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1096 unsigned long end);
1097
1098 long kvm_arch_dev_ioctl(struct file *filp,
1099 unsigned int ioctl, unsigned long arg);
1100 long kvm_arch_vcpu_ioctl(struct file *filp,
1101 unsigned int ioctl, unsigned long arg);
1102 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1103
1104 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1105
1106 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1107 struct kvm_memory_slot *slot,
1108 gfn_t gfn_offset,
1109 unsigned long mask);
1110 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1111
1112 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1113 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1114 const struct kvm_memory_slot *memslot);
1115 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1116 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1117 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1118 int *is_dirty, struct kvm_memory_slot **memslot);
1119 #endif
1120
1121 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1122 bool line_status);
1123 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1124 struct kvm_enable_cap *cap);
1125 long kvm_arch_vm_ioctl(struct file *filp,
1126 unsigned int ioctl, unsigned long arg);
1127 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1128 unsigned long arg);
1129
1130 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1131 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1132
1133 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1134 struct kvm_translation *tr);
1135
1136 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1137 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1138 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1139 struct kvm_sregs *sregs);
1140 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1141 struct kvm_sregs *sregs);
1142 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1143 struct kvm_mp_state *mp_state);
1144 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1145 struct kvm_mp_state *mp_state);
1146 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1147 struct kvm_guest_debug *dbg);
1148 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1149
1150 int kvm_arch_init(void *opaque);
1151 void kvm_arch_exit(void);
1152
1153 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1154
1155 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1156 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1157 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1158 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1159 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1160 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1161
1162 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1163 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1164 #endif
1165
1166 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1167 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1168 #endif
1169
1170 int kvm_arch_hardware_enable(void);
1171 void kvm_arch_hardware_disable(void);
1172 int kvm_arch_hardware_setup(void *opaque);
1173 void kvm_arch_hardware_unsetup(void);
1174 int kvm_arch_check_processor_compat(void *opaque);
1175 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1176 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1177 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1178 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1179 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1180 int kvm_arch_post_init_vm(struct kvm *kvm);
1181 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1182 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1183
1184 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1185 /*
1186 * All architectures that want to use vzalloc currently also
1187 * need their own kvm_arch_alloc_vm implementation.
1188 */
kvm_arch_alloc_vm(void)1189 static inline struct kvm *kvm_arch_alloc_vm(void)
1190 {
1191 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1192 }
1193
kvm_arch_free_vm(struct kvm * kvm)1194 static inline void kvm_arch_free_vm(struct kvm *kvm)
1195 {
1196 kfree(kvm);
1197 }
1198 #endif
1199
1200 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1201 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1202 {
1203 return -ENOTSUPP;
1204 }
1205 #endif
1206
1207 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1208 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1209 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1210 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1211 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1212 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1213 {
1214 }
1215
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1216 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1217 {
1218 }
1219
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1220 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1221 {
1222 return false;
1223 }
1224 #endif
1225 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1226 void kvm_arch_start_assignment(struct kvm *kvm);
1227 void kvm_arch_end_assignment(struct kvm *kvm);
1228 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1229 #else
kvm_arch_start_assignment(struct kvm * kvm)1230 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1231 {
1232 }
1233
kvm_arch_end_assignment(struct kvm * kvm)1234 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1235 {
1236 }
1237
kvm_arch_has_assigned_device(struct kvm * kvm)1238 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1239 {
1240 return false;
1241 }
1242 #endif
1243
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1244 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1245 {
1246 #ifdef __KVM_HAVE_ARCH_WQP
1247 return vcpu->arch.waitp;
1248 #else
1249 return &vcpu->wait;
1250 #endif
1251 }
1252
1253 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1254 /*
1255 * returns true if the virtual interrupt controller is initialized and
1256 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1257 * controller is dynamically instantiated and this is not always true.
1258 */
1259 bool kvm_arch_intc_initialized(struct kvm *kvm);
1260 #else
kvm_arch_intc_initialized(struct kvm * kvm)1261 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1262 {
1263 return true;
1264 }
1265 #endif
1266
1267 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1268 void kvm_arch_destroy_vm(struct kvm *kvm);
1269 void kvm_arch_sync_events(struct kvm *kvm);
1270
1271 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1272
1273 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1274 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1275
1276 struct kvm_irq_ack_notifier {
1277 struct hlist_node link;
1278 unsigned gsi;
1279 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1280 };
1281
1282 int kvm_irq_map_gsi(struct kvm *kvm,
1283 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1284 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1285
1286 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1287 bool line_status);
1288 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1289 int irq_source_id, int level, bool line_status);
1290 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1291 struct kvm *kvm, int irq_source_id,
1292 int level, bool line_status);
1293 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1294 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1295 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1296 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1297 struct kvm_irq_ack_notifier *kian);
1298 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1299 struct kvm_irq_ack_notifier *kian);
1300 int kvm_request_irq_source_id(struct kvm *kvm);
1301 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1302 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1303
1304 /*
1305 * Returns a pointer to the memslot at slot_index if it contains gfn.
1306 * Otherwise returns NULL.
1307 */
1308 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memslots * slots,int slot_index,gfn_t gfn)1309 try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn)
1310 {
1311 struct kvm_memory_slot *slot;
1312
1313 if (slot_index < 0 || slot_index >= slots->used_slots)
1314 return NULL;
1315
1316 /*
1317 * slot_index can come from vcpu->last_used_slot which is not kept
1318 * in sync with userspace-controllable memslot deletion. So use nospec
1319 * to prevent the CPU from speculating past the end of memslots[].
1320 */
1321 slot_index = array_index_nospec(slot_index, slots->used_slots);
1322 slot = &slots->memslots[slot_index];
1323
1324 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1325 return slot;
1326 else
1327 return NULL;
1328 }
1329
1330 /*
1331 * Returns a pointer to the memslot that contains gfn and records the index of
1332 * the slot in index. Otherwise returns NULL.
1333 *
1334 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1335 */
1336 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,int * index)1337 search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index)
1338 {
1339 int start = 0, end = slots->used_slots;
1340 struct kvm_memory_slot *memslots = slots->memslots;
1341 struct kvm_memory_slot *slot;
1342
1343 if (unlikely(!slots->used_slots))
1344 return NULL;
1345
1346 while (start < end) {
1347 int slot = start + (end - start) / 2;
1348
1349 if (gfn >= memslots[slot].base_gfn)
1350 end = slot;
1351 else
1352 start = slot + 1;
1353 }
1354
1355 slot = try_get_memslot(slots, start, gfn);
1356 if (slot) {
1357 *index = start;
1358 return slot;
1359 }
1360
1361 return NULL;
1362 }
1363
1364 /*
1365 * __gfn_to_memslot() and its descendants are here because it is called from
1366 * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot()
1367 * itself isn't here as an inline because that would bloat other code too much.
1368 */
1369 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1370 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1371 {
1372 struct kvm_memory_slot *slot;
1373 int slot_index = atomic_read(&slots->last_used_slot);
1374
1375 slot = try_get_memslot(slots, slot_index, gfn);
1376 if (slot)
1377 return slot;
1378
1379 slot = search_memslots(slots, gfn, &slot_index);
1380 if (slot) {
1381 atomic_set(&slots->last_used_slot, slot_index);
1382 return slot;
1383 }
1384
1385 return NULL;
1386 }
1387
1388 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1389 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1390 {
1391 /*
1392 * The index was checked originally in search_memslots. To avoid
1393 * that a malicious guest builds a Spectre gadget out of e.g. page
1394 * table walks, do not let the processor speculate loads outside
1395 * the guest's registered memslots.
1396 */
1397 unsigned long offset = gfn - slot->base_gfn;
1398 offset = array_index_nospec(offset, slot->npages);
1399 return slot->userspace_addr + offset * PAGE_SIZE;
1400 }
1401
memslot_id(struct kvm * kvm,gfn_t gfn)1402 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1403 {
1404 return gfn_to_memslot(kvm, gfn)->id;
1405 }
1406
1407 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1408 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1409 {
1410 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1411
1412 return slot->base_gfn + gfn_offset;
1413 }
1414
gfn_to_gpa(gfn_t gfn)1415 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1416 {
1417 return (gpa_t)gfn << PAGE_SHIFT;
1418 }
1419
gpa_to_gfn(gpa_t gpa)1420 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1421 {
1422 return (gfn_t)(gpa >> PAGE_SHIFT);
1423 }
1424
pfn_to_hpa(kvm_pfn_t pfn)1425 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1426 {
1427 return (hpa_t)pfn << PAGE_SHIFT;
1428 }
1429
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1430 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1431 gpa_t gpa)
1432 {
1433 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1434 }
1435
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1436 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1437 {
1438 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1439
1440 return kvm_is_error_hva(hva);
1441 }
1442
1443 enum kvm_stat_kind {
1444 KVM_STAT_VM,
1445 KVM_STAT_VCPU,
1446 };
1447
1448 struct kvm_stat_data {
1449 struct kvm *kvm;
1450 const struct _kvm_stats_desc *desc;
1451 enum kvm_stat_kind kind;
1452 };
1453
1454 struct _kvm_stats_desc {
1455 struct kvm_stats_desc desc;
1456 char name[KVM_STATS_NAME_SIZE];
1457 };
1458
1459 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1460 .flags = type | unit | base | \
1461 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1462 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1463 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1464 .exponent = exp, \
1465 .size = sz, \
1466 .bucket_size = bsz
1467
1468 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1469 { \
1470 { \
1471 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1472 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1473 }, \
1474 .name = #stat, \
1475 }
1476 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1477 { \
1478 { \
1479 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1480 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1481 }, \
1482 .name = #stat, \
1483 }
1484 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1485 { \
1486 { \
1487 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1488 .offset = offsetof(struct kvm_vm_stat, stat) \
1489 }, \
1490 .name = #stat, \
1491 }
1492 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1493 { \
1494 { \
1495 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1496 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1497 }, \
1498 .name = #stat, \
1499 }
1500 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1501 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1502 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1503
1504 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1505 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1506 unit, base, exponent, 1, 0)
1507 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1508 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1509 unit, base, exponent, 1, 0)
1510 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1511 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1512 unit, base, exponent, 1, 0)
1513 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1514 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1515 unit, base, exponent, sz, bsz)
1516 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1517 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1518 unit, base, exponent, sz, 0)
1519
1520 /* Cumulative counter, read/write */
1521 #define STATS_DESC_COUNTER(SCOPE, name) \
1522 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1523 KVM_STATS_BASE_POW10, 0)
1524 /* Instantaneous counter, read only */
1525 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1526 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1527 KVM_STATS_BASE_POW10, 0)
1528 /* Peak counter, read/write */
1529 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1530 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1531 KVM_STATS_BASE_POW10, 0)
1532
1533 /* Cumulative time in nanosecond */
1534 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1535 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1536 KVM_STATS_BASE_POW10, -9)
1537 /* Linear histogram for time in nanosecond */
1538 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1539 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1540 KVM_STATS_BASE_POW10, -9, sz, bsz)
1541 /* Logarithmic histogram for time in nanosecond */
1542 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1543 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1544 KVM_STATS_BASE_POW10, -9, sz)
1545
1546 #define KVM_GENERIC_VM_STATS() \
1547 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1548 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1549
1550 #define KVM_GENERIC_VCPU_STATS() \
1551 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1552 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1553 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1554 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1555 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1556 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1557 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1558 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1559 HALT_POLL_HIST_COUNT), \
1560 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1561 HALT_POLL_HIST_COUNT), \
1562 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1563 HALT_POLL_HIST_COUNT)
1564
1565 extern struct dentry *kvm_debugfs_dir;
1566
1567 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1568 const struct _kvm_stats_desc *desc,
1569 void *stats, size_t size_stats,
1570 char __user *user_buffer, size_t size, loff_t *offset);
1571
1572 /**
1573 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1574 * statistics data.
1575 *
1576 * @data: start address of the stats data
1577 * @size: the number of bucket of the stats data
1578 * @value: the new value used to update the linear histogram's bucket
1579 * @bucket_size: the size (width) of a bucket
1580 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1581 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1582 u64 value, size_t bucket_size)
1583 {
1584 size_t index = div64_u64(value, bucket_size);
1585
1586 index = min(index, size - 1);
1587 ++data[index];
1588 }
1589
1590 /**
1591 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1592 * statistics data.
1593 *
1594 * @data: start address of the stats data
1595 * @size: the number of bucket of the stats data
1596 * @value: the new value used to update the logarithmic histogram's bucket
1597 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1598 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1599 {
1600 size_t index = fls64(value);
1601
1602 index = min(index, size - 1);
1603 ++data[index];
1604 }
1605
1606 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1607 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1608 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1609 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1610
1611
1612 extern const struct kvm_stats_header kvm_vm_stats_header;
1613 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1614 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1615 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1616
1617 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1618 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1619 {
1620 if (unlikely(kvm->mmu_notifier_count))
1621 return 1;
1622 /*
1623 * Ensure the read of mmu_notifier_count happens before the read
1624 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1625 * mmu_notifier_invalidate_range_end to make sure that the caller
1626 * either sees the old (non-zero) value of mmu_notifier_count or
1627 * the new (incremented) value of mmu_notifier_seq.
1628 * PowerPC Book3s HV KVM calls this under a per-page lock
1629 * rather than under kvm->mmu_lock, for scalability, so
1630 * can't rely on kvm->mmu_lock to keep things ordered.
1631 */
1632 smp_rmb();
1633 if (kvm->mmu_notifier_seq != mmu_seq)
1634 return 1;
1635 return 0;
1636 }
1637
mmu_notifier_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1638 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1639 unsigned long mmu_seq,
1640 unsigned long hva)
1641 {
1642 lockdep_assert_held(&kvm->mmu_lock);
1643 /*
1644 * If mmu_notifier_count is non-zero, then the range maintained by
1645 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1646 * might be being invalidated. Note that it may include some false
1647 * positives, due to shortcuts when handing concurrent invalidations.
1648 */
1649 if (unlikely(kvm->mmu_notifier_count) &&
1650 hva >= kvm->mmu_notifier_range_start &&
1651 hva < kvm->mmu_notifier_range_end)
1652 return 1;
1653 if (kvm->mmu_notifier_seq != mmu_seq)
1654 return 1;
1655 return 0;
1656 }
1657 #endif
1658
1659 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1660
1661 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1662
1663 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1664 int kvm_set_irq_routing(struct kvm *kvm,
1665 const struct kvm_irq_routing_entry *entries,
1666 unsigned nr,
1667 unsigned flags);
1668 int kvm_set_routing_entry(struct kvm *kvm,
1669 struct kvm_kernel_irq_routing_entry *e,
1670 const struct kvm_irq_routing_entry *ue);
1671 void kvm_free_irq_routing(struct kvm *kvm);
1672
1673 #else
1674
kvm_free_irq_routing(struct kvm * kvm)1675 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1676
1677 #endif
1678
1679 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1680
1681 #ifdef CONFIG_HAVE_KVM_EVENTFD
1682
1683 void kvm_eventfd_init(struct kvm *kvm);
1684 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1685
1686 #ifdef CONFIG_HAVE_KVM_IRQFD
1687 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1688 void kvm_irqfd_release(struct kvm *kvm);
1689 void kvm_irq_routing_update(struct kvm *);
1690 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1691 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1692 {
1693 return -EINVAL;
1694 }
1695
kvm_irqfd_release(struct kvm * kvm)1696 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1697 #endif
1698
1699 #else
1700
kvm_eventfd_init(struct kvm * kvm)1701 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1702
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1703 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1704 {
1705 return -EINVAL;
1706 }
1707
kvm_irqfd_release(struct kvm * kvm)1708 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1709
1710 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1711 static inline void kvm_irq_routing_update(struct kvm *kvm)
1712 {
1713 }
1714 #endif
1715
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1716 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1717 {
1718 return -ENOSYS;
1719 }
1720
1721 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1722
1723 void kvm_arch_irq_routing_update(struct kvm *kvm);
1724
kvm_make_request(int req,struct kvm_vcpu * vcpu)1725 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1726 {
1727 /*
1728 * Ensure the rest of the request is published to kvm_check_request's
1729 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1730 */
1731 smp_wmb();
1732 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1733 }
1734
kvm_request_pending(struct kvm_vcpu * vcpu)1735 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1736 {
1737 return READ_ONCE(vcpu->requests);
1738 }
1739
kvm_test_request(int req,struct kvm_vcpu * vcpu)1740 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1741 {
1742 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1743 }
1744
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1745 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1746 {
1747 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1748 }
1749
kvm_check_request(int req,struct kvm_vcpu * vcpu)1750 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1751 {
1752 if (kvm_test_request(req, vcpu)) {
1753 kvm_clear_request(req, vcpu);
1754
1755 /*
1756 * Ensure the rest of the request is visible to kvm_check_request's
1757 * caller. Paired with the smp_wmb in kvm_make_request.
1758 */
1759 smp_mb__after_atomic();
1760 return true;
1761 } else {
1762 return false;
1763 }
1764 }
1765
1766 extern bool kvm_rebooting;
1767
1768 extern unsigned int halt_poll_ns;
1769 extern unsigned int halt_poll_ns_grow;
1770 extern unsigned int halt_poll_ns_grow_start;
1771 extern unsigned int halt_poll_ns_shrink;
1772
1773 struct kvm_device {
1774 const struct kvm_device_ops *ops;
1775 struct kvm *kvm;
1776 void *private;
1777 struct list_head vm_node;
1778 };
1779
1780 /* create, destroy, and name are mandatory */
1781 struct kvm_device_ops {
1782 const char *name;
1783
1784 /*
1785 * create is called holding kvm->lock and any operations not suitable
1786 * to do while holding the lock should be deferred to init (see
1787 * below).
1788 */
1789 int (*create)(struct kvm_device *dev, u32 type);
1790
1791 /*
1792 * init is called after create if create is successful and is called
1793 * outside of holding kvm->lock.
1794 */
1795 void (*init)(struct kvm_device *dev);
1796
1797 /*
1798 * Destroy is responsible for freeing dev.
1799 *
1800 * Destroy may be called before or after destructors are called
1801 * on emulated I/O regions, depending on whether a reference is
1802 * held by a vcpu or other kvm component that gets destroyed
1803 * after the emulated I/O.
1804 */
1805 void (*destroy)(struct kvm_device *dev);
1806
1807 /*
1808 * Release is an alternative method to free the device. It is
1809 * called when the device file descriptor is closed. Once
1810 * release is called, the destroy method will not be called
1811 * anymore as the device is removed from the device list of
1812 * the VM. kvm->lock is held.
1813 */
1814 void (*release)(struct kvm_device *dev);
1815
1816 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1817 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1818 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1819 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1820 unsigned long arg);
1821 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1822 };
1823
1824 void kvm_device_get(struct kvm_device *dev);
1825 void kvm_device_put(struct kvm_device *dev);
1826 struct kvm_device *kvm_device_from_filp(struct file *filp);
1827 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1828 void kvm_unregister_device_ops(u32 type);
1829
1830 extern struct kvm_device_ops kvm_mpic_ops;
1831 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1832 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1833
1834 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1835
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1836 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1837 {
1838 vcpu->spin_loop.in_spin_loop = val;
1839 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1840 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1841 {
1842 vcpu->spin_loop.dy_eligible = val;
1843 }
1844
1845 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1846
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1847 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1848 {
1849 }
1850
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1851 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1852 {
1853 }
1854 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1855
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1856 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1857 {
1858 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1859 !(memslot->flags & KVM_MEMSLOT_INVALID));
1860 }
1861
1862 struct kvm_vcpu *kvm_get_running_vcpu(void);
1863 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1864
1865 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1866 bool kvm_arch_has_irq_bypass(void);
1867 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1868 struct irq_bypass_producer *);
1869 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1870 struct irq_bypass_producer *);
1871 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1872 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1873 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1874 uint32_t guest_irq, bool set);
1875 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1876
1877 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1878 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1879 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1880 {
1881 return vcpu->valid_wakeup;
1882 }
1883
1884 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1885 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1886 {
1887 return true;
1888 }
1889 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1890
1891 #ifdef CONFIG_HAVE_KVM_NO_POLL
1892 /* Callback that tells if we must not poll */
1893 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1894 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1895 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1896 {
1897 return false;
1898 }
1899 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1900
1901 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1902 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1903 unsigned int ioctl, unsigned long arg);
1904 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1905 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1906 unsigned int ioctl,
1907 unsigned long arg)
1908 {
1909 return -ENOIOCTLCMD;
1910 }
1911 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1912
1913 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1914 unsigned long start, unsigned long end);
1915
1916 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
1917
1918 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1919 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1920 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1921 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1922 {
1923 return 0;
1924 }
1925 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1926
1927 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1928
1929 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1930 uintptr_t data, const char *name,
1931 struct task_struct **thread_ptr);
1932
1933 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1934 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1935 {
1936 vcpu->run->exit_reason = KVM_EXIT_INTR;
1937 vcpu->stat.signal_exits++;
1938 }
1939 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1940
1941 /*
1942 * This defines how many reserved entries we want to keep before we
1943 * kick the vcpu to the userspace to avoid dirty ring full. This
1944 * value can be tuned to higher if e.g. PML is enabled on the host.
1945 */
1946 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
1947
1948 /* Max number of entries allowed for each kvm dirty ring */
1949 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
1950
1951 #endif
1952