• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Definitions for the TCP module.
8   *
9   * Version:	@(#)tcp.h	1.0.5	05/23/93
10   *
11   * Authors:	Ross Biro
12   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13   */
14  #ifndef _TCP_H
15  #define _TCP_H
16  
17  #define FASTRETRANS_DEBUG 1
18  
19  #include <linux/list.h>
20  #include <linux/tcp.h>
21  #include <linux/bug.h>
22  #include <linux/slab.h>
23  #include <linux/cache.h>
24  #include <linux/percpu.h>
25  #include <linux/skbuff.h>
26  #include <linux/kref.h>
27  #include <linux/ktime.h>
28  #include <linux/indirect_call_wrapper.h>
29  
30  #include <net/inet_connection_sock.h>
31  #include <net/inet_timewait_sock.h>
32  #include <net/inet_hashtables.h>
33  #include <net/checksum.h>
34  #include <net/request_sock.h>
35  #include <net/sock_reuseport.h>
36  #include <net/sock.h>
37  #include <net/snmp.h>
38  #include <net/ip.h>
39  #include <net/tcp_states.h>
40  #include <net/inet_ecn.h>
41  #include <net/dst.h>
42  #include <net/mptcp.h>
43  
44  #include <linux/seq_file.h>
45  #include <linux/memcontrol.h>
46  #include <linux/bpf-cgroup.h>
47  #include <linux/siphash.h>
48  
49  extern struct inet_hashinfo tcp_hashinfo;
50  
51  DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52  int tcp_orphan_count_sum(void);
53  
54  void tcp_time_wait(struct sock *sk, int state, int timeo);
55  
56  #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57  #define MAX_TCP_OPTION_SPACE 40
58  #define TCP_MIN_SND_MSS		48
59  #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60  
61  /*
62   * Never offer a window over 32767 without using window scaling. Some
63   * poor stacks do signed 16bit maths!
64   */
65  #define MAX_TCP_WINDOW		32767U
66  
67  /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68  #define TCP_MIN_MSS		88U
69  
70  /* The initial MTU to use for probing */
71  #define TCP_BASE_MSS		1024
72  
73  /* probing interval, default to 10 minutes as per RFC4821 */
74  #define TCP_PROBE_INTERVAL	600
75  
76  /* Specify interval when tcp mtu probing will stop */
77  #define TCP_PROBE_THRESHOLD	8
78  
79  /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80  #define TCP_FASTRETRANS_THRESH 3
81  
82  /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83  #define TCP_MAX_QUICKACKS	16U
84  
85  /* Maximal number of window scale according to RFC1323 */
86  #define TCP_MAX_WSCALE		14U
87  
88  /* urg_data states */
89  #define TCP_URG_VALID	0x0100
90  #define TCP_URG_NOTYET	0x0200
91  #define TCP_URG_READ	0x0400
92  
93  #define TCP_RETR1	3	/*
94  				 * This is how many retries it does before it
95  				 * tries to figure out if the gateway is
96  				 * down. Minimal RFC value is 3; it corresponds
97  				 * to ~3sec-8min depending on RTO.
98  				 */
99  
100  #define TCP_RETR2	15	/*
101  				 * This should take at least
102  				 * 90 minutes to time out.
103  				 * RFC1122 says that the limit is 100 sec.
104  				 * 15 is ~13-30min depending on RTO.
105  				 */
106  
107  #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108  				 * when active opening a connection.
109  				 * RFC1122 says the minimum retry MUST
110  				 * be at least 180secs.  Nevertheless
111  				 * this value is corresponding to
112  				 * 63secs of retransmission with the
113  				 * current initial RTO.
114  				 */
115  
116  #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117  				 * when passive opening a connection.
118  				 * This is corresponding to 31secs of
119  				 * retransmission with the current
120  				 * initial RTO.
121  				 */
122  
123  #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124  				  * state, about 60 seconds	*/
125  #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                   /* BSD style FIN_WAIT2 deadlock breaker.
127  				  * It used to be 3min, new value is 60sec,
128  				  * to combine FIN-WAIT-2 timeout with
129  				  * TIME-WAIT timer.
130  				  */
131  #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132  
133  #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134  #if HZ >= 100
135  #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136  #define TCP_ATO_MIN	((unsigned)(HZ/25))
137  #else
138  #define TCP_DELACK_MIN	4U
139  #define TCP_ATO_MIN	4U
140  #endif
141  #define TCP_RTO_MAX	((unsigned)(120*HZ))
142  #define TCP_RTO_MIN	((unsigned)(HZ/5))
143  #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144  
145  #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146  
147  #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148  #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149  						 * used as a fallback RTO for the
150  						 * initial data transmission if no
151  						 * valid RTT sample has been acquired,
152  						 * most likely due to retrans in 3WHS.
153  						 */
154  
155  #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156  					                 * for local resources.
157  					                 */
158  #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159  #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160  #define TCP_KEEPALIVE_INTVL	(75*HZ)
161  
162  #define MAX_TCP_KEEPIDLE	32767
163  #define MAX_TCP_KEEPINTVL	32767
164  #define MAX_TCP_KEEPCNT		127
165  #define MAX_TCP_SYNCNT		127
166  
167  #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
168  
169  #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
170  #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
171  					 * after this time. It should be equal
172  					 * (or greater than) TCP_TIMEWAIT_LEN
173  					 * to provide reliability equal to one
174  					 * provided by timewait state.
175  					 */
176  #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
177  					 * timestamps. It must be less than
178  					 * minimal timewait lifetime.
179  					 */
180  /*
181   *	TCP option
182   */
183  
184  #define TCPOPT_NOP		1	/* Padding */
185  #define TCPOPT_EOL		0	/* End of options */
186  #define TCPOPT_MSS		2	/* Segment size negotiating */
187  #define TCPOPT_WINDOW		3	/* Window scaling */
188  #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
189  #define TCPOPT_SACK             5       /* SACK Block */
190  #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
191  #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
192  #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
193  #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
194  #define TCPOPT_EXP		254	/* Experimental */
195  /* Magic number to be after the option value for sharing TCP
196   * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
197   */
198  #define TCPOPT_FASTOPEN_MAGIC	0xF989
199  #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
200  
201  /*
202   *     TCP option lengths
203   */
204  
205  #define TCPOLEN_MSS            4
206  #define TCPOLEN_WINDOW         3
207  #define TCPOLEN_SACK_PERM      2
208  #define TCPOLEN_TIMESTAMP      10
209  #define TCPOLEN_MD5SIG         18
210  #define TCPOLEN_FASTOPEN_BASE  2
211  #define TCPOLEN_EXP_FASTOPEN_BASE  4
212  #define TCPOLEN_EXP_SMC_BASE   6
213  
214  /* But this is what stacks really send out. */
215  #define TCPOLEN_TSTAMP_ALIGNED		12
216  #define TCPOLEN_WSCALE_ALIGNED		4
217  #define TCPOLEN_SACKPERM_ALIGNED	4
218  #define TCPOLEN_SACK_BASE		2
219  #define TCPOLEN_SACK_BASE_ALIGNED	4
220  #define TCPOLEN_SACK_PERBLOCK		8
221  #define TCPOLEN_MD5SIG_ALIGNED		20
222  #define TCPOLEN_MSS_ALIGNED		4
223  #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
224  
225  /* Flags in tp->nonagle */
226  #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
227  #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
228  #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
229  
230  /* TCP thin-stream limits */
231  #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
232  
233  /* TCP initial congestion window as per rfc6928 */
234  #define TCP_INIT_CWND		10
235  
236  /* Bit Flags for sysctl_tcp_fastopen */
237  #define	TFO_CLIENT_ENABLE	1
238  #define	TFO_SERVER_ENABLE	2
239  #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
240  
241  /* Accept SYN data w/o any cookie option */
242  #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
243  
244  /* Force enable TFO on all listeners, i.e., not requiring the
245   * TCP_FASTOPEN socket option.
246   */
247  #define	TFO_SERVER_WO_SOCKOPT1	0x400
248  
249  
250  /* sysctl variables for tcp */
251  extern int sysctl_tcp_max_orphans;
252  extern long sysctl_tcp_mem[3];
253  
254  #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
255  #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
256  #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
257  
258  extern atomic_long_t tcp_memory_allocated;
259  extern struct percpu_counter tcp_sockets_allocated;
260  extern unsigned long tcp_memory_pressure;
261  
262  /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)263  static inline bool tcp_under_memory_pressure(const struct sock *sk)
264  {
265  	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266  	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267  		return true;
268  
269  	return READ_ONCE(tcp_memory_pressure);
270  }
271  /*
272   * The next routines deal with comparing 32 bit unsigned ints
273   * and worry about wraparound (automatic with unsigned arithmetic).
274   */
275  
before(__u32 seq1,__u32 seq2)276  static inline bool before(__u32 seq1, __u32 seq2)
277  {
278          return (__s32)(seq1-seq2) < 0;
279  }
280  #define after(seq2, seq1) 	before(seq1, seq2)
281  
282  /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)283  static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284  {
285  	return seq3 - seq2 >= seq1 - seq2;
286  }
287  
tcp_out_of_memory(struct sock * sk)288  static inline bool tcp_out_of_memory(struct sock *sk)
289  {
290  	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291  	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292  		return true;
293  	return false;
294  }
295  
296  void sk_forced_mem_schedule(struct sock *sk, int size);
297  
298  bool tcp_check_oom(struct sock *sk, int shift);
299  
300  
301  extern struct proto tcp_prot;
302  
303  #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304  #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
305  #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
306  #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
307  
308  void tcp_tasklet_init(void);
309  
310  int tcp_v4_err(struct sk_buff *skb, u32);
311  
312  void tcp_shutdown(struct sock *sk, int how);
313  
314  int tcp_v4_early_demux(struct sk_buff *skb);
315  int tcp_v4_rcv(struct sk_buff *skb);
316  
317  void tcp_remove_empty_skb(struct sock *sk);
318  int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
319  int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
320  int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
321  int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
322  		 int flags);
323  int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
324  			size_t size, int flags);
325  struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
326  			       struct page *page, int offset, size_t *size);
327  ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
328  		 size_t size, int flags);
329  int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
330  void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
331  	      int size_goal);
332  void tcp_release_cb(struct sock *sk);
333  void tcp_wfree(struct sk_buff *skb);
334  void tcp_write_timer_handler(struct sock *sk);
335  void tcp_delack_timer_handler(struct sock *sk);
336  int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337  int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338  void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339  void tcp_rcv_space_adjust(struct sock *sk);
340  int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341  void tcp_twsk_destructor(struct sock *sk);
342  ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343  			struct pipe_inode_info *pipe, size_t len,
344  			unsigned int flags);
345  
tcp_dec_quickack_mode(struct sock * sk)346  static inline void tcp_dec_quickack_mode(struct sock *sk)
347  {
348  	struct inet_connection_sock *icsk = inet_csk(sk);
349  
350  	if (icsk->icsk_ack.quick) {
351  		/* How many ACKs S/ACKing new data have we sent? */
352  		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
353  
354  		if (pkts >= icsk->icsk_ack.quick) {
355  			icsk->icsk_ack.quick = 0;
356  			/* Leaving quickack mode we deflate ATO. */
357  			icsk->icsk_ack.ato   = TCP_ATO_MIN;
358  		} else
359  			icsk->icsk_ack.quick -= pkts;
360  	}
361  }
362  
363  #define	TCP_ECN_OK		1
364  #define	TCP_ECN_QUEUE_CWR	2
365  #define	TCP_ECN_DEMAND_CWR	4
366  #define	TCP_ECN_SEEN		8
367  
368  enum tcp_tw_status {
369  	TCP_TW_SUCCESS = 0,
370  	TCP_TW_RST = 1,
371  	TCP_TW_ACK = 2,
372  	TCP_TW_SYN = 3
373  };
374  
375  
376  enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
377  					      struct sk_buff *skb,
378  					      const struct tcphdr *th);
379  struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
380  			   struct request_sock *req, bool fastopen,
381  			   bool *lost_race);
382  int tcp_child_process(struct sock *parent, struct sock *child,
383  		      struct sk_buff *skb);
384  void tcp_enter_loss(struct sock *sk);
385  void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
386  void tcp_clear_retrans(struct tcp_sock *tp);
387  void tcp_update_metrics(struct sock *sk);
388  void tcp_init_metrics(struct sock *sk);
389  void tcp_metrics_init(void);
390  bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
391  void __tcp_close(struct sock *sk, long timeout);
392  void tcp_close(struct sock *sk, long timeout);
393  void tcp_init_sock(struct sock *sk);
394  void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
395  __poll_t tcp_poll(struct file *file, struct socket *sock,
396  		      struct poll_table_struct *wait);
397  int tcp_getsockopt(struct sock *sk, int level, int optname,
398  		   char __user *optval, int __user *optlen);
399  bool tcp_bpf_bypass_getsockopt(int level, int optname);
400  int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
401  		   unsigned int optlen);
402  void tcp_set_keepalive(struct sock *sk, int val);
403  void tcp_syn_ack_timeout(const struct request_sock *req);
404  int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405  		int flags, int *addr_len);
406  int tcp_set_rcvlowat(struct sock *sk, int val);
407  int tcp_set_window_clamp(struct sock *sk, int val);
408  void tcp_update_recv_tstamps(struct sk_buff *skb,
409  			     struct scm_timestamping_internal *tss);
410  void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
411  			struct scm_timestamping_internal *tss);
412  void tcp_data_ready(struct sock *sk);
413  #ifdef CONFIG_MMU
414  int tcp_mmap(struct file *file, struct socket *sock,
415  	     struct vm_area_struct *vma);
416  #endif
417  void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
418  		       struct tcp_options_received *opt_rx,
419  		       int estab, struct tcp_fastopen_cookie *foc);
420  const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
421  
422  /*
423   *	BPF SKB-less helpers
424   */
425  u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
426  			 struct tcphdr *th, u32 *cookie);
427  u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
428  			 struct tcphdr *th, u32 *cookie);
429  u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
430  			  const struct tcp_request_sock_ops *af_ops,
431  			  struct sock *sk, struct tcphdr *th);
432  /*
433   *	TCP v4 functions exported for the inet6 API
434   */
435  
436  void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
437  void tcp_v4_mtu_reduced(struct sock *sk);
438  void tcp_req_err(struct sock *sk, u32 seq, bool abort);
439  void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
440  int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441  struct sock *tcp_create_openreq_child(const struct sock *sk,
442  				      struct request_sock *req,
443  				      struct sk_buff *skb);
444  void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445  struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446  				  struct request_sock *req,
447  				  struct dst_entry *dst,
448  				  struct request_sock *req_unhash,
449  				  bool *own_req);
450  int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451  int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452  int tcp_connect(struct sock *sk);
453  enum tcp_synack_type {
454  	TCP_SYNACK_NORMAL,
455  	TCP_SYNACK_FASTOPEN,
456  	TCP_SYNACK_COOKIE,
457  };
458  struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459  				struct request_sock *req,
460  				struct tcp_fastopen_cookie *foc,
461  				enum tcp_synack_type synack_type,
462  				struct sk_buff *syn_skb);
463  int tcp_disconnect(struct sock *sk, int flags);
464  
465  void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466  int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467  void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468  
469  /* From syncookies.c */
470  struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471  				 struct request_sock *req,
472  				 struct dst_entry *dst, u32 tsoff);
473  int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474  		      u32 cookie);
475  struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476  struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
477  					    const struct tcp_request_sock_ops *af_ops,
478  					    struct sock *sk, struct sk_buff *skb);
479  #ifdef CONFIG_SYN_COOKIES
480  
481  /* Syncookies use a monotonic timer which increments every 60 seconds.
482   * This counter is used both as a hash input and partially encoded into
483   * the cookie value.  A cookie is only validated further if the delta
484   * between the current counter value and the encoded one is less than this,
485   * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
486   * the counter advances immediately after a cookie is generated).
487   */
488  #define MAX_SYNCOOKIE_AGE	2
489  #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
490  #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
491  
492  /* syncookies: remember time of last synqueue overflow
493   * But do not dirty this field too often (once per second is enough)
494   * It is racy as we do not hold a lock, but race is very minor.
495   */
tcp_synq_overflow(const struct sock * sk)496  static inline void tcp_synq_overflow(const struct sock *sk)
497  {
498  	unsigned int last_overflow;
499  	unsigned int now = jiffies;
500  
501  	if (sk->sk_reuseport) {
502  		struct sock_reuseport *reuse;
503  
504  		reuse = rcu_dereference(sk->sk_reuseport_cb);
505  		if (likely(reuse)) {
506  			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
507  			if (!time_between32(now, last_overflow,
508  					    last_overflow + HZ))
509  				WRITE_ONCE(reuse->synq_overflow_ts, now);
510  			return;
511  		}
512  	}
513  
514  	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
515  	if (!time_between32(now, last_overflow, last_overflow + HZ))
516  		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
517  }
518  
519  /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)520  static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
521  {
522  	unsigned int last_overflow;
523  	unsigned int now = jiffies;
524  
525  	if (sk->sk_reuseport) {
526  		struct sock_reuseport *reuse;
527  
528  		reuse = rcu_dereference(sk->sk_reuseport_cb);
529  		if (likely(reuse)) {
530  			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
531  			return !time_between32(now, last_overflow - HZ,
532  					       last_overflow +
533  					       TCP_SYNCOOKIE_VALID);
534  		}
535  	}
536  
537  	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
538  
539  	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
540  	 * then we're under synflood. However, we have to use
541  	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
542  	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
543  	 * jiffies but before we store .ts_recent_stamp into last_overflow,
544  	 * which could lead to rejecting a valid syncookie.
545  	 */
546  	return !time_between32(now, last_overflow - HZ,
547  			       last_overflow + TCP_SYNCOOKIE_VALID);
548  }
549  
tcp_cookie_time(void)550  static inline u32 tcp_cookie_time(void)
551  {
552  	u64 val = get_jiffies_64();
553  
554  	do_div(val, TCP_SYNCOOKIE_PERIOD);
555  	return val;
556  }
557  
558  u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
559  			      u16 *mssp);
560  __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
561  u64 cookie_init_timestamp(struct request_sock *req, u64 now);
562  bool cookie_timestamp_decode(const struct net *net,
563  			     struct tcp_options_received *opt);
564  bool cookie_ecn_ok(const struct tcp_options_received *opt,
565  		   const struct net *net, const struct dst_entry *dst);
566  
567  /* From net/ipv6/syncookies.c */
568  int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
569  		      u32 cookie);
570  struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
571  
572  u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
573  			      const struct tcphdr *th, u16 *mssp);
574  __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
575  #endif
576  /* tcp_output.c */
577  
578  void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
579  void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
580  void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581  			       int nonagle);
582  int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583  int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584  void tcp_retransmit_timer(struct sock *sk);
585  void tcp_xmit_retransmit_queue(struct sock *);
586  void tcp_simple_retransmit(struct sock *);
587  void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588  int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589  enum tcp_queue {
590  	TCP_FRAG_IN_WRITE_QUEUE,
591  	TCP_FRAG_IN_RTX_QUEUE,
592  };
593  int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594  		 struct sk_buff *skb, u32 len,
595  		 unsigned int mss_now, gfp_t gfp);
596  
597  void tcp_send_probe0(struct sock *);
598  void tcp_send_partial(struct sock *);
599  int tcp_write_wakeup(struct sock *, int mib);
600  void tcp_send_fin(struct sock *sk);
601  void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602  int tcp_send_synack(struct sock *);
603  void tcp_push_one(struct sock *, unsigned int mss_now);
604  void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605  void tcp_send_ack(struct sock *sk);
606  void tcp_send_delayed_ack(struct sock *sk);
607  void tcp_send_loss_probe(struct sock *sk);
608  bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609  void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610  			     const struct sk_buff *next_skb);
611  
612  /* tcp_input.c */
613  void tcp_rearm_rto(struct sock *sk);
614  void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615  void tcp_reset(struct sock *sk, struct sk_buff *skb);
616  void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617  void tcp_fin(struct sock *sk);
618  void tcp_check_space(struct sock *sk);
619  
620  /* tcp_timer.c */
621  void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)622  static inline void tcp_clear_xmit_timers(struct sock *sk)
623  {
624  	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
625  		__sock_put(sk);
626  
627  	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
628  		__sock_put(sk);
629  
630  	inet_csk_clear_xmit_timers(sk);
631  }
632  
633  unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
634  unsigned int tcp_current_mss(struct sock *sk);
635  u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
636  
637  /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)638  static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
639  {
640  	int cutoff;
641  
642  	/* When peer uses tiny windows, there is no use in packetizing
643  	 * to sub-MSS pieces for the sake of SWS or making sure there
644  	 * are enough packets in the pipe for fast recovery.
645  	 *
646  	 * On the other hand, for extremely large MSS devices, handling
647  	 * smaller than MSS windows in this way does make sense.
648  	 */
649  	if (tp->max_window > TCP_MSS_DEFAULT)
650  		cutoff = (tp->max_window >> 1);
651  	else
652  		cutoff = tp->max_window;
653  
654  	if (cutoff && pktsize > cutoff)
655  		return max_t(int, cutoff, 68U - tp->tcp_header_len);
656  	else
657  		return pktsize;
658  }
659  
660  /* tcp.c */
661  void tcp_get_info(struct sock *, struct tcp_info *);
662  
663  /* Read 'sendfile()'-style from a TCP socket */
664  int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
665  		  sk_read_actor_t recv_actor);
666  
667  void tcp_initialize_rcv_mss(struct sock *sk);
668  
669  int tcp_mtu_to_mss(struct sock *sk, int pmtu);
670  int tcp_mss_to_mtu(struct sock *sk, int mss);
671  void tcp_mtup_init(struct sock *sk);
672  
tcp_bound_rto(const struct sock * sk)673  static inline void tcp_bound_rto(const struct sock *sk)
674  {
675  	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
676  		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
677  }
678  
__tcp_set_rto(const struct tcp_sock * tp)679  static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
680  {
681  	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
682  }
683  
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)684  static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
685  {
686  	/* mptcp hooks are only on the slow path */
687  	if (sk_is_mptcp((struct sock *)tp))
688  		return;
689  
690  	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
691  			       ntohl(TCP_FLAG_ACK) |
692  			       snd_wnd);
693  }
694  
tcp_fast_path_on(struct tcp_sock * tp)695  static inline void tcp_fast_path_on(struct tcp_sock *tp)
696  {
697  	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
698  }
699  
tcp_fast_path_check(struct sock * sk)700  static inline void tcp_fast_path_check(struct sock *sk)
701  {
702  	struct tcp_sock *tp = tcp_sk(sk);
703  
704  	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
705  	    tp->rcv_wnd &&
706  	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
707  	    !tp->urg_data)
708  		tcp_fast_path_on(tp);
709  }
710  
711  /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)712  static inline u32 tcp_rto_min(struct sock *sk)
713  {
714  	const struct dst_entry *dst = __sk_dst_get(sk);
715  	u32 rto_min = inet_csk(sk)->icsk_rto_min;
716  
717  	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
718  		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
719  	return rto_min;
720  }
721  
tcp_rto_min_us(struct sock * sk)722  static inline u32 tcp_rto_min_us(struct sock *sk)
723  {
724  	return jiffies_to_usecs(tcp_rto_min(sk));
725  }
726  
tcp_ca_dst_locked(const struct dst_entry * dst)727  static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
728  {
729  	return dst_metric_locked(dst, RTAX_CC_ALGO);
730  }
731  
732  /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)733  static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
734  {
735  	return minmax_get(&tp->rtt_min);
736  }
737  
738  /* Compute the actual receive window we are currently advertising.
739   * Rcv_nxt can be after the window if our peer push more data
740   * than the offered window.
741   */
tcp_receive_window(const struct tcp_sock * tp)742  static inline u32 tcp_receive_window(const struct tcp_sock *tp)
743  {
744  	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
745  
746  	if (win < 0)
747  		win = 0;
748  	return (u32) win;
749  }
750  
751  /* Choose a new window, without checks for shrinking, and without
752   * scaling applied to the result.  The caller does these things
753   * if necessary.  This is a "raw" window selection.
754   */
755  u32 __tcp_select_window(struct sock *sk);
756  
757  void tcp_send_window_probe(struct sock *sk);
758  
759  /* TCP uses 32bit jiffies to save some space.
760   * Note that this is different from tcp_time_stamp, which
761   * historically has been the same until linux-4.13.
762   */
763  #define tcp_jiffies32 ((u32)jiffies)
764  
765  /*
766   * Deliver a 32bit value for TCP timestamp option (RFC 7323)
767   * It is no longer tied to jiffies, but to 1 ms clock.
768   * Note: double check if you want to use tcp_jiffies32 instead of this.
769   */
770  #define TCP_TS_HZ	1000
771  
tcp_clock_ns(void)772  static inline u64 tcp_clock_ns(void)
773  {
774  	return ktime_get_ns();
775  }
776  
tcp_clock_us(void)777  static inline u64 tcp_clock_us(void)
778  {
779  	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
780  }
781  
782  /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)783  static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
784  {
785  	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
786  }
787  
788  /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)789  static inline u64 tcp_ns_to_ts(u64 ns)
790  {
791  	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
792  }
793  
794  /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)795  static inline u32 tcp_time_stamp_raw(void)
796  {
797  	return tcp_ns_to_ts(tcp_clock_ns());
798  }
799  
800  void tcp_mstamp_refresh(struct tcp_sock *tp);
801  
tcp_stamp_us_delta(u64 t1,u64 t0)802  static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
803  {
804  	return max_t(s64, t1 - t0, 0);
805  }
806  
tcp_skb_timestamp(const struct sk_buff * skb)807  static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
808  {
809  	return tcp_ns_to_ts(skb->skb_mstamp_ns);
810  }
811  
812  /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)813  static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
814  {
815  	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
816  }
817  
818  
819  #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
820  
821  #define TCPHDR_FIN 0x01
822  #define TCPHDR_SYN 0x02
823  #define TCPHDR_RST 0x04
824  #define TCPHDR_PSH 0x08
825  #define TCPHDR_ACK 0x10
826  #define TCPHDR_URG 0x20
827  #define TCPHDR_ECE 0x40
828  #define TCPHDR_CWR 0x80
829  
830  #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
831  
832  /* This is what the send packet queuing engine uses to pass
833   * TCP per-packet control information to the transmission code.
834   * We also store the host-order sequence numbers in here too.
835   * This is 44 bytes if IPV6 is enabled.
836   * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
837   */
838  struct tcp_skb_cb {
839  	__u32		seq;		/* Starting sequence number	*/
840  	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
841  	union {
842  		/* Note : tcp_tw_isn is used in input path only
843  		 *	  (isn chosen by tcp_timewait_state_process())
844  		 *
845  		 * 	  tcp_gso_segs/size are used in write queue only,
846  		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
847  		 */
848  		__u32		tcp_tw_isn;
849  		struct {
850  			u16	tcp_gso_segs;
851  			u16	tcp_gso_size;
852  		};
853  	};
854  	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
855  
856  	__u8		sacked;		/* State flags for SACK.	*/
857  #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
858  #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
859  #define TCPCB_LOST		0x04	/* SKB is lost			*/
860  #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
861  #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
862  #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
863  #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
864  				TCPCB_REPAIRED)
865  
866  	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
867  	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
868  			eor:1,		/* Is skb MSG_EOR marked? */
869  			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
870  			unused:5;
871  	__u32		ack_seq;	/* Sequence number ACK'd	*/
872  	union {
873  		struct {
874  			/* There is space for up to 24 bytes */
875  			__u32 in_flight:30,/* Bytes in flight at transmit */
876  			      is_app_limited:1, /* cwnd not fully used? */
877  			      unused:1;
878  			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
879  			__u32 delivered;
880  			/* start of send pipeline phase */
881  			u64 first_tx_mstamp;
882  			/* when we reached the "delivered" count */
883  			u64 delivered_mstamp;
884  		} tx;   /* only used for outgoing skbs */
885  		union {
886  			struct inet_skb_parm	h4;
887  #if IS_ENABLED(CONFIG_IPV6)
888  			struct inet6_skb_parm	h6;
889  #endif
890  		} header;	/* For incoming skbs */
891  	};
892  };
893  
894  #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
895  
896  extern const struct inet_connection_sock_af_ops ipv4_specific;
897  
898  #if IS_ENABLED(CONFIG_IPV6)
899  /* This is the variant of inet6_iif() that must be used by TCP,
900   * as TCP moves IP6CB into a different location in skb->cb[]
901   */
tcp_v6_iif(const struct sk_buff * skb)902  static inline int tcp_v6_iif(const struct sk_buff *skb)
903  {
904  	return TCP_SKB_CB(skb)->header.h6.iif;
905  }
906  
tcp_v6_iif_l3_slave(const struct sk_buff * skb)907  static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
908  {
909  	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
910  
911  	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
912  }
913  
914  /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)915  static inline int tcp_v6_sdif(const struct sk_buff *skb)
916  {
917  #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
918  	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
919  		return TCP_SKB_CB(skb)->header.h6.iif;
920  #endif
921  	return 0;
922  }
923  
924  extern const struct inet_connection_sock_af_ops ipv6_specific;
925  
926  INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
927  INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
928  void tcp_v6_early_demux(struct sk_buff *skb);
929  
930  #endif
931  
932  /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)933  static inline int tcp_v4_sdif(struct sk_buff *skb)
934  {
935  #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936  	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
937  		return TCP_SKB_CB(skb)->header.h4.iif;
938  #endif
939  	return 0;
940  }
941  
942  /* Due to TSO, an SKB can be composed of multiple actual
943   * packets.  To keep these tracked properly, we use this.
944   */
tcp_skb_pcount(const struct sk_buff * skb)945  static inline int tcp_skb_pcount(const struct sk_buff *skb)
946  {
947  	return TCP_SKB_CB(skb)->tcp_gso_segs;
948  }
949  
tcp_skb_pcount_set(struct sk_buff * skb,int segs)950  static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
951  {
952  	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
953  }
954  
tcp_skb_pcount_add(struct sk_buff * skb,int segs)955  static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
956  {
957  	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
958  }
959  
960  /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)961  static inline int tcp_skb_mss(const struct sk_buff *skb)
962  {
963  	return TCP_SKB_CB(skb)->tcp_gso_size;
964  }
965  
tcp_skb_can_collapse_to(const struct sk_buff * skb)966  static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
967  {
968  	return likely(!TCP_SKB_CB(skb)->eor);
969  }
970  
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)971  static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
972  					const struct sk_buff *from)
973  {
974  	return likely(tcp_skb_can_collapse_to(to) &&
975  		      mptcp_skb_can_collapse(to, from));
976  }
977  
978  /* Events passed to congestion control interface */
979  enum tcp_ca_event {
980  	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
981  	CA_EVENT_CWND_RESTART,	/* congestion window restart */
982  	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
983  	CA_EVENT_LOSS,		/* loss timeout */
984  	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
985  	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
986  };
987  
988  /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
989  enum tcp_ca_ack_event_flags {
990  	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
991  	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
992  	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
993  };
994  
995  /*
996   * Interface for adding new TCP congestion control handlers
997   */
998  #define TCP_CA_NAME_MAX	16
999  #define TCP_CA_MAX	128
1000  #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1001  
1002  #define TCP_CA_UNSPEC	0
1003  
1004  /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1005  #define TCP_CONG_NON_RESTRICTED 0x1
1006  /* Requires ECN/ECT set on all packets */
1007  #define TCP_CONG_NEEDS_ECN	0x2
1008  #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1009  
1010  union tcp_cc_info;
1011  
1012  struct ack_sample {
1013  	u32 pkts_acked;
1014  	s32 rtt_us;
1015  	u32 in_flight;
1016  };
1017  
1018  /* A rate sample measures the number of (original/retransmitted) data
1019   * packets delivered "delivered" over an interval of time "interval_us".
1020   * The tcp_rate.c code fills in the rate sample, and congestion
1021   * control modules that define a cong_control function to run at the end
1022   * of ACK processing can optionally chose to consult this sample when
1023   * setting cwnd and pacing rate.
1024   * A sample is invalid if "delivered" or "interval_us" is negative.
1025   */
1026  struct rate_sample {
1027  	u64  prior_mstamp; /* starting timestamp for interval */
1028  	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1029  	s32  delivered;		/* number of packets delivered over interval */
1030  	long interval_us;	/* time for tp->delivered to incr "delivered" */
1031  	u32 snd_interval_us;	/* snd interval for delivered packets */
1032  	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1033  	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1034  	int  losses;		/* number of packets marked lost upon ACK */
1035  	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1036  	u32  prior_in_flight;	/* in flight before this ACK */
1037  	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1038  	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1039  	bool is_retrans;	/* is sample from retransmission? */
1040  	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1041  };
1042  
1043  struct tcp_congestion_ops {
1044  /* fast path fields are put first to fill one cache line */
1045  
1046  	/* return slow start threshold (required) */
1047  	u32 (*ssthresh)(struct sock *sk);
1048  
1049  	/* do new cwnd calculation (required) */
1050  	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1051  
1052  	/* call before changing ca_state (optional) */
1053  	void (*set_state)(struct sock *sk, u8 new_state);
1054  
1055  	/* call when cwnd event occurs (optional) */
1056  	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1057  
1058  	/* call when ack arrives (optional) */
1059  	void (*in_ack_event)(struct sock *sk, u32 flags);
1060  
1061  	/* hook for packet ack accounting (optional) */
1062  	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1063  
1064  	/* override sysctl_tcp_min_tso_segs */
1065  	u32 (*min_tso_segs)(struct sock *sk);
1066  
1067  	/* call when packets are delivered to update cwnd and pacing rate,
1068  	 * after all the ca_state processing. (optional)
1069  	 */
1070  	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1071  
1072  
1073  	/* new value of cwnd after loss (required) */
1074  	u32  (*undo_cwnd)(struct sock *sk);
1075  	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1076  	u32 (*sndbuf_expand)(struct sock *sk);
1077  
1078  /* control/slow paths put last */
1079  	/* get info for inet_diag (optional) */
1080  	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1081  			   union tcp_cc_info *info);
1082  
1083  	char 			name[TCP_CA_NAME_MAX];
1084  	struct module		*owner;
1085  	struct list_head	list;
1086  	u32			key;
1087  	u32			flags;
1088  
1089  	/* initialize private data (optional) */
1090  	void (*init)(struct sock *sk);
1091  	/* cleanup private data  (optional) */
1092  	void (*release)(struct sock *sk);
1093  } ____cacheline_aligned_in_smp;
1094  
1095  int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1096  void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1097  
1098  void tcp_assign_congestion_control(struct sock *sk);
1099  void tcp_init_congestion_control(struct sock *sk);
1100  void tcp_cleanup_congestion_control(struct sock *sk);
1101  int tcp_set_default_congestion_control(struct net *net, const char *name);
1102  void tcp_get_default_congestion_control(struct net *net, char *name);
1103  void tcp_get_available_congestion_control(char *buf, size_t len);
1104  void tcp_get_allowed_congestion_control(char *buf, size_t len);
1105  int tcp_set_allowed_congestion_control(char *allowed);
1106  int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1107  			       bool cap_net_admin);
1108  u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1109  void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1110  
1111  u32 tcp_reno_ssthresh(struct sock *sk);
1112  u32 tcp_reno_undo_cwnd(struct sock *sk);
1113  void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1114  extern struct tcp_congestion_ops tcp_reno;
1115  
1116  struct tcp_congestion_ops *tcp_ca_find(const char *name);
1117  struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1118  u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1119  #ifdef CONFIG_INET
1120  char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1121  #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1122  static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1123  {
1124  	return NULL;
1125  }
1126  #endif
1127  
tcp_ca_needs_ecn(const struct sock * sk)1128  static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1129  {
1130  	const struct inet_connection_sock *icsk = inet_csk(sk);
1131  
1132  	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1133  }
1134  
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1135  static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1136  {
1137  	struct inet_connection_sock *icsk = inet_csk(sk);
1138  
1139  	if (icsk->icsk_ca_ops->set_state)
1140  		icsk->icsk_ca_ops->set_state(sk, ca_state);
1141  	icsk->icsk_ca_state = ca_state;
1142  }
1143  
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1144  static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1145  {
1146  	const struct inet_connection_sock *icsk = inet_csk(sk);
1147  
1148  	if (icsk->icsk_ca_ops->cwnd_event)
1149  		icsk->icsk_ca_ops->cwnd_event(sk, event);
1150  }
1151  
1152  /* From tcp_rate.c */
1153  void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1154  void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1155  			    struct rate_sample *rs);
1156  void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1157  		  bool is_sack_reneg, struct rate_sample *rs);
1158  void tcp_rate_check_app_limited(struct sock *sk);
1159  
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1160  static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1161  {
1162  	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1163  }
1164  
1165  /* These functions determine how the current flow behaves in respect of SACK
1166   * handling. SACK is negotiated with the peer, and therefore it can vary
1167   * between different flows.
1168   *
1169   * tcp_is_sack - SACK enabled
1170   * tcp_is_reno - No SACK
1171   */
tcp_is_sack(const struct tcp_sock * tp)1172  static inline int tcp_is_sack(const struct tcp_sock *tp)
1173  {
1174  	return likely(tp->rx_opt.sack_ok);
1175  }
1176  
tcp_is_reno(const struct tcp_sock * tp)1177  static inline bool tcp_is_reno(const struct tcp_sock *tp)
1178  {
1179  	return !tcp_is_sack(tp);
1180  }
1181  
tcp_left_out(const struct tcp_sock * tp)1182  static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1183  {
1184  	return tp->sacked_out + tp->lost_out;
1185  }
1186  
1187  /* This determines how many packets are "in the network" to the best
1188   * of our knowledge.  In many cases it is conservative, but where
1189   * detailed information is available from the receiver (via SACK
1190   * blocks etc.) we can make more aggressive calculations.
1191   *
1192   * Use this for decisions involving congestion control, use just
1193   * tp->packets_out to determine if the send queue is empty or not.
1194   *
1195   * Read this equation as:
1196   *
1197   *	"Packets sent once on transmission queue" MINUS
1198   *	"Packets left network, but not honestly ACKed yet" PLUS
1199   *	"Packets fast retransmitted"
1200   */
tcp_packets_in_flight(const struct tcp_sock * tp)1201  static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1202  {
1203  	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1204  }
1205  
1206  #define TCP_INFINITE_SSTHRESH	0x7fffffff
1207  
tcp_snd_cwnd(const struct tcp_sock * tp)1208  static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1209  {
1210  	return tp->snd_cwnd;
1211  }
1212  
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1213  static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1214  {
1215  	WARN_ON_ONCE((int)val <= 0);
1216  	tp->snd_cwnd = val;
1217  }
1218  
tcp_in_slow_start(const struct tcp_sock * tp)1219  static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1220  {
1221  	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1222  }
1223  
tcp_in_initial_slowstart(const struct tcp_sock * tp)1224  static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1225  {
1226  	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1227  }
1228  
tcp_in_cwnd_reduction(const struct sock * sk)1229  static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1230  {
1231  	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1232  	       (1 << inet_csk(sk)->icsk_ca_state);
1233  }
1234  
1235  /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1236   * The exception is cwnd reduction phase, when cwnd is decreasing towards
1237   * ssthresh.
1238   */
tcp_current_ssthresh(const struct sock * sk)1239  static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1240  {
1241  	const struct tcp_sock *tp = tcp_sk(sk);
1242  
1243  	if (tcp_in_cwnd_reduction(sk))
1244  		return tp->snd_ssthresh;
1245  	else
1246  		return max(tp->snd_ssthresh,
1247  			   ((tcp_snd_cwnd(tp) >> 1) +
1248  			    (tcp_snd_cwnd(tp) >> 2)));
1249  }
1250  
1251  /* Use define here intentionally to get WARN_ON location shown at the caller */
1252  #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1253  
1254  void tcp_enter_cwr(struct sock *sk);
1255  __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1256  
1257  /* The maximum number of MSS of available cwnd for which TSO defers
1258   * sending if not using sysctl_tcp_tso_win_divisor.
1259   */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1260  static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1261  {
1262  	return 3;
1263  }
1264  
1265  /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1266  static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1267  {
1268  	return tp->snd_una + tp->snd_wnd;
1269  }
1270  
1271  /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1272   * flexible approach. The RFC suggests cwnd should not be raised unless
1273   * it was fully used previously. And that's exactly what we do in
1274   * congestion avoidance mode. But in slow start we allow cwnd to grow
1275   * as long as the application has used half the cwnd.
1276   * Example :
1277   *    cwnd is 10 (IW10), but application sends 9 frames.
1278   *    We allow cwnd to reach 18 when all frames are ACKed.
1279   * This check is safe because it's as aggressive as slow start which already
1280   * risks 100% overshoot. The advantage is that we discourage application to
1281   * either send more filler packets or data to artificially blow up the cwnd
1282   * usage, and allow application-limited process to probe bw more aggressively.
1283   */
tcp_is_cwnd_limited(const struct sock * sk)1284  static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1285  {
1286  	const struct tcp_sock *tp = tcp_sk(sk);
1287  
1288  	if (tp->is_cwnd_limited)
1289  		return true;
1290  
1291  	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1292  	if (tcp_in_slow_start(tp))
1293  		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1294  
1295  	return false;
1296  }
1297  
1298  /* BBR congestion control needs pacing.
1299   * Same remark for SO_MAX_PACING_RATE.
1300   * sch_fq packet scheduler is efficiently handling pacing,
1301   * but is not always installed/used.
1302   * Return true if TCP stack should pace packets itself.
1303   */
tcp_needs_internal_pacing(const struct sock * sk)1304  static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1305  {
1306  	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1307  }
1308  
1309  /* Estimates in how many jiffies next packet for this flow can be sent.
1310   * Scheduling a retransmit timer too early would be silly.
1311   */
tcp_pacing_delay(const struct sock * sk)1312  static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1313  {
1314  	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1315  
1316  	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1317  }
1318  
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1319  static inline void tcp_reset_xmit_timer(struct sock *sk,
1320  					const int what,
1321  					unsigned long when,
1322  					const unsigned long max_when)
1323  {
1324  	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1325  				  max_when);
1326  }
1327  
1328  /* Something is really bad, we could not queue an additional packet,
1329   * because qdisc is full or receiver sent a 0 window, or we are paced.
1330   * We do not want to add fuel to the fire, or abort too early,
1331   * so make sure the timer we arm now is at least 200ms in the future,
1332   * regardless of current icsk_rto value (as it could be ~2ms)
1333   */
tcp_probe0_base(const struct sock * sk)1334  static inline unsigned long tcp_probe0_base(const struct sock *sk)
1335  {
1336  	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1337  }
1338  
1339  /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1340  static inline unsigned long tcp_probe0_when(const struct sock *sk,
1341  					    unsigned long max_when)
1342  {
1343  	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1344  			   inet_csk(sk)->icsk_backoff);
1345  	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1346  
1347  	return (unsigned long)min_t(u64, when, max_when);
1348  }
1349  
tcp_check_probe_timer(struct sock * sk)1350  static inline void tcp_check_probe_timer(struct sock *sk)
1351  {
1352  	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1353  		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1354  				     tcp_probe0_base(sk), TCP_RTO_MAX);
1355  }
1356  
tcp_init_wl(struct tcp_sock * tp,u32 seq)1357  static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1358  {
1359  	tp->snd_wl1 = seq;
1360  }
1361  
tcp_update_wl(struct tcp_sock * tp,u32 seq)1362  static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1363  {
1364  	tp->snd_wl1 = seq;
1365  }
1366  
1367  /*
1368   * Calculate(/check) TCP checksum
1369   */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1370  static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1371  				   __be32 daddr, __wsum base)
1372  {
1373  	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1374  }
1375  
tcp_checksum_complete(struct sk_buff * skb)1376  static inline bool tcp_checksum_complete(struct sk_buff *skb)
1377  {
1378  	return !skb_csum_unnecessary(skb) &&
1379  		__skb_checksum_complete(skb);
1380  }
1381  
1382  bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1383  int tcp_filter(struct sock *sk, struct sk_buff *skb);
1384  void tcp_set_state(struct sock *sk, int state);
1385  void tcp_done(struct sock *sk);
1386  int tcp_abort(struct sock *sk, int err);
1387  
tcp_sack_reset(struct tcp_options_received * rx_opt)1388  static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1389  {
1390  	rx_opt->dsack = 0;
1391  	rx_opt->num_sacks = 0;
1392  }
1393  
1394  void tcp_cwnd_restart(struct sock *sk, s32 delta);
1395  
tcp_slow_start_after_idle_check(struct sock * sk)1396  static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1397  {
1398  	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1399  	struct tcp_sock *tp = tcp_sk(sk);
1400  	s32 delta;
1401  
1402  	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1403  	    tp->packets_out || ca_ops->cong_control)
1404  		return;
1405  	delta = tcp_jiffies32 - tp->lsndtime;
1406  	if (delta > inet_csk(sk)->icsk_rto)
1407  		tcp_cwnd_restart(sk, delta);
1408  }
1409  
1410  /* Determine a window scaling and initial window to offer. */
1411  void tcp_select_initial_window(const struct sock *sk, int __space,
1412  			       __u32 mss, __u32 *rcv_wnd,
1413  			       __u32 *window_clamp, int wscale_ok,
1414  			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1415  
tcp_win_from_space(const struct sock * sk,int space)1416  static inline int tcp_win_from_space(const struct sock *sk, int space)
1417  {
1418  	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1419  
1420  	return tcp_adv_win_scale <= 0 ?
1421  		(space>>(-tcp_adv_win_scale)) :
1422  		space - (space>>tcp_adv_win_scale);
1423  }
1424  
1425  /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1426  static inline int tcp_space(const struct sock *sk)
1427  {
1428  	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1429  				  READ_ONCE(sk->sk_backlog.len) -
1430  				  atomic_read(&sk->sk_rmem_alloc));
1431  }
1432  
tcp_full_space(const struct sock * sk)1433  static inline int tcp_full_space(const struct sock *sk)
1434  {
1435  	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1436  }
1437  
1438  void tcp_cleanup_rbuf(struct sock *sk, int copied);
1439  
1440  /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1441   * If 87.5 % (7/8) of the space has been consumed, we want to override
1442   * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1443   * len/truesize ratio.
1444   */
tcp_rmem_pressure(const struct sock * sk)1445  static inline bool tcp_rmem_pressure(const struct sock *sk)
1446  {
1447  	int rcvbuf, threshold;
1448  
1449  	if (tcp_under_memory_pressure(sk))
1450  		return true;
1451  
1452  	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1453  	threshold = rcvbuf - (rcvbuf >> 3);
1454  
1455  	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1456  }
1457  
tcp_epollin_ready(const struct sock * sk,int target)1458  static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1459  {
1460  	const struct tcp_sock *tp = tcp_sk(sk);
1461  	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1462  
1463  	if (avail <= 0)
1464  		return false;
1465  
1466  	return (avail >= target) || tcp_rmem_pressure(sk) ||
1467  	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1468  }
1469  
1470  extern void tcp_openreq_init_rwin(struct request_sock *req,
1471  				  const struct sock *sk_listener,
1472  				  const struct dst_entry *dst);
1473  
1474  void tcp_enter_memory_pressure(struct sock *sk);
1475  void tcp_leave_memory_pressure(struct sock *sk);
1476  
keepalive_intvl_when(const struct tcp_sock * tp)1477  static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1478  {
1479  	struct net *net = sock_net((struct sock *)tp);
1480  	int val;
1481  
1482  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1483  	 * and do_tcp_setsockopt().
1484  	 */
1485  	val = READ_ONCE(tp->keepalive_intvl);
1486  
1487  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1488  }
1489  
keepalive_time_when(const struct tcp_sock * tp)1490  static inline int keepalive_time_when(const struct tcp_sock *tp)
1491  {
1492  	struct net *net = sock_net((struct sock *)tp);
1493  	int val;
1494  
1495  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1496  	val = READ_ONCE(tp->keepalive_time);
1497  
1498  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1499  }
1500  
keepalive_probes(const struct tcp_sock * tp)1501  static inline int keepalive_probes(const struct tcp_sock *tp)
1502  {
1503  	struct net *net = sock_net((struct sock *)tp);
1504  	int val;
1505  
1506  	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1507  	 * and do_tcp_setsockopt().
1508  	 */
1509  	val = READ_ONCE(tp->keepalive_probes);
1510  
1511  	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1512  }
1513  
keepalive_time_elapsed(const struct tcp_sock * tp)1514  static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1515  {
1516  	const struct inet_connection_sock *icsk = &tp->inet_conn;
1517  
1518  	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1519  			  tcp_jiffies32 - tp->rcv_tstamp);
1520  }
1521  
tcp_fin_time(const struct sock * sk)1522  static inline int tcp_fin_time(const struct sock *sk)
1523  {
1524  	int fin_timeout = tcp_sk(sk)->linger2 ? :
1525  		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1526  	const int rto = inet_csk(sk)->icsk_rto;
1527  
1528  	if (fin_timeout < (rto << 2) - (rto >> 1))
1529  		fin_timeout = (rto << 2) - (rto >> 1);
1530  
1531  	return fin_timeout;
1532  }
1533  
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1534  static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1535  				  int paws_win)
1536  {
1537  	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1538  		return true;
1539  	if (unlikely(!time_before32(ktime_get_seconds(),
1540  				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1541  		return true;
1542  	/*
1543  	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1544  	 * then following tcp messages have valid values. Ignore 0 value,
1545  	 * or else 'negative' tsval might forbid us to accept their packets.
1546  	 */
1547  	if (!rx_opt->ts_recent)
1548  		return true;
1549  	return false;
1550  }
1551  
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1552  static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1553  				   int rst)
1554  {
1555  	if (tcp_paws_check(rx_opt, 0))
1556  		return false;
1557  
1558  	/* RST segments are not recommended to carry timestamp,
1559  	   and, if they do, it is recommended to ignore PAWS because
1560  	   "their cleanup function should take precedence over timestamps."
1561  	   Certainly, it is mistake. It is necessary to understand the reasons
1562  	   of this constraint to relax it: if peer reboots, clock may go
1563  	   out-of-sync and half-open connections will not be reset.
1564  	   Actually, the problem would be not existing if all
1565  	   the implementations followed draft about maintaining clock
1566  	   via reboots. Linux-2.2 DOES NOT!
1567  
1568  	   However, we can relax time bounds for RST segments to MSL.
1569  	 */
1570  	if (rst && !time_before32(ktime_get_seconds(),
1571  				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1572  		return false;
1573  	return true;
1574  }
1575  
1576  bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1577  			  int mib_idx, u32 *last_oow_ack_time);
1578  
tcp_mib_init(struct net * net)1579  static inline void tcp_mib_init(struct net *net)
1580  {
1581  	/* See RFC 2012 */
1582  	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1583  	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1584  	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1585  	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1586  }
1587  
1588  /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1589  static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1590  {
1591  	tp->lost_skb_hint = NULL;
1592  }
1593  
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1594  static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1595  {
1596  	tcp_clear_retrans_hints_partial(tp);
1597  	tp->retransmit_skb_hint = NULL;
1598  }
1599  
1600  union tcp_md5_addr {
1601  	struct in_addr  a4;
1602  #if IS_ENABLED(CONFIG_IPV6)
1603  	struct in6_addr	a6;
1604  #endif
1605  };
1606  
1607  /* - key database */
1608  struct tcp_md5sig_key {
1609  	struct hlist_node	node;
1610  	u8			keylen;
1611  	u8			family; /* AF_INET or AF_INET6 */
1612  	u8			prefixlen;
1613  	u8			flags;
1614  	union tcp_md5_addr	addr;
1615  	int			l3index; /* set if key added with L3 scope */
1616  	u8			key[TCP_MD5SIG_MAXKEYLEN];
1617  	struct rcu_head		rcu;
1618  };
1619  
1620  /* - sock block */
1621  struct tcp_md5sig_info {
1622  	struct hlist_head	head;
1623  	struct rcu_head		rcu;
1624  };
1625  
1626  /* - pseudo header */
1627  struct tcp4_pseudohdr {
1628  	__be32		saddr;
1629  	__be32		daddr;
1630  	__u8		pad;
1631  	__u8		protocol;
1632  	__be16		len;
1633  };
1634  
1635  struct tcp6_pseudohdr {
1636  	struct in6_addr	saddr;
1637  	struct in6_addr daddr;
1638  	__be32		len;
1639  	__be32		protocol;	/* including padding */
1640  };
1641  
1642  union tcp_md5sum_block {
1643  	struct tcp4_pseudohdr ip4;
1644  #if IS_ENABLED(CONFIG_IPV6)
1645  	struct tcp6_pseudohdr ip6;
1646  #endif
1647  };
1648  
1649  /* - pool: digest algorithm, hash description and scratch buffer */
1650  struct tcp_md5sig_pool {
1651  	struct ahash_request	*md5_req;
1652  	void			*scratch;
1653  };
1654  
1655  /* - functions */
1656  int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1657  			const struct sock *sk, const struct sk_buff *skb);
1658  int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1659  		   int family, u8 prefixlen, int l3index, u8 flags,
1660  		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1661  int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1662  		   int family, u8 prefixlen, int l3index, u8 flags);
1663  struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1664  					 const struct sock *addr_sk);
1665  
1666  #ifdef CONFIG_TCP_MD5SIG
1667  #include <linux/jump_label.h>
1668  extern struct static_key_false tcp_md5_needed;
1669  struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1670  					   const union tcp_md5_addr *addr,
1671  					   int family);
1672  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1673  tcp_md5_do_lookup(const struct sock *sk, int l3index,
1674  		  const union tcp_md5_addr *addr, int family)
1675  {
1676  	if (!static_branch_unlikely(&tcp_md5_needed))
1677  		return NULL;
1678  	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1679  }
1680  
1681  #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1682  #else
1683  static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1684  tcp_md5_do_lookup(const struct sock *sk, int l3index,
1685  		  const union tcp_md5_addr *addr, int family)
1686  {
1687  	return NULL;
1688  }
1689  #define tcp_twsk_md5_key(twsk)	NULL
1690  #endif
1691  
1692  bool tcp_alloc_md5sig_pool(void);
1693  
1694  struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1695  static inline void tcp_put_md5sig_pool(void)
1696  {
1697  	local_bh_enable();
1698  }
1699  
1700  int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1701  			  unsigned int header_len);
1702  int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1703  		     const struct tcp_md5sig_key *key);
1704  
1705  /* From tcp_fastopen.c */
1706  void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1707  			    struct tcp_fastopen_cookie *cookie);
1708  void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1709  			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1710  			    u16 try_exp);
1711  struct tcp_fastopen_request {
1712  	/* Fast Open cookie. Size 0 means a cookie request */
1713  	struct tcp_fastopen_cookie	cookie;
1714  	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1715  	size_t				size;
1716  	int				copied;	/* queued in tcp_connect() */
1717  	struct ubuf_info		*uarg;
1718  };
1719  void tcp_free_fastopen_req(struct tcp_sock *tp);
1720  void tcp_fastopen_destroy_cipher(struct sock *sk);
1721  void tcp_fastopen_ctx_destroy(struct net *net);
1722  int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1723  			      void *primary_key, void *backup_key);
1724  int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1725  			    u64 *key);
1726  void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1727  struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1728  			      struct request_sock *req,
1729  			      struct tcp_fastopen_cookie *foc,
1730  			      const struct dst_entry *dst);
1731  void tcp_fastopen_init_key_once(struct net *net);
1732  bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1733  			     struct tcp_fastopen_cookie *cookie);
1734  bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1735  #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1736  #define TCP_FASTOPEN_KEY_MAX 2
1737  #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1738  	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1739  
1740  /* Fastopen key context */
1741  struct tcp_fastopen_context {
1742  	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1743  	int		num;
1744  	struct rcu_head	rcu;
1745  };
1746  
1747  void tcp_fastopen_active_disable(struct sock *sk);
1748  bool tcp_fastopen_active_should_disable(struct sock *sk);
1749  void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1750  void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1751  
1752  /* Caller needs to wrap with rcu_read_(un)lock() */
1753  static inline
tcp_fastopen_get_ctx(const struct sock * sk)1754  struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1755  {
1756  	struct tcp_fastopen_context *ctx;
1757  
1758  	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1759  	if (!ctx)
1760  		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1761  	return ctx;
1762  }
1763  
1764  static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1765  bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1766  			       const struct tcp_fastopen_cookie *orig)
1767  {
1768  	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1769  	    orig->len == foc->len &&
1770  	    !memcmp(orig->val, foc->val, foc->len))
1771  		return true;
1772  	return false;
1773  }
1774  
1775  static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1776  int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1777  {
1778  	return ctx->num;
1779  }
1780  
1781  /* Latencies incurred by various limits for a sender. They are
1782   * chronograph-like stats that are mutually exclusive.
1783   */
1784  enum tcp_chrono {
1785  	TCP_CHRONO_UNSPEC,
1786  	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1787  	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1788  	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1789  	__TCP_CHRONO_MAX,
1790  };
1791  
1792  void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1793  void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1794  
1795  /* This helper is needed, because skb->tcp_tsorted_anchor uses
1796   * the same memory storage than skb->destructor/_skb_refdst
1797   */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1798  static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1799  {
1800  	skb->destructor = NULL;
1801  	skb->_skb_refdst = 0UL;
1802  }
1803  
1804  #define tcp_skb_tsorted_save(skb) {		\
1805  	unsigned long _save = skb->_skb_refdst;	\
1806  	skb->_skb_refdst = 0UL;
1807  
1808  #define tcp_skb_tsorted_restore(skb)		\
1809  	skb->_skb_refdst = _save;		\
1810  }
1811  
1812  void tcp_write_queue_purge(struct sock *sk);
1813  
tcp_rtx_queue_head(const struct sock * sk)1814  static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1815  {
1816  	return skb_rb_first(&sk->tcp_rtx_queue);
1817  }
1818  
tcp_rtx_queue_tail(const struct sock * sk)1819  static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1820  {
1821  	return skb_rb_last(&sk->tcp_rtx_queue);
1822  }
1823  
tcp_write_queue_head(const struct sock * sk)1824  static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1825  {
1826  	return skb_peek(&sk->sk_write_queue);
1827  }
1828  
tcp_write_queue_tail(const struct sock * sk)1829  static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1830  {
1831  	return skb_peek_tail(&sk->sk_write_queue);
1832  }
1833  
1834  #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1835  	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1836  
tcp_send_head(const struct sock * sk)1837  static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1838  {
1839  	return skb_peek(&sk->sk_write_queue);
1840  }
1841  
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1842  static inline bool tcp_skb_is_last(const struct sock *sk,
1843  				   const struct sk_buff *skb)
1844  {
1845  	return skb_queue_is_last(&sk->sk_write_queue, skb);
1846  }
1847  
1848  /**
1849   * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1850   * @sk: socket
1851   *
1852   * Since the write queue can have a temporary empty skb in it,
1853   * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1854   */
tcp_write_queue_empty(const struct sock * sk)1855  static inline bool tcp_write_queue_empty(const struct sock *sk)
1856  {
1857  	const struct tcp_sock *tp = tcp_sk(sk);
1858  
1859  	return tp->write_seq == tp->snd_nxt;
1860  }
1861  
tcp_rtx_queue_empty(const struct sock * sk)1862  static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1863  {
1864  	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1865  }
1866  
tcp_rtx_and_write_queues_empty(const struct sock * sk)1867  static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1868  {
1869  	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1870  }
1871  
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1872  static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1873  {
1874  	__skb_queue_tail(&sk->sk_write_queue, skb);
1875  
1876  	/* Queue it, remembering where we must start sending. */
1877  	if (sk->sk_write_queue.next == skb)
1878  		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1879  }
1880  
1881  /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1882  static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1883  						  struct sk_buff *skb,
1884  						  struct sock *sk)
1885  {
1886  	__skb_queue_before(&sk->sk_write_queue, skb, new);
1887  }
1888  
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1889  static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1890  {
1891  	tcp_skb_tsorted_anchor_cleanup(skb);
1892  	__skb_unlink(skb, &sk->sk_write_queue);
1893  }
1894  
1895  void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1896  
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1897  static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1898  {
1899  	tcp_skb_tsorted_anchor_cleanup(skb);
1900  	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1901  }
1902  
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1903  static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1904  {
1905  	list_del(&skb->tcp_tsorted_anchor);
1906  	tcp_rtx_queue_unlink(skb, sk);
1907  	sk_wmem_free_skb(sk, skb);
1908  }
1909  
tcp_push_pending_frames(struct sock * sk)1910  static inline void tcp_push_pending_frames(struct sock *sk)
1911  {
1912  	if (tcp_send_head(sk)) {
1913  		struct tcp_sock *tp = tcp_sk(sk);
1914  
1915  		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1916  	}
1917  }
1918  
1919  /* Start sequence of the skb just after the highest skb with SACKed
1920   * bit, valid only if sacked_out > 0 or when the caller has ensured
1921   * validity by itself.
1922   */
tcp_highest_sack_seq(struct tcp_sock * tp)1923  static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1924  {
1925  	if (!tp->sacked_out)
1926  		return tp->snd_una;
1927  
1928  	if (tp->highest_sack == NULL)
1929  		return tp->snd_nxt;
1930  
1931  	return TCP_SKB_CB(tp->highest_sack)->seq;
1932  }
1933  
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1934  static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1935  {
1936  	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1937  }
1938  
tcp_highest_sack(struct sock * sk)1939  static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1940  {
1941  	return tcp_sk(sk)->highest_sack;
1942  }
1943  
tcp_highest_sack_reset(struct sock * sk)1944  static inline void tcp_highest_sack_reset(struct sock *sk)
1945  {
1946  	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1947  }
1948  
1949  /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1950  static inline void tcp_highest_sack_replace(struct sock *sk,
1951  					    struct sk_buff *old,
1952  					    struct sk_buff *new)
1953  {
1954  	if (old == tcp_highest_sack(sk))
1955  		tcp_sk(sk)->highest_sack = new;
1956  }
1957  
1958  /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1959  static inline bool inet_sk_transparent(const struct sock *sk)
1960  {
1961  	switch (sk->sk_state) {
1962  	case TCP_TIME_WAIT:
1963  		return inet_twsk(sk)->tw_transparent;
1964  	case TCP_NEW_SYN_RECV:
1965  		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1966  	}
1967  	return inet_sk(sk)->transparent;
1968  }
1969  
1970  /* Determines whether this is a thin stream (which may suffer from
1971   * increased latency). Used to trigger latency-reducing mechanisms.
1972   */
tcp_stream_is_thin(struct tcp_sock * tp)1973  static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1974  {
1975  	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1976  }
1977  
1978  /* /proc */
1979  enum tcp_seq_states {
1980  	TCP_SEQ_STATE_LISTENING,
1981  	TCP_SEQ_STATE_ESTABLISHED,
1982  };
1983  
1984  void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1985  void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1986  void tcp_seq_stop(struct seq_file *seq, void *v);
1987  
1988  struct tcp_seq_afinfo {
1989  	sa_family_t			family;
1990  };
1991  
1992  struct tcp_iter_state {
1993  	struct seq_net_private	p;
1994  	enum tcp_seq_states	state;
1995  	struct sock		*syn_wait_sk;
1996  	int			bucket, offset, sbucket, num;
1997  	loff_t			last_pos;
1998  };
1999  
2000  extern struct request_sock_ops tcp_request_sock_ops;
2001  extern struct request_sock_ops tcp6_request_sock_ops;
2002  
2003  void tcp_v4_destroy_sock(struct sock *sk);
2004  
2005  struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2006  				netdev_features_t features);
2007  struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2008  INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2009  INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2010  INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2011  INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2012  int tcp_gro_complete(struct sk_buff *skb);
2013  
2014  void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2015  
tcp_notsent_lowat(const struct tcp_sock * tp)2016  static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2017  {
2018  	struct net *net = sock_net((struct sock *)tp);
2019  	u32 val;
2020  
2021  	val = READ_ONCE(tp->notsent_lowat);
2022  
2023  	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2024  }
2025  
2026  bool tcp_stream_memory_free(const struct sock *sk, int wake);
2027  
2028  #ifdef CONFIG_PROC_FS
2029  int tcp4_proc_init(void);
2030  void tcp4_proc_exit(void);
2031  #endif
2032  
2033  int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2034  int tcp_conn_request(struct request_sock_ops *rsk_ops,
2035  		     const struct tcp_request_sock_ops *af_ops,
2036  		     struct sock *sk, struct sk_buff *skb);
2037  
2038  /* TCP af-specific functions */
2039  struct tcp_sock_af_ops {
2040  #ifdef CONFIG_TCP_MD5SIG
2041  	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2042  						const struct sock *addr_sk);
2043  	int		(*calc_md5_hash)(char *location,
2044  					 const struct tcp_md5sig_key *md5,
2045  					 const struct sock *sk,
2046  					 const struct sk_buff *skb);
2047  	int		(*md5_parse)(struct sock *sk,
2048  				     int optname,
2049  				     sockptr_t optval,
2050  				     int optlen);
2051  #endif
2052  };
2053  
2054  struct tcp_request_sock_ops {
2055  	u16 mss_clamp;
2056  #ifdef CONFIG_TCP_MD5SIG
2057  	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2058  						 const struct sock *addr_sk);
2059  	int		(*calc_md5_hash) (char *location,
2060  					  const struct tcp_md5sig_key *md5,
2061  					  const struct sock *sk,
2062  					  const struct sk_buff *skb);
2063  #endif
2064  #ifdef CONFIG_SYN_COOKIES
2065  	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2066  				 __u16 *mss);
2067  #endif
2068  	struct dst_entry *(*route_req)(const struct sock *sk,
2069  				       struct sk_buff *skb,
2070  				       struct flowi *fl,
2071  				       struct request_sock *req);
2072  	u32 (*init_seq)(const struct sk_buff *skb);
2073  	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2074  	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2075  			   struct flowi *fl, struct request_sock *req,
2076  			   struct tcp_fastopen_cookie *foc,
2077  			   enum tcp_synack_type synack_type,
2078  			   struct sk_buff *syn_skb);
2079  };
2080  
2081  extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2082  #if IS_ENABLED(CONFIG_IPV6)
2083  extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2084  #endif
2085  
2086  #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2087  static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2088  					 const struct sock *sk, struct sk_buff *skb,
2089  					 __u16 *mss)
2090  {
2091  	tcp_synq_overflow(sk);
2092  	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2093  	return ops->cookie_init_seq(skb, mss);
2094  }
2095  #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2096  static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2097  					 const struct sock *sk, struct sk_buff *skb,
2098  					 __u16 *mss)
2099  {
2100  	return 0;
2101  }
2102  #endif
2103  
2104  int tcpv4_offload_init(void);
2105  
2106  void tcp_v4_init(void);
2107  void tcp_init(void);
2108  
2109  /* tcp_recovery.c */
2110  void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2111  void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2112  extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2113  				u32 reo_wnd);
2114  extern bool tcp_rack_mark_lost(struct sock *sk);
2115  extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2116  			     u64 xmit_time);
2117  extern void tcp_rack_reo_timeout(struct sock *sk);
2118  extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2119  
2120  /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2121  static inline s64 tcp_rto_delta_us(const struct sock *sk)
2122  {
2123  	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2124  	u32 rto = inet_csk(sk)->icsk_rto;
2125  	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2126  
2127  	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2128  }
2129  
2130  /*
2131   * Save and compile IPv4 options, return a pointer to it
2132   */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2133  static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2134  							 struct sk_buff *skb)
2135  {
2136  	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2137  	struct ip_options_rcu *dopt = NULL;
2138  
2139  	if (opt->optlen) {
2140  		int opt_size = sizeof(*dopt) + opt->optlen;
2141  
2142  		dopt = kmalloc(opt_size, GFP_ATOMIC);
2143  		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2144  			kfree(dopt);
2145  			dopt = NULL;
2146  		}
2147  	}
2148  	return dopt;
2149  }
2150  
2151  /* locally generated TCP pure ACKs have skb->truesize == 2
2152   * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2153   * This is much faster than dissecting the packet to find out.
2154   * (Think of GRE encapsulations, IPv4, IPv6, ...)
2155   */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2156  static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2157  {
2158  	return skb->truesize == 2;
2159  }
2160  
skb_set_tcp_pure_ack(struct sk_buff * skb)2161  static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2162  {
2163  	skb->truesize = 2;
2164  }
2165  
tcp_inq(struct sock * sk)2166  static inline int tcp_inq(struct sock *sk)
2167  {
2168  	struct tcp_sock *tp = tcp_sk(sk);
2169  	int answ;
2170  
2171  	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2172  		answ = 0;
2173  	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2174  		   !tp->urg_data ||
2175  		   before(tp->urg_seq, tp->copied_seq) ||
2176  		   !before(tp->urg_seq, tp->rcv_nxt)) {
2177  
2178  		answ = tp->rcv_nxt - tp->copied_seq;
2179  
2180  		/* Subtract 1, if FIN was received */
2181  		if (answ && sock_flag(sk, SOCK_DONE))
2182  			answ--;
2183  	} else {
2184  		answ = tp->urg_seq - tp->copied_seq;
2185  	}
2186  
2187  	return answ;
2188  }
2189  
2190  int tcp_peek_len(struct socket *sock);
2191  
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2192  static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2193  {
2194  	u16 segs_in;
2195  
2196  	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2197  	tp->segs_in += segs_in;
2198  	if (skb->len > tcp_hdrlen(skb))
2199  		tp->data_segs_in += segs_in;
2200  }
2201  
2202  /*
2203   * TCP listen path runs lockless.
2204   * We forced "struct sock" to be const qualified to make sure
2205   * we don't modify one of its field by mistake.
2206   * Here, we increment sk_drops which is an atomic_t, so we can safely
2207   * make sock writable again.
2208   */
tcp_listendrop(const struct sock * sk)2209  static inline void tcp_listendrop(const struct sock *sk)
2210  {
2211  	atomic_inc(&((struct sock *)sk)->sk_drops);
2212  	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2213  }
2214  
2215  enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2216  
2217  /*
2218   * Interface for adding Upper Level Protocols over TCP
2219   */
2220  
2221  #define TCP_ULP_NAME_MAX	16
2222  #define TCP_ULP_MAX		128
2223  #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2224  
2225  struct tcp_ulp_ops {
2226  	struct list_head	list;
2227  
2228  	/* initialize ulp */
2229  	int (*init)(struct sock *sk);
2230  	/* update ulp */
2231  	void (*update)(struct sock *sk, struct proto *p,
2232  		       void (*write_space)(struct sock *sk));
2233  	/* cleanup ulp */
2234  	void (*release)(struct sock *sk);
2235  	/* diagnostic */
2236  	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2237  	size_t (*get_info_size)(const struct sock *sk);
2238  	/* clone ulp */
2239  	void (*clone)(const struct request_sock *req, struct sock *newsk,
2240  		      const gfp_t priority);
2241  
2242  	char		name[TCP_ULP_NAME_MAX];
2243  	struct module	*owner;
2244  };
2245  int tcp_register_ulp(struct tcp_ulp_ops *type);
2246  void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2247  int tcp_set_ulp(struct sock *sk, const char *name);
2248  void tcp_get_available_ulp(char *buf, size_t len);
2249  void tcp_cleanup_ulp(struct sock *sk);
2250  void tcp_update_ulp(struct sock *sk, struct proto *p,
2251  		    void (*write_space)(struct sock *sk));
2252  
2253  #define MODULE_ALIAS_TCP_ULP(name)				\
2254  	__MODULE_INFO(alias, alias_userspace, name);		\
2255  	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2256  
2257  #ifdef CONFIG_NET_SOCK_MSG
2258  struct sk_msg;
2259  struct sk_psock;
2260  
2261  #ifdef CONFIG_BPF_SYSCALL
2262  struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2263  int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2264  void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2265  #endif /* CONFIG_BPF_SYSCALL */
2266  
2267  int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2268  			  int flags);
2269  #endif /* CONFIG_NET_SOCK_MSG */
2270  
2271  #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2272  static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2273  {
2274  }
2275  #endif
2276  
2277  #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2278  static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2279  				      struct sk_buff *skb,
2280  				      unsigned int end_offset)
2281  {
2282  	skops->skb = skb;
2283  	skops->skb_data_end = skb->data + end_offset;
2284  }
2285  #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2286  static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2287  				      struct sk_buff *skb,
2288  				      unsigned int end_offset)
2289  {
2290  }
2291  #endif
2292  
2293  /* Call BPF_SOCK_OPS program that returns an int. If the return value
2294   * is < 0, then the BPF op failed (for example if the loaded BPF
2295   * program does not support the chosen operation or there is no BPF
2296   * program loaded).
2297   */
2298  #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2299  static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2300  {
2301  	struct bpf_sock_ops_kern sock_ops;
2302  	int ret;
2303  
2304  	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2305  	if (sk_fullsock(sk)) {
2306  		sock_ops.is_fullsock = 1;
2307  		sock_owned_by_me(sk);
2308  	}
2309  
2310  	sock_ops.sk = sk;
2311  	sock_ops.op = op;
2312  	if (nargs > 0)
2313  		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2314  
2315  	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2316  	if (ret == 0)
2317  		ret = sock_ops.reply;
2318  	else
2319  		ret = -1;
2320  	return ret;
2321  }
2322  
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2323  static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2324  {
2325  	u32 args[2] = {arg1, arg2};
2326  
2327  	return tcp_call_bpf(sk, op, 2, args);
2328  }
2329  
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2330  static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2331  				    u32 arg3)
2332  {
2333  	u32 args[3] = {arg1, arg2, arg3};
2334  
2335  	return tcp_call_bpf(sk, op, 3, args);
2336  }
2337  
2338  #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2339  static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2340  {
2341  	return -EPERM;
2342  }
2343  
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2344  static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2345  {
2346  	return -EPERM;
2347  }
2348  
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2349  static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2350  				    u32 arg3)
2351  {
2352  	return -EPERM;
2353  }
2354  
2355  #endif
2356  
tcp_timeout_init(struct sock * sk)2357  static inline u32 tcp_timeout_init(struct sock *sk)
2358  {
2359  	int timeout;
2360  
2361  	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2362  
2363  	if (timeout <= 0)
2364  		timeout = TCP_TIMEOUT_INIT;
2365  	return timeout;
2366  }
2367  
tcp_rwnd_init_bpf(struct sock * sk)2368  static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2369  {
2370  	int rwnd;
2371  
2372  	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2373  
2374  	if (rwnd < 0)
2375  		rwnd = 0;
2376  	return rwnd;
2377  }
2378  
tcp_bpf_ca_needs_ecn(struct sock * sk)2379  static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2380  {
2381  	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2382  }
2383  
tcp_bpf_rtt(struct sock * sk)2384  static inline void tcp_bpf_rtt(struct sock *sk)
2385  {
2386  	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2387  		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2388  }
2389  
2390  #if IS_ENABLED(CONFIG_SMC)
2391  extern struct static_key_false tcp_have_smc;
2392  #endif
2393  
2394  #if IS_ENABLED(CONFIG_TLS_DEVICE)
2395  void clean_acked_data_enable(struct inet_connection_sock *icsk,
2396  			     void (*cad)(struct sock *sk, u32 ack_seq));
2397  void clean_acked_data_disable(struct inet_connection_sock *icsk);
2398  void clean_acked_data_flush(void);
2399  #endif
2400  
2401  DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2402  static inline void tcp_add_tx_delay(struct sk_buff *skb,
2403  				    const struct tcp_sock *tp)
2404  {
2405  	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2406  		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2407  }
2408  
2409  /* Compute Earliest Departure Time for some control packets
2410   * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2411   */
tcp_transmit_time(const struct sock * sk)2412  static inline u64 tcp_transmit_time(const struct sock *sk)
2413  {
2414  	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2415  		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2416  			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2417  
2418  		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2419  	}
2420  	return 0;
2421  }
2422  
2423  #endif	/* _TCP_H */
2424