• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   *  Copyright 2017 - Free Electrons
4   *
5   *  Authors:
6   *	Boris Brezillon <boris.brezillon@free-electrons.com>
7   *	Peter Pan <peterpandong@micron.com>
8   */
9  
10  #ifndef __LINUX_MTD_NAND_H
11  #define __LINUX_MTD_NAND_H
12  
13  #include <linux/mtd/mtd.h>
14  
15  struct nand_device;
16  
17  /**
18   * struct nand_memory_organization - Memory organization structure
19   * @bits_per_cell: number of bits per NAND cell
20   * @pagesize: page size
21   * @oobsize: OOB area size
22   * @pages_per_eraseblock: number of pages per eraseblock
23   * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24   * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25   * @planes_per_lun: number of planes per LUN
26   * @luns_per_target: number of LUN per target (target is a synonym for die)
27   * @ntargets: total number of targets exposed by the NAND device
28   */
29  struct nand_memory_organization {
30  	unsigned int bits_per_cell;
31  	unsigned int pagesize;
32  	unsigned int oobsize;
33  	unsigned int pages_per_eraseblock;
34  	unsigned int eraseblocks_per_lun;
35  	unsigned int max_bad_eraseblocks_per_lun;
36  	unsigned int planes_per_lun;
37  	unsigned int luns_per_target;
38  	unsigned int ntargets;
39  };
40  
41  #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)	\
42  	{							\
43  		.bits_per_cell = (bpc),				\
44  		.pagesize = (ps),				\
45  		.oobsize = (os),				\
46  		.pages_per_eraseblock = (ppe),			\
47  		.eraseblocks_per_lun = (epl),			\
48  		.max_bad_eraseblocks_per_lun = (mbb),		\
49  		.planes_per_lun = (ppl),			\
50  		.luns_per_target = (lpt),			\
51  		.ntargets = (nt),				\
52  	}
53  
54  /**
55   * struct nand_row_converter - Information needed to convert an absolute offset
56   *			       into a row address
57   * @lun_addr_shift: position of the LUN identifier in the row address
58   * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59   *			   address
60   */
61  struct nand_row_converter {
62  	unsigned int lun_addr_shift;
63  	unsigned int eraseblock_addr_shift;
64  };
65  
66  /**
67   * struct nand_pos - NAND position object
68   * @target: the NAND target/die
69   * @lun: the LUN identifier
70   * @plane: the plane within the LUN
71   * @eraseblock: the eraseblock within the LUN
72   * @page: the page within the LUN
73   *
74   * These information are usually used by specific sub-layers to select the
75   * appropriate target/die and generate a row address to pass to the device.
76   */
77  struct nand_pos {
78  	unsigned int target;
79  	unsigned int lun;
80  	unsigned int plane;
81  	unsigned int eraseblock;
82  	unsigned int page;
83  };
84  
85  /**
86   * enum nand_page_io_req_type - Direction of an I/O request
87   * @NAND_PAGE_READ: from the chip, to the controller
88   * @NAND_PAGE_WRITE: from the controller, to the chip
89   */
90  enum nand_page_io_req_type {
91  	NAND_PAGE_READ = 0,
92  	NAND_PAGE_WRITE,
93  };
94  
95  /**
96   * struct nand_page_io_req - NAND I/O request object
97   * @type: the type of page I/O: read or write
98   * @pos: the position this I/O request is targeting
99   * @dataoffs: the offset within the page
100   * @datalen: number of data bytes to read from/write to this page
101   * @databuf: buffer to store data in or get data from
102   * @ooboffs: the OOB offset within the page
103   * @ooblen: the number of OOB bytes to read from/write to this page
104   * @oobbuf: buffer to store OOB data in or get OOB data from
105   * @mode: one of the %MTD_OPS_XXX mode
106   *
107   * This object is used to pass per-page I/O requests to NAND sub-layers. This
108   * way all useful information are already formatted in a useful way and
109   * specific NAND layers can focus on translating these information into
110   * specific commands/operations.
111   */
112  struct nand_page_io_req {
113  	enum nand_page_io_req_type type;
114  	struct nand_pos pos;
115  	unsigned int dataoffs;
116  	unsigned int datalen;
117  	union {
118  		const void *out;
119  		void *in;
120  	} databuf;
121  	unsigned int ooboffs;
122  	unsigned int ooblen;
123  	union {
124  		const void *out;
125  		void *in;
126  	} oobbuf;
127  	int mode;
128  };
129  
130  const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131  const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132  const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133  
134  /**
135   * enum nand_ecc_engine_type - NAND ECC engine type
136   * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137   * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138   * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139   * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140   * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141   */
142  enum nand_ecc_engine_type {
143  	NAND_ECC_ENGINE_TYPE_INVALID,
144  	NAND_ECC_ENGINE_TYPE_NONE,
145  	NAND_ECC_ENGINE_TYPE_SOFT,
146  	NAND_ECC_ENGINE_TYPE_ON_HOST,
147  	NAND_ECC_ENGINE_TYPE_ON_DIE,
148  };
149  
150  /**
151   * enum nand_ecc_placement - NAND ECC bytes placement
152   * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153   * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154   * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155   *                                  interleaved with regular data in the main
156   *                                  area
157   */
158  enum nand_ecc_placement {
159  	NAND_ECC_PLACEMENT_UNKNOWN,
160  	NAND_ECC_PLACEMENT_OOB,
161  	NAND_ECC_PLACEMENT_INTERLEAVED,
162  };
163  
164  /**
165   * enum nand_ecc_algo - NAND ECC algorithm
166   * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167   * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168   * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169   * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170   */
171  enum nand_ecc_algo {
172  	NAND_ECC_ALGO_UNKNOWN,
173  	NAND_ECC_ALGO_HAMMING,
174  	NAND_ECC_ALGO_BCH,
175  	NAND_ECC_ALGO_RS,
176  };
177  
178  /**
179   * struct nand_ecc_props - NAND ECC properties
180   * @engine_type: ECC engine type
181   * @placement: OOB placement (if relevant)
182   * @algo: ECC algorithm (if relevant)
183   * @strength: ECC strength
184   * @step_size: Number of bytes per step
185   * @flags: Misc properties
186   */
187  struct nand_ecc_props {
188  	enum nand_ecc_engine_type engine_type;
189  	enum nand_ecc_placement placement;
190  	enum nand_ecc_algo algo;
191  	unsigned int strength;
192  	unsigned int step_size;
193  	unsigned int flags;
194  };
195  
196  #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197  
198  /* NAND ECC misc flags */
199  #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200  
201  /**
202   * struct nand_bbt - bad block table object
203   * @cache: in memory BBT cache
204   */
205  struct nand_bbt {
206  	unsigned long *cache;
207  };
208  
209  /**
210   * struct nand_ops - NAND operations
211   * @erase: erase a specific block. No need to check if the block is bad before
212   *	   erasing, this has been taken care of by the generic NAND layer
213   * @markbad: mark a specific block bad. No need to check if the block is
214   *	     already marked bad, this has been taken care of by the generic
215   *	     NAND layer. This method should just write the BBM (Bad Block
216   *	     Marker) so that future call to struct_nand_ops->isbad() return
217   *	     true
218   * @isbad: check whether a block is bad or not. This method should just read
219   *	   the BBM and return whether the block is bad or not based on what it
220   *	   reads
221   *
222   * These are all low level operations that should be implemented by specialized
223   * NAND layers (SPI NAND, raw NAND, ...).
224   */
225  struct nand_ops {
226  	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
227  	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
228  	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
229  };
230  
231  /**
232   * struct nand_ecc_context - Context for the ECC engine
233   * @conf: basic ECC engine parameters
234   * @nsteps: number of ECC steps
235   * @total: total number of bytes used for storing ECC codes, this is used by
236   *         generic OOB layouts
237   * @priv: ECC engine driver private data
238   */
239  struct nand_ecc_context {
240  	struct nand_ecc_props conf;
241  	unsigned int nsteps;
242  	unsigned int total;
243  	void *priv;
244  };
245  
246  /**
247   * struct nand_ecc_engine_ops - ECC engine operations
248   * @init_ctx: given a desired user configuration for the pointed NAND device,
249   *            requests the ECC engine driver to setup a configuration with
250   *            values it supports.
251   * @cleanup_ctx: clean the context initialized by @init_ctx.
252   * @prepare_io_req: is called before reading/writing a page to prepare the I/O
253   *                  request to be performed with ECC correction.
254   * @finish_io_req: is called after reading/writing a page to terminate the I/O
255   *                 request and ensure proper ECC correction.
256   */
257  struct nand_ecc_engine_ops {
258  	int (*init_ctx)(struct nand_device *nand);
259  	void (*cleanup_ctx)(struct nand_device *nand);
260  	int (*prepare_io_req)(struct nand_device *nand,
261  			      struct nand_page_io_req *req);
262  	int (*finish_io_req)(struct nand_device *nand,
263  			     struct nand_page_io_req *req);
264  };
265  
266  /**
267   * struct nand_ecc_engine - ECC engine abstraction for NAND devices
268   * @ops: ECC engine operations
269   */
270  struct nand_ecc_engine {
271  	struct nand_ecc_engine_ops *ops;
272  };
273  
274  void of_get_nand_ecc_user_config(struct nand_device *nand);
275  int nand_ecc_init_ctx(struct nand_device *nand);
276  void nand_ecc_cleanup_ctx(struct nand_device *nand);
277  int nand_ecc_prepare_io_req(struct nand_device *nand,
278  			    struct nand_page_io_req *req);
279  int nand_ecc_finish_io_req(struct nand_device *nand,
280  			   struct nand_page_io_req *req);
281  bool nand_ecc_is_strong_enough(struct nand_device *nand);
282  struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
283  struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
284  
285  #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
286  struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
287  #else
nand_ecc_sw_hamming_get_engine(void)288  static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
289  {
290  	return NULL;
291  }
292  #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
293  
294  #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
295  struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
296  #else
nand_ecc_sw_bch_get_engine(void)297  static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
298  {
299  	return NULL;
300  }
301  #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
302  
303  /**
304   * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
305   * @orig_req: Pointer to the original IO request
306   * @nand: Related NAND device, to have access to its memory organization
307   * @page_buffer_size: Real size of the page buffer to use (can be set by the
308   *                    user before the tweaking mechanism initialization)
309   * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
310   *                   user before the tweaking mechanism initialization)
311   * @spare_databuf: Data bounce buffer
312   * @spare_oobbuf: OOB bounce buffer
313   * @bounce_data: Flag indicating a data bounce buffer is used
314   * @bounce_oob: Flag indicating an OOB bounce buffer is used
315   */
316  struct nand_ecc_req_tweak_ctx {
317  	struct nand_page_io_req orig_req;
318  	struct nand_device *nand;
319  	unsigned int page_buffer_size;
320  	unsigned int oob_buffer_size;
321  	void *spare_databuf;
322  	void *spare_oobbuf;
323  	bool bounce_data;
324  	bool bounce_oob;
325  };
326  
327  int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
328  			       struct nand_device *nand);
329  void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
330  void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
331  			struct nand_page_io_req *req);
332  void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
333  			  struct nand_page_io_req *req);
334  
335  /**
336   * struct nand_ecc - Information relative to the ECC
337   * @defaults: Default values, depend on the underlying subsystem
338   * @requirements: ECC requirements from the NAND chip perspective
339   * @user_conf: User desires in terms of ECC parameters
340   * @ctx: ECC context for the ECC engine, derived from the device @requirements
341   *       the @user_conf and the @defaults
342   * @ondie_engine: On-die ECC engine reference, if any
343   * @engine: ECC engine actually bound
344   */
345  struct nand_ecc {
346  	struct nand_ecc_props defaults;
347  	struct nand_ecc_props requirements;
348  	struct nand_ecc_props user_conf;
349  	struct nand_ecc_context ctx;
350  	struct nand_ecc_engine *ondie_engine;
351  	struct nand_ecc_engine *engine;
352  };
353  
354  /**
355   * struct nand_device - NAND device
356   * @mtd: MTD instance attached to the NAND device
357   * @memorg: memory layout
358   * @ecc: NAND ECC object attached to the NAND device
359   * @rowconv: position to row address converter
360   * @bbt: bad block table info
361   * @ops: NAND operations attached to the NAND device
362   *
363   * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
364   * should declare their own NAND object embedding a nand_device struct (that's
365   * how inheritance is done).
366   * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
367   * be filled at device detection time to reflect the NAND device
368   * capabilities/requirements. Once this is done nanddev_init() can be called.
369   * It will take care of converting NAND information into MTD ones, which means
370   * the specialized NAND layers should never manually tweak
371   * struct_nand_device->mtd except for the ->_read/write() hooks.
372   */
373  struct nand_device {
374  	struct mtd_info mtd;
375  	struct nand_memory_organization memorg;
376  	struct nand_ecc ecc;
377  	struct nand_row_converter rowconv;
378  	struct nand_bbt bbt;
379  	const struct nand_ops *ops;
380  };
381  
382  /**
383   * struct nand_io_iter - NAND I/O iterator
384   * @req: current I/O request
385   * @oobbytes_per_page: maximum number of OOB bytes per page
386   * @dataleft: remaining number of data bytes to read/write
387   * @oobleft: remaining number of OOB bytes to read/write
388   *
389   * Can be used by specialized NAND layers to iterate over all pages covered
390   * by an MTD I/O request, which should greatly simplifies the boiler-plate
391   * code needed to read/write data from/to a NAND device.
392   */
393  struct nand_io_iter {
394  	struct nand_page_io_req req;
395  	unsigned int oobbytes_per_page;
396  	unsigned int dataleft;
397  	unsigned int oobleft;
398  };
399  
400  /**
401   * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
402   * @mtd: MTD instance
403   *
404   * Return: the NAND device embedding @mtd.
405   */
mtd_to_nanddev(struct mtd_info * mtd)406  static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
407  {
408  	return container_of(mtd, struct nand_device, mtd);
409  }
410  
411  /**
412   * nanddev_to_mtd() - Get the MTD device attached to a NAND device
413   * @nand: NAND device
414   *
415   * Return: the MTD device embedded in @nand.
416   */
nanddev_to_mtd(struct nand_device * nand)417  static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
418  {
419  	return &nand->mtd;
420  }
421  
422  /*
423   * nanddev_bits_per_cell() - Get the number of bits per cell
424   * @nand: NAND device
425   *
426   * Return: the number of bits per cell.
427   */
nanddev_bits_per_cell(const struct nand_device * nand)428  static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
429  {
430  	return nand->memorg.bits_per_cell;
431  }
432  
433  /**
434   * nanddev_page_size() - Get NAND page size
435   * @nand: NAND device
436   *
437   * Return: the page size.
438   */
nanddev_page_size(const struct nand_device * nand)439  static inline size_t nanddev_page_size(const struct nand_device *nand)
440  {
441  	return nand->memorg.pagesize;
442  }
443  
444  /**
445   * nanddev_per_page_oobsize() - Get NAND OOB size
446   * @nand: NAND device
447   *
448   * Return: the OOB size.
449   */
450  static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)451  nanddev_per_page_oobsize(const struct nand_device *nand)
452  {
453  	return nand->memorg.oobsize;
454  }
455  
456  /**
457   * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
458   * @nand: NAND device
459   *
460   * Return: the number of pages per eraseblock.
461   */
462  static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)463  nanddev_pages_per_eraseblock(const struct nand_device *nand)
464  {
465  	return nand->memorg.pages_per_eraseblock;
466  }
467  
468  /**
469   * nanddev_pages_per_target() - Get the number of pages per target
470   * @nand: NAND device
471   *
472   * Return: the number of pages per target.
473   */
474  static inline unsigned int
nanddev_pages_per_target(const struct nand_device * nand)475  nanddev_pages_per_target(const struct nand_device *nand)
476  {
477  	return nand->memorg.pages_per_eraseblock *
478  	       nand->memorg.eraseblocks_per_lun *
479  	       nand->memorg.luns_per_target;
480  }
481  
482  /**
483   * nanddev_per_page_oobsize() - Get NAND erase block size
484   * @nand: NAND device
485   *
486   * Return: the eraseblock size.
487   */
nanddev_eraseblock_size(const struct nand_device * nand)488  static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
489  {
490  	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
491  }
492  
493  /**
494   * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
495   * @nand: NAND device
496   *
497   * Return: the number of eraseblocks per LUN.
498   */
499  static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)500  nanddev_eraseblocks_per_lun(const struct nand_device *nand)
501  {
502  	return nand->memorg.eraseblocks_per_lun;
503  }
504  
505  /**
506   * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
507   * @nand: NAND device
508   *
509   * Return: the number of eraseblocks per target.
510   */
511  static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device * nand)512  nanddev_eraseblocks_per_target(const struct nand_device *nand)
513  {
514  	return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
515  }
516  
517  /**
518   * nanddev_target_size() - Get the total size provided by a single target/die
519   * @nand: NAND device
520   *
521   * Return: the total size exposed by a single target/die in bytes.
522   */
nanddev_target_size(const struct nand_device * nand)523  static inline u64 nanddev_target_size(const struct nand_device *nand)
524  {
525  	return (u64)nand->memorg.luns_per_target *
526  	       nand->memorg.eraseblocks_per_lun *
527  	       nand->memorg.pages_per_eraseblock *
528  	       nand->memorg.pagesize;
529  }
530  
531  /**
532   * nanddev_ntarget() - Get the total of targets
533   * @nand: NAND device
534   *
535   * Return: the number of targets/dies exposed by @nand.
536   */
nanddev_ntargets(const struct nand_device * nand)537  static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
538  {
539  	return nand->memorg.ntargets;
540  }
541  
542  /**
543   * nanddev_neraseblocks() - Get the total number of eraseblocks
544   * @nand: NAND device
545   *
546   * Return: the total number of eraseblocks exposed by @nand.
547   */
nanddev_neraseblocks(const struct nand_device * nand)548  static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
549  {
550  	return nand->memorg.ntargets * nand->memorg.luns_per_target *
551  	       nand->memorg.eraseblocks_per_lun;
552  }
553  
554  /**
555   * nanddev_size() - Get NAND size
556   * @nand: NAND device
557   *
558   * Return: the total size (in bytes) exposed by @nand.
559   */
nanddev_size(const struct nand_device * nand)560  static inline u64 nanddev_size(const struct nand_device *nand)
561  {
562  	return nanddev_target_size(nand) * nanddev_ntargets(nand);
563  }
564  
565  /**
566   * nanddev_get_memorg() - Extract memory organization info from a NAND device
567   * @nand: NAND device
568   *
569   * This can be used by the upper layer to fill the memorg info before calling
570   * nanddev_init().
571   *
572   * Return: the memorg object embedded in the NAND device.
573   */
574  static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)575  nanddev_get_memorg(struct nand_device *nand)
576  {
577  	return &nand->memorg;
578  }
579  
580  /**
581   * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
582   * @nand: NAND device
583   */
584  static inline const struct nand_ecc_props *
nanddev_get_ecc_conf(struct nand_device * nand)585  nanddev_get_ecc_conf(struct nand_device *nand)
586  {
587  	return &nand->ecc.ctx.conf;
588  }
589  
590  /**
591   * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
592   * @nand: NAND device
593   */
594  static inline unsigned int
nanddev_get_ecc_nsteps(struct nand_device * nand)595  nanddev_get_ecc_nsteps(struct nand_device *nand)
596  {
597  	return nand->ecc.ctx.nsteps;
598  }
599  
600  /**
601   * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
602   * @nand: NAND device
603   */
604  static inline unsigned int
nanddev_get_ecc_bytes_per_step(struct nand_device * nand)605  nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
606  {
607  	return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
608  }
609  
610  /**
611   * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
612   *                                  device
613   * @nand: NAND device
614   */
615  static inline const struct nand_ecc_props *
nanddev_get_ecc_requirements(struct nand_device * nand)616  nanddev_get_ecc_requirements(struct nand_device *nand)
617  {
618  	return &nand->ecc.requirements;
619  }
620  
621  /**
622   * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
623   *                                  device
624   * @nand: NAND device
625   * @reqs: Requirements
626   */
627  static inline void
nanddev_set_ecc_requirements(struct nand_device * nand,const struct nand_ecc_props * reqs)628  nanddev_set_ecc_requirements(struct nand_device *nand,
629  			     const struct nand_ecc_props *reqs)
630  {
631  	nand->ecc.requirements = *reqs;
632  }
633  
634  int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
635  		 struct module *owner);
636  void nanddev_cleanup(struct nand_device *nand);
637  
638  /**
639   * nanddev_register() - Register a NAND device
640   * @nand: NAND device
641   *
642   * Register a NAND device.
643   * This function is just a wrapper around mtd_device_register()
644   * registering the MTD device embedded in @nand.
645   *
646   * Return: 0 in case of success, a negative error code otherwise.
647   */
nanddev_register(struct nand_device * nand)648  static inline int nanddev_register(struct nand_device *nand)
649  {
650  	return mtd_device_register(&nand->mtd, NULL, 0);
651  }
652  
653  /**
654   * nanddev_unregister() - Unregister a NAND device
655   * @nand: NAND device
656   *
657   * Unregister a NAND device.
658   * This function is just a wrapper around mtd_device_unregister()
659   * unregistering the MTD device embedded in @nand.
660   *
661   * Return: 0 in case of success, a negative error code otherwise.
662   */
nanddev_unregister(struct nand_device * nand)663  static inline int nanddev_unregister(struct nand_device *nand)
664  {
665  	return mtd_device_unregister(&nand->mtd);
666  }
667  
668  /**
669   * nanddev_set_of_node() - Attach a DT node to a NAND device
670   * @nand: NAND device
671   * @np: DT node
672   *
673   * Attach a DT node to a NAND device.
674   */
nanddev_set_of_node(struct nand_device * nand,struct device_node * np)675  static inline void nanddev_set_of_node(struct nand_device *nand,
676  				       struct device_node *np)
677  {
678  	mtd_set_of_node(&nand->mtd, np);
679  }
680  
681  /**
682   * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
683   * @nand: NAND device
684   *
685   * Return: the DT node attached to @nand.
686   */
nanddev_get_of_node(struct nand_device * nand)687  static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
688  {
689  	return mtd_get_of_node(&nand->mtd);
690  }
691  
692  /**
693   * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
694   * @nand: NAND device
695   * @offs: absolute NAND offset (usually passed by the MTD layer)
696   * @pos: a NAND position object to fill in
697   *
698   * Converts @offs into a nand_pos representation.
699   *
700   * Return: the offset within the NAND page pointed by @pos.
701   */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)702  static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
703  					       loff_t offs,
704  					       struct nand_pos *pos)
705  {
706  	unsigned int pageoffs;
707  	u64 tmp = offs;
708  
709  	pageoffs = do_div(tmp, nand->memorg.pagesize);
710  	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
711  	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
712  	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
713  	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
714  	pos->target = tmp;
715  
716  	return pageoffs;
717  }
718  
719  /**
720   * nanddev_pos_cmp() - Compare two NAND positions
721   * @a: First NAND position
722   * @b: Second NAND position
723   *
724   * Compares two NAND positions.
725   *
726   * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
727   */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)728  static inline int nanddev_pos_cmp(const struct nand_pos *a,
729  				  const struct nand_pos *b)
730  {
731  	if (a->target != b->target)
732  		return a->target < b->target ? -1 : 1;
733  
734  	if (a->lun != b->lun)
735  		return a->lun < b->lun ? -1 : 1;
736  
737  	if (a->eraseblock != b->eraseblock)
738  		return a->eraseblock < b->eraseblock ? -1 : 1;
739  
740  	if (a->page != b->page)
741  		return a->page < b->page ? -1 : 1;
742  
743  	return 0;
744  }
745  
746  /**
747   * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
748   * @nand: NAND device
749   * @pos: the NAND position to convert
750   *
751   * Converts @pos NAND position into an absolute offset.
752   *
753   * Return: the absolute offset. Note that @pos points to the beginning of a
754   *	   page, if one wants to point to a specific offset within this page
755   *	   the returned offset has to be adjusted manually.
756   */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)757  static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
758  					 const struct nand_pos *pos)
759  {
760  	unsigned int npages;
761  
762  	npages = pos->page +
763  		 ((pos->eraseblock +
764  		   (pos->lun +
765  		    (pos->target * nand->memorg.luns_per_target)) *
766  		   nand->memorg.eraseblocks_per_lun) *
767  		  nand->memorg.pages_per_eraseblock);
768  
769  	return (loff_t)npages * nand->memorg.pagesize;
770  }
771  
772  /**
773   * nanddev_pos_to_row() - Extract a row address from a NAND position
774   * @nand: NAND device
775   * @pos: the position to convert
776   *
777   * Converts a NAND position into a row address that can then be passed to the
778   * device.
779   *
780   * Return: the row address extracted from @pos.
781   */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)782  static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
783  					      const struct nand_pos *pos)
784  {
785  	return (pos->lun << nand->rowconv.lun_addr_shift) |
786  	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
787  	       pos->page;
788  }
789  
790  /**
791   * nanddev_pos_next_target() - Move a position to the next target/die
792   * @nand: NAND device
793   * @pos: the position to update
794   *
795   * Updates @pos to point to the start of the next target/die. Useful when you
796   * want to iterate over all targets/dies of a NAND device.
797   */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)798  static inline void nanddev_pos_next_target(struct nand_device *nand,
799  					   struct nand_pos *pos)
800  {
801  	pos->page = 0;
802  	pos->plane = 0;
803  	pos->eraseblock = 0;
804  	pos->lun = 0;
805  	pos->target++;
806  }
807  
808  /**
809   * nanddev_pos_next_lun() - Move a position to the next LUN
810   * @nand: NAND device
811   * @pos: the position to update
812   *
813   * Updates @pos to point to the start of the next LUN. Useful when you want to
814   * iterate over all LUNs of a NAND device.
815   */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)816  static inline void nanddev_pos_next_lun(struct nand_device *nand,
817  					struct nand_pos *pos)
818  {
819  	if (pos->lun >= nand->memorg.luns_per_target - 1)
820  		return nanddev_pos_next_target(nand, pos);
821  
822  	pos->lun++;
823  	pos->page = 0;
824  	pos->plane = 0;
825  	pos->eraseblock = 0;
826  }
827  
828  /**
829   * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
830   * @nand: NAND device
831   * @pos: the position to update
832   *
833   * Updates @pos to point to the start of the next eraseblock. Useful when you
834   * want to iterate over all eraseblocks of a NAND device.
835   */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)836  static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
837  					       struct nand_pos *pos)
838  {
839  	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
840  		return nanddev_pos_next_lun(nand, pos);
841  
842  	pos->eraseblock++;
843  	pos->page = 0;
844  	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
845  }
846  
847  /**
848   * nanddev_pos_next_page() - Move a position to the next page
849   * @nand: NAND device
850   * @pos: the position to update
851   *
852   * Updates @pos to point to the start of the next page. Useful when you want to
853   * iterate over all pages of a NAND device.
854   */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)855  static inline void nanddev_pos_next_page(struct nand_device *nand,
856  					 struct nand_pos *pos)
857  {
858  	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
859  		return nanddev_pos_next_eraseblock(nand, pos);
860  
861  	pos->page++;
862  }
863  
864  /**
865   * nand_io_iter_init - Initialize a NAND I/O iterator
866   * @nand: NAND device
867   * @offs: absolute offset
868   * @req: MTD request
869   * @iter: NAND I/O iterator
870   *
871   * Initializes a NAND iterator based on the information passed by the MTD
872   * layer.
873   */
nanddev_io_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)874  static inline void nanddev_io_iter_init(struct nand_device *nand,
875  					enum nand_page_io_req_type reqtype,
876  					loff_t offs, struct mtd_oob_ops *req,
877  					struct nand_io_iter *iter)
878  {
879  	struct mtd_info *mtd = nanddev_to_mtd(nand);
880  
881  	iter->req.type = reqtype;
882  	iter->req.mode = req->mode;
883  	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
884  	iter->req.ooboffs = req->ooboffs;
885  	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
886  	iter->dataleft = req->len;
887  	iter->oobleft = req->ooblen;
888  	iter->req.databuf.in = req->datbuf;
889  	iter->req.datalen = min_t(unsigned int,
890  				  nand->memorg.pagesize - iter->req.dataoffs,
891  				  iter->dataleft);
892  	iter->req.oobbuf.in = req->oobbuf;
893  	iter->req.ooblen = min_t(unsigned int,
894  				 iter->oobbytes_per_page - iter->req.ooboffs,
895  				 iter->oobleft);
896  }
897  
898  /**
899   * nand_io_iter_next_page - Move to the next page
900   * @nand: NAND device
901   * @iter: NAND I/O iterator
902   *
903   * Updates the @iter to point to the next page.
904   */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)905  static inline void nanddev_io_iter_next_page(struct nand_device *nand,
906  					     struct nand_io_iter *iter)
907  {
908  	nanddev_pos_next_page(nand, &iter->req.pos);
909  	iter->dataleft -= iter->req.datalen;
910  	iter->req.databuf.in += iter->req.datalen;
911  	iter->oobleft -= iter->req.ooblen;
912  	iter->req.oobbuf.in += iter->req.ooblen;
913  	iter->req.dataoffs = 0;
914  	iter->req.ooboffs = 0;
915  	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
916  				  iter->dataleft);
917  	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
918  				 iter->oobleft);
919  }
920  
921  /**
922   * nand_io_iter_end - Should end iteration or not
923   * @nand: NAND device
924   * @iter: NAND I/O iterator
925   *
926   * Check whether @iter has reached the end of the NAND portion it was asked to
927   * iterate on or not.
928   *
929   * Return: true if @iter has reached the end of the iteration request, false
930   *	   otherwise.
931   */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)932  static inline bool nanddev_io_iter_end(struct nand_device *nand,
933  				       const struct nand_io_iter *iter)
934  {
935  	if (iter->dataleft || iter->oobleft)
936  		return false;
937  
938  	return true;
939  }
940  
941  /**
942   * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
943   *			   request
944   * @nand: NAND device
945   * @start: start address to read/write from
946   * @req: MTD I/O request
947   * @iter: NAND I/O iterator
948   *
949   * Should be used for iterate over pages that are contained in an MTD request.
950   */
951  #define nanddev_io_for_each_page(nand, type, start, req, iter)		\
952  	for (nanddev_io_iter_init(nand, type, start, req, iter);	\
953  	     !nanddev_io_iter_end(nand, iter);				\
954  	     nanddev_io_iter_next_page(nand, iter))
955  
956  bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
957  bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
958  int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
959  int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
960  
961  /* ECC related functions */
962  int nanddev_ecc_engine_init(struct nand_device *nand);
963  void nanddev_ecc_engine_cleanup(struct nand_device *nand);
964  
965  /* BBT related functions */
966  enum nand_bbt_block_status {
967  	NAND_BBT_BLOCK_STATUS_UNKNOWN,
968  	NAND_BBT_BLOCK_GOOD,
969  	NAND_BBT_BLOCK_WORN,
970  	NAND_BBT_BLOCK_RESERVED,
971  	NAND_BBT_BLOCK_FACTORY_BAD,
972  	NAND_BBT_BLOCK_NUM_STATUS,
973  };
974  
975  int nanddev_bbt_init(struct nand_device *nand);
976  void nanddev_bbt_cleanup(struct nand_device *nand);
977  int nanddev_bbt_update(struct nand_device *nand);
978  int nanddev_bbt_get_block_status(const struct nand_device *nand,
979  				 unsigned int entry);
980  int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
981  				 enum nand_bbt_block_status status);
982  int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
983  
984  /**
985   * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
986   * @nand: NAND device
987   * @pos: the NAND position we want to get BBT entry for
988   *
989   * Return the BBT entry used to store information about the eraseblock pointed
990   * by @pos.
991   *
992   * Return: the BBT entry storing information about eraseblock pointed by @pos.
993   */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)994  static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
995  						    const struct nand_pos *pos)
996  {
997  	return pos->eraseblock +
998  	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
999  		nand->memorg.eraseblocks_per_lun);
1000  }
1001  
1002  /**
1003   * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1004   * @nand: NAND device
1005   *
1006   * Return: true if the BBT has been initialized, false otherwise.
1007   */
nanddev_bbt_is_initialized(struct nand_device * nand)1008  static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1009  {
1010  	return !!nand->bbt.cache;
1011  }
1012  
1013  /* MTD -> NAND helper functions. */
1014  int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1015  int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1016  
1017  #endif /* __LINUX_MTD_NAND_H */
1018