• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /******************************************************************************
2   * xen.h
3   *
4   * Guest OS interface to Xen.
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to
8   * deal in the Software without restriction, including without limitation the
9   * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10   * sell copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22   * DEALINGS IN THE SOFTWARE.
23   *
24   * Copyright (c) 2004, K A Fraser
25   */
26  
27  #ifndef __XEN_PUBLIC_XEN_H__
28  #define __XEN_PUBLIC_XEN_H__
29  
30  #include <asm/xen/interface.h>
31  
32  /*
33   * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
34   */
35  
36  /*
37   * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
38   *         EAX = return value
39   *         (argument registers may be clobbered on return)
40   * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
41   *         RAX = return value
42   *         (argument registers not clobbered on return; RCX, R11 are)
43   */
44  #define __HYPERVISOR_set_trap_table        0
45  #define __HYPERVISOR_mmu_update            1
46  #define __HYPERVISOR_set_gdt               2
47  #define __HYPERVISOR_stack_switch          3
48  #define __HYPERVISOR_set_callbacks         4
49  #define __HYPERVISOR_fpu_taskswitch        5
50  #define __HYPERVISOR_sched_op_compat       6
51  #define __HYPERVISOR_platform_op           7
52  #define __HYPERVISOR_set_debugreg          8
53  #define __HYPERVISOR_get_debugreg          9
54  #define __HYPERVISOR_update_descriptor    10
55  #define __HYPERVISOR_memory_op            12
56  #define __HYPERVISOR_multicall            13
57  #define __HYPERVISOR_update_va_mapping    14
58  #define __HYPERVISOR_set_timer_op         15
59  #define __HYPERVISOR_event_channel_op_compat 16
60  #define __HYPERVISOR_xen_version          17
61  #define __HYPERVISOR_console_io           18
62  #define __HYPERVISOR_physdev_op_compat    19
63  #define __HYPERVISOR_grant_table_op       20
64  #define __HYPERVISOR_vm_assist            21
65  #define __HYPERVISOR_update_va_mapping_otherdomain 22
66  #define __HYPERVISOR_iret                 23 /* x86 only */
67  #define __HYPERVISOR_vcpu_op              24
68  #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
69  #define __HYPERVISOR_mmuext_op            26
70  #define __HYPERVISOR_xsm_op               27
71  #define __HYPERVISOR_nmi_op               28
72  #define __HYPERVISOR_sched_op             29
73  #define __HYPERVISOR_callback_op          30
74  #define __HYPERVISOR_xenoprof_op          31
75  #define __HYPERVISOR_event_channel_op     32
76  #define __HYPERVISOR_physdev_op           33
77  #define __HYPERVISOR_hvm_op               34
78  #define __HYPERVISOR_sysctl               35
79  #define __HYPERVISOR_domctl               36
80  #define __HYPERVISOR_kexec_op             37
81  #define __HYPERVISOR_tmem_op              38
82  #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
83  #define __HYPERVISOR_xenpmu_op            40
84  #define __HYPERVISOR_dm_op                41
85  
86  /* Architecture-specific hypercall definitions. */
87  #define __HYPERVISOR_arch_0               48
88  #define __HYPERVISOR_arch_1               49
89  #define __HYPERVISOR_arch_2               50
90  #define __HYPERVISOR_arch_3               51
91  #define __HYPERVISOR_arch_4               52
92  #define __HYPERVISOR_arch_5               53
93  #define __HYPERVISOR_arch_6               54
94  #define __HYPERVISOR_arch_7               55
95  
96  /*
97   * VIRTUAL INTERRUPTS
98   *
99   * Virtual interrupts that a guest OS may receive from Xen.
100   * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
101   * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
102   * The latter can be allocated only once per guest: they must initially be
103   * allocated to VCPU0 but can subsequently be re-bound.
104   */
105  #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
106  #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
107  #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
108  #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
109  #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
110  #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
111  #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
112  #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
113  #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
114  #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
115  #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
116  #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
117  #define VIRQ_XENPMU     13  /* PMC interrupt                                 */
118  
119  /* Architecture-specific VIRQ definitions. */
120  #define VIRQ_ARCH_0    16
121  #define VIRQ_ARCH_1    17
122  #define VIRQ_ARCH_2    18
123  #define VIRQ_ARCH_3    19
124  #define VIRQ_ARCH_4    20
125  #define VIRQ_ARCH_5    21
126  #define VIRQ_ARCH_6    22
127  #define VIRQ_ARCH_7    23
128  
129  #define NR_VIRQS       24
130  
131  /*
132   * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
133   *                                         unsigned count, unsigned *done_out,
134   *                                         unsigned foreigndom)
135   * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
136   * @count is the length of the above array.
137   * @pdone is an output parameter indicating number of completed operations
138   * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
139   *                    hypercall invocation. Can be DOMID_SELF.
140   * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
141   *                     in this hypercall invocation. The value of this field
142   *                     (x) encodes the PFD as follows:
143   *                     x == 0 => PFD == DOMID_SELF
144   *                     x != 0 => PFD == x - 1
145   *
146   * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
147   * -------------
148   * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
149   * Updates an entry in a page table belonging to PFD. If updating an L1 table,
150   * and the new table entry is valid/present, the mapped frame must belong to
151   * FD. If attempting to map an I/O page then the caller assumes the privilege
152   * of the FD.
153   * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
154   * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
155   * ptr[:2]  -- Machine address of the page-table entry to modify.
156   * val      -- Value to write.
157   *
158   * There also certain implicit requirements when using this hypercall. The
159   * pages that make up a pagetable must be mapped read-only in the guest.
160   * This prevents uncontrolled guest updates to the pagetable. Xen strictly
161   * enforces this, and will disallow any pagetable update which will end up
162   * mapping pagetable page RW, and will disallow using any writable page as a
163   * pagetable. In practice it means that when constructing a page table for a
164   * process, thread, etc, we MUST be very dilligient in following these rules:
165   *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
166   *      the entries.
167   *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
168   *      or L2).
169   *  3). Start filling out the PTE table (L1) with the PTE entries. Once
170   *      done, make sure to set each of those entries to RO (so writeable bit
171   *      is unset). Once that has been completed, set the PMD (L2) for this
172   *      PTE table as RO.
173   *  4). When completed with all of the PMD (L2) entries, and all of them have
174   *      been set to RO, make sure to set RO the PUD (L3). Do the same
175   *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
176   *  5). Now before you can use those pages (so setting the cr3), you MUST also
177   *      pin them so that the hypervisor can verify the entries. This is done
178   *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
179   *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
180   *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
181   *      issued.
182   * For 32-bit guests, the L4 is not used (as there is less pagetables), so
183   * instead use L3.
184   * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
185   * hypercall. Also if so desired the OS can also try to write to the PTE
186   * and be trapped by the hypervisor (as the PTE entry is RO).
187   *
188   * To deallocate the pages, the operations are the reverse of the steps
189   * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
190   * pagetable MUST not be in use (meaning that the cr3 is not set to it).
191   *
192   * ptr[1:0] == MMU_MACHPHYS_UPDATE:
193   * Updates an entry in the machine->pseudo-physical mapping table.
194   * ptr[:2]  -- Machine address within the frame whose mapping to modify.
195   *             The frame must belong to the FD, if one is specified.
196   * val      -- Value to write into the mapping entry.
197   *
198   * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
199   * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
200   * with those in @val.
201   *
202   * @val is usually the machine frame number along with some attributes.
203   * The attributes by default follow the architecture defined bits. Meaning that
204   * if this is a X86_64 machine and four page table layout is used, the layout
205   * of val is:
206   *  - 63 if set means No execute (NX)
207   *  - 46-13 the machine frame number
208   *  - 12 available for guest
209   *  - 11 available for guest
210   *  - 10 available for guest
211   *  - 9 available for guest
212   *  - 8 global
213   *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
214   *  - 6 dirty
215   *  - 5 accessed
216   *  - 4 page cached disabled
217   *  - 3 page write through
218   *  - 2 userspace accessible
219   *  - 1 writeable
220   *  - 0 present
221   *
222   *  The one bits that does not fit with the default layout is the PAGE_PSE
223   *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
224   *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
225   *  (or 2MB) instead of using the PAGE_PSE bit.
226   *
227   *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
228   *  using it as the Page Attribute Table (PAT) bit - for details on it please
229   *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
230   *  pages instead of using MTRRs.
231   *
232   *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
233   *                    PAT4                 PAT0
234   *  +-----+-----+----+----+----+-----+----+----+
235   *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
236   *  +-----+-----+----+----+----+-----+----+----+
237   *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
238   *  +-----+-----+----+----+----+-----+----+----+
239   *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
240   *  +-----+-----+----+----+----+-----+----+----+
241   *
242   *  The lookup of this index table translates to looking up
243   *  Bit 7, Bit 4, and Bit 3 of val entry:
244   *
245   *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
246   *
247   *  If all bits are off, then we are using PAT0. If bit 3 turned on,
248   *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
249   *
250   *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
251   *  that if a guest that follows Linux's PAT setup and would like to set Write
252   *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
253   *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
254   *  caching as:
255   *
256   *   WB = none (so PAT0)
257   *   WC = PWT (bit 3 on)
258   *   UC = PWT | PCD (bit 3 and 4 are on).
259   *
260   * To make it work with Xen, it needs to translate the WC bit as so:
261   *
262   *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
263   *
264   * And to translate back it would:
265   *
266   * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
267   */
268  #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
269  #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
270  #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
271  #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
272  
273  /*
274   * MMU EXTENDED OPERATIONS
275   *
276   * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
277   *                                        unsigned int count,
278   *                                        unsigned int *pdone,
279   *                                        unsigned int foreigndom)
280   */
281  /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
282   * A foreigndom (FD) can be specified (or DOMID_SELF for none).
283   * Where the FD has some effect, it is described below.
284   *
285   * cmd: MMUEXT_(UN)PIN_*_TABLE
286   * mfn: Machine frame number to be (un)pinned as a p.t. page.
287   *      The frame must belong to the FD, if one is specified.
288   *
289   * cmd: MMUEXT_NEW_BASEPTR
290   * mfn: Machine frame number of new page-table base to install in MMU.
291   *
292   * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
293   * mfn: Machine frame number of new page-table base to install in MMU
294   *      when in user space.
295   *
296   * cmd: MMUEXT_TLB_FLUSH_LOCAL
297   * No additional arguments. Flushes local TLB.
298   *
299   * cmd: MMUEXT_INVLPG_LOCAL
300   * linear_addr: Linear address to be flushed from the local TLB.
301   *
302   * cmd: MMUEXT_TLB_FLUSH_MULTI
303   * vcpumask: Pointer to bitmap of VCPUs to be flushed.
304   *
305   * cmd: MMUEXT_INVLPG_MULTI
306   * linear_addr: Linear address to be flushed.
307   * vcpumask: Pointer to bitmap of VCPUs to be flushed.
308   *
309   * cmd: MMUEXT_TLB_FLUSH_ALL
310   * No additional arguments. Flushes all VCPUs' TLBs.
311   *
312   * cmd: MMUEXT_INVLPG_ALL
313   * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
314   *
315   * cmd: MMUEXT_FLUSH_CACHE
316   * No additional arguments. Writes back and flushes cache contents.
317   *
318   * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
319   * No additional arguments. Writes back and flushes cache contents
320   * on all CPUs in the system.
321   *
322   * cmd: MMUEXT_SET_LDT
323   * linear_addr: Linear address of LDT base (NB. must be page-aligned).
324   * nr_ents: Number of entries in LDT.
325   *
326   * cmd: MMUEXT_CLEAR_PAGE
327   * mfn: Machine frame number to be cleared.
328   *
329   * cmd: MMUEXT_COPY_PAGE
330   * mfn: Machine frame number of the destination page.
331   * src_mfn: Machine frame number of the source page.
332   *
333   * cmd: MMUEXT_[UN]MARK_SUPER
334   * mfn: Machine frame number of head of superpage to be [un]marked.
335   */
336  #define MMUEXT_PIN_L1_TABLE      0
337  #define MMUEXT_PIN_L2_TABLE      1
338  #define MMUEXT_PIN_L3_TABLE      2
339  #define MMUEXT_PIN_L4_TABLE      3
340  #define MMUEXT_UNPIN_TABLE       4
341  #define MMUEXT_NEW_BASEPTR       5
342  #define MMUEXT_TLB_FLUSH_LOCAL   6
343  #define MMUEXT_INVLPG_LOCAL      7
344  #define MMUEXT_TLB_FLUSH_MULTI   8
345  #define MMUEXT_INVLPG_MULTI      9
346  #define MMUEXT_TLB_FLUSH_ALL    10
347  #define MMUEXT_INVLPG_ALL       11
348  #define MMUEXT_FLUSH_CACHE      12
349  #define MMUEXT_SET_LDT          13
350  #define MMUEXT_NEW_USER_BASEPTR 15
351  #define MMUEXT_CLEAR_PAGE       16
352  #define MMUEXT_COPY_PAGE        17
353  #define MMUEXT_FLUSH_CACHE_GLOBAL 18
354  #define MMUEXT_MARK_SUPER       19
355  #define MMUEXT_UNMARK_SUPER     20
356  
357  #ifndef __ASSEMBLY__
358  struct mmuext_op {
359  	unsigned int cmd;
360  	union {
361  		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
362  		 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
363  		xen_pfn_t mfn;
364  		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
365  		unsigned long linear_addr;
366  	} arg1;
367  	union {
368  		/* SET_LDT */
369  		unsigned int nr_ents;
370  		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
371  		void *vcpumask;
372  		/* COPY_PAGE */
373  		xen_pfn_t src_mfn;
374  	} arg2;
375  };
376  DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
377  #endif
378  
379  /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
380  /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
381  /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
382  #define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
383  #define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
384  #define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
385  #define UVMF_FLUSHTYPE_MASK     (3UL<<0)
386  #define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
387  #define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
388  #define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
389  
390  /*
391   * Commands to HYPERVISOR_console_io().
392   */
393  #define CONSOLEIO_write         0
394  #define CONSOLEIO_read          1
395  
396  /*
397   * Commands to HYPERVISOR_vm_assist().
398   */
399  #define VMASST_CMD_enable                0
400  #define VMASST_CMD_disable               1
401  
402  /* x86/32 guests: simulate full 4GB segment limits. */
403  #define VMASST_TYPE_4gb_segments         0
404  
405  /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
406  #define VMASST_TYPE_4gb_segments_notify  1
407  
408  /*
409   * x86 guests: support writes to bottom-level PTEs.
410   * NB1. Page-directory entries cannot be written.
411   * NB2. Guest must continue to remove all writable mappings of PTEs.
412   */
413  #define VMASST_TYPE_writable_pagetables  2
414  
415  /* x86/PAE guests: support PDPTs above 4GB. */
416  #define VMASST_TYPE_pae_extended_cr3     3
417  
418  /*
419   * x86 guests: Sane behaviour for virtual iopl
420   *  - virtual iopl updated from do_iret() hypercalls.
421   *  - virtual iopl reported in bounce frames.
422   *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
423   */
424  #define VMASST_TYPE_architectural_iopl   4
425  
426  /*
427   * All guests: activate update indicator in vcpu_runstate_info
428   * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
429   * vcpu_runstate_info during updates of the runstate information.
430   */
431  #define VMASST_TYPE_runstate_update_flag 5
432  
433  #define MAX_VMASST_TYPE 5
434  
435  #ifndef __ASSEMBLY__
436  
437  typedef uint16_t domid_t;
438  
439  /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
440  #define DOMID_FIRST_RESERVED (0x7FF0U)
441  
442  /* DOMID_SELF is used in certain contexts to refer to oneself. */
443  #define DOMID_SELF (0x7FF0U)
444  
445  /*
446   * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
447   * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
448   * is useful to ensure that no mappings to the OS's own heap are accidentally
449   * installed. (e.g., in Linux this could cause havoc as reference counts
450   * aren't adjusted on the I/O-mapping code path).
451   * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
452   * be specified by any calling domain.
453   */
454  #define DOMID_IO   (0x7FF1U)
455  
456  /*
457   * DOMID_XEN is used to allow privileged domains to map restricted parts of
458   * Xen's heap space (e.g., the machine_to_phys table).
459   * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
460   * the caller is privileged.
461   */
462  #define DOMID_XEN  (0x7FF2U)
463  
464  /* DOMID_COW is used as the owner of sharable pages */
465  #define DOMID_COW  (0x7FF3U)
466  
467  /* DOMID_INVALID is used to identify pages with unknown owner. */
468  #define DOMID_INVALID (0x7FF4U)
469  
470  /* Idle domain. */
471  #define DOMID_IDLE (0x7FFFU)
472  
473  /*
474   * Send an array of these to HYPERVISOR_mmu_update().
475   * NB. The fields are natural pointer/address size for this architecture.
476   */
477  struct mmu_update {
478      uint64_t ptr;       /* Machine address of PTE. */
479      uint64_t val;       /* New contents of PTE.    */
480  };
481  DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
482  
483  /*
484   * Send an array of these to HYPERVISOR_multicall().
485   * NB. The fields are logically the natural register size for this
486   * architecture. In cases where xen_ulong_t is larger than this then
487   * any unused bits in the upper portion must be zero.
488   */
489  struct multicall_entry {
490      xen_ulong_t op;
491      xen_long_t result;
492      xen_ulong_t args[6];
493  };
494  DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
495  
496  struct vcpu_time_info {
497  	/*
498  	 * Updates to the following values are preceded and followed
499  	 * by an increment of 'version'. The guest can therefore
500  	 * detect updates by looking for changes to 'version'. If the
501  	 * least-significant bit of the version number is set then an
502  	 * update is in progress and the guest must wait to read a
503  	 * consistent set of values.  The correct way to interact with
504  	 * the version number is similar to Linux's seqlock: see the
505  	 * implementations of read_seqbegin/read_seqretry.
506  	 */
507  	uint32_t version;
508  	uint32_t pad0;
509  	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
510  	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
511  	/*
512  	 * Current system time:
513  	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
514  	 * CPU frequency (Hz):
515  	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
516  	 */
517  	uint32_t tsc_to_system_mul;
518  	int8_t   tsc_shift;
519  	int8_t   pad1[3];
520  }; /* 32 bytes */
521  
522  struct vcpu_info {
523  	/*
524  	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
525  	 * a pending notification for a particular VCPU. It is then cleared
526  	 * by the guest OS /before/ checking for pending work, thus avoiding
527  	 * a set-and-check race. Note that the mask is only accessed by Xen
528  	 * on the CPU that is currently hosting the VCPU. This means that the
529  	 * pending and mask flags can be updated by the guest without special
530  	 * synchronisation (i.e., no need for the x86 LOCK prefix).
531  	 * This may seem suboptimal because if the pending flag is set by
532  	 * a different CPU then an IPI may be scheduled even when the mask
533  	 * is set. However, note:
534  	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
535  	 *     channel mask bits. A 'noisy' event that is continually being
536  	 *     triggered can be masked at source at this very precise
537  	 *     granularity.
538  	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
539  	 *     reentrant execution: whether for concurrency control, or to
540  	 *     prevent unbounded stack usage. Whatever the purpose, we expect
541  	 *     that the mask will be asserted only for short periods at a time,
542  	 *     and so the likelihood of a 'spurious' IPI is suitably small.
543  	 * The mask is read before making an event upcall to the guest: a
544  	 * non-zero mask therefore guarantees that the VCPU will not receive
545  	 * an upcall activation. The mask is cleared when the VCPU requests
546  	 * to block: this avoids wakeup-waiting races.
547  	 */
548  	uint8_t evtchn_upcall_pending;
549  	uint8_t evtchn_upcall_mask;
550  	xen_ulong_t evtchn_pending_sel;
551  	struct arch_vcpu_info arch;
552  	struct pvclock_vcpu_time_info time;
553  }; /* 64 bytes (x86) */
554  
555  /*
556   * Xen/kernel shared data -- pointer provided in start_info.
557   * NB. We expect that this struct is smaller than a page.
558   */
559  struct shared_info {
560  	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
561  
562  	/*
563  	 * A domain can create "event channels" on which it can send and receive
564  	 * asynchronous event notifications. There are three classes of event that
565  	 * are delivered by this mechanism:
566  	 *  1. Bi-directional inter- and intra-domain connections. Domains must
567  	 *     arrange out-of-band to set up a connection (usually by allocating
568  	 *     an unbound 'listener' port and avertising that via a storage service
569  	 *     such as xenstore).
570  	 *  2. Physical interrupts. A domain with suitable hardware-access
571  	 *     privileges can bind an event-channel port to a physical interrupt
572  	 *     source.
573  	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
574  	 *     port to a virtual interrupt source, such as the virtual-timer
575  	 *     device or the emergency console.
576  	 *
577  	 * Event channels are addressed by a "port index". Each channel is
578  	 * associated with two bits of information:
579  	 *  1. PENDING -- notifies the domain that there is a pending notification
580  	 *     to be processed. This bit is cleared by the guest.
581  	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
582  	 *     will cause an asynchronous upcall to be scheduled. This bit is only
583  	 *     updated by the guest. It is read-only within Xen. If a channel
584  	 *     becomes pending while the channel is masked then the 'edge' is lost
585  	 *     (i.e., when the channel is unmasked, the guest must manually handle
586  	 *     pending notifications as no upcall will be scheduled by Xen).
587  	 *
588  	 * To expedite scanning of pending notifications, any 0->1 pending
589  	 * transition on an unmasked channel causes a corresponding bit in a
590  	 * per-vcpu selector word to be set. Each bit in the selector covers a
591  	 * 'C long' in the PENDING bitfield array.
592  	 */
593  	xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
594  	xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
595  
596  	/*
597  	 * Wallclock time: updated only by control software. Guests should base
598  	 * their gettimeofday() syscall on this wallclock-base value.
599  	 */
600  	struct pvclock_wall_clock wc;
601  #ifndef CONFIG_X86_32
602  	uint32_t wc_sec_hi;
603  #endif
604  	struct arch_shared_info arch;
605  
606  };
607  
608  /*
609   * Start-of-day memory layout
610   *
611   *  1. The domain is started within contiguous virtual-memory region.
612   *  2. The contiguous region begins and ends on an aligned 4MB boundary.
613   *  3. This the order of bootstrap elements in the initial virtual region:
614   *      a. relocated kernel image
615   *      b. initial ram disk              [mod_start, mod_len]
616   *         (may be omitted)
617   *      c. list of allocated page frames [mfn_list, nr_pages]
618   *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
619   *      d. start_info_t structure        [register ESI (x86)]
620   *         in case of dom0 this page contains the console info, too
621   *      e. unless dom0: xenstore ring page
622   *      f. unless dom0: console ring page
623   *      g. bootstrap page tables         [pt_base, CR3 (x86)]
624   *      h. bootstrap stack               [register ESP (x86)]
625   *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
626   *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
627   *     layout for the domain. In particular, the bootstrap virtual-memory
628   *     region is a 1:1 mapping to the first section of the pseudo-physical map.
629   *  6. All bootstrap elements are mapped read-writable for the guest OS. The
630   *     only exception is the bootstrap page table, which is mapped read-only.
631   *  7. There is guaranteed to be at least 512kB padding after the final
632   *     bootstrap element. If necessary, the bootstrap virtual region is
633   *     extended by an extra 4MB to ensure this.
634   */
635  
636  #define MAX_GUEST_CMDLINE 1024
637  struct start_info {
638  	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
639  	char magic[32];             /* "xen-<version>-<platform>".            */
640  	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
641  	unsigned long shared_info;  /* MACHINE address of shared info struct. */
642  	uint32_t flags;             /* SIF_xxx flags.                         */
643  	xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
644  	uint32_t store_evtchn;      /* Event channel for store communication. */
645  	union {
646  		struct {
647  			xen_pfn_t mfn;      /* MACHINE page number of console page.   */
648  			uint32_t  evtchn;   /* Event channel for console page.        */
649  		} domU;
650  		struct {
651  			uint32_t info_off;  /* Offset of console_info struct.         */
652  			uint32_t info_size; /* Size of console_info struct from start.*/
653  		} dom0;
654  	} console;
655  	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
656  	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
657  	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
658  	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
659  	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
660  	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
661  	int8_t cmd_line[MAX_GUEST_CMDLINE];
662  	/* The pfn range here covers both page table and p->m table frames.   */
663  	unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
664  	unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
665  };
666  
667  /* These flags are passed in the 'flags' field of start_info_t. */
668  #define SIF_PRIVILEGED      (1<<0)  /* Is the domain privileged? */
669  #define SIF_INITDOMAIN      (1<<1)  /* Is this the initial control domain? */
670  #define SIF_MULTIBOOT_MOD   (1<<2)  /* Is mod_start a multiboot module? */
671  #define SIF_MOD_START_PFN   (1<<3)  /* Is mod_start a PFN? */
672  #define SIF_VIRT_P2M_4TOOLS (1<<4)  /* Do Xen tools understand a virt. mapped */
673  				    /* P->M making the 3 level tree obsolete? */
674  #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
675  
676  /*
677   * A multiboot module is a package containing modules very similar to a
678   * multiboot module array. The only differences are:
679   * - the array of module descriptors is by convention simply at the beginning
680   *   of the multiboot module,
681   * - addresses in the module descriptors are based on the beginning of the
682   *   multiboot module,
683   * - the number of modules is determined by a termination descriptor that has
684   *   mod_start == 0.
685   *
686   * This permits to both build it statically and reference it in a configuration
687   * file, and let the PV guest easily rebase the addresses to virtual addresses
688   * and at the same time count the number of modules.
689   */
690  struct xen_multiboot_mod_list {
691  	/* Address of first byte of the module */
692  	uint32_t mod_start;
693  	/* Address of last byte of the module (inclusive) */
694  	uint32_t mod_end;
695  	/* Address of zero-terminated command line */
696  	uint32_t cmdline;
697  	/* Unused, must be zero */
698  	uint32_t pad;
699  };
700  /*
701   * The console structure in start_info.console.dom0
702   *
703   * This structure includes a variety of information required to
704   * have a working VGA/VESA console.
705   */
706  struct dom0_vga_console_info {
707  	uint8_t video_type;
708  #define XEN_VGATYPE_TEXT_MODE_3 0x03
709  #define XEN_VGATYPE_VESA_LFB    0x23
710  #define XEN_VGATYPE_EFI_LFB     0x70
711  
712  	union {
713  		struct {
714  			/* Font height, in pixels. */
715  			uint16_t font_height;
716  			/* Cursor location (column, row). */
717  			uint16_t cursor_x, cursor_y;
718  			/* Number of rows and columns (dimensions in characters). */
719  			uint16_t rows, columns;
720  		} text_mode_3;
721  
722  		struct {
723  			/* Width and height, in pixels. */
724  			uint16_t width, height;
725  			/* Bytes per scan line. */
726  			uint16_t bytes_per_line;
727  			/* Bits per pixel. */
728  			uint16_t bits_per_pixel;
729  			/* LFB physical address, and size (in units of 64kB). */
730  			uint32_t lfb_base;
731  			uint32_t lfb_size;
732  			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
733  			uint8_t  red_pos, red_size;
734  			uint8_t  green_pos, green_size;
735  			uint8_t  blue_pos, blue_size;
736  			uint8_t  rsvd_pos, rsvd_size;
737  
738  			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
739  			uint32_t gbl_caps;
740  			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
741  			uint16_t mode_attrs;
742  		} vesa_lfb;
743  	} u;
744  };
745  
746  typedef uint64_t cpumap_t;
747  
748  typedef uint8_t xen_domain_handle_t[16];
749  
750  /* Turn a plain number into a C unsigned long constant. */
751  #define __mk_unsigned_long(x) x ## UL
752  #define mk_unsigned_long(x) __mk_unsigned_long(x)
753  
754  #define TMEM_SPEC_VERSION 1
755  
756  struct tmem_op {
757  	uint32_t cmd;
758  	int32_t pool_id;
759  	union {
760  		struct {  /* for cmd == TMEM_NEW_POOL */
761  			uint64_t uuid[2];
762  			uint32_t flags;
763  		} new;
764  		struct {
765  			uint64_t oid[3];
766  			uint32_t index;
767  			uint32_t tmem_offset;
768  			uint32_t pfn_offset;
769  			uint32_t len;
770  			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
771  		} gen;
772  	} u;
773  };
774  
775  DEFINE_GUEST_HANDLE(u64);
776  
777  #else /* __ASSEMBLY__ */
778  
779  /* In assembly code we cannot use C numeric constant suffixes. */
780  #define mk_unsigned_long(x) x
781  
782  #endif /* !__ASSEMBLY__ */
783  
784  #endif /* __XEN_PUBLIC_XEN_H__ */
785