1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
264 #define PERF_PMU_CAP_NO_NMI 0x0002
265 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
267 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
268 #define PERF_PMU_CAP_ITRACE 0x0020
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
272 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
273
274 struct perf_output_handle;
275
276 /**
277 * struct pmu - generic performance monitoring unit
278 */
279 struct pmu {
280 struct list_head entry;
281
282 struct module *module;
283 struct device *dev;
284 const struct attribute_group **attr_groups;
285 const struct attribute_group **attr_update;
286 const char *name;
287 int type;
288
289 /*
290 * various common per-pmu feature flags
291 */
292 int capabilities;
293
294 int __percpu *pmu_disable_count;
295 struct perf_cpu_context __percpu *pmu_cpu_context;
296 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
297 int task_ctx_nr;
298 int hrtimer_interval_ms;
299
300 /* number of address filters this PMU can do */
301 unsigned int nr_addr_filters;
302
303 /*
304 * Fully disable/enable this PMU, can be used to protect from the PMI
305 * as well as for lazy/batch writing of the MSRs.
306 */
307 void (*pmu_enable) (struct pmu *pmu); /* optional */
308 void (*pmu_disable) (struct pmu *pmu); /* optional */
309
310 /*
311 * Try and initialize the event for this PMU.
312 *
313 * Returns:
314 * -ENOENT -- @event is not for this PMU
315 *
316 * -ENODEV -- @event is for this PMU but PMU not present
317 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
318 * -EINVAL -- @event is for this PMU but @event is not valid
319 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
320 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
321 *
322 * 0 -- @event is for this PMU and valid
323 *
324 * Other error return values are allowed.
325 */
326 int (*event_init) (struct perf_event *event);
327
328 /*
329 * Notification that the event was mapped or unmapped. Called
330 * in the context of the mapping task.
331 */
332 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
334
335 /*
336 * Flags for ->add()/->del()/ ->start()/->stop(). There are
337 * matching hw_perf_event::state flags.
338 */
339 #define PERF_EF_START 0x01 /* start the counter when adding */
340 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
341 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
342
343 /*
344 * Adds/Removes a counter to/from the PMU, can be done inside a
345 * transaction, see the ->*_txn() methods.
346 *
347 * The add/del callbacks will reserve all hardware resources required
348 * to service the event, this includes any counter constraint
349 * scheduling etc.
350 *
351 * Called with IRQs disabled and the PMU disabled on the CPU the event
352 * is on.
353 *
354 * ->add() called without PERF_EF_START should result in the same state
355 * as ->add() followed by ->stop().
356 *
357 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
358 * ->stop() that must deal with already being stopped without
359 * PERF_EF_UPDATE.
360 */
361 int (*add) (struct perf_event *event, int flags);
362 void (*del) (struct perf_event *event, int flags);
363
364 /*
365 * Starts/Stops a counter present on the PMU.
366 *
367 * The PMI handler should stop the counter when perf_event_overflow()
368 * returns !0. ->start() will be used to continue.
369 *
370 * Also used to change the sample period.
371 *
372 * Called with IRQs disabled and the PMU disabled on the CPU the event
373 * is on -- will be called from NMI context with the PMU generates
374 * NMIs.
375 *
376 * ->stop() with PERF_EF_UPDATE will read the counter and update
377 * period/count values like ->read() would.
378 *
379 * ->start() with PERF_EF_RELOAD will reprogram the counter
380 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
381 */
382 void (*start) (struct perf_event *event, int flags);
383 void (*stop) (struct perf_event *event, int flags);
384
385 /*
386 * Updates the counter value of the event.
387 *
388 * For sampling capable PMUs this will also update the software period
389 * hw_perf_event::period_left field.
390 */
391 void (*read) (struct perf_event *event);
392
393 /*
394 * Group events scheduling is treated as a transaction, add
395 * group events as a whole and perform one schedulability test.
396 * If the test fails, roll back the whole group
397 *
398 * Start the transaction, after this ->add() doesn't need to
399 * do schedulability tests.
400 *
401 * Optional.
402 */
403 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
404 /*
405 * If ->start_txn() disabled the ->add() schedulability test
406 * then ->commit_txn() is required to perform one. On success
407 * the transaction is closed. On error the transaction is kept
408 * open until ->cancel_txn() is called.
409 *
410 * Optional.
411 */
412 int (*commit_txn) (struct pmu *pmu);
413 /*
414 * Will cancel the transaction, assumes ->del() is called
415 * for each successful ->add() during the transaction.
416 *
417 * Optional.
418 */
419 void (*cancel_txn) (struct pmu *pmu);
420
421 /*
422 * Will return the value for perf_event_mmap_page::index for this event,
423 * if no implementation is provided it will default to: event->hw.idx + 1.
424 */
425 int (*event_idx) (struct perf_event *event); /*optional */
426
427 /*
428 * context-switches callback
429 */
430 void (*sched_task) (struct perf_event_context *ctx,
431 bool sched_in);
432
433 /*
434 * Kmem cache of PMU specific data
435 */
436 struct kmem_cache *task_ctx_cache;
437
438 /*
439 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
440 * can be synchronized using this function. See Intel LBR callstack support
441 * implementation and Perf core context switch handling callbacks for usage
442 * examples.
443 */
444 void (*swap_task_ctx) (struct perf_event_context *prev,
445 struct perf_event_context *next);
446 /* optional */
447
448 /*
449 * Set up pmu-private data structures for an AUX area
450 */
451 void *(*setup_aux) (struct perf_event *event, void **pages,
452 int nr_pages, bool overwrite);
453 /* optional */
454
455 /*
456 * Free pmu-private AUX data structures
457 */
458 void (*free_aux) (void *aux); /* optional */
459
460 /*
461 * Take a snapshot of the AUX buffer without touching the event
462 * state, so that preempting ->start()/->stop() callbacks does
463 * not interfere with their logic. Called in PMI context.
464 *
465 * Returns the size of AUX data copied to the output handle.
466 *
467 * Optional.
468 */
469 long (*snapshot_aux) (struct perf_event *event,
470 struct perf_output_handle *handle,
471 unsigned long size);
472
473 /*
474 * Validate address range filters: make sure the HW supports the
475 * requested configuration and number of filters; return 0 if the
476 * supplied filters are valid, -errno otherwise.
477 *
478 * Runs in the context of the ioctl()ing process and is not serialized
479 * with the rest of the PMU callbacks.
480 */
481 int (*addr_filters_validate) (struct list_head *filters);
482 /* optional */
483
484 /*
485 * Synchronize address range filter configuration:
486 * translate hw-agnostic filters into hardware configuration in
487 * event::hw::addr_filters.
488 *
489 * Runs as a part of filter sync sequence that is done in ->start()
490 * callback by calling perf_event_addr_filters_sync().
491 *
492 * May (and should) traverse event::addr_filters::list, for which its
493 * caller provides necessary serialization.
494 */
495 void (*addr_filters_sync) (struct perf_event *event);
496 /* optional */
497
498 /*
499 * Check if event can be used for aux_output purposes for
500 * events of this PMU.
501 *
502 * Runs from perf_event_open(). Should return 0 for "no match"
503 * or non-zero for "match".
504 */
505 int (*aux_output_match) (struct perf_event *event);
506 /* optional */
507
508 /*
509 * Filter events for PMU-specific reasons.
510 */
511 int (*filter_match) (struct perf_event *event); /* optional */
512
513 /*
514 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
515 */
516 int (*check_period) (struct perf_event *event, u64 value); /* optional */
517 };
518
519 enum perf_addr_filter_action_t {
520 PERF_ADDR_FILTER_ACTION_STOP = 0,
521 PERF_ADDR_FILTER_ACTION_START,
522 PERF_ADDR_FILTER_ACTION_FILTER,
523 };
524
525 /**
526 * struct perf_addr_filter - address range filter definition
527 * @entry: event's filter list linkage
528 * @path: object file's path for file-based filters
529 * @offset: filter range offset
530 * @size: filter range size (size==0 means single address trigger)
531 * @action: filter/start/stop
532 *
533 * This is a hardware-agnostic filter configuration as specified by the user.
534 */
535 struct perf_addr_filter {
536 struct list_head entry;
537 struct path path;
538 unsigned long offset;
539 unsigned long size;
540 enum perf_addr_filter_action_t action;
541 };
542
543 /**
544 * struct perf_addr_filters_head - container for address range filters
545 * @list: list of filters for this event
546 * @lock: spinlock that serializes accesses to the @list and event's
547 * (and its children's) filter generations.
548 * @nr_file_filters: number of file-based filters
549 *
550 * A child event will use parent's @list (and therefore @lock), so they are
551 * bundled together; see perf_event_addr_filters().
552 */
553 struct perf_addr_filters_head {
554 struct list_head list;
555 raw_spinlock_t lock;
556 unsigned int nr_file_filters;
557 };
558
559 struct perf_addr_filter_range {
560 unsigned long start;
561 unsigned long size;
562 };
563
564 /**
565 * enum perf_event_state - the states of an event:
566 */
567 enum perf_event_state {
568 PERF_EVENT_STATE_DEAD = -4,
569 PERF_EVENT_STATE_EXIT = -3,
570 PERF_EVENT_STATE_ERROR = -2,
571 PERF_EVENT_STATE_OFF = -1,
572 PERF_EVENT_STATE_INACTIVE = 0,
573 PERF_EVENT_STATE_ACTIVE = 1,
574 };
575
576 struct file;
577 struct perf_sample_data;
578
579 typedef void (*perf_overflow_handler_t)(struct perf_event *,
580 struct perf_sample_data *,
581 struct pt_regs *regs);
582
583 /*
584 * Event capabilities. For event_caps and groups caps.
585 *
586 * PERF_EV_CAP_SOFTWARE: Is a software event.
587 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
588 * from any CPU in the package where it is active.
589 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
590 * cannot be a group leader. If an event with this flag is detached from the
591 * group it is scheduled out and moved into an unrecoverable ERROR state.
592 */
593 #define PERF_EV_CAP_SOFTWARE BIT(0)
594 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
595 #define PERF_EV_CAP_SIBLING BIT(2)
596
597 #define SWEVENT_HLIST_BITS 8
598 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
599
600 struct swevent_hlist {
601 struct hlist_head heads[SWEVENT_HLIST_SIZE];
602 struct rcu_head rcu_head;
603 };
604
605 #define PERF_ATTACH_CONTEXT 0x01
606 #define PERF_ATTACH_GROUP 0x02
607 #define PERF_ATTACH_TASK 0x04
608 #define PERF_ATTACH_TASK_DATA 0x08
609 #define PERF_ATTACH_ITRACE 0x10
610 #define PERF_ATTACH_SCHED_CB 0x20
611 #define PERF_ATTACH_CHILD 0x40
612
613 struct perf_cgroup;
614 struct perf_buffer;
615
616 struct pmu_event_list {
617 raw_spinlock_t lock;
618 struct list_head list;
619 };
620
621 #define for_each_sibling_event(sibling, event) \
622 if ((event)->group_leader == (event)) \
623 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
624
625 /**
626 * struct perf_event - performance event kernel representation:
627 */
628 struct perf_event {
629 #ifdef CONFIG_PERF_EVENTS
630 /*
631 * entry onto perf_event_context::event_list;
632 * modifications require ctx->lock
633 * RCU safe iterations.
634 */
635 struct list_head event_entry;
636
637 /*
638 * Locked for modification by both ctx->mutex and ctx->lock; holding
639 * either sufficies for read.
640 */
641 struct list_head sibling_list;
642 struct list_head active_list;
643 /*
644 * Node on the pinned or flexible tree located at the event context;
645 */
646 struct rb_node group_node;
647 u64 group_index;
648 /*
649 * We need storage to track the entries in perf_pmu_migrate_context; we
650 * cannot use the event_entry because of RCU and we want to keep the
651 * group in tact which avoids us using the other two entries.
652 */
653 struct list_head migrate_entry;
654
655 struct hlist_node hlist_entry;
656 struct list_head active_entry;
657 int nr_siblings;
658
659 /* Not serialized. Only written during event initialization. */
660 int event_caps;
661 /* The cumulative AND of all event_caps for events in this group. */
662 int group_caps;
663
664 #ifndef __GENKSYMS__
665 unsigned int group_generation;
666 #endif
667 struct perf_event *group_leader;
668 struct pmu *pmu;
669 void *pmu_private;
670
671 enum perf_event_state state;
672 unsigned int attach_state;
673 local64_t count;
674 atomic64_t child_count;
675
676 /*
677 * These are the total time in nanoseconds that the event
678 * has been enabled (i.e. eligible to run, and the task has
679 * been scheduled in, if this is a per-task event)
680 * and running (scheduled onto the CPU), respectively.
681 */
682 u64 total_time_enabled;
683 u64 total_time_running;
684 u64 tstamp;
685
686 struct perf_event_attr attr;
687 u16 header_size;
688 u16 id_header_size;
689 u16 read_size;
690 struct hw_perf_event hw;
691
692 struct perf_event_context *ctx;
693 atomic_long_t refcount;
694
695 /*
696 * These accumulate total time (in nanoseconds) that children
697 * events have been enabled and running, respectively.
698 */
699 atomic64_t child_total_time_enabled;
700 atomic64_t child_total_time_running;
701
702 /*
703 * Protect attach/detach and child_list:
704 */
705 struct mutex child_mutex;
706 struct list_head child_list;
707 struct perf_event *parent;
708
709 int oncpu;
710 int cpu;
711
712 struct list_head owner_entry;
713 struct task_struct *owner;
714
715 /* mmap bits */
716 struct mutex mmap_mutex;
717 atomic_t mmap_count;
718
719 struct perf_buffer *rb;
720 struct list_head rb_entry;
721 unsigned long rcu_batches;
722 int rcu_pending;
723
724 /* poll related */
725 wait_queue_head_t waitq;
726 struct fasync_struct *fasync;
727
728 /* delayed work for NMIs and such */
729 int pending_wakeup;
730 int pending_kill;
731 int pending_disable;
732 unsigned long pending_addr; /* SIGTRAP */
733 struct irq_work pending;
734
735 atomic_t event_limit;
736
737 /* address range filters */
738 struct perf_addr_filters_head addr_filters;
739 /* vma address array for file-based filders */
740 struct perf_addr_filter_range *addr_filter_ranges;
741 unsigned long addr_filters_gen;
742
743 /* for aux_output events */
744 struct perf_event *aux_event;
745
746 void (*destroy)(struct perf_event *);
747 struct rcu_head rcu_head;
748
749 struct pid_namespace *ns;
750 u64 id;
751
752 u64 (*clock)(void);
753 perf_overflow_handler_t overflow_handler;
754 void *overflow_handler_context;
755 #ifdef CONFIG_BPF_SYSCALL
756 perf_overflow_handler_t orig_overflow_handler;
757 struct bpf_prog *prog;
758 u64 bpf_cookie;
759 #endif
760
761 #ifdef CONFIG_EVENT_TRACING
762 struct trace_event_call *tp_event;
763 struct event_filter *filter;
764 #ifdef CONFIG_FUNCTION_TRACER
765 struct ftrace_ops ftrace_ops;
766 #endif
767 #endif
768
769 #ifdef CONFIG_CGROUP_PERF
770 struct perf_cgroup *cgrp; /* cgroup event is attach to */
771 #endif
772
773 #ifdef CONFIG_SECURITY
774 void *security;
775 #endif
776 struct list_head sb_list;
777 #endif /* CONFIG_PERF_EVENTS */
778 };
779
780
781 struct perf_event_groups {
782 struct rb_root tree;
783 u64 index;
784 };
785
786 /**
787 * struct perf_event_context - event context structure
788 *
789 * Used as a container for task events and CPU events as well:
790 */
791 struct perf_event_context {
792 struct pmu *pmu;
793 /*
794 * Protect the states of the events in the list,
795 * nr_active, and the list:
796 */
797 raw_spinlock_t lock;
798 /*
799 * Protect the list of events. Locking either mutex or lock
800 * is sufficient to ensure the list doesn't change; to change
801 * the list you need to lock both the mutex and the spinlock.
802 */
803 struct mutex mutex;
804
805 struct list_head active_ctx_list;
806 struct perf_event_groups pinned_groups;
807 struct perf_event_groups flexible_groups;
808 struct list_head event_list;
809
810 struct list_head pinned_active;
811 struct list_head flexible_active;
812
813 int nr_events;
814 int nr_active;
815 int is_active;
816 int nr_stat;
817 int nr_freq;
818 int rotate_disable;
819 /*
820 * Set when nr_events != nr_active, except tolerant to events not
821 * necessary to be active due to scheduling constraints, such as cgroups.
822 */
823 int rotate_necessary;
824 refcount_t refcount;
825 struct task_struct *task;
826
827 /*
828 * Context clock, runs when context enabled.
829 */
830 u64 time;
831 u64 timestamp;
832 u64 timeoffset;
833
834 /*
835 * These fields let us detect when two contexts have both
836 * been cloned (inherited) from a common ancestor.
837 */
838 struct perf_event_context *parent_ctx;
839 u64 parent_gen;
840 u64 generation;
841 int pin_count;
842 #ifdef CONFIG_CGROUP_PERF
843 int nr_cgroups; /* cgroup evts */
844 #endif
845 void *task_ctx_data; /* pmu specific data */
846 struct rcu_head rcu_head;
847 };
848
849 /*
850 * Number of contexts where an event can trigger:
851 * task, softirq, hardirq, nmi.
852 */
853 #define PERF_NR_CONTEXTS 4
854
855 /**
856 * struct perf_event_cpu_context - per cpu event context structure
857 */
858 struct perf_cpu_context {
859 struct perf_event_context ctx;
860 struct perf_event_context *task_ctx;
861 int active_oncpu;
862 int exclusive;
863
864 raw_spinlock_t hrtimer_lock;
865 struct hrtimer hrtimer;
866 ktime_t hrtimer_interval;
867 unsigned int hrtimer_active;
868
869 #ifdef CONFIG_CGROUP_PERF
870 struct perf_cgroup *cgrp;
871 struct list_head cgrp_cpuctx_entry;
872 #endif
873
874 struct list_head sched_cb_entry;
875 int sched_cb_usage;
876
877 int online;
878 /*
879 * Per-CPU storage for iterators used in visit_groups_merge. The default
880 * storage is of size 2 to hold the CPU and any CPU event iterators.
881 */
882 int heap_size;
883 struct perf_event **heap;
884 struct perf_event *heap_default[2];
885 };
886
887 struct perf_output_handle {
888 struct perf_event *event;
889 struct perf_buffer *rb;
890 unsigned long wakeup;
891 unsigned long size;
892 u64 aux_flags;
893 union {
894 void *addr;
895 unsigned long head;
896 };
897 int page;
898 };
899
900 struct bpf_perf_event_data_kern {
901 bpf_user_pt_regs_t *regs;
902 struct perf_sample_data *data;
903 struct perf_event *event;
904 };
905
906 #ifdef CONFIG_CGROUP_PERF
907
908 /*
909 * perf_cgroup_info keeps track of time_enabled for a cgroup.
910 * This is a per-cpu dynamically allocated data structure.
911 */
912 struct perf_cgroup_info {
913 u64 time;
914 u64 timestamp;
915 u64 timeoffset;
916 int active;
917 };
918
919 struct perf_cgroup {
920 struct cgroup_subsys_state css;
921 struct perf_cgroup_info __percpu *info;
922 };
923
924 /*
925 * Must ensure cgroup is pinned (css_get) before calling
926 * this function. In other words, we cannot call this function
927 * if there is no cgroup event for the current CPU context.
928 */
929 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)930 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
931 {
932 return container_of(task_css_check(task, perf_event_cgrp_id,
933 ctx ? lockdep_is_held(&ctx->lock)
934 : true),
935 struct perf_cgroup, css);
936 }
937 #endif /* CONFIG_CGROUP_PERF */
938
939 #ifdef CONFIG_PERF_EVENTS
940
941 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
942 struct perf_event *event);
943 extern void perf_aux_output_end(struct perf_output_handle *handle,
944 unsigned long size);
945 extern int perf_aux_output_skip(struct perf_output_handle *handle,
946 unsigned long size);
947 extern void *perf_get_aux(struct perf_output_handle *handle);
948 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
949 extern void perf_event_itrace_started(struct perf_event *event);
950
951 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
952 extern void perf_pmu_unregister(struct pmu *pmu);
953
954 extern void __perf_event_task_sched_in(struct task_struct *prev,
955 struct task_struct *task);
956 extern void __perf_event_task_sched_out(struct task_struct *prev,
957 struct task_struct *next);
958 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
959 extern void perf_event_exit_task(struct task_struct *child);
960 extern void perf_event_free_task(struct task_struct *task);
961 extern void perf_event_delayed_put(struct task_struct *task);
962 extern struct file *perf_event_get(unsigned int fd);
963 extern const struct perf_event *perf_get_event(struct file *file);
964 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
965 extern void perf_event_print_debug(void);
966 extern void perf_pmu_disable(struct pmu *pmu);
967 extern void perf_pmu_enable(struct pmu *pmu);
968 extern void perf_sched_cb_dec(struct pmu *pmu);
969 extern void perf_sched_cb_inc(struct pmu *pmu);
970 extern int perf_event_task_disable(void);
971 extern int perf_event_task_enable(void);
972
973 extern void perf_pmu_resched(struct pmu *pmu);
974
975 extern int perf_event_refresh(struct perf_event *event, int refresh);
976 extern void perf_event_update_userpage(struct perf_event *event);
977 extern int perf_event_release_kernel(struct perf_event *event);
978 extern struct perf_event *
979 perf_event_create_kernel_counter(struct perf_event_attr *attr,
980 int cpu,
981 struct task_struct *task,
982 perf_overflow_handler_t callback,
983 void *context);
984 extern void perf_pmu_migrate_context(struct pmu *pmu,
985 int src_cpu, int dst_cpu);
986 int perf_event_read_local(struct perf_event *event, u64 *value,
987 u64 *enabled, u64 *running);
988 extern u64 perf_event_read_value(struct perf_event *event,
989 u64 *enabled, u64 *running);
990
991
992 struct perf_sample_data {
993 /*
994 * Fields set by perf_sample_data_init(), group so as to
995 * minimize the cachelines touched.
996 */
997 u64 addr;
998 struct perf_raw_record *raw;
999 struct perf_branch_stack *br_stack;
1000 u64 period;
1001 union perf_sample_weight weight;
1002 u64 txn;
1003 union perf_mem_data_src data_src;
1004
1005 /*
1006 * The other fields, optionally {set,used} by
1007 * perf_{prepare,output}_sample().
1008 */
1009 u64 type;
1010 u64 ip;
1011 struct {
1012 u32 pid;
1013 u32 tid;
1014 } tid_entry;
1015 u64 time;
1016 u64 id;
1017 u64 stream_id;
1018 struct {
1019 u32 cpu;
1020 u32 reserved;
1021 } cpu_entry;
1022 struct perf_callchain_entry *callchain;
1023 u64 aux_size;
1024
1025 struct perf_regs regs_user;
1026 struct perf_regs regs_intr;
1027 u64 stack_user_size;
1028
1029 u64 phys_addr;
1030 u64 cgroup;
1031 u64 data_page_size;
1032 u64 code_page_size;
1033 } ____cacheline_aligned;
1034
1035 /* default value for data source */
1036 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1037 PERF_MEM_S(LVL, NA) |\
1038 PERF_MEM_S(SNOOP, NA) |\
1039 PERF_MEM_S(LOCK, NA) |\
1040 PERF_MEM_S(TLB, NA))
1041
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1042 static inline void perf_sample_data_init(struct perf_sample_data *data,
1043 u64 addr, u64 period)
1044 {
1045 /* remaining struct members initialized in perf_prepare_sample() */
1046 data->addr = addr;
1047 data->raw = NULL;
1048 data->br_stack = NULL;
1049 data->period = period;
1050 data->weight.full = 0;
1051 data->data_src.val = PERF_MEM_NA;
1052 data->txn = 0;
1053 }
1054
1055 extern void perf_output_sample(struct perf_output_handle *handle,
1056 struct perf_event_header *header,
1057 struct perf_sample_data *data,
1058 struct perf_event *event);
1059 extern void perf_prepare_sample(struct perf_event_header *header,
1060 struct perf_sample_data *data,
1061 struct perf_event *event,
1062 struct pt_regs *regs);
1063
1064 extern int perf_event_overflow(struct perf_event *event,
1065 struct perf_sample_data *data,
1066 struct pt_regs *regs);
1067
1068 extern void perf_event_output_forward(struct perf_event *event,
1069 struct perf_sample_data *data,
1070 struct pt_regs *regs);
1071 extern void perf_event_output_backward(struct perf_event *event,
1072 struct perf_sample_data *data,
1073 struct pt_regs *regs);
1074 extern int perf_event_output(struct perf_event *event,
1075 struct perf_sample_data *data,
1076 struct pt_regs *regs);
1077
1078 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1079 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1080 {
1081 if (likely(overflow_handler == perf_event_output_forward))
1082 return true;
1083 if (unlikely(overflow_handler == perf_event_output_backward))
1084 return true;
1085 return false;
1086 }
1087
1088 #define is_default_overflow_handler(event) \
1089 __is_default_overflow_handler((event)->overflow_handler)
1090
1091 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1092 static inline bool uses_default_overflow_handler(struct perf_event *event)
1093 {
1094 if (likely(is_default_overflow_handler(event)))
1095 return true;
1096
1097 return __is_default_overflow_handler(event->orig_overflow_handler);
1098 }
1099 #else
1100 #define uses_default_overflow_handler(event) \
1101 is_default_overflow_handler(event)
1102 #endif
1103
1104 extern void
1105 perf_event_header__init_id(struct perf_event_header *header,
1106 struct perf_sample_data *data,
1107 struct perf_event *event);
1108 extern void
1109 perf_event__output_id_sample(struct perf_event *event,
1110 struct perf_output_handle *handle,
1111 struct perf_sample_data *sample);
1112
1113 extern void
1114 perf_log_lost_samples(struct perf_event *event, u64 lost);
1115
event_has_any_exclude_flag(struct perf_event * event)1116 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1117 {
1118 struct perf_event_attr *attr = &event->attr;
1119
1120 return attr->exclude_idle || attr->exclude_user ||
1121 attr->exclude_kernel || attr->exclude_hv ||
1122 attr->exclude_guest || attr->exclude_host;
1123 }
1124
is_sampling_event(struct perf_event * event)1125 static inline bool is_sampling_event(struct perf_event *event)
1126 {
1127 return event->attr.sample_period != 0;
1128 }
1129
1130 /*
1131 * Return 1 for a software event, 0 for a hardware event
1132 */
is_software_event(struct perf_event * event)1133 static inline int is_software_event(struct perf_event *event)
1134 {
1135 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1136 }
1137
1138 /*
1139 * Return 1 for event in sw context, 0 for event in hw context
1140 */
in_software_context(struct perf_event * event)1141 static inline int in_software_context(struct perf_event *event)
1142 {
1143 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1144 }
1145
is_exclusive_pmu(struct pmu * pmu)1146 static inline int is_exclusive_pmu(struct pmu *pmu)
1147 {
1148 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1149 }
1150
1151 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1152
1153 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1154 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1155
1156 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1157 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1158 #endif
1159
1160 /*
1161 * When generating a perf sample in-line, instead of from an interrupt /
1162 * exception, we lack a pt_regs. This is typically used from software events
1163 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1164 *
1165 * We typically don't need a full set, but (for x86) do require:
1166 * - ip for PERF_SAMPLE_IP
1167 * - cs for user_mode() tests
1168 * - sp for PERF_SAMPLE_CALLCHAIN
1169 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1170 *
1171 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1172 * things like PERF_SAMPLE_REGS_INTR.
1173 */
perf_fetch_caller_regs(struct pt_regs * regs)1174 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1175 {
1176 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1177 }
1178
1179 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1180 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1181 {
1182 if (static_key_false(&perf_swevent_enabled[event_id]))
1183 __perf_sw_event(event_id, nr, regs, addr);
1184 }
1185
1186 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1187
1188 /*
1189 * 'Special' version for the scheduler, it hard assumes no recursion,
1190 * which is guaranteed by us not actually scheduling inside other swevents
1191 * because those disable preemption.
1192 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1193 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1194 {
1195 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1196
1197 perf_fetch_caller_regs(regs);
1198 ___perf_sw_event(event_id, nr, regs, addr);
1199 }
1200
1201 extern struct static_key_false perf_sched_events;
1202
__perf_sw_enabled(int swevt)1203 static __always_inline bool __perf_sw_enabled(int swevt)
1204 {
1205 return static_key_false(&perf_swevent_enabled[swevt]);
1206 }
1207
perf_event_task_migrate(struct task_struct * task)1208 static inline void perf_event_task_migrate(struct task_struct *task)
1209 {
1210 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1211 task->sched_migrated = 1;
1212 }
1213
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1214 static inline void perf_event_task_sched_in(struct task_struct *prev,
1215 struct task_struct *task)
1216 {
1217 if (static_branch_unlikely(&perf_sched_events))
1218 __perf_event_task_sched_in(prev, task);
1219
1220 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1221 task->sched_migrated) {
1222 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1223 task->sched_migrated = 0;
1224 }
1225 }
1226
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1227 static inline void perf_event_task_sched_out(struct task_struct *prev,
1228 struct task_struct *next)
1229 {
1230 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1231 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1232
1233 #ifdef CONFIG_CGROUP_PERF
1234 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1235 perf_cgroup_from_task(prev, NULL) !=
1236 perf_cgroup_from_task(next, NULL))
1237 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1238 #endif
1239
1240 if (static_branch_unlikely(&perf_sched_events))
1241 __perf_event_task_sched_out(prev, next);
1242 }
1243
1244 extern void perf_event_mmap(struct vm_area_struct *vma);
1245
1246 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1247 bool unregister, const char *sym);
1248 extern void perf_event_bpf_event(struct bpf_prog *prog,
1249 enum perf_bpf_event_type type,
1250 u16 flags);
1251
1252 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1253 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1254 {
1255 /*
1256 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1257 * the callbacks between a !NULL check and dereferences, to ensure
1258 * pending stores/changes to the callback pointers are visible before a
1259 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1260 * module from unloading callbacks while readers are active.
1261 */
1262 return rcu_dereference(perf_guest_cbs);
1263 }
1264 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1265 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1266
1267 extern void perf_event_exec(void);
1268 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1269 extern void perf_event_namespaces(struct task_struct *tsk);
1270 extern void perf_event_fork(struct task_struct *tsk);
1271 extern void perf_event_text_poke(const void *addr,
1272 const void *old_bytes, size_t old_len,
1273 const void *new_bytes, size_t new_len);
1274
1275 /* Callchains */
1276 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1277
1278 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1279 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1280 extern struct perf_callchain_entry *
1281 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1282 u32 max_stack, bool crosstask, bool add_mark);
1283 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1284 extern int get_callchain_buffers(int max_stack);
1285 extern void put_callchain_buffers(void);
1286 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1287 extern void put_callchain_entry(int rctx);
1288
1289 extern int sysctl_perf_event_max_stack;
1290 extern int sysctl_perf_event_max_contexts_per_stack;
1291
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1292 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1293 {
1294 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1295 struct perf_callchain_entry *entry = ctx->entry;
1296 entry->ip[entry->nr++] = ip;
1297 ++ctx->contexts;
1298 return 0;
1299 } else {
1300 ctx->contexts_maxed = true;
1301 return -1; /* no more room, stop walking the stack */
1302 }
1303 }
1304
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1305 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1306 {
1307 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1308 struct perf_callchain_entry *entry = ctx->entry;
1309 entry->ip[entry->nr++] = ip;
1310 ++ctx->nr;
1311 return 0;
1312 } else {
1313 return -1; /* no more room, stop walking the stack */
1314 }
1315 }
1316
1317 extern int sysctl_perf_event_paranoid;
1318 extern int sysctl_perf_event_mlock;
1319 extern int sysctl_perf_event_sample_rate;
1320 extern int sysctl_perf_cpu_time_max_percent;
1321
1322 extern void perf_sample_event_took(u64 sample_len_ns);
1323
1324 int perf_proc_update_handler(struct ctl_table *table, int write,
1325 void *buffer, size_t *lenp, loff_t *ppos);
1326 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1327 void *buffer, size_t *lenp, loff_t *ppos);
1328 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1329 void *buffer, size_t *lenp, loff_t *ppos);
1330
1331 /* Access to perf_event_open(2) syscall. */
1332 #define PERF_SECURITY_OPEN 0
1333
1334 /* Finer grained perf_event_open(2) access control. */
1335 #define PERF_SECURITY_CPU 1
1336 #define PERF_SECURITY_KERNEL 2
1337 #define PERF_SECURITY_TRACEPOINT 3
1338
perf_is_paranoid(void)1339 static inline int perf_is_paranoid(void)
1340 {
1341 return sysctl_perf_event_paranoid > -1;
1342 }
1343
perf_allow_kernel(struct perf_event_attr * attr)1344 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1345 {
1346 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1347 return -EACCES;
1348
1349 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1350 }
1351
perf_allow_cpu(struct perf_event_attr * attr)1352 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1353 {
1354 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1355 return -EACCES;
1356
1357 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1358 }
1359
perf_allow_tracepoint(struct perf_event_attr * attr)1360 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1361 {
1362 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1363 return -EPERM;
1364
1365 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1366 }
1367
1368 extern void perf_event_init(void);
1369 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1370 int entry_size, struct pt_regs *regs,
1371 struct hlist_head *head, int rctx,
1372 struct task_struct *task);
1373 extern void perf_bp_event(struct perf_event *event, void *data);
1374
1375 #ifndef perf_misc_flags
1376 # define perf_misc_flags(regs) \
1377 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1378 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1379 #endif
1380 #ifndef perf_arch_bpf_user_pt_regs
1381 # define perf_arch_bpf_user_pt_regs(regs) regs
1382 #endif
1383
has_branch_stack(struct perf_event * event)1384 static inline bool has_branch_stack(struct perf_event *event)
1385 {
1386 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1387 }
1388
needs_branch_stack(struct perf_event * event)1389 static inline bool needs_branch_stack(struct perf_event *event)
1390 {
1391 return event->attr.branch_sample_type != 0;
1392 }
1393
has_aux(struct perf_event * event)1394 static inline bool has_aux(struct perf_event *event)
1395 {
1396 return event->pmu->setup_aux;
1397 }
1398
is_write_backward(struct perf_event * event)1399 static inline bool is_write_backward(struct perf_event *event)
1400 {
1401 return !!event->attr.write_backward;
1402 }
1403
has_addr_filter(struct perf_event * event)1404 static inline bool has_addr_filter(struct perf_event *event)
1405 {
1406 return event->pmu->nr_addr_filters;
1407 }
1408
1409 /*
1410 * An inherited event uses parent's filters
1411 */
1412 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1413 perf_event_addr_filters(struct perf_event *event)
1414 {
1415 struct perf_addr_filters_head *ifh = &event->addr_filters;
1416
1417 if (event->parent)
1418 ifh = &event->parent->addr_filters;
1419
1420 return ifh;
1421 }
1422
1423 extern void perf_event_addr_filters_sync(struct perf_event *event);
1424
1425 extern int perf_output_begin(struct perf_output_handle *handle,
1426 struct perf_sample_data *data,
1427 struct perf_event *event, unsigned int size);
1428 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1429 struct perf_sample_data *data,
1430 struct perf_event *event,
1431 unsigned int size);
1432 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1433 struct perf_sample_data *data,
1434 struct perf_event *event,
1435 unsigned int size);
1436
1437 extern void perf_output_end(struct perf_output_handle *handle);
1438 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1439 const void *buf, unsigned int len);
1440 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1441 unsigned int len);
1442 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1443 struct perf_output_handle *handle,
1444 unsigned long from, unsigned long to);
1445 extern int perf_swevent_get_recursion_context(void);
1446 extern void perf_swevent_put_recursion_context(int rctx);
1447 extern u64 perf_swevent_set_period(struct perf_event *event);
1448 extern void perf_event_enable(struct perf_event *event);
1449 extern void perf_event_disable(struct perf_event *event);
1450 extern void perf_event_disable_local(struct perf_event *event);
1451 extern void perf_event_disable_inatomic(struct perf_event *event);
1452 extern void perf_event_task_tick(void);
1453 extern int perf_event_account_interrupt(struct perf_event *event);
1454 extern int perf_event_period(struct perf_event *event, u64 value);
1455 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1456 #else /* !CONFIG_PERF_EVENTS: */
1457 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1458 perf_aux_output_begin(struct perf_output_handle *handle,
1459 struct perf_event *event) { return NULL; }
1460 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1461 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1462 { }
1463 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1464 perf_aux_output_skip(struct perf_output_handle *handle,
1465 unsigned long size) { return -EINVAL; }
1466 static inline void *
perf_get_aux(struct perf_output_handle * handle)1467 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1468 static inline void
perf_event_task_migrate(struct task_struct * task)1469 perf_event_task_migrate(struct task_struct *task) { }
1470 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1471 perf_event_task_sched_in(struct task_struct *prev,
1472 struct task_struct *task) { }
1473 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1474 perf_event_task_sched_out(struct task_struct *prev,
1475 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1476 static inline int perf_event_init_task(struct task_struct *child,
1477 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1478 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1479 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1480 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1481 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1482 static inline const struct perf_event *perf_get_event(struct file *file)
1483 {
1484 return ERR_PTR(-EINVAL);
1485 }
perf_event_attrs(struct perf_event * event)1486 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1487 {
1488 return ERR_PTR(-EINVAL);
1489 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1490 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1491 u64 *enabled, u64 *running)
1492 {
1493 return -EINVAL;
1494 }
perf_event_print_debug(void)1495 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1496 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1497 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1498 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1499 {
1500 return -EINVAL;
1501 }
1502
1503 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1504 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1505 static inline void
perf_bp_event(struct perf_event * event,void * data)1506 perf_bp_event(struct perf_event *event, void *data) { }
1507
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1508 static inline int perf_register_guest_info_callbacks
1509 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1510 static inline int perf_unregister_guest_info_callbacks
1511 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1512
perf_event_mmap(struct vm_area_struct * vma)1513 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1514
1515 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1516 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1517 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1518 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1519 enum perf_bpf_event_type type,
1520 u16 flags) { }
perf_event_exec(void)1521 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1522 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1523 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1524 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1525 static inline void perf_event_text_poke(const void *addr,
1526 const void *old_bytes,
1527 size_t old_len,
1528 const void *new_bytes,
1529 size_t new_len) { }
perf_event_init(void)1530 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1531 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1532 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1533 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1534 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1535 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1536 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1537 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1538 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1539 static inline int perf_event_period(struct perf_event *event, u64 value)
1540 {
1541 return -EINVAL;
1542 }
perf_event_pause(struct perf_event * event,bool reset)1543 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1544 {
1545 return 0;
1546 }
1547 #endif
1548
1549 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1550 extern void perf_restore_debug_store(void);
1551 #else
perf_restore_debug_store(void)1552 static inline void perf_restore_debug_store(void) { }
1553 #endif
1554
perf_raw_frag_last(const struct perf_raw_frag * frag)1555 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1556 {
1557 return frag->pad < sizeof(u64);
1558 }
1559
1560 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1561
1562 struct perf_pmu_events_attr {
1563 struct device_attribute attr;
1564 u64 id;
1565 const char *event_str;
1566 };
1567
1568 struct perf_pmu_events_ht_attr {
1569 struct device_attribute attr;
1570 u64 id;
1571 const char *event_str_ht;
1572 const char *event_str_noht;
1573 };
1574
1575 struct perf_pmu_events_hybrid_attr {
1576 struct device_attribute attr;
1577 u64 id;
1578 const char *event_str;
1579 u64 pmu_type;
1580 };
1581
1582 struct perf_pmu_format_hybrid_attr {
1583 struct device_attribute attr;
1584 u64 pmu_type;
1585 };
1586
1587 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1588 char *page);
1589
1590 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1591 static struct perf_pmu_events_attr _var = { \
1592 .attr = __ATTR(_name, 0444, _show, NULL), \
1593 .id = _id, \
1594 };
1595
1596 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1597 static struct perf_pmu_events_attr _var = { \
1598 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1599 .id = 0, \
1600 .event_str = _str, \
1601 };
1602
1603 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1604 (&((struct perf_pmu_events_attr[]) { \
1605 { .attr = __ATTR(_name, 0444, _show, NULL), \
1606 .id = _id, } \
1607 })[0].attr.attr)
1608
1609 #define PMU_FORMAT_ATTR(_name, _format) \
1610 static ssize_t \
1611 _name##_show(struct device *dev, \
1612 struct device_attribute *attr, \
1613 char *page) \
1614 { \
1615 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1616 return sprintf(page, _format "\n"); \
1617 } \
1618 \
1619 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1620
1621 /* Performance counter hotplug functions */
1622 #ifdef CONFIG_PERF_EVENTS
1623 int perf_event_init_cpu(unsigned int cpu);
1624 int perf_event_exit_cpu(unsigned int cpu);
1625 #else
1626 #define perf_event_init_cpu NULL
1627 #define perf_event_exit_cpu NULL
1628 #endif
1629
1630 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1631 struct perf_event_mmap_page *userpg,
1632 u64 now);
1633
1634 #ifdef CONFIG_MMU
1635 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1636 #endif
1637
1638 #endif /* _LINUX_PERF_EVENT_H */
1639