• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/android_fuse.h>
7 #include <uapi/linux/bpf_perf_event.h>
8 #include <uapi/linux/types.h>
9 #include <linux/seq_file.h>
10 #include <linux/compiler.h>
11 #include <linux/ctype.h>
12 #include <linux/errno.h>
13 #include <linux/slab.h>
14 #include <linux/anon_inodes.h>
15 #include <linux/file.h>
16 #include <linux/uaccess.h>
17 #include <linux/kernel.h>
18 #include <linux/idr.h>
19 #include <linux/sort.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/btf.h>
22 #include <linux/btf_ids.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 #include <net/sock.h>
29 
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102 
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *	struct A {
134  *		struct B b;
135  *	};
136  *
137  *	struct B {
138  *		struct A a;
139  *	};
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *	struct A {
157  *		int m;
158  *		struct A *a;
159  *	};
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169 
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 
188 #define for_each_member_from(i, from, struct_type, member)		\
189 	for (i = from, member = btf_type_member(struct_type) + from;	\
190 	     i < btf_type_vlen(struct_type);				\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 struct btf {
202 	void *data;
203 	struct btf_type **types;
204 	u32 *resolved_ids;
205 	u32 *resolved_sizes;
206 	const char *strings;
207 	void *nohdr_data;
208 	struct btf_header hdr;
209 	u32 nr_types; /* includes VOID for base BTF */
210 	u32 types_size;
211 	u32 data_size;
212 	refcount_t refcnt;
213 	u32 id;
214 	struct rcu_head rcu;
215 
216 	/* split BTF support */
217 	struct btf *base_btf;
218 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
219 	u32 start_str_off; /* first string offset (0 for base BTF) */
220 	char name[MODULE_NAME_LEN];
221 	bool kernel_btf;
222 };
223 
224 enum verifier_phase {
225 	CHECK_META,
226 	CHECK_TYPE,
227 };
228 
229 struct resolve_vertex {
230 	const struct btf_type *t;
231 	u32 type_id;
232 	u16 next_member;
233 };
234 
235 enum visit_state {
236 	NOT_VISITED,
237 	VISITED,
238 	RESOLVED,
239 };
240 
241 enum resolve_mode {
242 	RESOLVE_TBD,	/* To Be Determined */
243 	RESOLVE_PTR,	/* Resolving for Pointer */
244 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
245 					 * or array
246 					 */
247 };
248 
249 #define MAX_RESOLVE_DEPTH 32
250 
251 struct btf_sec_info {
252 	u32 off;
253 	u32 len;
254 };
255 
256 struct btf_verifier_env {
257 	struct btf *btf;
258 	u8 *visit_states;
259 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
260 	struct bpf_verifier_log log;
261 	u32 log_type_id;
262 	u32 top_stack;
263 	enum verifier_phase phase;
264 	enum resolve_mode resolve_mode;
265 };
266 
267 static const char * const btf_kind_str[NR_BTF_KINDS] = {
268 	[BTF_KIND_UNKN]		= "UNKNOWN",
269 	[BTF_KIND_INT]		= "INT",
270 	[BTF_KIND_PTR]		= "PTR",
271 	[BTF_KIND_ARRAY]	= "ARRAY",
272 	[BTF_KIND_STRUCT]	= "STRUCT",
273 	[BTF_KIND_UNION]	= "UNION",
274 	[BTF_KIND_ENUM]		= "ENUM",
275 	[BTF_KIND_FWD]		= "FWD",
276 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
277 	[BTF_KIND_VOLATILE]	= "VOLATILE",
278 	[BTF_KIND_CONST]	= "CONST",
279 	[BTF_KIND_RESTRICT]	= "RESTRICT",
280 	[BTF_KIND_FUNC]		= "FUNC",
281 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
282 	[BTF_KIND_VAR]		= "VAR",
283 	[BTF_KIND_DATASEC]	= "DATASEC",
284 	[BTF_KIND_FLOAT]	= "FLOAT",
285 };
286 
btf_type_str(const struct btf_type * t)287 const char *btf_type_str(const struct btf_type *t)
288 {
289 	return btf_kind_str[BTF_INFO_KIND(t->info)];
290 }
291 
292 /* Chunk size we use in safe copy of data to be shown. */
293 #define BTF_SHOW_OBJ_SAFE_SIZE		32
294 
295 /*
296  * This is the maximum size of a base type value (equivalent to a
297  * 128-bit int); if we are at the end of our safe buffer and have
298  * less than 16 bytes space we can't be assured of being able
299  * to copy the next type safely, so in such cases we will initiate
300  * a new copy.
301  */
302 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
303 
304 /* Type name size */
305 #define BTF_SHOW_NAME_SIZE		80
306 
307 /*
308  * Common data to all BTF show operations. Private show functions can add
309  * their own data to a structure containing a struct btf_show and consult it
310  * in the show callback.  See btf_type_show() below.
311  *
312  * One challenge with showing nested data is we want to skip 0-valued
313  * data, but in order to figure out whether a nested object is all zeros
314  * we need to walk through it.  As a result, we need to make two passes
315  * when handling structs, unions and arrays; the first path simply looks
316  * for nonzero data, while the second actually does the display.  The first
317  * pass is signalled by show->state.depth_check being set, and if we
318  * encounter a non-zero value we set show->state.depth_to_show to
319  * the depth at which we encountered it.  When we have completed the
320  * first pass, we will know if anything needs to be displayed if
321  * depth_to_show > depth.  See btf_[struct,array]_show() for the
322  * implementation of this.
323  *
324  * Another problem is we want to ensure the data for display is safe to
325  * access.  To support this, the anonymous "struct {} obj" tracks the data
326  * object and our safe copy of it.  We copy portions of the data needed
327  * to the object "copy" buffer, but because its size is limited to
328  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
329  * traverse larger objects for display.
330  *
331  * The various data type show functions all start with a call to
332  * btf_show_start_type() which returns a pointer to the safe copy
333  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
334  * raw data itself).  btf_show_obj_safe() is responsible for
335  * using copy_from_kernel_nofault() to update the safe data if necessary
336  * as we traverse the object's data.  skbuff-like semantics are
337  * used:
338  *
339  * - obj.head points to the start of the toplevel object for display
340  * - obj.size is the size of the toplevel object
341  * - obj.data points to the current point in the original data at
342  *   which our safe data starts.  obj.data will advance as we copy
343  *   portions of the data.
344  *
345  * In most cases a single copy will suffice, but larger data structures
346  * such as "struct task_struct" will require many copies.  The logic in
347  * btf_show_obj_safe() handles the logic that determines if a new
348  * copy_from_kernel_nofault() is needed.
349  */
350 struct btf_show {
351 	u64 flags;
352 	void *target;	/* target of show operation (seq file, buffer) */
353 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
354 	const struct btf *btf;
355 	/* below are used during iteration */
356 	struct {
357 		u8 depth;
358 		u8 depth_to_show;
359 		u8 depth_check;
360 		u8 array_member:1,
361 		   array_terminated:1;
362 		u16 array_encoding;
363 		u32 type_id;
364 		int status;			/* non-zero for error */
365 		const struct btf_type *type;
366 		const struct btf_member *member;
367 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
368 	} state;
369 	struct {
370 		u32 size;
371 		void *head;
372 		void *data;
373 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
374 	} obj;
375 };
376 
377 struct btf_kind_operations {
378 	s32 (*check_meta)(struct btf_verifier_env *env,
379 			  const struct btf_type *t,
380 			  u32 meta_left);
381 	int (*resolve)(struct btf_verifier_env *env,
382 		       const struct resolve_vertex *v);
383 	int (*check_member)(struct btf_verifier_env *env,
384 			    const struct btf_type *struct_type,
385 			    const struct btf_member *member,
386 			    const struct btf_type *member_type);
387 	int (*check_kflag_member)(struct btf_verifier_env *env,
388 				  const struct btf_type *struct_type,
389 				  const struct btf_member *member,
390 				  const struct btf_type *member_type);
391 	void (*log_details)(struct btf_verifier_env *env,
392 			    const struct btf_type *t);
393 	void (*show)(const struct btf *btf, const struct btf_type *t,
394 			 u32 type_id, void *data, u8 bits_offsets,
395 			 struct btf_show *show);
396 };
397 
398 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
399 static struct btf_type btf_void;
400 
401 static int btf_resolve(struct btf_verifier_env *env,
402 		       const struct btf_type *t, u32 type_id);
403 
btf_type_is_modifier(const struct btf_type * t)404 static bool btf_type_is_modifier(const struct btf_type *t)
405 {
406 	/* Some of them is not strictly a C modifier
407 	 * but they are grouped into the same bucket
408 	 * for BTF concern:
409 	 *   A type (t) that refers to another
410 	 *   type through t->type AND its size cannot
411 	 *   be determined without following the t->type.
412 	 *
413 	 * ptr does not fall into this bucket
414 	 * because its size is always sizeof(void *).
415 	 */
416 	switch (BTF_INFO_KIND(t->info)) {
417 	case BTF_KIND_TYPEDEF:
418 	case BTF_KIND_VOLATILE:
419 	case BTF_KIND_CONST:
420 	case BTF_KIND_RESTRICT:
421 		return true;
422 	}
423 
424 	return false;
425 }
426 
btf_type_is_void(const struct btf_type * t)427 bool btf_type_is_void(const struct btf_type *t)
428 {
429 	return t == &btf_void;
430 }
431 
btf_type_is_fwd(const struct btf_type * t)432 static bool btf_type_is_fwd(const struct btf_type *t)
433 {
434 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
435 }
436 
btf_type_nosize(const struct btf_type * t)437 static bool btf_type_nosize(const struct btf_type *t)
438 {
439 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
440 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
441 }
442 
btf_type_nosize_or_null(const struct btf_type * t)443 static bool btf_type_nosize_or_null(const struct btf_type *t)
444 {
445 	return !t || btf_type_nosize(t);
446 }
447 
__btf_type_is_struct(const struct btf_type * t)448 static bool __btf_type_is_struct(const struct btf_type *t)
449 {
450 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
451 }
452 
btf_type_is_array(const struct btf_type * t)453 static bool btf_type_is_array(const struct btf_type *t)
454 {
455 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
456 }
457 
btf_type_is_datasec(const struct btf_type * t)458 static bool btf_type_is_datasec(const struct btf_type *t)
459 {
460 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
461 }
462 
btf_nr_types(const struct btf * btf)463 u32 btf_nr_types(const struct btf *btf)
464 {
465 	u32 total = 0;
466 
467 	while (btf) {
468 		total += btf->nr_types;
469 		btf = btf->base_btf;
470 	}
471 
472 	return total;
473 }
474 
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)475 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
476 {
477 	const struct btf_type *t;
478 	const char *tname;
479 	u32 i, total;
480 
481 	total = btf_nr_types(btf);
482 	for (i = 1; i < total; i++) {
483 		t = btf_type_by_id(btf, i);
484 		if (BTF_INFO_KIND(t->info) != kind)
485 			continue;
486 
487 		tname = btf_name_by_offset(btf, t->name_off);
488 		if (!strcmp(tname, name))
489 			return i;
490 	}
491 
492 	return -ENOENT;
493 }
494 
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)495 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
496 					       u32 id, u32 *res_id)
497 {
498 	const struct btf_type *t = btf_type_by_id(btf, id);
499 
500 	while (btf_type_is_modifier(t)) {
501 		id = t->type;
502 		t = btf_type_by_id(btf, t->type);
503 	}
504 
505 	if (res_id)
506 		*res_id = id;
507 
508 	return t;
509 }
510 
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)511 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
512 					    u32 id, u32 *res_id)
513 {
514 	const struct btf_type *t;
515 
516 	t = btf_type_skip_modifiers(btf, id, NULL);
517 	if (!btf_type_is_ptr(t))
518 		return NULL;
519 
520 	return btf_type_skip_modifiers(btf, t->type, res_id);
521 }
522 
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)523 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
524 						 u32 id, u32 *res_id)
525 {
526 	const struct btf_type *ptype;
527 
528 	ptype = btf_type_resolve_ptr(btf, id, res_id);
529 	if (ptype && btf_type_is_func_proto(ptype))
530 		return ptype;
531 
532 	return NULL;
533 }
534 
535 /* Types that act only as a source, not sink or intermediate
536  * type when resolving.
537  */
btf_type_is_resolve_source_only(const struct btf_type * t)538 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
539 {
540 	return btf_type_is_var(t) ||
541 	       btf_type_is_datasec(t);
542 }
543 
544 /* What types need to be resolved?
545  *
546  * btf_type_is_modifier() is an obvious one.
547  *
548  * btf_type_is_struct() because its member refers to
549  * another type (through member->type).
550  *
551  * btf_type_is_var() because the variable refers to
552  * another type. btf_type_is_datasec() holds multiple
553  * btf_type_is_var() types that need resolving.
554  *
555  * btf_type_is_array() because its element (array->type)
556  * refers to another type.  Array can be thought of a
557  * special case of struct while array just has the same
558  * member-type repeated by array->nelems of times.
559  */
btf_type_needs_resolve(const struct btf_type * t)560 static bool btf_type_needs_resolve(const struct btf_type *t)
561 {
562 	return btf_type_is_modifier(t) ||
563 	       btf_type_is_ptr(t) ||
564 	       btf_type_is_struct(t) ||
565 	       btf_type_is_array(t) ||
566 	       btf_type_is_var(t) ||
567 	       btf_type_is_datasec(t);
568 }
569 
570 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)571 static bool btf_type_has_size(const struct btf_type *t)
572 {
573 	switch (BTF_INFO_KIND(t->info)) {
574 	case BTF_KIND_INT:
575 	case BTF_KIND_STRUCT:
576 	case BTF_KIND_UNION:
577 	case BTF_KIND_ENUM:
578 	case BTF_KIND_DATASEC:
579 	case BTF_KIND_FLOAT:
580 		return true;
581 	}
582 
583 	return false;
584 }
585 
btf_int_encoding_str(u8 encoding)586 static const char *btf_int_encoding_str(u8 encoding)
587 {
588 	if (encoding == 0)
589 		return "(none)";
590 	else if (encoding == BTF_INT_SIGNED)
591 		return "SIGNED";
592 	else if (encoding == BTF_INT_CHAR)
593 		return "CHAR";
594 	else if (encoding == BTF_INT_BOOL)
595 		return "BOOL";
596 	else
597 		return "UNKN";
598 }
599 
btf_type_int(const struct btf_type * t)600 static u32 btf_type_int(const struct btf_type *t)
601 {
602 	return *(u32 *)(t + 1);
603 }
604 
btf_type_array(const struct btf_type * t)605 static const struct btf_array *btf_type_array(const struct btf_type *t)
606 {
607 	return (const struct btf_array *)(t + 1);
608 }
609 
btf_type_enum(const struct btf_type * t)610 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
611 {
612 	return (const struct btf_enum *)(t + 1);
613 }
614 
btf_type_var(const struct btf_type * t)615 static const struct btf_var *btf_type_var(const struct btf_type *t)
616 {
617 	return (const struct btf_var *)(t + 1);
618 }
619 
btf_type_ops(const struct btf_type * t)620 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
621 {
622 	return kind_ops[BTF_INFO_KIND(t->info)];
623 }
624 
btf_name_offset_valid(const struct btf * btf,u32 offset)625 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
626 {
627 	if (!BTF_STR_OFFSET_VALID(offset))
628 		return false;
629 
630 	while (offset < btf->start_str_off)
631 		btf = btf->base_btf;
632 
633 	offset -= btf->start_str_off;
634 	return offset < btf->hdr.str_len;
635 }
636 
__btf_name_char_ok(char c,bool first)637 static bool __btf_name_char_ok(char c, bool first)
638 {
639 	if ((first ? !isalpha(c) :
640 		     !isalnum(c)) &&
641 	    c != '_' &&
642 	    c != '.')
643 		return false;
644 	return true;
645 }
646 
btf_str_by_offset(const struct btf * btf,u32 offset)647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
648 {
649 	while (offset < btf->start_str_off)
650 		btf = btf->base_btf;
651 
652 	offset -= btf->start_str_off;
653 	if (offset < btf->hdr.str_len)
654 		return &btf->strings[offset];
655 
656 	return NULL;
657 }
658 
__btf_name_valid(const struct btf * btf,u32 offset)659 static bool __btf_name_valid(const struct btf *btf, u32 offset)
660 {
661 	/* offset must be valid */
662 	const char *src = btf_str_by_offset(btf, offset);
663 	const char *src_limit;
664 
665 	if (!__btf_name_char_ok(*src, true))
666 		return false;
667 
668 	/* set a limit on identifier length */
669 	src_limit = src + KSYM_NAME_LEN;
670 	src++;
671 	while (*src && src < src_limit) {
672 		if (!__btf_name_char_ok(*src, false))
673 			return false;
674 		src++;
675 	}
676 
677 	return !*src;
678 }
679 
btf_name_valid_identifier(const struct btf * btf,u32 offset)680 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
681 {
682 	return __btf_name_valid(btf, offset);
683 }
684 
btf_name_valid_section(const struct btf * btf,u32 offset)685 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
686 {
687 	return __btf_name_valid(btf, offset);
688 }
689 
__btf_name_by_offset(const struct btf * btf,u32 offset)690 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
691 {
692 	const char *name;
693 
694 	if (!offset)
695 		return "(anon)";
696 
697 	name = btf_str_by_offset(btf, offset);
698 	return name ?: "(invalid-name-offset)";
699 }
700 
btf_name_by_offset(const struct btf * btf,u32 offset)701 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
702 {
703 	return btf_str_by_offset(btf, offset);
704 }
705 
btf_type_by_id(const struct btf * btf,u32 type_id)706 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
707 {
708 	while (type_id < btf->start_id)
709 		btf = btf->base_btf;
710 
711 	type_id -= btf->start_id;
712 	if (type_id >= btf->nr_types)
713 		return NULL;
714 	return btf->types[type_id];
715 }
716 
717 /*
718  * Regular int is not a bit field and it must be either
719  * u8/u16/u32/u64 or __int128.
720  */
btf_type_int_is_regular(const struct btf_type * t)721 static bool btf_type_int_is_regular(const struct btf_type *t)
722 {
723 	u8 nr_bits, nr_bytes;
724 	u32 int_data;
725 
726 	int_data = btf_type_int(t);
727 	nr_bits = BTF_INT_BITS(int_data);
728 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
729 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
730 	    BTF_INT_OFFSET(int_data) ||
731 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
732 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
733 	     nr_bytes != (2 * sizeof(u64)))) {
734 		return false;
735 	}
736 
737 	return true;
738 }
739 
740 /*
741  * Check that given struct member is a regular int with expected
742  * offset and size.
743  */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)744 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
745 			   const struct btf_member *m,
746 			   u32 expected_offset, u32 expected_size)
747 {
748 	const struct btf_type *t;
749 	u32 id, int_data;
750 	u8 nr_bits;
751 
752 	id = m->type;
753 	t = btf_type_id_size(btf, &id, NULL);
754 	if (!t || !btf_type_is_int(t))
755 		return false;
756 
757 	int_data = btf_type_int(t);
758 	nr_bits = BTF_INT_BITS(int_data);
759 	if (btf_type_kflag(s)) {
760 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
761 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
762 
763 		/* if kflag set, int should be a regular int and
764 		 * bit offset should be at byte boundary.
765 		 */
766 		return !bitfield_size &&
767 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
768 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
769 	}
770 
771 	if (BTF_INT_OFFSET(int_data) ||
772 	    BITS_PER_BYTE_MASKED(m->offset) ||
773 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
774 	    BITS_PER_BYTE_MASKED(nr_bits) ||
775 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
776 		return false;
777 
778 	return true;
779 }
780 
781 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)782 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
783 						       u32 id)
784 {
785 	const struct btf_type *t = btf_type_by_id(btf, id);
786 
787 	while (btf_type_is_modifier(t) &&
788 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
789 		t = btf_type_by_id(btf, t->type);
790 	}
791 
792 	return t;
793 }
794 
795 #define BTF_SHOW_MAX_ITER	10
796 
797 #define BTF_KIND_BIT(kind)	(1ULL << kind)
798 
799 /*
800  * Populate show->state.name with type name information.
801  * Format of type name is
802  *
803  * [.member_name = ] (type_name)
804  */
btf_show_name(struct btf_show * show)805 static const char *btf_show_name(struct btf_show *show)
806 {
807 	/* BTF_MAX_ITER array suffixes "[]" */
808 	const char *array_suffixes = "[][][][][][][][][][]";
809 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
810 	/* BTF_MAX_ITER pointer suffixes "*" */
811 	const char *ptr_suffixes = "**********";
812 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
813 	const char *name = NULL, *prefix = "", *parens = "";
814 	const struct btf_member *m = show->state.member;
815 	const struct btf_type *t = show->state.type;
816 	const struct btf_array *array;
817 	u32 id = show->state.type_id;
818 	const char *member = NULL;
819 	bool show_member = false;
820 	u64 kinds = 0;
821 	int i;
822 
823 	show->state.name[0] = '\0';
824 
825 	/*
826 	 * Don't show type name if we're showing an array member;
827 	 * in that case we show the array type so don't need to repeat
828 	 * ourselves for each member.
829 	 */
830 	if (show->state.array_member)
831 		return "";
832 
833 	/* Retrieve member name, if any. */
834 	if (m) {
835 		member = btf_name_by_offset(show->btf, m->name_off);
836 		show_member = strlen(member) > 0;
837 		id = m->type;
838 	}
839 
840 	/*
841 	 * Start with type_id, as we have resolved the struct btf_type *
842 	 * via btf_modifier_show() past the parent typedef to the child
843 	 * struct, int etc it is defined as.  In such cases, the type_id
844 	 * still represents the starting type while the struct btf_type *
845 	 * in our show->state points at the resolved type of the typedef.
846 	 */
847 	t = btf_type_by_id(show->btf, id);
848 	if (!t)
849 		return "";
850 
851 	/*
852 	 * The goal here is to build up the right number of pointer and
853 	 * array suffixes while ensuring the type name for a typedef
854 	 * is represented.  Along the way we accumulate a list of
855 	 * BTF kinds we have encountered, since these will inform later
856 	 * display; for example, pointer types will not require an
857 	 * opening "{" for struct, we will just display the pointer value.
858 	 *
859 	 * We also want to accumulate the right number of pointer or array
860 	 * indices in the format string while iterating until we get to
861 	 * the typedef/pointee/array member target type.
862 	 *
863 	 * We start by pointing at the end of pointer and array suffix
864 	 * strings; as we accumulate pointers and arrays we move the pointer
865 	 * or array string backwards so it will show the expected number of
866 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
867 	 * and/or arrays and typedefs are supported as a precaution.
868 	 *
869 	 * We also want to get typedef name while proceeding to resolve
870 	 * type it points to so that we can add parentheses if it is a
871 	 * "typedef struct" etc.
872 	 */
873 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
874 
875 		switch (BTF_INFO_KIND(t->info)) {
876 		case BTF_KIND_TYPEDEF:
877 			if (!name)
878 				name = btf_name_by_offset(show->btf,
879 							       t->name_off);
880 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
881 			id = t->type;
882 			break;
883 		case BTF_KIND_ARRAY:
884 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
885 			parens = "[";
886 			if (!t)
887 				return "";
888 			array = btf_type_array(t);
889 			if (array_suffix > array_suffixes)
890 				array_suffix -= 2;
891 			id = array->type;
892 			break;
893 		case BTF_KIND_PTR:
894 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
895 			if (ptr_suffix > ptr_suffixes)
896 				ptr_suffix -= 1;
897 			id = t->type;
898 			break;
899 		default:
900 			id = 0;
901 			break;
902 		}
903 		if (!id)
904 			break;
905 		t = btf_type_skip_qualifiers(show->btf, id);
906 	}
907 	/* We may not be able to represent this type; bail to be safe */
908 	if (i == BTF_SHOW_MAX_ITER)
909 		return "";
910 
911 	if (!name)
912 		name = btf_name_by_offset(show->btf, t->name_off);
913 
914 	switch (BTF_INFO_KIND(t->info)) {
915 	case BTF_KIND_STRUCT:
916 	case BTF_KIND_UNION:
917 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
918 			 "struct" : "union";
919 		/* if it's an array of struct/union, parens is already set */
920 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
921 			parens = "{";
922 		break;
923 	case BTF_KIND_ENUM:
924 		prefix = "enum";
925 		break;
926 	default:
927 		break;
928 	}
929 
930 	/* pointer does not require parens */
931 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
932 		parens = "";
933 	/* typedef does not require struct/union/enum prefix */
934 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
935 		prefix = "";
936 
937 	if (!name)
938 		name = "";
939 
940 	/* Even if we don't want type name info, we want parentheses etc */
941 	if (show->flags & BTF_SHOW_NONAME)
942 		snprintf(show->state.name, sizeof(show->state.name), "%s",
943 			 parens);
944 	else
945 		snprintf(show->state.name, sizeof(show->state.name),
946 			 "%s%s%s(%s%s%s%s%s%s)%s",
947 			 /* first 3 strings comprise ".member = " */
948 			 show_member ? "." : "",
949 			 show_member ? member : "",
950 			 show_member ? " = " : "",
951 			 /* ...next is our prefix (struct, enum, etc) */
952 			 prefix,
953 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
954 			 /* ...this is the type name itself */
955 			 name,
956 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
957 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
958 			 array_suffix, parens);
959 
960 	return show->state.name;
961 }
962 
__btf_show_indent(struct btf_show * show)963 static const char *__btf_show_indent(struct btf_show *show)
964 {
965 	const char *indents = "                                ";
966 	const char *indent = &indents[strlen(indents)];
967 
968 	if ((indent - show->state.depth) >= indents)
969 		return indent - show->state.depth;
970 	return indents;
971 }
972 
btf_show_indent(struct btf_show * show)973 static const char *btf_show_indent(struct btf_show *show)
974 {
975 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
976 }
977 
btf_show_newline(struct btf_show * show)978 static const char *btf_show_newline(struct btf_show *show)
979 {
980 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
981 }
982 
btf_show_delim(struct btf_show * show)983 static const char *btf_show_delim(struct btf_show *show)
984 {
985 	if (show->state.depth == 0)
986 		return "";
987 
988 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
989 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
990 		return "|";
991 
992 	return ",";
993 }
994 
btf_show(struct btf_show * show,const char * fmt,...)995 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
996 {
997 	va_list args;
998 
999 	if (!show->state.depth_check) {
1000 		va_start(args, fmt);
1001 		show->showfn(show, fmt, args);
1002 		va_end(args);
1003 	}
1004 }
1005 
1006 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1007  * format specifiers to the format specifier passed in; these do the work of
1008  * adding indentation, delimiters etc while the caller simply has to specify
1009  * the type value(s) in the format specifier + value(s).
1010  */
1011 #define btf_show_type_value(show, fmt, value)				       \
1012 	do {								       \
1013 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1014 		    show->state.depth == 0) {				       \
1015 			btf_show(show, "%s%s" fmt "%s%s",		       \
1016 				 btf_show_indent(show),			       \
1017 				 btf_show_name(show),			       \
1018 				 value, btf_show_delim(show),		       \
1019 				 btf_show_newline(show));		       \
1020 			if (show->state.depth > show->state.depth_to_show)     \
1021 				show->state.depth_to_show = show->state.depth; \
1022 		}							       \
1023 	} while (0)
1024 
1025 #define btf_show_type_values(show, fmt, ...)				       \
1026 	do {								       \
1027 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1028 			 btf_show_name(show),				       \
1029 			 __VA_ARGS__, btf_show_delim(show),		       \
1030 			 btf_show_newline(show));			       \
1031 		if (show->state.depth > show->state.depth_to_show)	       \
1032 			show->state.depth_to_show = show->state.depth;	       \
1033 	} while (0)
1034 
1035 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1036 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1037 {
1038 	return show->obj.head + show->obj.size - data;
1039 }
1040 
1041 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1042 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1043 {
1044 	return data >= show->obj.data &&
1045 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1046 }
1047 
1048 /*
1049  * If object pointed to by @data of @size falls within our safe buffer, return
1050  * the equivalent pointer to the same safe data.  Assumes
1051  * copy_from_kernel_nofault() has already happened and our safe buffer is
1052  * populated.
1053  */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1054 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1055 {
1056 	if (btf_show_obj_is_safe(show, data, size))
1057 		return show->obj.safe + (data - show->obj.data);
1058 	return NULL;
1059 }
1060 
1061 /*
1062  * Return a safe-to-access version of data pointed to by @data.
1063  * We do this by copying the relevant amount of information
1064  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1065  *
1066  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1067  * safe copy is needed.
1068  *
1069  * Otherwise we need to determine if we have the required amount
1070  * of data (determined by the @data pointer and the size of the
1071  * largest base type we can encounter (represented by
1072  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1073  * that we will be able to print some of the current object,
1074  * and if more is needed a copy will be triggered.
1075  * Some objects such as structs will not fit into the buffer;
1076  * in such cases additional copies when we iterate over their
1077  * members may be needed.
1078  *
1079  * btf_show_obj_safe() is used to return a safe buffer for
1080  * btf_show_start_type(); this ensures that as we recurse into
1081  * nested types we always have safe data for the given type.
1082  * This approach is somewhat wasteful; it's possible for example
1083  * that when iterating over a large union we'll end up copying the
1084  * same data repeatedly, but the goal is safety not performance.
1085  * We use stack data as opposed to per-CPU buffers because the
1086  * iteration over a type can take some time, and preemption handling
1087  * would greatly complicate use of the safe buffer.
1088  */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1089 static void *btf_show_obj_safe(struct btf_show *show,
1090 			       const struct btf_type *t,
1091 			       void *data)
1092 {
1093 	const struct btf_type *rt;
1094 	int size_left, size;
1095 	void *safe = NULL;
1096 
1097 	if (show->flags & BTF_SHOW_UNSAFE)
1098 		return data;
1099 
1100 	rt = btf_resolve_size(show->btf, t, &size);
1101 	if (IS_ERR(rt)) {
1102 		show->state.status = PTR_ERR(rt);
1103 		return NULL;
1104 	}
1105 
1106 	/*
1107 	 * Is this toplevel object? If so, set total object size and
1108 	 * initialize pointers.  Otherwise check if we still fall within
1109 	 * our safe object data.
1110 	 */
1111 	if (show->state.depth == 0) {
1112 		show->obj.size = size;
1113 		show->obj.head = data;
1114 	} else {
1115 		/*
1116 		 * If the size of the current object is > our remaining
1117 		 * safe buffer we _may_ need to do a new copy.  However
1118 		 * consider the case of a nested struct; it's size pushes
1119 		 * us over the safe buffer limit, but showing any individual
1120 		 * struct members does not.  In such cases, we don't need
1121 		 * to initiate a fresh copy yet; however we definitely need
1122 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1123 		 * in our buffer, regardless of the current object size.
1124 		 * The logic here is that as we resolve types we will
1125 		 * hit a base type at some point, and we need to be sure
1126 		 * the next chunk of data is safely available to display
1127 		 * that type info safely.  We cannot rely on the size of
1128 		 * the current object here because it may be much larger
1129 		 * than our current buffer (e.g. task_struct is 8k).
1130 		 * All we want to do here is ensure that we can print the
1131 		 * next basic type, which we can if either
1132 		 * - the current type size is within the safe buffer; or
1133 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1134 		 *   the safe buffer.
1135 		 */
1136 		safe = __btf_show_obj_safe(show, data,
1137 					   min(size,
1138 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1139 	}
1140 
1141 	/*
1142 	 * We need a new copy to our safe object, either because we haven't
1143 	 * yet copied and are initializing safe data, or because the data
1144 	 * we want falls outside the boundaries of the safe object.
1145 	 */
1146 	if (!safe) {
1147 		size_left = btf_show_obj_size_left(show, data);
1148 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1149 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1150 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1151 							      data, size_left);
1152 		if (!show->state.status) {
1153 			show->obj.data = data;
1154 			safe = show->obj.safe;
1155 		}
1156 	}
1157 
1158 	return safe;
1159 }
1160 
1161 /*
1162  * Set the type we are starting to show and return a safe data pointer
1163  * to be used for showing the associated data.
1164  */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1165 static void *btf_show_start_type(struct btf_show *show,
1166 				 const struct btf_type *t,
1167 				 u32 type_id, void *data)
1168 {
1169 	show->state.type = t;
1170 	show->state.type_id = type_id;
1171 	show->state.name[0] = '\0';
1172 
1173 	return btf_show_obj_safe(show, t, data);
1174 }
1175 
btf_show_end_type(struct btf_show * show)1176 static void btf_show_end_type(struct btf_show *show)
1177 {
1178 	show->state.type = NULL;
1179 	show->state.type_id = 0;
1180 	show->state.name[0] = '\0';
1181 }
1182 
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1183 static void *btf_show_start_aggr_type(struct btf_show *show,
1184 				      const struct btf_type *t,
1185 				      u32 type_id, void *data)
1186 {
1187 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1188 
1189 	if (!safe_data)
1190 		return safe_data;
1191 
1192 	btf_show(show, "%s%s%s", btf_show_indent(show),
1193 		 btf_show_name(show),
1194 		 btf_show_newline(show));
1195 	show->state.depth++;
1196 	return safe_data;
1197 }
1198 
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1199 static void btf_show_end_aggr_type(struct btf_show *show,
1200 				   const char *suffix)
1201 {
1202 	show->state.depth--;
1203 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1204 		 btf_show_delim(show), btf_show_newline(show));
1205 	btf_show_end_type(show);
1206 }
1207 
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1208 static void btf_show_start_member(struct btf_show *show,
1209 				  const struct btf_member *m)
1210 {
1211 	show->state.member = m;
1212 }
1213 
btf_show_start_array_member(struct btf_show * show)1214 static void btf_show_start_array_member(struct btf_show *show)
1215 {
1216 	show->state.array_member = 1;
1217 	btf_show_start_member(show, NULL);
1218 }
1219 
btf_show_end_member(struct btf_show * show)1220 static void btf_show_end_member(struct btf_show *show)
1221 {
1222 	show->state.member = NULL;
1223 }
1224 
btf_show_end_array_member(struct btf_show * show)1225 static void btf_show_end_array_member(struct btf_show *show)
1226 {
1227 	show->state.array_member = 0;
1228 	btf_show_end_member(show);
1229 }
1230 
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1231 static void *btf_show_start_array_type(struct btf_show *show,
1232 				       const struct btf_type *t,
1233 				       u32 type_id,
1234 				       u16 array_encoding,
1235 				       void *data)
1236 {
1237 	show->state.array_encoding = array_encoding;
1238 	show->state.array_terminated = 0;
1239 	return btf_show_start_aggr_type(show, t, type_id, data);
1240 }
1241 
btf_show_end_array_type(struct btf_show * show)1242 static void btf_show_end_array_type(struct btf_show *show)
1243 {
1244 	show->state.array_encoding = 0;
1245 	show->state.array_terminated = 0;
1246 	btf_show_end_aggr_type(show, "]");
1247 }
1248 
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1249 static void *btf_show_start_struct_type(struct btf_show *show,
1250 					const struct btf_type *t,
1251 					u32 type_id,
1252 					void *data)
1253 {
1254 	return btf_show_start_aggr_type(show, t, type_id, data);
1255 }
1256 
btf_show_end_struct_type(struct btf_show * show)1257 static void btf_show_end_struct_type(struct btf_show *show)
1258 {
1259 	btf_show_end_aggr_type(show, "}");
1260 }
1261 
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1262 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1263 					      const char *fmt, ...)
1264 {
1265 	va_list args;
1266 
1267 	va_start(args, fmt);
1268 	bpf_verifier_vlog(log, fmt, args);
1269 	va_end(args);
1270 }
1271 
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1272 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1273 					    const char *fmt, ...)
1274 {
1275 	struct bpf_verifier_log *log = &env->log;
1276 	va_list args;
1277 
1278 	if (!bpf_verifier_log_needed(log))
1279 		return;
1280 
1281 	va_start(args, fmt);
1282 	bpf_verifier_vlog(log, fmt, args);
1283 	va_end(args);
1284 }
1285 
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1286 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1287 						   const struct btf_type *t,
1288 						   bool log_details,
1289 						   const char *fmt, ...)
1290 {
1291 	struct bpf_verifier_log *log = &env->log;
1292 	u8 kind = BTF_INFO_KIND(t->info);
1293 	struct btf *btf = env->btf;
1294 	va_list args;
1295 
1296 	if (!bpf_verifier_log_needed(log))
1297 		return;
1298 
1299 	if (log->level == BPF_LOG_KERNEL) {
1300 		/* btf verifier prints all types it is processing via
1301 		 * btf_verifier_log_type(..., fmt = NULL).
1302 		 * Skip those prints for in-kernel BTF verification.
1303 		 */
1304 		if (!fmt)
1305 			return;
1306 
1307 		/* Skip logging when loading module BTF with mismatches permitted */
1308 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1309 			return;
1310 	}
1311 
1312 	__btf_verifier_log(log, "[%u] %s %s%s",
1313 			   env->log_type_id,
1314 			   btf_kind_str[kind],
1315 			   __btf_name_by_offset(btf, t->name_off),
1316 			   log_details ? " " : "");
1317 
1318 	if (log_details)
1319 		btf_type_ops(t)->log_details(env, t);
1320 
1321 	if (fmt && *fmt) {
1322 		__btf_verifier_log(log, " ");
1323 		va_start(args, fmt);
1324 		bpf_verifier_vlog(log, fmt, args);
1325 		va_end(args);
1326 	}
1327 
1328 	__btf_verifier_log(log, "\n");
1329 }
1330 
1331 #define btf_verifier_log_type(env, t, ...) \
1332 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1333 #define btf_verifier_log_basic(env, t, ...) \
1334 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1335 
1336 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1337 static void btf_verifier_log_member(struct btf_verifier_env *env,
1338 				    const struct btf_type *struct_type,
1339 				    const struct btf_member *member,
1340 				    const char *fmt, ...)
1341 {
1342 	struct bpf_verifier_log *log = &env->log;
1343 	struct btf *btf = env->btf;
1344 	va_list args;
1345 
1346 	if (!bpf_verifier_log_needed(log))
1347 		return;
1348 
1349 	if (log->level == BPF_LOG_KERNEL) {
1350 		if (!fmt)
1351 			return;
1352 
1353 		/* Skip logging when loading module BTF with mismatches permitted */
1354 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1355 			return;
1356 	}
1357 
1358 	/* The CHECK_META phase already did a btf dump.
1359 	 *
1360 	 * If member is logged again, it must hit an error in
1361 	 * parsing this member.  It is useful to print out which
1362 	 * struct this member belongs to.
1363 	 */
1364 	if (env->phase != CHECK_META)
1365 		btf_verifier_log_type(env, struct_type, NULL);
1366 
1367 	if (btf_type_kflag(struct_type))
1368 		__btf_verifier_log(log,
1369 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1370 				   __btf_name_by_offset(btf, member->name_off),
1371 				   member->type,
1372 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1373 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1374 	else
1375 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1376 				   __btf_name_by_offset(btf, member->name_off),
1377 				   member->type, member->offset);
1378 
1379 	if (fmt && *fmt) {
1380 		__btf_verifier_log(log, " ");
1381 		va_start(args, fmt);
1382 		bpf_verifier_vlog(log, fmt, args);
1383 		va_end(args);
1384 	}
1385 
1386 	__btf_verifier_log(log, "\n");
1387 }
1388 
1389 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1390 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1391 				 const struct btf_type *datasec_type,
1392 				 const struct btf_var_secinfo *vsi,
1393 				 const char *fmt, ...)
1394 {
1395 	struct bpf_verifier_log *log = &env->log;
1396 	va_list args;
1397 
1398 	if (!bpf_verifier_log_needed(log))
1399 		return;
1400 	if (log->level == BPF_LOG_KERNEL && !fmt)
1401 		return;
1402 	if (env->phase != CHECK_META)
1403 		btf_verifier_log_type(env, datasec_type, NULL);
1404 
1405 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1406 			   vsi->type, vsi->offset, vsi->size);
1407 	if (fmt && *fmt) {
1408 		__btf_verifier_log(log, " ");
1409 		va_start(args, fmt);
1410 		bpf_verifier_vlog(log, fmt, args);
1411 		va_end(args);
1412 	}
1413 
1414 	__btf_verifier_log(log, "\n");
1415 }
1416 
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1417 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1418 				 u32 btf_data_size)
1419 {
1420 	struct bpf_verifier_log *log = &env->log;
1421 	const struct btf *btf = env->btf;
1422 	const struct btf_header *hdr;
1423 
1424 	if (!bpf_verifier_log_needed(log))
1425 		return;
1426 
1427 	if (log->level == BPF_LOG_KERNEL)
1428 		return;
1429 	hdr = &btf->hdr;
1430 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1431 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1432 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1433 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1434 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1435 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1436 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1437 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1438 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1439 }
1440 
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1441 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1442 {
1443 	struct btf *btf = env->btf;
1444 
1445 	if (btf->types_size == btf->nr_types) {
1446 		/* Expand 'types' array */
1447 
1448 		struct btf_type **new_types;
1449 		u32 expand_by, new_size;
1450 
1451 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1452 			btf_verifier_log(env, "Exceeded max num of types");
1453 			return -E2BIG;
1454 		}
1455 
1456 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1457 		new_size = min_t(u32, BTF_MAX_TYPE,
1458 				 btf->types_size + expand_by);
1459 
1460 		new_types = kvcalloc(new_size, sizeof(*new_types),
1461 				     GFP_KERNEL | __GFP_NOWARN);
1462 		if (!new_types)
1463 			return -ENOMEM;
1464 
1465 		if (btf->nr_types == 0) {
1466 			if (!btf->base_btf) {
1467 				/* lazily init VOID type */
1468 				new_types[0] = &btf_void;
1469 				btf->nr_types++;
1470 			}
1471 		} else {
1472 			memcpy(new_types, btf->types,
1473 			       sizeof(*btf->types) * btf->nr_types);
1474 		}
1475 
1476 		kvfree(btf->types);
1477 		btf->types = new_types;
1478 		btf->types_size = new_size;
1479 	}
1480 
1481 	btf->types[btf->nr_types++] = t;
1482 
1483 	return 0;
1484 }
1485 
btf_alloc_id(struct btf * btf)1486 static int btf_alloc_id(struct btf *btf)
1487 {
1488 	int id;
1489 
1490 	idr_preload(GFP_KERNEL);
1491 	spin_lock_bh(&btf_idr_lock);
1492 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1493 	if (id > 0)
1494 		btf->id = id;
1495 	spin_unlock_bh(&btf_idr_lock);
1496 	idr_preload_end();
1497 
1498 	if (WARN_ON_ONCE(!id))
1499 		return -ENOSPC;
1500 
1501 	return id > 0 ? 0 : id;
1502 }
1503 
btf_free_id(struct btf * btf)1504 static void btf_free_id(struct btf *btf)
1505 {
1506 	unsigned long flags;
1507 
1508 	/*
1509 	 * In map-in-map, calling map_delete_elem() on outer
1510 	 * map will call bpf_map_put on the inner map.
1511 	 * It will then eventually call btf_free_id()
1512 	 * on the inner map.  Some of the map_delete_elem()
1513 	 * implementation may have irq disabled, so
1514 	 * we need to use the _irqsave() version instead
1515 	 * of the _bh() version.
1516 	 */
1517 	spin_lock_irqsave(&btf_idr_lock, flags);
1518 	idr_remove(&btf_idr, btf->id);
1519 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1520 }
1521 
btf_free(struct btf * btf)1522 static void btf_free(struct btf *btf)
1523 {
1524 	kvfree(btf->types);
1525 	kvfree(btf->resolved_sizes);
1526 	kvfree(btf->resolved_ids);
1527 	kvfree(btf->data);
1528 	kfree(btf);
1529 }
1530 
btf_free_rcu(struct rcu_head * rcu)1531 static void btf_free_rcu(struct rcu_head *rcu)
1532 {
1533 	struct btf *btf = container_of(rcu, struct btf, rcu);
1534 
1535 	btf_free(btf);
1536 }
1537 
btf_get(struct btf * btf)1538 void btf_get(struct btf *btf)
1539 {
1540 	refcount_inc(&btf->refcnt);
1541 }
1542 
btf_put(struct btf * btf)1543 void btf_put(struct btf *btf)
1544 {
1545 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1546 		btf_free_id(btf);
1547 		call_rcu(&btf->rcu, btf_free_rcu);
1548 	}
1549 }
1550 
env_resolve_init(struct btf_verifier_env * env)1551 static int env_resolve_init(struct btf_verifier_env *env)
1552 {
1553 	struct btf *btf = env->btf;
1554 	u32 nr_types = btf->nr_types;
1555 	u32 *resolved_sizes = NULL;
1556 	u32 *resolved_ids = NULL;
1557 	u8 *visit_states = NULL;
1558 
1559 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1560 				  GFP_KERNEL | __GFP_NOWARN);
1561 	if (!resolved_sizes)
1562 		goto nomem;
1563 
1564 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1565 				GFP_KERNEL | __GFP_NOWARN);
1566 	if (!resolved_ids)
1567 		goto nomem;
1568 
1569 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1570 				GFP_KERNEL | __GFP_NOWARN);
1571 	if (!visit_states)
1572 		goto nomem;
1573 
1574 	btf->resolved_sizes = resolved_sizes;
1575 	btf->resolved_ids = resolved_ids;
1576 	env->visit_states = visit_states;
1577 
1578 	return 0;
1579 
1580 nomem:
1581 	kvfree(resolved_sizes);
1582 	kvfree(resolved_ids);
1583 	kvfree(visit_states);
1584 	return -ENOMEM;
1585 }
1586 
btf_verifier_env_free(struct btf_verifier_env * env)1587 static void btf_verifier_env_free(struct btf_verifier_env *env)
1588 {
1589 	kvfree(env->visit_states);
1590 	kfree(env);
1591 }
1592 
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1593 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1594 				     const struct btf_type *next_type)
1595 {
1596 	switch (env->resolve_mode) {
1597 	case RESOLVE_TBD:
1598 		/* int, enum or void is a sink */
1599 		return !btf_type_needs_resolve(next_type);
1600 	case RESOLVE_PTR:
1601 		/* int, enum, void, struct, array, func or func_proto is a sink
1602 		 * for ptr
1603 		 */
1604 		return !btf_type_is_modifier(next_type) &&
1605 			!btf_type_is_ptr(next_type);
1606 	case RESOLVE_STRUCT_OR_ARRAY:
1607 		/* int, enum, void, ptr, func or func_proto is a sink
1608 		 * for struct and array
1609 		 */
1610 		return !btf_type_is_modifier(next_type) &&
1611 			!btf_type_is_array(next_type) &&
1612 			!btf_type_is_struct(next_type);
1613 	default:
1614 		BUG();
1615 	}
1616 }
1617 
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1618 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1619 				 u32 type_id)
1620 {
1621 	/* base BTF types should be resolved by now */
1622 	if (type_id < env->btf->start_id)
1623 		return true;
1624 
1625 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1626 }
1627 
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1628 static int env_stack_push(struct btf_verifier_env *env,
1629 			  const struct btf_type *t, u32 type_id)
1630 {
1631 	const struct btf *btf = env->btf;
1632 	struct resolve_vertex *v;
1633 
1634 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1635 		return -E2BIG;
1636 
1637 	if (type_id < btf->start_id
1638 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1639 		return -EEXIST;
1640 
1641 	env->visit_states[type_id - btf->start_id] = VISITED;
1642 
1643 	v = &env->stack[env->top_stack++];
1644 	v->t = t;
1645 	v->type_id = type_id;
1646 	v->next_member = 0;
1647 
1648 	if (env->resolve_mode == RESOLVE_TBD) {
1649 		if (btf_type_is_ptr(t))
1650 			env->resolve_mode = RESOLVE_PTR;
1651 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1652 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1658 static void env_stack_set_next_member(struct btf_verifier_env *env,
1659 				      u16 next_member)
1660 {
1661 	env->stack[env->top_stack - 1].next_member = next_member;
1662 }
1663 
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1664 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1665 				   u32 resolved_type_id,
1666 				   u32 resolved_size)
1667 {
1668 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1669 	struct btf *btf = env->btf;
1670 
1671 	type_id -= btf->start_id; /* adjust to local type id */
1672 	btf->resolved_sizes[type_id] = resolved_size;
1673 	btf->resolved_ids[type_id] = resolved_type_id;
1674 	env->visit_states[type_id] = RESOLVED;
1675 }
1676 
env_stack_peak(struct btf_verifier_env * env)1677 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1678 {
1679 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1680 }
1681 
1682 /* Resolve the size of a passed-in "type"
1683  *
1684  * type: is an array (e.g. u32 array[x][y])
1685  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1686  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1687  *             corresponds to the return type.
1688  * *elem_type: u32
1689  * *elem_id: id of u32
1690  * *total_nelems: (x * y).  Hence, individual elem size is
1691  *                (*type_size / *total_nelems)
1692  * *type_id: id of type if it's changed within the function, 0 if not
1693  *
1694  * type: is not an array (e.g. const struct X)
1695  * return type: type "struct X"
1696  * *type_size: sizeof(struct X)
1697  * *elem_type: same as return type ("struct X")
1698  * *elem_id: 0
1699  * *total_nelems: 1
1700  * *type_id: id of type if it's changed within the function, 0 if not
1701  */
1702 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1703 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1704 		   u32 *type_size, const struct btf_type **elem_type,
1705 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1706 {
1707 	const struct btf_type *array_type = NULL;
1708 	const struct btf_array *array = NULL;
1709 	u32 i, size, nelems = 1, id = 0;
1710 
1711 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1712 		switch (BTF_INFO_KIND(type->info)) {
1713 		/* type->size can be used */
1714 		case BTF_KIND_INT:
1715 		case BTF_KIND_STRUCT:
1716 		case BTF_KIND_UNION:
1717 		case BTF_KIND_ENUM:
1718 		case BTF_KIND_FLOAT:
1719 			size = type->size;
1720 			goto resolved;
1721 
1722 		case BTF_KIND_PTR:
1723 			size = sizeof(void *);
1724 			goto resolved;
1725 
1726 		/* Modifiers */
1727 		case BTF_KIND_TYPEDEF:
1728 		case BTF_KIND_VOLATILE:
1729 		case BTF_KIND_CONST:
1730 		case BTF_KIND_RESTRICT:
1731 			id = type->type;
1732 			type = btf_type_by_id(btf, type->type);
1733 			break;
1734 
1735 		case BTF_KIND_ARRAY:
1736 			if (!array_type)
1737 				array_type = type;
1738 			array = btf_type_array(type);
1739 			if (nelems && array->nelems > U32_MAX / nelems)
1740 				return ERR_PTR(-EINVAL);
1741 			nelems *= array->nelems;
1742 			type = btf_type_by_id(btf, array->type);
1743 			break;
1744 
1745 		/* type without size */
1746 		default:
1747 			return ERR_PTR(-EINVAL);
1748 		}
1749 	}
1750 
1751 	return ERR_PTR(-EINVAL);
1752 
1753 resolved:
1754 	if (nelems && size > U32_MAX / nelems)
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	*type_size = nelems * size;
1758 	if (total_nelems)
1759 		*total_nelems = nelems;
1760 	if (elem_type)
1761 		*elem_type = type;
1762 	if (elem_id)
1763 		*elem_id = array ? array->type : 0;
1764 	if (type_id && id)
1765 		*type_id = id;
1766 
1767 	return array_type ? : type;
1768 }
1769 
1770 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)1771 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1772 		 u32 *type_size)
1773 {
1774 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1775 }
1776 
btf_resolved_type_id(const struct btf * btf,u32 type_id)1777 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1778 {
1779 	while (type_id < btf->start_id)
1780 		btf = btf->base_btf;
1781 
1782 	return btf->resolved_ids[type_id - btf->start_id];
1783 }
1784 
1785 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)1786 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1787 						  u32 *type_id)
1788 {
1789 	*type_id = btf_resolved_type_id(btf, *type_id);
1790 	return btf_type_by_id(btf, *type_id);
1791 }
1792 
btf_resolved_type_size(const struct btf * btf,u32 type_id)1793 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1794 {
1795 	while (type_id < btf->start_id)
1796 		btf = btf->base_btf;
1797 
1798 	return btf->resolved_sizes[type_id - btf->start_id];
1799 }
1800 
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)1801 const struct btf_type *btf_type_id_size(const struct btf *btf,
1802 					u32 *type_id, u32 *ret_size)
1803 {
1804 	const struct btf_type *size_type;
1805 	u32 size_type_id = *type_id;
1806 	u32 size = 0;
1807 
1808 	size_type = btf_type_by_id(btf, size_type_id);
1809 	if (btf_type_nosize_or_null(size_type))
1810 		return NULL;
1811 
1812 	if (btf_type_has_size(size_type)) {
1813 		size = size_type->size;
1814 	} else if (btf_type_is_array(size_type)) {
1815 		size = btf_resolved_type_size(btf, size_type_id);
1816 	} else if (btf_type_is_ptr(size_type)) {
1817 		size = sizeof(void *);
1818 	} else {
1819 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1820 				 !btf_type_is_var(size_type)))
1821 			return NULL;
1822 
1823 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1824 		size_type = btf_type_by_id(btf, size_type_id);
1825 		if (btf_type_nosize_or_null(size_type))
1826 			return NULL;
1827 		else if (btf_type_has_size(size_type))
1828 			size = size_type->size;
1829 		else if (btf_type_is_array(size_type))
1830 			size = btf_resolved_type_size(btf, size_type_id);
1831 		else if (btf_type_is_ptr(size_type))
1832 			size = sizeof(void *);
1833 		else
1834 			return NULL;
1835 	}
1836 
1837 	*type_id = size_type_id;
1838 	if (ret_size)
1839 		*ret_size = size;
1840 
1841 	return size_type;
1842 }
1843 
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1844 static int btf_df_check_member(struct btf_verifier_env *env,
1845 			       const struct btf_type *struct_type,
1846 			       const struct btf_member *member,
1847 			       const struct btf_type *member_type)
1848 {
1849 	btf_verifier_log_basic(env, struct_type,
1850 			       "Unsupported check_member");
1851 	return -EINVAL;
1852 }
1853 
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1854 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1855 				     const struct btf_type *struct_type,
1856 				     const struct btf_member *member,
1857 				     const struct btf_type *member_type)
1858 {
1859 	btf_verifier_log_basic(env, struct_type,
1860 			       "Unsupported check_kflag_member");
1861 	return -EINVAL;
1862 }
1863 
1864 /* Used for ptr, array struct/union and float type members.
1865  * int, enum and modifier types have their specific callback functions.
1866  */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1867 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1868 					  const struct btf_type *struct_type,
1869 					  const struct btf_member *member,
1870 					  const struct btf_type *member_type)
1871 {
1872 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1873 		btf_verifier_log_member(env, struct_type, member,
1874 					"Invalid member bitfield_size");
1875 		return -EINVAL;
1876 	}
1877 
1878 	/* bitfield size is 0, so member->offset represents bit offset only.
1879 	 * It is safe to call non kflag check_member variants.
1880 	 */
1881 	return btf_type_ops(member_type)->check_member(env, struct_type,
1882 						       member,
1883 						       member_type);
1884 }
1885 
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)1886 static int btf_df_resolve(struct btf_verifier_env *env,
1887 			  const struct resolve_vertex *v)
1888 {
1889 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1890 	return -EINVAL;
1891 }
1892 
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)1893 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1894 			u32 type_id, void *data, u8 bits_offsets,
1895 			struct btf_show *show)
1896 {
1897 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1898 }
1899 
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1900 static int btf_int_check_member(struct btf_verifier_env *env,
1901 				const struct btf_type *struct_type,
1902 				const struct btf_member *member,
1903 				const struct btf_type *member_type)
1904 {
1905 	u32 int_data = btf_type_int(member_type);
1906 	u32 struct_bits_off = member->offset;
1907 	u32 struct_size = struct_type->size;
1908 	u32 nr_copy_bits;
1909 	u32 bytes_offset;
1910 
1911 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1912 		btf_verifier_log_member(env, struct_type, member,
1913 					"bits_offset exceeds U32_MAX");
1914 		return -EINVAL;
1915 	}
1916 
1917 	struct_bits_off += BTF_INT_OFFSET(int_data);
1918 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1919 	nr_copy_bits = BTF_INT_BITS(int_data) +
1920 		BITS_PER_BYTE_MASKED(struct_bits_off);
1921 
1922 	if (nr_copy_bits > BITS_PER_U128) {
1923 		btf_verifier_log_member(env, struct_type, member,
1924 					"nr_copy_bits exceeds 128");
1925 		return -EINVAL;
1926 	}
1927 
1928 	if (struct_size < bytes_offset ||
1929 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1930 		btf_verifier_log_member(env, struct_type, member,
1931 					"Member exceeds struct_size");
1932 		return -EINVAL;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1938 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1939 				      const struct btf_type *struct_type,
1940 				      const struct btf_member *member,
1941 				      const struct btf_type *member_type)
1942 {
1943 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1944 	u32 int_data = btf_type_int(member_type);
1945 	u32 struct_size = struct_type->size;
1946 	u32 nr_copy_bits;
1947 
1948 	/* a regular int type is required for the kflag int member */
1949 	if (!btf_type_int_is_regular(member_type)) {
1950 		btf_verifier_log_member(env, struct_type, member,
1951 					"Invalid member base type");
1952 		return -EINVAL;
1953 	}
1954 
1955 	/* check sanity of bitfield size */
1956 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1957 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1958 	nr_int_data_bits = BTF_INT_BITS(int_data);
1959 	if (!nr_bits) {
1960 		/* Not a bitfield member, member offset must be at byte
1961 		 * boundary.
1962 		 */
1963 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1964 			btf_verifier_log_member(env, struct_type, member,
1965 						"Invalid member offset");
1966 			return -EINVAL;
1967 		}
1968 
1969 		nr_bits = nr_int_data_bits;
1970 	} else if (nr_bits > nr_int_data_bits) {
1971 		btf_verifier_log_member(env, struct_type, member,
1972 					"Invalid member bitfield_size");
1973 		return -EINVAL;
1974 	}
1975 
1976 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1977 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1978 	if (nr_copy_bits > BITS_PER_U128) {
1979 		btf_verifier_log_member(env, struct_type, member,
1980 					"nr_copy_bits exceeds 128");
1981 		return -EINVAL;
1982 	}
1983 
1984 	if (struct_size < bytes_offset ||
1985 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1986 		btf_verifier_log_member(env, struct_type, member,
1987 					"Member exceeds struct_size");
1988 		return -EINVAL;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)1994 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1995 			      const struct btf_type *t,
1996 			      u32 meta_left)
1997 {
1998 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1999 	u16 encoding;
2000 
2001 	if (meta_left < meta_needed) {
2002 		btf_verifier_log_basic(env, t,
2003 				       "meta_left:%u meta_needed:%u",
2004 				       meta_left, meta_needed);
2005 		return -EINVAL;
2006 	}
2007 
2008 	if (btf_type_vlen(t)) {
2009 		btf_verifier_log_type(env, t, "vlen != 0");
2010 		return -EINVAL;
2011 	}
2012 
2013 	if (btf_type_kflag(t)) {
2014 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2015 		return -EINVAL;
2016 	}
2017 
2018 	int_data = btf_type_int(t);
2019 	if (int_data & ~BTF_INT_MASK) {
2020 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2021 				       int_data);
2022 		return -EINVAL;
2023 	}
2024 
2025 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2026 
2027 	if (nr_bits > BITS_PER_U128) {
2028 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2029 				      BITS_PER_U128);
2030 		return -EINVAL;
2031 	}
2032 
2033 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2034 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2035 		return -EINVAL;
2036 	}
2037 
2038 	/*
2039 	 * Only one of the encoding bits is allowed and it
2040 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2041 	 * Multiple bits can be allowed later if it is found
2042 	 * to be insufficient.
2043 	 */
2044 	encoding = BTF_INT_ENCODING(int_data);
2045 	if (encoding &&
2046 	    encoding != BTF_INT_SIGNED &&
2047 	    encoding != BTF_INT_CHAR &&
2048 	    encoding != BTF_INT_BOOL) {
2049 		btf_verifier_log_type(env, t, "Unsupported encoding");
2050 		return -ENOTSUPP;
2051 	}
2052 
2053 	btf_verifier_log_type(env, t, NULL);
2054 
2055 	return meta_needed;
2056 }
2057 
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2058 static void btf_int_log(struct btf_verifier_env *env,
2059 			const struct btf_type *t)
2060 {
2061 	int int_data = btf_type_int(t);
2062 
2063 	btf_verifier_log(env,
2064 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2065 			 t->size, BTF_INT_OFFSET(int_data),
2066 			 BTF_INT_BITS(int_data),
2067 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2068 }
2069 
btf_int128_print(struct btf_show * show,void * data)2070 static void btf_int128_print(struct btf_show *show, void *data)
2071 {
2072 	/* data points to a __int128 number.
2073 	 * Suppose
2074 	 *     int128_num = *(__int128 *)data;
2075 	 * The below formulas shows what upper_num and lower_num represents:
2076 	 *     upper_num = int128_num >> 64;
2077 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2078 	 */
2079 	u64 upper_num, lower_num;
2080 
2081 #ifdef __BIG_ENDIAN_BITFIELD
2082 	upper_num = *(u64 *)data;
2083 	lower_num = *(u64 *)(data + 8);
2084 #else
2085 	upper_num = *(u64 *)(data + 8);
2086 	lower_num = *(u64 *)data;
2087 #endif
2088 	if (upper_num == 0)
2089 		btf_show_type_value(show, "0x%llx", lower_num);
2090 	else
2091 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2092 				     lower_num);
2093 }
2094 
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2095 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2096 			     u16 right_shift_bits)
2097 {
2098 	u64 upper_num, lower_num;
2099 
2100 #ifdef __BIG_ENDIAN_BITFIELD
2101 	upper_num = print_num[0];
2102 	lower_num = print_num[1];
2103 #else
2104 	upper_num = print_num[1];
2105 	lower_num = print_num[0];
2106 #endif
2107 
2108 	/* shake out un-needed bits by shift/or operations */
2109 	if (left_shift_bits >= 64) {
2110 		upper_num = lower_num << (left_shift_bits - 64);
2111 		lower_num = 0;
2112 	} else {
2113 		upper_num = (upper_num << left_shift_bits) |
2114 			    (lower_num >> (64 - left_shift_bits));
2115 		lower_num = lower_num << left_shift_bits;
2116 	}
2117 
2118 	if (right_shift_bits >= 64) {
2119 		lower_num = upper_num >> (right_shift_bits - 64);
2120 		upper_num = 0;
2121 	} else {
2122 		lower_num = (lower_num >> right_shift_bits) |
2123 			    (upper_num << (64 - right_shift_bits));
2124 		upper_num = upper_num >> right_shift_bits;
2125 	}
2126 
2127 #ifdef __BIG_ENDIAN_BITFIELD
2128 	print_num[0] = upper_num;
2129 	print_num[1] = lower_num;
2130 #else
2131 	print_num[0] = lower_num;
2132 	print_num[1] = upper_num;
2133 #endif
2134 }
2135 
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2136 static void btf_bitfield_show(void *data, u8 bits_offset,
2137 			      u8 nr_bits, struct btf_show *show)
2138 {
2139 	u16 left_shift_bits, right_shift_bits;
2140 	u8 nr_copy_bytes;
2141 	u8 nr_copy_bits;
2142 	u64 print_num[2] = {};
2143 
2144 	nr_copy_bits = nr_bits + bits_offset;
2145 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2146 
2147 	memcpy(print_num, data, nr_copy_bytes);
2148 
2149 #ifdef __BIG_ENDIAN_BITFIELD
2150 	left_shift_bits = bits_offset;
2151 #else
2152 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2153 #endif
2154 	right_shift_bits = BITS_PER_U128 - nr_bits;
2155 
2156 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2157 	btf_int128_print(show, print_num);
2158 }
2159 
2160 
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2161 static void btf_int_bits_show(const struct btf *btf,
2162 			      const struct btf_type *t,
2163 			      void *data, u8 bits_offset,
2164 			      struct btf_show *show)
2165 {
2166 	u32 int_data = btf_type_int(t);
2167 	u8 nr_bits = BTF_INT_BITS(int_data);
2168 	u8 total_bits_offset;
2169 
2170 	/*
2171 	 * bits_offset is at most 7.
2172 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2173 	 */
2174 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2175 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2176 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2177 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2178 }
2179 
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2180 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2181 			 u32 type_id, void *data, u8 bits_offset,
2182 			 struct btf_show *show)
2183 {
2184 	u32 int_data = btf_type_int(t);
2185 	u8 encoding = BTF_INT_ENCODING(int_data);
2186 	bool sign = encoding & BTF_INT_SIGNED;
2187 	u8 nr_bits = BTF_INT_BITS(int_data);
2188 	void *safe_data;
2189 
2190 	safe_data = btf_show_start_type(show, t, type_id, data);
2191 	if (!safe_data)
2192 		return;
2193 
2194 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2195 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2196 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2197 		goto out;
2198 	}
2199 
2200 	switch (nr_bits) {
2201 	case 128:
2202 		btf_int128_print(show, safe_data);
2203 		break;
2204 	case 64:
2205 		if (sign)
2206 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2207 		else
2208 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2209 		break;
2210 	case 32:
2211 		if (sign)
2212 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2213 		else
2214 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2215 		break;
2216 	case 16:
2217 		if (sign)
2218 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2219 		else
2220 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2221 		break;
2222 	case 8:
2223 		if (show->state.array_encoding == BTF_INT_CHAR) {
2224 			/* check for null terminator */
2225 			if (show->state.array_terminated)
2226 				break;
2227 			if (*(char *)data == '\0') {
2228 				show->state.array_terminated = 1;
2229 				break;
2230 			}
2231 			if (isprint(*(char *)data)) {
2232 				btf_show_type_value(show, "'%c'",
2233 						    *(char *)safe_data);
2234 				break;
2235 			}
2236 		}
2237 		if (sign)
2238 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2239 		else
2240 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2241 		break;
2242 	default:
2243 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2244 		break;
2245 	}
2246 out:
2247 	btf_show_end_type(show);
2248 }
2249 
2250 static const struct btf_kind_operations int_ops = {
2251 	.check_meta = btf_int_check_meta,
2252 	.resolve = btf_df_resolve,
2253 	.check_member = btf_int_check_member,
2254 	.check_kflag_member = btf_int_check_kflag_member,
2255 	.log_details = btf_int_log,
2256 	.show = btf_int_show,
2257 };
2258 
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2259 static int btf_modifier_check_member(struct btf_verifier_env *env,
2260 				     const struct btf_type *struct_type,
2261 				     const struct btf_member *member,
2262 				     const struct btf_type *member_type)
2263 {
2264 	const struct btf_type *resolved_type;
2265 	u32 resolved_type_id = member->type;
2266 	struct btf_member resolved_member;
2267 	struct btf *btf = env->btf;
2268 
2269 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2270 	if (!resolved_type) {
2271 		btf_verifier_log_member(env, struct_type, member,
2272 					"Invalid member");
2273 		return -EINVAL;
2274 	}
2275 
2276 	resolved_member = *member;
2277 	resolved_member.type = resolved_type_id;
2278 
2279 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2280 							 &resolved_member,
2281 							 resolved_type);
2282 }
2283 
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2284 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2285 					   const struct btf_type *struct_type,
2286 					   const struct btf_member *member,
2287 					   const struct btf_type *member_type)
2288 {
2289 	const struct btf_type *resolved_type;
2290 	u32 resolved_type_id = member->type;
2291 	struct btf_member resolved_member;
2292 	struct btf *btf = env->btf;
2293 
2294 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2295 	if (!resolved_type) {
2296 		btf_verifier_log_member(env, struct_type, member,
2297 					"Invalid member");
2298 		return -EINVAL;
2299 	}
2300 
2301 	resolved_member = *member;
2302 	resolved_member.type = resolved_type_id;
2303 
2304 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2305 							       &resolved_member,
2306 							       resolved_type);
2307 }
2308 
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2309 static int btf_ptr_check_member(struct btf_verifier_env *env,
2310 				const struct btf_type *struct_type,
2311 				const struct btf_member *member,
2312 				const struct btf_type *member_type)
2313 {
2314 	u32 struct_size, struct_bits_off, bytes_offset;
2315 
2316 	struct_size = struct_type->size;
2317 	struct_bits_off = member->offset;
2318 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2319 
2320 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2321 		btf_verifier_log_member(env, struct_type, member,
2322 					"Member is not byte aligned");
2323 		return -EINVAL;
2324 	}
2325 
2326 	if (struct_size - bytes_offset < sizeof(void *)) {
2327 		btf_verifier_log_member(env, struct_type, member,
2328 					"Member exceeds struct_size");
2329 		return -EINVAL;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2335 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2336 				   const struct btf_type *t,
2337 				   u32 meta_left)
2338 {
2339 	if (btf_type_vlen(t)) {
2340 		btf_verifier_log_type(env, t, "vlen != 0");
2341 		return -EINVAL;
2342 	}
2343 
2344 	if (btf_type_kflag(t)) {
2345 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2346 		return -EINVAL;
2347 	}
2348 
2349 	if (!BTF_TYPE_ID_VALID(t->type)) {
2350 		btf_verifier_log_type(env, t, "Invalid type_id");
2351 		return -EINVAL;
2352 	}
2353 
2354 	/* typedef type must have a valid name, and other ref types,
2355 	 * volatile, const, restrict, should have a null name.
2356 	 */
2357 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2358 		if (!t->name_off ||
2359 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2360 			btf_verifier_log_type(env, t, "Invalid name");
2361 			return -EINVAL;
2362 		}
2363 	} else {
2364 		if (t->name_off) {
2365 			btf_verifier_log_type(env, t, "Invalid name");
2366 			return -EINVAL;
2367 		}
2368 	}
2369 
2370 	btf_verifier_log_type(env, t, NULL);
2371 
2372 	return 0;
2373 }
2374 
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2375 static int btf_modifier_resolve(struct btf_verifier_env *env,
2376 				const struct resolve_vertex *v)
2377 {
2378 	const struct btf_type *t = v->t;
2379 	const struct btf_type *next_type;
2380 	u32 next_type_id = t->type;
2381 	struct btf *btf = env->btf;
2382 
2383 	next_type = btf_type_by_id(btf, next_type_id);
2384 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2385 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2386 		return -EINVAL;
2387 	}
2388 
2389 	if (!env_type_is_resolve_sink(env, next_type) &&
2390 	    !env_type_is_resolved(env, next_type_id))
2391 		return env_stack_push(env, next_type, next_type_id);
2392 
2393 	/* Figure out the resolved next_type_id with size.
2394 	 * They will be stored in the current modifier's
2395 	 * resolved_ids and resolved_sizes such that it can
2396 	 * save us a few type-following when we use it later (e.g. in
2397 	 * pretty print).
2398 	 */
2399 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2400 		if (env_type_is_resolved(env, next_type_id))
2401 			next_type = btf_type_id_resolve(btf, &next_type_id);
2402 
2403 		/* "typedef void new_void", "const void"...etc */
2404 		if (!btf_type_is_void(next_type) &&
2405 		    !btf_type_is_fwd(next_type) &&
2406 		    !btf_type_is_func_proto(next_type)) {
2407 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2408 			return -EINVAL;
2409 		}
2410 	}
2411 
2412 	env_stack_pop_resolved(env, next_type_id, 0);
2413 
2414 	return 0;
2415 }
2416 
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2417 static int btf_var_resolve(struct btf_verifier_env *env,
2418 			   const struct resolve_vertex *v)
2419 {
2420 	const struct btf_type *next_type;
2421 	const struct btf_type *t = v->t;
2422 	u32 next_type_id = t->type;
2423 	struct btf *btf = env->btf;
2424 
2425 	next_type = btf_type_by_id(btf, next_type_id);
2426 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2427 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2428 		return -EINVAL;
2429 	}
2430 
2431 	if (!env_type_is_resolve_sink(env, next_type) &&
2432 	    !env_type_is_resolved(env, next_type_id))
2433 		return env_stack_push(env, next_type, next_type_id);
2434 
2435 	if (btf_type_is_modifier(next_type)) {
2436 		const struct btf_type *resolved_type;
2437 		u32 resolved_type_id;
2438 
2439 		resolved_type_id = next_type_id;
2440 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2441 
2442 		if (btf_type_is_ptr(resolved_type) &&
2443 		    !env_type_is_resolve_sink(env, resolved_type) &&
2444 		    !env_type_is_resolved(env, resolved_type_id))
2445 			return env_stack_push(env, resolved_type,
2446 					      resolved_type_id);
2447 	}
2448 
2449 	/* We must resolve to something concrete at this point, no
2450 	 * forward types or similar that would resolve to size of
2451 	 * zero is allowed.
2452 	 */
2453 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2454 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2455 		return -EINVAL;
2456 	}
2457 
2458 	env_stack_pop_resolved(env, next_type_id, 0);
2459 
2460 	return 0;
2461 }
2462 
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2463 static int btf_ptr_resolve(struct btf_verifier_env *env,
2464 			   const struct resolve_vertex *v)
2465 {
2466 	const struct btf_type *next_type;
2467 	const struct btf_type *t = v->t;
2468 	u32 next_type_id = t->type;
2469 	struct btf *btf = env->btf;
2470 
2471 	next_type = btf_type_by_id(btf, next_type_id);
2472 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2473 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2474 		return -EINVAL;
2475 	}
2476 
2477 	if (!env_type_is_resolve_sink(env, next_type) &&
2478 	    !env_type_is_resolved(env, next_type_id))
2479 		return env_stack_push(env, next_type, next_type_id);
2480 
2481 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2482 	 * the modifier may have stopped resolving when it was resolved
2483 	 * to a ptr (last-resolved-ptr).
2484 	 *
2485 	 * We now need to continue from the last-resolved-ptr to
2486 	 * ensure the last-resolved-ptr will not referring back to
2487 	 * the currenct ptr (t).
2488 	 */
2489 	if (btf_type_is_modifier(next_type)) {
2490 		const struct btf_type *resolved_type;
2491 		u32 resolved_type_id;
2492 
2493 		resolved_type_id = next_type_id;
2494 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2495 
2496 		if (btf_type_is_ptr(resolved_type) &&
2497 		    !env_type_is_resolve_sink(env, resolved_type) &&
2498 		    !env_type_is_resolved(env, resolved_type_id))
2499 			return env_stack_push(env, resolved_type,
2500 					      resolved_type_id);
2501 	}
2502 
2503 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2504 		if (env_type_is_resolved(env, next_type_id))
2505 			next_type = btf_type_id_resolve(btf, &next_type_id);
2506 
2507 		if (!btf_type_is_void(next_type) &&
2508 		    !btf_type_is_fwd(next_type) &&
2509 		    !btf_type_is_func_proto(next_type)) {
2510 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2511 			return -EINVAL;
2512 		}
2513 	}
2514 
2515 	env_stack_pop_resolved(env, next_type_id, 0);
2516 
2517 	return 0;
2518 }
2519 
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2520 static void btf_modifier_show(const struct btf *btf,
2521 			      const struct btf_type *t,
2522 			      u32 type_id, void *data,
2523 			      u8 bits_offset, struct btf_show *show)
2524 {
2525 	if (btf->resolved_ids)
2526 		t = btf_type_id_resolve(btf, &type_id);
2527 	else
2528 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2529 
2530 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2531 }
2532 
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2533 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2534 			 u32 type_id, void *data, u8 bits_offset,
2535 			 struct btf_show *show)
2536 {
2537 	t = btf_type_id_resolve(btf, &type_id);
2538 
2539 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2540 }
2541 
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2542 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2543 			 u32 type_id, void *data, u8 bits_offset,
2544 			 struct btf_show *show)
2545 {
2546 	void *safe_data;
2547 
2548 	safe_data = btf_show_start_type(show, t, type_id, data);
2549 	if (!safe_data)
2550 		return;
2551 
2552 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2553 	if (show->flags & BTF_SHOW_PTR_RAW)
2554 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2555 	else
2556 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2557 	btf_show_end_type(show);
2558 }
2559 
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2560 static void btf_ref_type_log(struct btf_verifier_env *env,
2561 			     const struct btf_type *t)
2562 {
2563 	btf_verifier_log(env, "type_id=%u", t->type);
2564 }
2565 
2566 static struct btf_kind_operations modifier_ops = {
2567 	.check_meta = btf_ref_type_check_meta,
2568 	.resolve = btf_modifier_resolve,
2569 	.check_member = btf_modifier_check_member,
2570 	.check_kflag_member = btf_modifier_check_kflag_member,
2571 	.log_details = btf_ref_type_log,
2572 	.show = btf_modifier_show,
2573 };
2574 
2575 static struct btf_kind_operations ptr_ops = {
2576 	.check_meta = btf_ref_type_check_meta,
2577 	.resolve = btf_ptr_resolve,
2578 	.check_member = btf_ptr_check_member,
2579 	.check_kflag_member = btf_generic_check_kflag_member,
2580 	.log_details = btf_ref_type_log,
2581 	.show = btf_ptr_show,
2582 };
2583 
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2584 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2585 			      const struct btf_type *t,
2586 			      u32 meta_left)
2587 {
2588 	if (btf_type_vlen(t)) {
2589 		btf_verifier_log_type(env, t, "vlen != 0");
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (t->type) {
2594 		btf_verifier_log_type(env, t, "type != 0");
2595 		return -EINVAL;
2596 	}
2597 
2598 	/* fwd type must have a valid name */
2599 	if (!t->name_off ||
2600 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2601 		btf_verifier_log_type(env, t, "Invalid name");
2602 		return -EINVAL;
2603 	}
2604 
2605 	btf_verifier_log_type(env, t, NULL);
2606 
2607 	return 0;
2608 }
2609 
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2610 static void btf_fwd_type_log(struct btf_verifier_env *env,
2611 			     const struct btf_type *t)
2612 {
2613 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2614 }
2615 
2616 static struct btf_kind_operations fwd_ops = {
2617 	.check_meta = btf_fwd_check_meta,
2618 	.resolve = btf_df_resolve,
2619 	.check_member = btf_df_check_member,
2620 	.check_kflag_member = btf_df_check_kflag_member,
2621 	.log_details = btf_fwd_type_log,
2622 	.show = btf_df_show,
2623 };
2624 
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2625 static int btf_array_check_member(struct btf_verifier_env *env,
2626 				  const struct btf_type *struct_type,
2627 				  const struct btf_member *member,
2628 				  const struct btf_type *member_type)
2629 {
2630 	u32 struct_bits_off = member->offset;
2631 	u32 struct_size, bytes_offset;
2632 	u32 array_type_id, array_size;
2633 	struct btf *btf = env->btf;
2634 
2635 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2636 		btf_verifier_log_member(env, struct_type, member,
2637 					"Member is not byte aligned");
2638 		return -EINVAL;
2639 	}
2640 
2641 	array_type_id = member->type;
2642 	btf_type_id_size(btf, &array_type_id, &array_size);
2643 	struct_size = struct_type->size;
2644 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2645 	if (struct_size - bytes_offset < array_size) {
2646 		btf_verifier_log_member(env, struct_type, member,
2647 					"Member exceeds struct_size");
2648 		return -EINVAL;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2654 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2655 				const struct btf_type *t,
2656 				u32 meta_left)
2657 {
2658 	const struct btf_array *array = btf_type_array(t);
2659 	u32 meta_needed = sizeof(*array);
2660 
2661 	if (meta_left < meta_needed) {
2662 		btf_verifier_log_basic(env, t,
2663 				       "meta_left:%u meta_needed:%u",
2664 				       meta_left, meta_needed);
2665 		return -EINVAL;
2666 	}
2667 
2668 	/* array type should not have a name */
2669 	if (t->name_off) {
2670 		btf_verifier_log_type(env, t, "Invalid name");
2671 		return -EINVAL;
2672 	}
2673 
2674 	if (btf_type_vlen(t)) {
2675 		btf_verifier_log_type(env, t, "vlen != 0");
2676 		return -EINVAL;
2677 	}
2678 
2679 	if (btf_type_kflag(t)) {
2680 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2681 		return -EINVAL;
2682 	}
2683 
2684 	if (t->size) {
2685 		btf_verifier_log_type(env, t, "size != 0");
2686 		return -EINVAL;
2687 	}
2688 
2689 	/* Array elem type and index type cannot be in type void,
2690 	 * so !array->type and !array->index_type are not allowed.
2691 	 */
2692 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2693 		btf_verifier_log_type(env, t, "Invalid elem");
2694 		return -EINVAL;
2695 	}
2696 
2697 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2698 		btf_verifier_log_type(env, t, "Invalid index");
2699 		return -EINVAL;
2700 	}
2701 
2702 	btf_verifier_log_type(env, t, NULL);
2703 
2704 	return meta_needed;
2705 }
2706 
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2707 static int btf_array_resolve(struct btf_verifier_env *env,
2708 			     const struct resolve_vertex *v)
2709 {
2710 	const struct btf_array *array = btf_type_array(v->t);
2711 	const struct btf_type *elem_type, *index_type;
2712 	u32 elem_type_id, index_type_id;
2713 	struct btf *btf = env->btf;
2714 	u32 elem_size;
2715 
2716 	/* Check array->index_type */
2717 	index_type_id = array->index_type;
2718 	index_type = btf_type_by_id(btf, index_type_id);
2719 	if (btf_type_nosize_or_null(index_type) ||
2720 	    btf_type_is_resolve_source_only(index_type)) {
2721 		btf_verifier_log_type(env, v->t, "Invalid index");
2722 		return -EINVAL;
2723 	}
2724 
2725 	if (!env_type_is_resolve_sink(env, index_type) &&
2726 	    !env_type_is_resolved(env, index_type_id))
2727 		return env_stack_push(env, index_type, index_type_id);
2728 
2729 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2730 	if (!index_type || !btf_type_is_int(index_type) ||
2731 	    !btf_type_int_is_regular(index_type)) {
2732 		btf_verifier_log_type(env, v->t, "Invalid index");
2733 		return -EINVAL;
2734 	}
2735 
2736 	/* Check array->type */
2737 	elem_type_id = array->type;
2738 	elem_type = btf_type_by_id(btf, elem_type_id);
2739 	if (btf_type_nosize_or_null(elem_type) ||
2740 	    btf_type_is_resolve_source_only(elem_type)) {
2741 		btf_verifier_log_type(env, v->t,
2742 				      "Invalid elem");
2743 		return -EINVAL;
2744 	}
2745 
2746 	if (!env_type_is_resolve_sink(env, elem_type) &&
2747 	    !env_type_is_resolved(env, elem_type_id))
2748 		return env_stack_push(env, elem_type, elem_type_id);
2749 
2750 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2751 	if (!elem_type) {
2752 		btf_verifier_log_type(env, v->t, "Invalid elem");
2753 		return -EINVAL;
2754 	}
2755 
2756 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2757 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2758 		return -EINVAL;
2759 	}
2760 
2761 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2762 		btf_verifier_log_type(env, v->t,
2763 				      "Array size overflows U32_MAX");
2764 		return -EINVAL;
2765 	}
2766 
2767 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2768 
2769 	return 0;
2770 }
2771 
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)2772 static void btf_array_log(struct btf_verifier_env *env,
2773 			  const struct btf_type *t)
2774 {
2775 	const struct btf_array *array = btf_type_array(t);
2776 
2777 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2778 			 array->type, array->index_type, array->nelems);
2779 }
2780 
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2781 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2782 			     u32 type_id, void *data, u8 bits_offset,
2783 			     struct btf_show *show)
2784 {
2785 	const struct btf_array *array = btf_type_array(t);
2786 	const struct btf_kind_operations *elem_ops;
2787 	const struct btf_type *elem_type;
2788 	u32 i, elem_size = 0, elem_type_id;
2789 	u16 encoding = 0;
2790 
2791 	elem_type_id = array->type;
2792 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2793 	if (elem_type && btf_type_has_size(elem_type))
2794 		elem_size = elem_type->size;
2795 
2796 	if (elem_type && btf_type_is_int(elem_type)) {
2797 		u32 int_type = btf_type_int(elem_type);
2798 
2799 		encoding = BTF_INT_ENCODING(int_type);
2800 
2801 		/*
2802 		 * BTF_INT_CHAR encoding never seems to be set for
2803 		 * char arrays, so if size is 1 and element is
2804 		 * printable as a char, we'll do that.
2805 		 */
2806 		if (elem_size == 1)
2807 			encoding = BTF_INT_CHAR;
2808 	}
2809 
2810 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2811 		return;
2812 
2813 	if (!elem_type)
2814 		goto out;
2815 	elem_ops = btf_type_ops(elem_type);
2816 
2817 	for (i = 0; i < array->nelems; i++) {
2818 
2819 		btf_show_start_array_member(show);
2820 
2821 		elem_ops->show(btf, elem_type, elem_type_id, data,
2822 			       bits_offset, show);
2823 		data += elem_size;
2824 
2825 		btf_show_end_array_member(show);
2826 
2827 		if (show->state.array_terminated)
2828 			break;
2829 	}
2830 out:
2831 	btf_show_end_array_type(show);
2832 }
2833 
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2834 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2835 			   u32 type_id, void *data, u8 bits_offset,
2836 			   struct btf_show *show)
2837 {
2838 	const struct btf_member *m = show->state.member;
2839 
2840 	/*
2841 	 * First check if any members would be shown (are non-zero).
2842 	 * See comments above "struct btf_show" definition for more
2843 	 * details on how this works at a high-level.
2844 	 */
2845 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2846 		if (!show->state.depth_check) {
2847 			show->state.depth_check = show->state.depth + 1;
2848 			show->state.depth_to_show = 0;
2849 		}
2850 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2851 		show->state.member = m;
2852 
2853 		if (show->state.depth_check != show->state.depth + 1)
2854 			return;
2855 		show->state.depth_check = 0;
2856 
2857 		if (show->state.depth_to_show <= show->state.depth)
2858 			return;
2859 		/*
2860 		 * Reaching here indicates we have recursed and found
2861 		 * non-zero array member(s).
2862 		 */
2863 	}
2864 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2865 }
2866 
2867 static struct btf_kind_operations array_ops = {
2868 	.check_meta = btf_array_check_meta,
2869 	.resolve = btf_array_resolve,
2870 	.check_member = btf_array_check_member,
2871 	.check_kflag_member = btf_generic_check_kflag_member,
2872 	.log_details = btf_array_log,
2873 	.show = btf_array_show,
2874 };
2875 
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2876 static int btf_struct_check_member(struct btf_verifier_env *env,
2877 				   const struct btf_type *struct_type,
2878 				   const struct btf_member *member,
2879 				   const struct btf_type *member_type)
2880 {
2881 	u32 struct_bits_off = member->offset;
2882 	u32 struct_size, bytes_offset;
2883 
2884 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2885 		btf_verifier_log_member(env, struct_type, member,
2886 					"Member is not byte aligned");
2887 		return -EINVAL;
2888 	}
2889 
2890 	struct_size = struct_type->size;
2891 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2892 	if (struct_size - bytes_offset < member_type->size) {
2893 		btf_verifier_log_member(env, struct_type, member,
2894 					"Member exceeds struct_size");
2895 		return -EINVAL;
2896 	}
2897 
2898 	return 0;
2899 }
2900 
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2901 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2902 				 const struct btf_type *t,
2903 				 u32 meta_left)
2904 {
2905 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2906 	const struct btf_member *member;
2907 	u32 meta_needed, last_offset;
2908 	struct btf *btf = env->btf;
2909 	u32 struct_size = t->size;
2910 	u32 offset;
2911 	u16 i;
2912 
2913 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2914 	if (meta_left < meta_needed) {
2915 		btf_verifier_log_basic(env, t,
2916 				       "meta_left:%u meta_needed:%u",
2917 				       meta_left, meta_needed);
2918 		return -EINVAL;
2919 	}
2920 
2921 	/* struct type either no name or a valid one */
2922 	if (t->name_off &&
2923 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2924 		btf_verifier_log_type(env, t, "Invalid name");
2925 		return -EINVAL;
2926 	}
2927 
2928 	btf_verifier_log_type(env, t, NULL);
2929 
2930 	last_offset = 0;
2931 	for_each_member(i, t, member) {
2932 		if (!btf_name_offset_valid(btf, member->name_off)) {
2933 			btf_verifier_log_member(env, t, member,
2934 						"Invalid member name_offset:%u",
2935 						member->name_off);
2936 			return -EINVAL;
2937 		}
2938 
2939 		/* struct member either no name or a valid one */
2940 		if (member->name_off &&
2941 		    !btf_name_valid_identifier(btf, member->name_off)) {
2942 			btf_verifier_log_member(env, t, member, "Invalid name");
2943 			return -EINVAL;
2944 		}
2945 		/* A member cannot be in type void */
2946 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2947 			btf_verifier_log_member(env, t, member,
2948 						"Invalid type_id");
2949 			return -EINVAL;
2950 		}
2951 
2952 		offset = btf_member_bit_offset(t, member);
2953 		if (is_union && offset) {
2954 			btf_verifier_log_member(env, t, member,
2955 						"Invalid member bits_offset");
2956 			return -EINVAL;
2957 		}
2958 
2959 		/*
2960 		 * ">" instead of ">=" because the last member could be
2961 		 * "char a[0];"
2962 		 */
2963 		if (last_offset > offset) {
2964 			btf_verifier_log_member(env, t, member,
2965 						"Invalid member bits_offset");
2966 			return -EINVAL;
2967 		}
2968 
2969 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2970 			btf_verifier_log_member(env, t, member,
2971 						"Member bits_offset exceeds its struct size");
2972 			return -EINVAL;
2973 		}
2974 
2975 		btf_verifier_log_member(env, t, member, NULL);
2976 		last_offset = offset;
2977 	}
2978 
2979 	return meta_needed;
2980 }
2981 
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2982 static int btf_struct_resolve(struct btf_verifier_env *env,
2983 			      const struct resolve_vertex *v)
2984 {
2985 	const struct btf_member *member;
2986 	int err;
2987 	u16 i;
2988 
2989 	/* Before continue resolving the next_member,
2990 	 * ensure the last member is indeed resolved to a
2991 	 * type with size info.
2992 	 */
2993 	if (v->next_member) {
2994 		const struct btf_type *last_member_type;
2995 		const struct btf_member *last_member;
2996 		u32 last_member_type_id;
2997 
2998 		last_member = btf_type_member(v->t) + v->next_member - 1;
2999 		last_member_type_id = last_member->type;
3000 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3001 						       last_member_type_id)))
3002 			return -EINVAL;
3003 
3004 		last_member_type = btf_type_by_id(env->btf,
3005 						  last_member_type_id);
3006 		if (btf_type_kflag(v->t))
3007 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3008 								last_member,
3009 								last_member_type);
3010 		else
3011 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3012 								last_member,
3013 								last_member_type);
3014 		if (err)
3015 			return err;
3016 	}
3017 
3018 	for_each_member_from(i, v->next_member, v->t, member) {
3019 		u32 member_type_id = member->type;
3020 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3021 								member_type_id);
3022 
3023 		if (btf_type_nosize_or_null(member_type) ||
3024 		    btf_type_is_resolve_source_only(member_type)) {
3025 			btf_verifier_log_member(env, v->t, member,
3026 						"Invalid member");
3027 			return -EINVAL;
3028 		}
3029 
3030 		if (!env_type_is_resolve_sink(env, member_type) &&
3031 		    !env_type_is_resolved(env, member_type_id)) {
3032 			env_stack_set_next_member(env, i + 1);
3033 			return env_stack_push(env, member_type, member_type_id);
3034 		}
3035 
3036 		if (btf_type_kflag(v->t))
3037 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3038 									    member,
3039 									    member_type);
3040 		else
3041 			err = btf_type_ops(member_type)->check_member(env, v->t,
3042 								      member,
3043 								      member_type);
3044 		if (err)
3045 			return err;
3046 	}
3047 
3048 	env_stack_pop_resolved(env, 0, 0);
3049 
3050 	return 0;
3051 }
3052 
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3053 static void btf_struct_log(struct btf_verifier_env *env,
3054 			   const struct btf_type *t)
3055 {
3056 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3057 }
3058 
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,const char * name,int sz,int align)3059 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3060 				 const char *name, int sz, int align)
3061 {
3062 	const struct btf_member *member;
3063 	u32 i, off = -ENOENT;
3064 
3065 	for_each_member(i, t, member) {
3066 		const struct btf_type *member_type = btf_type_by_id(btf,
3067 								    member->type);
3068 		if (!__btf_type_is_struct(member_type))
3069 			continue;
3070 		if (member_type->size != sz)
3071 			continue;
3072 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3073 			continue;
3074 		if (off != -ENOENT)
3075 			/* only one such field is allowed */
3076 			return -E2BIG;
3077 		off = btf_member_bit_offset(t, member);
3078 		if (off % 8)
3079 			/* valid C code cannot generate such BTF */
3080 			return -EINVAL;
3081 		off /= 8;
3082 		if (off % align)
3083 			return -EINVAL;
3084 	}
3085 	return off;
3086 }
3087 
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,const char * name,int sz,int align)3088 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3089 				const char *name, int sz, int align)
3090 {
3091 	const struct btf_var_secinfo *vsi;
3092 	u32 i, off = -ENOENT;
3093 
3094 	for_each_vsi(i, t, vsi) {
3095 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3096 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3097 
3098 		if (!__btf_type_is_struct(var_type))
3099 			continue;
3100 		if (var_type->size != sz)
3101 			continue;
3102 		if (vsi->size != sz)
3103 			continue;
3104 		if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3105 			continue;
3106 		if (off != -ENOENT)
3107 			/* only one such field is allowed */
3108 			return -E2BIG;
3109 		off = vsi->offset;
3110 		if (off % align)
3111 			return -EINVAL;
3112 	}
3113 	return off;
3114 }
3115 
btf_find_field(const struct btf * btf,const struct btf_type * t,const char * name,int sz,int align)3116 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3117 			  const char *name, int sz, int align)
3118 {
3119 
3120 	if (__btf_type_is_struct(t))
3121 		return btf_find_struct_field(btf, t, name, sz, align);
3122 	else if (btf_type_is_datasec(t))
3123 		return btf_find_datasec_var(btf, t, name, sz, align);
3124 	return -EINVAL;
3125 }
3126 
3127 /* find 'struct bpf_spin_lock' in map value.
3128  * return >= 0 offset if found
3129  * and < 0 in case of error
3130  */
btf_find_spin_lock(const struct btf * btf,const struct btf_type * t)3131 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3132 {
3133 	return btf_find_field(btf, t, "bpf_spin_lock",
3134 			      sizeof(struct bpf_spin_lock),
3135 			      __alignof__(struct bpf_spin_lock));
3136 }
3137 
btf_find_timer(const struct btf * btf,const struct btf_type * t)3138 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3139 {
3140 	return btf_find_field(btf, t, "bpf_timer",
3141 			      sizeof(struct bpf_timer),
3142 			      __alignof__(struct bpf_timer));
3143 }
3144 
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3145 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3146 			      u32 type_id, void *data, u8 bits_offset,
3147 			      struct btf_show *show)
3148 {
3149 	const struct btf_member *member;
3150 	void *safe_data;
3151 	u32 i;
3152 
3153 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3154 	if (!safe_data)
3155 		return;
3156 
3157 	for_each_member(i, t, member) {
3158 		const struct btf_type *member_type = btf_type_by_id(btf,
3159 								member->type);
3160 		const struct btf_kind_operations *ops;
3161 		u32 member_offset, bitfield_size;
3162 		u32 bytes_offset;
3163 		u8 bits8_offset;
3164 
3165 		btf_show_start_member(show, member);
3166 
3167 		member_offset = btf_member_bit_offset(t, member);
3168 		bitfield_size = btf_member_bitfield_size(t, member);
3169 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3170 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3171 		if (bitfield_size) {
3172 			safe_data = btf_show_start_type(show, member_type,
3173 							member->type,
3174 							data + bytes_offset);
3175 			if (safe_data)
3176 				btf_bitfield_show(safe_data,
3177 						  bits8_offset,
3178 						  bitfield_size, show);
3179 			btf_show_end_type(show);
3180 		} else {
3181 			ops = btf_type_ops(member_type);
3182 			ops->show(btf, member_type, member->type,
3183 				  data + bytes_offset, bits8_offset, show);
3184 		}
3185 
3186 		btf_show_end_member(show);
3187 	}
3188 
3189 	btf_show_end_struct_type(show);
3190 }
3191 
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3192 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3193 			    u32 type_id, void *data, u8 bits_offset,
3194 			    struct btf_show *show)
3195 {
3196 	const struct btf_member *m = show->state.member;
3197 
3198 	/*
3199 	 * First check if any members would be shown (are non-zero).
3200 	 * See comments above "struct btf_show" definition for more
3201 	 * details on how this works at a high-level.
3202 	 */
3203 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3204 		if (!show->state.depth_check) {
3205 			show->state.depth_check = show->state.depth + 1;
3206 			show->state.depth_to_show = 0;
3207 		}
3208 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3209 		/* Restore saved member data here */
3210 		show->state.member = m;
3211 		if (show->state.depth_check != show->state.depth + 1)
3212 			return;
3213 		show->state.depth_check = 0;
3214 
3215 		if (show->state.depth_to_show <= show->state.depth)
3216 			return;
3217 		/*
3218 		 * Reaching here indicates we have recursed and found
3219 		 * non-zero child values.
3220 		 */
3221 	}
3222 
3223 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3224 }
3225 
3226 static struct btf_kind_operations struct_ops = {
3227 	.check_meta = btf_struct_check_meta,
3228 	.resolve = btf_struct_resolve,
3229 	.check_member = btf_struct_check_member,
3230 	.check_kflag_member = btf_generic_check_kflag_member,
3231 	.log_details = btf_struct_log,
3232 	.show = btf_struct_show,
3233 };
3234 
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3235 static int btf_enum_check_member(struct btf_verifier_env *env,
3236 				 const struct btf_type *struct_type,
3237 				 const struct btf_member *member,
3238 				 const struct btf_type *member_type)
3239 {
3240 	u32 struct_bits_off = member->offset;
3241 	u32 struct_size, bytes_offset;
3242 
3243 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3244 		btf_verifier_log_member(env, struct_type, member,
3245 					"Member is not byte aligned");
3246 		return -EINVAL;
3247 	}
3248 
3249 	struct_size = struct_type->size;
3250 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3251 	if (struct_size - bytes_offset < member_type->size) {
3252 		btf_verifier_log_member(env, struct_type, member,
3253 					"Member exceeds struct_size");
3254 		return -EINVAL;
3255 	}
3256 
3257 	return 0;
3258 }
3259 
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3260 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3261 				       const struct btf_type *struct_type,
3262 				       const struct btf_member *member,
3263 				       const struct btf_type *member_type)
3264 {
3265 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3266 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3267 
3268 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3269 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3270 	if (!nr_bits) {
3271 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3272 			btf_verifier_log_member(env, struct_type, member,
3273 						"Member is not byte aligned");
3274 			return -EINVAL;
3275 		}
3276 
3277 		nr_bits = int_bitsize;
3278 	} else if (nr_bits > int_bitsize) {
3279 		btf_verifier_log_member(env, struct_type, member,
3280 					"Invalid member bitfield_size");
3281 		return -EINVAL;
3282 	}
3283 
3284 	struct_size = struct_type->size;
3285 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3286 	if (struct_size < bytes_end) {
3287 		btf_verifier_log_member(env, struct_type, member,
3288 					"Member exceeds struct_size");
3289 		return -EINVAL;
3290 	}
3291 
3292 	return 0;
3293 }
3294 
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3295 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3296 			       const struct btf_type *t,
3297 			       u32 meta_left)
3298 {
3299 	const struct btf_enum *enums = btf_type_enum(t);
3300 	struct btf *btf = env->btf;
3301 	u16 i, nr_enums;
3302 	u32 meta_needed;
3303 
3304 	nr_enums = btf_type_vlen(t);
3305 	meta_needed = nr_enums * sizeof(*enums);
3306 
3307 	if (meta_left < meta_needed) {
3308 		btf_verifier_log_basic(env, t,
3309 				       "meta_left:%u meta_needed:%u",
3310 				       meta_left, meta_needed);
3311 		return -EINVAL;
3312 	}
3313 
3314 	if (btf_type_kflag(t)) {
3315 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3316 		return -EINVAL;
3317 	}
3318 
3319 	if (t->size > 8 || !is_power_of_2(t->size)) {
3320 		btf_verifier_log_type(env, t, "Unexpected size");
3321 		return -EINVAL;
3322 	}
3323 
3324 	/* enum type either no name or a valid one */
3325 	if (t->name_off &&
3326 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3327 		btf_verifier_log_type(env, t, "Invalid name");
3328 		return -EINVAL;
3329 	}
3330 
3331 	btf_verifier_log_type(env, t, NULL);
3332 
3333 	for (i = 0; i < nr_enums; i++) {
3334 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3335 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3336 					 enums[i].name_off);
3337 			return -EINVAL;
3338 		}
3339 
3340 		/* enum member must have a valid name */
3341 		if (!enums[i].name_off ||
3342 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3343 			btf_verifier_log_type(env, t, "Invalid name");
3344 			return -EINVAL;
3345 		}
3346 
3347 		if (env->log.level == BPF_LOG_KERNEL)
3348 			continue;
3349 		btf_verifier_log(env, "\t%s val=%d\n",
3350 				 __btf_name_by_offset(btf, enums[i].name_off),
3351 				 enums[i].val);
3352 	}
3353 
3354 	return meta_needed;
3355 }
3356 
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)3357 static void btf_enum_log(struct btf_verifier_env *env,
3358 			 const struct btf_type *t)
3359 {
3360 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3361 }
3362 
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3363 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3364 			  u32 type_id, void *data, u8 bits_offset,
3365 			  struct btf_show *show)
3366 {
3367 	const struct btf_enum *enums = btf_type_enum(t);
3368 	u32 i, nr_enums = btf_type_vlen(t);
3369 	void *safe_data;
3370 	int v;
3371 
3372 	safe_data = btf_show_start_type(show, t, type_id, data);
3373 	if (!safe_data)
3374 		return;
3375 
3376 	v = *(int *)safe_data;
3377 
3378 	for (i = 0; i < nr_enums; i++) {
3379 		if (v != enums[i].val)
3380 			continue;
3381 
3382 		btf_show_type_value(show, "%s",
3383 				    __btf_name_by_offset(btf,
3384 							 enums[i].name_off));
3385 
3386 		btf_show_end_type(show);
3387 		return;
3388 	}
3389 
3390 	btf_show_type_value(show, "%d", v);
3391 	btf_show_end_type(show);
3392 }
3393 
3394 static struct btf_kind_operations enum_ops = {
3395 	.check_meta = btf_enum_check_meta,
3396 	.resolve = btf_df_resolve,
3397 	.check_member = btf_enum_check_member,
3398 	.check_kflag_member = btf_enum_check_kflag_member,
3399 	.log_details = btf_enum_log,
3400 	.show = btf_enum_show,
3401 };
3402 
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3403 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3404 				     const struct btf_type *t,
3405 				     u32 meta_left)
3406 {
3407 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3408 
3409 	if (meta_left < meta_needed) {
3410 		btf_verifier_log_basic(env, t,
3411 				       "meta_left:%u meta_needed:%u",
3412 				       meta_left, meta_needed);
3413 		return -EINVAL;
3414 	}
3415 
3416 	if (t->name_off) {
3417 		btf_verifier_log_type(env, t, "Invalid name");
3418 		return -EINVAL;
3419 	}
3420 
3421 	if (btf_type_kflag(t)) {
3422 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3423 		return -EINVAL;
3424 	}
3425 
3426 	btf_verifier_log_type(env, t, NULL);
3427 
3428 	return meta_needed;
3429 }
3430 
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)3431 static void btf_func_proto_log(struct btf_verifier_env *env,
3432 			       const struct btf_type *t)
3433 {
3434 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3435 	u16 nr_args = btf_type_vlen(t), i;
3436 
3437 	btf_verifier_log(env, "return=%u args=(", t->type);
3438 	if (!nr_args) {
3439 		btf_verifier_log(env, "void");
3440 		goto done;
3441 	}
3442 
3443 	if (nr_args == 1 && !args[0].type) {
3444 		/* Only one vararg */
3445 		btf_verifier_log(env, "vararg");
3446 		goto done;
3447 	}
3448 
3449 	btf_verifier_log(env, "%u %s", args[0].type,
3450 			 __btf_name_by_offset(env->btf,
3451 					      args[0].name_off));
3452 	for (i = 1; i < nr_args - 1; i++)
3453 		btf_verifier_log(env, ", %u %s", args[i].type,
3454 				 __btf_name_by_offset(env->btf,
3455 						      args[i].name_off));
3456 
3457 	if (nr_args > 1) {
3458 		const struct btf_param *last_arg = &args[nr_args - 1];
3459 
3460 		if (last_arg->type)
3461 			btf_verifier_log(env, ", %u %s", last_arg->type,
3462 					 __btf_name_by_offset(env->btf,
3463 							      last_arg->name_off));
3464 		else
3465 			btf_verifier_log(env, ", vararg");
3466 	}
3467 
3468 done:
3469 	btf_verifier_log(env, ")");
3470 }
3471 
3472 static struct btf_kind_operations func_proto_ops = {
3473 	.check_meta = btf_func_proto_check_meta,
3474 	.resolve = btf_df_resolve,
3475 	/*
3476 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3477 	 * a struct's member.
3478 	 *
3479 	 * It should be a function pointer instead.
3480 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3481 	 *
3482 	 * Hence, there is no btf_func_check_member().
3483 	 */
3484 	.check_member = btf_df_check_member,
3485 	.check_kflag_member = btf_df_check_kflag_member,
3486 	.log_details = btf_func_proto_log,
3487 	.show = btf_df_show,
3488 };
3489 
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3490 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3491 			       const struct btf_type *t,
3492 			       u32 meta_left)
3493 {
3494 	if (!t->name_off ||
3495 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3496 		btf_verifier_log_type(env, t, "Invalid name");
3497 		return -EINVAL;
3498 	}
3499 
3500 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3501 		btf_verifier_log_type(env, t, "Invalid func linkage");
3502 		return -EINVAL;
3503 	}
3504 
3505 	if (btf_type_kflag(t)) {
3506 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3507 		return -EINVAL;
3508 	}
3509 
3510 	btf_verifier_log_type(env, t, NULL);
3511 
3512 	return 0;
3513 }
3514 
3515 static struct btf_kind_operations func_ops = {
3516 	.check_meta = btf_func_check_meta,
3517 	.resolve = btf_df_resolve,
3518 	.check_member = btf_df_check_member,
3519 	.check_kflag_member = btf_df_check_kflag_member,
3520 	.log_details = btf_ref_type_log,
3521 	.show = btf_df_show,
3522 };
3523 
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3524 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3525 			      const struct btf_type *t,
3526 			      u32 meta_left)
3527 {
3528 	const struct btf_var *var;
3529 	u32 meta_needed = sizeof(*var);
3530 
3531 	if (meta_left < meta_needed) {
3532 		btf_verifier_log_basic(env, t,
3533 				       "meta_left:%u meta_needed:%u",
3534 				       meta_left, meta_needed);
3535 		return -EINVAL;
3536 	}
3537 
3538 	if (btf_type_vlen(t)) {
3539 		btf_verifier_log_type(env, t, "vlen != 0");
3540 		return -EINVAL;
3541 	}
3542 
3543 	if (btf_type_kflag(t)) {
3544 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3545 		return -EINVAL;
3546 	}
3547 
3548 	if (!t->name_off ||
3549 	    !__btf_name_valid(env->btf, t->name_off)) {
3550 		btf_verifier_log_type(env, t, "Invalid name");
3551 		return -EINVAL;
3552 	}
3553 
3554 	/* A var cannot be in type void */
3555 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3556 		btf_verifier_log_type(env, t, "Invalid type_id");
3557 		return -EINVAL;
3558 	}
3559 
3560 	var = btf_type_var(t);
3561 	if (var->linkage != BTF_VAR_STATIC &&
3562 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3563 		btf_verifier_log_type(env, t, "Linkage not supported");
3564 		return -EINVAL;
3565 	}
3566 
3567 	btf_verifier_log_type(env, t, NULL);
3568 
3569 	return meta_needed;
3570 }
3571 
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)3572 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3573 {
3574 	const struct btf_var *var = btf_type_var(t);
3575 
3576 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3577 }
3578 
3579 static const struct btf_kind_operations var_ops = {
3580 	.check_meta		= btf_var_check_meta,
3581 	.resolve		= btf_var_resolve,
3582 	.check_member		= btf_df_check_member,
3583 	.check_kflag_member	= btf_df_check_kflag_member,
3584 	.log_details		= btf_var_log,
3585 	.show			= btf_var_show,
3586 };
3587 
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3588 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3589 				  const struct btf_type *t,
3590 				  u32 meta_left)
3591 {
3592 	const struct btf_var_secinfo *vsi;
3593 	u64 last_vsi_end_off = 0, sum = 0;
3594 	u32 i, meta_needed;
3595 
3596 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3597 	if (meta_left < meta_needed) {
3598 		btf_verifier_log_basic(env, t,
3599 				       "meta_left:%u meta_needed:%u",
3600 				       meta_left, meta_needed);
3601 		return -EINVAL;
3602 	}
3603 
3604 	if (!t->size) {
3605 		btf_verifier_log_type(env, t, "size == 0");
3606 		return -EINVAL;
3607 	}
3608 
3609 	if (btf_type_kflag(t)) {
3610 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3611 		return -EINVAL;
3612 	}
3613 
3614 	if (!t->name_off ||
3615 	    !btf_name_valid_section(env->btf, t->name_off)) {
3616 		btf_verifier_log_type(env, t, "Invalid name");
3617 		return -EINVAL;
3618 	}
3619 
3620 	btf_verifier_log_type(env, t, NULL);
3621 
3622 	for_each_vsi(i, t, vsi) {
3623 		/* A var cannot be in type void */
3624 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3625 			btf_verifier_log_vsi(env, t, vsi,
3626 					     "Invalid type_id");
3627 			return -EINVAL;
3628 		}
3629 
3630 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3631 			btf_verifier_log_vsi(env, t, vsi,
3632 					     "Invalid offset");
3633 			return -EINVAL;
3634 		}
3635 
3636 		if (!vsi->size || vsi->size > t->size) {
3637 			btf_verifier_log_vsi(env, t, vsi,
3638 					     "Invalid size");
3639 			return -EINVAL;
3640 		}
3641 
3642 		last_vsi_end_off = vsi->offset + vsi->size;
3643 		if (last_vsi_end_off > t->size) {
3644 			btf_verifier_log_vsi(env, t, vsi,
3645 					     "Invalid offset+size");
3646 			return -EINVAL;
3647 		}
3648 
3649 		btf_verifier_log_vsi(env, t, vsi, NULL);
3650 		sum += vsi->size;
3651 	}
3652 
3653 	if (t->size < sum) {
3654 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3655 		return -EINVAL;
3656 	}
3657 
3658 	return meta_needed;
3659 }
3660 
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3661 static int btf_datasec_resolve(struct btf_verifier_env *env,
3662 			       const struct resolve_vertex *v)
3663 {
3664 	const struct btf_var_secinfo *vsi;
3665 	struct btf *btf = env->btf;
3666 	u16 i;
3667 
3668 	env->resolve_mode = RESOLVE_TBD;
3669 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3670 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3671 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3672 								 var_type_id);
3673 		if (!var_type || !btf_type_is_var(var_type)) {
3674 			btf_verifier_log_vsi(env, v->t, vsi,
3675 					     "Not a VAR kind member");
3676 			return -EINVAL;
3677 		}
3678 
3679 		if (!env_type_is_resolve_sink(env, var_type) &&
3680 		    !env_type_is_resolved(env, var_type_id)) {
3681 			env_stack_set_next_member(env, i + 1);
3682 			return env_stack_push(env, var_type, var_type_id);
3683 		}
3684 
3685 		type_id = var_type->type;
3686 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3687 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3688 			return -EINVAL;
3689 		}
3690 
3691 		if (vsi->size < type_size) {
3692 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3693 			return -EINVAL;
3694 		}
3695 	}
3696 
3697 	env_stack_pop_resolved(env, 0, 0);
3698 	return 0;
3699 }
3700 
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)3701 static void btf_datasec_log(struct btf_verifier_env *env,
3702 			    const struct btf_type *t)
3703 {
3704 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3705 }
3706 
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3707 static void btf_datasec_show(const struct btf *btf,
3708 			     const struct btf_type *t, u32 type_id,
3709 			     void *data, u8 bits_offset,
3710 			     struct btf_show *show)
3711 {
3712 	const struct btf_var_secinfo *vsi;
3713 	const struct btf_type *var;
3714 	u32 i;
3715 
3716 	if (!btf_show_start_type(show, t, type_id, data))
3717 		return;
3718 
3719 	btf_show_type_value(show, "section (\"%s\") = {",
3720 			    __btf_name_by_offset(btf, t->name_off));
3721 	for_each_vsi(i, t, vsi) {
3722 		var = btf_type_by_id(btf, vsi->type);
3723 		if (i)
3724 			btf_show(show, ",");
3725 		btf_type_ops(var)->show(btf, var, vsi->type,
3726 					data + vsi->offset, bits_offset, show);
3727 	}
3728 	btf_show_end_type(show);
3729 }
3730 
3731 static const struct btf_kind_operations datasec_ops = {
3732 	.check_meta		= btf_datasec_check_meta,
3733 	.resolve		= btf_datasec_resolve,
3734 	.check_member		= btf_df_check_member,
3735 	.check_kflag_member	= btf_df_check_kflag_member,
3736 	.log_details		= btf_datasec_log,
3737 	.show			= btf_datasec_show,
3738 };
3739 
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3740 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3741 				const struct btf_type *t,
3742 				u32 meta_left)
3743 {
3744 	if (btf_type_vlen(t)) {
3745 		btf_verifier_log_type(env, t, "vlen != 0");
3746 		return -EINVAL;
3747 	}
3748 
3749 	if (btf_type_kflag(t)) {
3750 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3751 		return -EINVAL;
3752 	}
3753 
3754 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3755 	    t->size != 16) {
3756 		btf_verifier_log_type(env, t, "Invalid type_size");
3757 		return -EINVAL;
3758 	}
3759 
3760 	btf_verifier_log_type(env, t, NULL);
3761 
3762 	return 0;
3763 }
3764 
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3765 static int btf_float_check_member(struct btf_verifier_env *env,
3766 				  const struct btf_type *struct_type,
3767 				  const struct btf_member *member,
3768 				  const struct btf_type *member_type)
3769 {
3770 	u64 start_offset_bytes;
3771 	u64 end_offset_bytes;
3772 	u64 misalign_bits;
3773 	u64 align_bytes;
3774 	u64 align_bits;
3775 
3776 	/* Different architectures have different alignment requirements, so
3777 	 * here we check only for the reasonable minimum. This way we ensure
3778 	 * that types after CO-RE can pass the kernel BTF verifier.
3779 	 */
3780 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3781 	align_bits = align_bytes * BITS_PER_BYTE;
3782 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3783 	if (misalign_bits) {
3784 		btf_verifier_log_member(env, struct_type, member,
3785 					"Member is not properly aligned");
3786 		return -EINVAL;
3787 	}
3788 
3789 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3790 	end_offset_bytes = start_offset_bytes + member_type->size;
3791 	if (end_offset_bytes > struct_type->size) {
3792 		btf_verifier_log_member(env, struct_type, member,
3793 					"Member exceeds struct_size");
3794 		return -EINVAL;
3795 	}
3796 
3797 	return 0;
3798 }
3799 
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)3800 static void btf_float_log(struct btf_verifier_env *env,
3801 			  const struct btf_type *t)
3802 {
3803 	btf_verifier_log(env, "size=%u", t->size);
3804 }
3805 
3806 static const struct btf_kind_operations float_ops = {
3807 	.check_meta = btf_float_check_meta,
3808 	.resolve = btf_df_resolve,
3809 	.check_member = btf_float_check_member,
3810 	.check_kflag_member = btf_generic_check_kflag_member,
3811 	.log_details = btf_float_log,
3812 	.show = btf_df_show,
3813 };
3814 
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)3815 static int btf_func_proto_check(struct btf_verifier_env *env,
3816 				const struct btf_type *t)
3817 {
3818 	const struct btf_type *ret_type;
3819 	const struct btf_param *args;
3820 	const struct btf *btf;
3821 	u16 nr_args, i;
3822 	int err;
3823 
3824 	btf = env->btf;
3825 	args = (const struct btf_param *)(t + 1);
3826 	nr_args = btf_type_vlen(t);
3827 
3828 	/* Check func return type which could be "void" (t->type == 0) */
3829 	if (t->type) {
3830 		u32 ret_type_id = t->type;
3831 
3832 		ret_type = btf_type_by_id(btf, ret_type_id);
3833 		if (!ret_type) {
3834 			btf_verifier_log_type(env, t, "Invalid return type");
3835 			return -EINVAL;
3836 		}
3837 
3838 		if (btf_type_needs_resolve(ret_type) &&
3839 		    !env_type_is_resolved(env, ret_type_id)) {
3840 			err = btf_resolve(env, ret_type, ret_type_id);
3841 			if (err)
3842 				return err;
3843 		}
3844 
3845 		/* Ensure the return type is a type that has a size */
3846 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3847 			btf_verifier_log_type(env, t, "Invalid return type");
3848 			return -EINVAL;
3849 		}
3850 	}
3851 
3852 	if (!nr_args)
3853 		return 0;
3854 
3855 	/* Last func arg type_id could be 0 if it is a vararg */
3856 	if (!args[nr_args - 1].type) {
3857 		if (args[nr_args - 1].name_off) {
3858 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3859 					      nr_args);
3860 			return -EINVAL;
3861 		}
3862 		nr_args--;
3863 	}
3864 
3865 	err = 0;
3866 	for (i = 0; i < nr_args; i++) {
3867 		const struct btf_type *arg_type;
3868 		u32 arg_type_id;
3869 
3870 		arg_type_id = args[i].type;
3871 		arg_type = btf_type_by_id(btf, arg_type_id);
3872 		if (!arg_type) {
3873 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3874 			err = -EINVAL;
3875 			break;
3876 		}
3877 
3878 		if (btf_type_is_resolve_source_only(arg_type)) {
3879 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3880 			return -EINVAL;
3881 		}
3882 
3883 		if (args[i].name_off &&
3884 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
3885 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
3886 			btf_verifier_log_type(env, t,
3887 					      "Invalid arg#%u", i + 1);
3888 			err = -EINVAL;
3889 			break;
3890 		}
3891 
3892 		if (btf_type_needs_resolve(arg_type) &&
3893 		    !env_type_is_resolved(env, arg_type_id)) {
3894 			err = btf_resolve(env, arg_type, arg_type_id);
3895 			if (err)
3896 				break;
3897 		}
3898 
3899 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3900 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3901 			err = -EINVAL;
3902 			break;
3903 		}
3904 	}
3905 
3906 	return err;
3907 }
3908 
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)3909 static int btf_func_check(struct btf_verifier_env *env,
3910 			  const struct btf_type *t)
3911 {
3912 	const struct btf_type *proto_type;
3913 	const struct btf_param *args;
3914 	const struct btf *btf;
3915 	u16 nr_args, i;
3916 
3917 	btf = env->btf;
3918 	proto_type = btf_type_by_id(btf, t->type);
3919 
3920 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3921 		btf_verifier_log_type(env, t, "Invalid type_id");
3922 		return -EINVAL;
3923 	}
3924 
3925 	args = (const struct btf_param *)(proto_type + 1);
3926 	nr_args = btf_type_vlen(proto_type);
3927 	for (i = 0; i < nr_args; i++) {
3928 		if (!args[i].name_off && args[i].type) {
3929 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3930 			return -EINVAL;
3931 		}
3932 	}
3933 
3934 	return 0;
3935 }
3936 
3937 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3938 	[BTF_KIND_INT] = &int_ops,
3939 	[BTF_KIND_PTR] = &ptr_ops,
3940 	[BTF_KIND_ARRAY] = &array_ops,
3941 	[BTF_KIND_STRUCT] = &struct_ops,
3942 	[BTF_KIND_UNION] = &struct_ops,
3943 	[BTF_KIND_ENUM] = &enum_ops,
3944 	[BTF_KIND_FWD] = &fwd_ops,
3945 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3946 	[BTF_KIND_VOLATILE] = &modifier_ops,
3947 	[BTF_KIND_CONST] = &modifier_ops,
3948 	[BTF_KIND_RESTRICT] = &modifier_ops,
3949 	[BTF_KIND_FUNC] = &func_ops,
3950 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3951 	[BTF_KIND_VAR] = &var_ops,
3952 	[BTF_KIND_DATASEC] = &datasec_ops,
3953 	[BTF_KIND_FLOAT] = &float_ops,
3954 };
3955 
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3956 static s32 btf_check_meta(struct btf_verifier_env *env,
3957 			  const struct btf_type *t,
3958 			  u32 meta_left)
3959 {
3960 	u32 saved_meta_left = meta_left;
3961 	s32 var_meta_size;
3962 
3963 	if (meta_left < sizeof(*t)) {
3964 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3965 				 env->log_type_id, meta_left, sizeof(*t));
3966 		return -EINVAL;
3967 	}
3968 	meta_left -= sizeof(*t);
3969 
3970 	if (t->info & ~BTF_INFO_MASK) {
3971 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3972 				 env->log_type_id, t->info);
3973 		return -EINVAL;
3974 	}
3975 
3976 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3977 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3978 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3979 				 env->log_type_id, BTF_INFO_KIND(t->info));
3980 		return -EINVAL;
3981 	}
3982 
3983 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3984 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3985 				 env->log_type_id, t->name_off);
3986 		return -EINVAL;
3987 	}
3988 
3989 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3990 	if (var_meta_size < 0)
3991 		return var_meta_size;
3992 
3993 	meta_left -= var_meta_size;
3994 
3995 	return saved_meta_left - meta_left;
3996 }
3997 
btf_check_all_metas(struct btf_verifier_env * env)3998 static int btf_check_all_metas(struct btf_verifier_env *env)
3999 {
4000 	struct btf *btf = env->btf;
4001 	struct btf_header *hdr;
4002 	void *cur, *end;
4003 
4004 	hdr = &btf->hdr;
4005 	cur = btf->nohdr_data + hdr->type_off;
4006 	end = cur + hdr->type_len;
4007 
4008 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4009 	while (cur < end) {
4010 		struct btf_type *t = cur;
4011 		s32 meta_size;
4012 
4013 		meta_size = btf_check_meta(env, t, end - cur);
4014 		if (meta_size < 0)
4015 			return meta_size;
4016 
4017 		btf_add_type(env, t);
4018 		cur += meta_size;
4019 		env->log_type_id++;
4020 	}
4021 
4022 	return 0;
4023 }
4024 
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)4025 static bool btf_resolve_valid(struct btf_verifier_env *env,
4026 			      const struct btf_type *t,
4027 			      u32 type_id)
4028 {
4029 	struct btf *btf = env->btf;
4030 
4031 	if (!env_type_is_resolved(env, type_id))
4032 		return false;
4033 
4034 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4035 		return !btf_resolved_type_id(btf, type_id) &&
4036 		       !btf_resolved_type_size(btf, type_id);
4037 
4038 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4039 	    btf_type_is_var(t)) {
4040 		t = btf_type_id_resolve(btf, &type_id);
4041 		return t &&
4042 		       !btf_type_is_modifier(t) &&
4043 		       !btf_type_is_var(t) &&
4044 		       !btf_type_is_datasec(t);
4045 	}
4046 
4047 	if (btf_type_is_array(t)) {
4048 		const struct btf_array *array = btf_type_array(t);
4049 		const struct btf_type *elem_type;
4050 		u32 elem_type_id = array->type;
4051 		u32 elem_size;
4052 
4053 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4054 		return elem_type && !btf_type_is_modifier(elem_type) &&
4055 			(array->nelems * elem_size ==
4056 			 btf_resolved_type_size(btf, type_id));
4057 	}
4058 
4059 	return false;
4060 }
4061 
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)4062 static int btf_resolve(struct btf_verifier_env *env,
4063 		       const struct btf_type *t, u32 type_id)
4064 {
4065 	u32 save_log_type_id = env->log_type_id;
4066 	const struct resolve_vertex *v;
4067 	int err = 0;
4068 
4069 	env->resolve_mode = RESOLVE_TBD;
4070 	env_stack_push(env, t, type_id);
4071 	while (!err && (v = env_stack_peak(env))) {
4072 		env->log_type_id = v->type_id;
4073 		err = btf_type_ops(v->t)->resolve(env, v);
4074 	}
4075 
4076 	env->log_type_id = type_id;
4077 	if (err == -E2BIG) {
4078 		btf_verifier_log_type(env, t,
4079 				      "Exceeded max resolving depth:%u",
4080 				      MAX_RESOLVE_DEPTH);
4081 	} else if (err == -EEXIST) {
4082 		btf_verifier_log_type(env, t, "Loop detected");
4083 	}
4084 
4085 	/* Final sanity check */
4086 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4087 		btf_verifier_log_type(env, t, "Invalid resolve state");
4088 		err = -EINVAL;
4089 	}
4090 
4091 	env->log_type_id = save_log_type_id;
4092 	return err;
4093 }
4094 
btf_check_all_types(struct btf_verifier_env * env)4095 static int btf_check_all_types(struct btf_verifier_env *env)
4096 {
4097 	struct btf *btf = env->btf;
4098 	const struct btf_type *t;
4099 	u32 type_id, i;
4100 	int err;
4101 
4102 	err = env_resolve_init(env);
4103 	if (err)
4104 		return err;
4105 
4106 	env->phase++;
4107 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4108 		type_id = btf->start_id + i;
4109 		t = btf_type_by_id(btf, type_id);
4110 
4111 		env->log_type_id = type_id;
4112 		if (btf_type_needs_resolve(t) &&
4113 		    !env_type_is_resolved(env, type_id)) {
4114 			err = btf_resolve(env, t, type_id);
4115 			if (err)
4116 				return err;
4117 		}
4118 
4119 		if (btf_type_is_func_proto(t)) {
4120 			err = btf_func_proto_check(env, t);
4121 			if (err)
4122 				return err;
4123 		}
4124 
4125 		if (btf_type_is_func(t)) {
4126 			err = btf_func_check(env, t);
4127 			if (err)
4128 				return err;
4129 		}
4130 	}
4131 
4132 	return 0;
4133 }
4134 
btf_parse_type_sec(struct btf_verifier_env * env)4135 static int btf_parse_type_sec(struct btf_verifier_env *env)
4136 {
4137 	const struct btf_header *hdr = &env->btf->hdr;
4138 	int err;
4139 
4140 	/* Type section must align to 4 bytes */
4141 	if (hdr->type_off & (sizeof(u32) - 1)) {
4142 		btf_verifier_log(env, "Unaligned type_off");
4143 		return -EINVAL;
4144 	}
4145 
4146 	if (!env->btf->base_btf && !hdr->type_len) {
4147 		btf_verifier_log(env, "No type found");
4148 		return -EINVAL;
4149 	}
4150 
4151 	err = btf_check_all_metas(env);
4152 	if (err)
4153 		return err;
4154 
4155 	return btf_check_all_types(env);
4156 }
4157 
btf_parse_str_sec(struct btf_verifier_env * env)4158 static int btf_parse_str_sec(struct btf_verifier_env *env)
4159 {
4160 	const struct btf_header *hdr;
4161 	struct btf *btf = env->btf;
4162 	const char *start, *end;
4163 
4164 	hdr = &btf->hdr;
4165 	start = btf->nohdr_data + hdr->str_off;
4166 	end = start + hdr->str_len;
4167 
4168 	if (end != btf->data + btf->data_size) {
4169 		btf_verifier_log(env, "String section is not at the end");
4170 		return -EINVAL;
4171 	}
4172 
4173 	btf->strings = start;
4174 
4175 	if (btf->base_btf && !hdr->str_len)
4176 		return 0;
4177 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4178 		btf_verifier_log(env, "Invalid string section");
4179 		return -EINVAL;
4180 	}
4181 	if (!btf->base_btf && start[0]) {
4182 		btf_verifier_log(env, "Invalid string section");
4183 		return -EINVAL;
4184 	}
4185 
4186 	return 0;
4187 }
4188 
4189 static const size_t btf_sec_info_offset[] = {
4190 	offsetof(struct btf_header, type_off),
4191 	offsetof(struct btf_header, str_off),
4192 };
4193 
btf_sec_info_cmp(const void * a,const void * b)4194 static int btf_sec_info_cmp(const void *a, const void *b)
4195 {
4196 	const struct btf_sec_info *x = a;
4197 	const struct btf_sec_info *y = b;
4198 
4199 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4200 }
4201 
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)4202 static int btf_check_sec_info(struct btf_verifier_env *env,
4203 			      u32 btf_data_size)
4204 {
4205 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4206 	u32 total, expected_total, i;
4207 	const struct btf_header *hdr;
4208 	const struct btf *btf;
4209 
4210 	btf = env->btf;
4211 	hdr = &btf->hdr;
4212 
4213 	/* Populate the secs from hdr */
4214 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4215 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4216 						   btf_sec_info_offset[i]);
4217 
4218 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4219 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4220 
4221 	/* Check for gaps and overlap among sections */
4222 	total = 0;
4223 	expected_total = btf_data_size - hdr->hdr_len;
4224 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4225 		if (expected_total < secs[i].off) {
4226 			btf_verifier_log(env, "Invalid section offset");
4227 			return -EINVAL;
4228 		}
4229 		if (total < secs[i].off) {
4230 			/* gap */
4231 			btf_verifier_log(env, "Unsupported section found");
4232 			return -EINVAL;
4233 		}
4234 		if (total > secs[i].off) {
4235 			btf_verifier_log(env, "Section overlap found");
4236 			return -EINVAL;
4237 		}
4238 		if (expected_total - total < secs[i].len) {
4239 			btf_verifier_log(env,
4240 					 "Total section length too long");
4241 			return -EINVAL;
4242 		}
4243 		total += secs[i].len;
4244 	}
4245 
4246 	/* There is data other than hdr and known sections */
4247 	if (expected_total != total) {
4248 		btf_verifier_log(env, "Unsupported section found");
4249 		return -EINVAL;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
btf_parse_hdr(struct btf_verifier_env * env)4255 static int btf_parse_hdr(struct btf_verifier_env *env)
4256 {
4257 	u32 hdr_len, hdr_copy, btf_data_size;
4258 	const struct btf_header *hdr;
4259 	struct btf *btf;
4260 	int err;
4261 
4262 	btf = env->btf;
4263 	btf_data_size = btf->data_size;
4264 
4265 	if (btf_data_size <
4266 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4267 		btf_verifier_log(env, "hdr_len not found");
4268 		return -EINVAL;
4269 	}
4270 
4271 	hdr = btf->data;
4272 	hdr_len = hdr->hdr_len;
4273 	if (btf_data_size < hdr_len) {
4274 		btf_verifier_log(env, "btf_header not found");
4275 		return -EINVAL;
4276 	}
4277 
4278 	/* Ensure the unsupported header fields are zero */
4279 	if (hdr_len > sizeof(btf->hdr)) {
4280 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4281 		u8 *end = btf->data + hdr_len;
4282 
4283 		for (; expected_zero < end; expected_zero++) {
4284 			if (*expected_zero) {
4285 				btf_verifier_log(env, "Unsupported btf_header");
4286 				return -E2BIG;
4287 			}
4288 		}
4289 	}
4290 
4291 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4292 	memcpy(&btf->hdr, btf->data, hdr_copy);
4293 
4294 	hdr = &btf->hdr;
4295 
4296 	btf_verifier_log_hdr(env, btf_data_size);
4297 
4298 	if (hdr->magic != BTF_MAGIC) {
4299 		btf_verifier_log(env, "Invalid magic");
4300 		return -EINVAL;
4301 	}
4302 
4303 	if (hdr->version != BTF_VERSION) {
4304 		btf_verifier_log(env, "Unsupported version");
4305 		return -ENOTSUPP;
4306 	}
4307 
4308 	if (hdr->flags) {
4309 		btf_verifier_log(env, "Unsupported flags");
4310 		return -ENOTSUPP;
4311 	}
4312 
4313 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4314 		btf_verifier_log(env, "No data");
4315 		return -EINVAL;
4316 	}
4317 
4318 	err = btf_check_sec_info(env, btf_data_size);
4319 	if (err)
4320 		return err;
4321 
4322 	return 0;
4323 }
4324 
btf_parse(bpfptr_t btf_data,u32 btf_data_size,u32 log_level,char __user * log_ubuf,u32 log_size)4325 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4326 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4327 {
4328 	struct btf_verifier_env *env = NULL;
4329 	struct bpf_verifier_log *log;
4330 	struct btf *btf = NULL;
4331 	u8 *data;
4332 	int err;
4333 
4334 	if (btf_data_size > BTF_MAX_SIZE)
4335 		return ERR_PTR(-E2BIG);
4336 
4337 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4338 	if (!env)
4339 		return ERR_PTR(-ENOMEM);
4340 
4341 	log = &env->log;
4342 	if (log_level || log_ubuf || log_size) {
4343 		/* user requested verbose verifier output
4344 		 * and supplied buffer to store the verification trace
4345 		 */
4346 		log->level = log_level;
4347 		log->ubuf = log_ubuf;
4348 		log->len_total = log_size;
4349 
4350 		/* log attributes have to be sane */
4351 		if (!bpf_verifier_log_attr_valid(log)) {
4352 			err = -EINVAL;
4353 			goto errout;
4354 		}
4355 	}
4356 
4357 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4358 	if (!btf) {
4359 		err = -ENOMEM;
4360 		goto errout;
4361 	}
4362 	env->btf = btf;
4363 
4364 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4365 	if (!data) {
4366 		err = -ENOMEM;
4367 		goto errout;
4368 	}
4369 
4370 	btf->data = data;
4371 	btf->data_size = btf_data_size;
4372 
4373 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4374 		err = -EFAULT;
4375 		goto errout;
4376 	}
4377 
4378 	err = btf_parse_hdr(env);
4379 	if (err)
4380 		goto errout;
4381 
4382 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4383 
4384 	err = btf_parse_str_sec(env);
4385 	if (err)
4386 		goto errout;
4387 
4388 	err = btf_parse_type_sec(env);
4389 	if (err)
4390 		goto errout;
4391 
4392 	if (log->level && bpf_verifier_log_full(log)) {
4393 		err = -ENOSPC;
4394 		goto errout;
4395 	}
4396 
4397 	btf_verifier_env_free(env);
4398 	refcount_set(&btf->refcnt, 1);
4399 	return btf;
4400 
4401 errout:
4402 	btf_verifier_env_free(env);
4403 	if (btf)
4404 		btf_free(btf);
4405 	return ERR_PTR(err);
4406 }
4407 
4408 extern char __weak __start_BTF[];
4409 extern char __weak __stop_BTF[];
4410 extern struct btf *btf_vmlinux;
4411 
4412 #define BPF_MAP_TYPE(_id, _ops)
4413 #define BPF_LINK_TYPE(_id, _name)
4414 static union {
4415 	struct bpf_ctx_convert {
4416 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4417 	prog_ctx_type _id##_prog; \
4418 	kern_ctx_type _id##_kern;
4419 #include <linux/bpf_types.h>
4420 #undef BPF_PROG_TYPE
4421 	} *__t;
4422 	/* 't' is written once under lock. Read many times. */
4423 	const struct btf_type *t;
4424 } bpf_ctx_convert;
4425 enum {
4426 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4427 	__ctx_convert##_id,
4428 #include <linux/bpf_types.h>
4429 #undef BPF_PROG_TYPE
4430 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4431 };
4432 static u8 bpf_ctx_convert_map[] = {
4433 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4434 	[_id] = __ctx_convert##_id,
4435 #include <linux/bpf_types.h>
4436 #undef BPF_PROG_TYPE
4437 	0, /* avoid empty array */
4438 };
4439 #undef BPF_MAP_TYPE
4440 #undef BPF_LINK_TYPE
4441 
4442 static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4443 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4444 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4445 		      int arg)
4446 {
4447 	const struct btf_type *conv_struct;
4448 	const struct btf_type *ctx_struct;
4449 	const struct btf_member *ctx_type;
4450 	const char *tname, *ctx_tname;
4451 
4452 	conv_struct = bpf_ctx_convert.t;
4453 	if (!conv_struct) {
4454 		bpf_log(log, "btf_vmlinux is malformed\n");
4455 		return NULL;
4456 	}
4457 	t = btf_type_by_id(btf, t->type);
4458 	while (btf_type_is_modifier(t))
4459 		t = btf_type_by_id(btf, t->type);
4460 	if (!btf_type_is_struct(t)) {
4461 		/* Only pointer to struct is supported for now.
4462 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4463 		 * is not supported yet.
4464 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4465 		 */
4466 		return NULL;
4467 	}
4468 	tname = btf_name_by_offset(btf, t->name_off);
4469 	if (!tname) {
4470 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4471 		return NULL;
4472 	}
4473 	/* prog_type is valid bpf program type. No need for bounds check. */
4474 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4475 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4476 	 * Like 'struct __sk_buff'
4477 	 */
4478 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4479 	if (!ctx_struct)
4480 		/* should not happen */
4481 		return NULL;
4482 again:
4483 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4484 	if (!ctx_tname) {
4485 		/* should not happen */
4486 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4487 		return NULL;
4488 	}
4489 	/* only compare that prog's ctx type name is the same as
4490 	 * kernel expects. No need to compare field by field.
4491 	 * It's ok for bpf prog to do:
4492 	 * struct __sk_buff {};
4493 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4494 	 * { // no fields of skb are ever used }
4495 	 */
4496 	if (strcmp(ctx_tname, tname)) {
4497 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
4498 		 * underlying struct and check name again
4499 		 */
4500 		if (!btf_type_is_modifier(ctx_struct))
4501 			return NULL;
4502 		while (btf_type_is_modifier(ctx_struct))
4503 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
4504 		goto again;
4505 	}
4506 	return ctx_type;
4507 }
4508 
4509 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4510 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4511 #define BPF_LINK_TYPE(_id, _name)
4512 #define BPF_MAP_TYPE(_id, _ops) \
4513 	[_id] = &_ops,
4514 #include <linux/bpf_types.h>
4515 #undef BPF_PROG_TYPE
4516 #undef BPF_LINK_TYPE
4517 #undef BPF_MAP_TYPE
4518 };
4519 
btf_vmlinux_map_ids_init(const struct btf * btf,struct bpf_verifier_log * log)4520 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4521 				    struct bpf_verifier_log *log)
4522 {
4523 	const struct bpf_map_ops *ops;
4524 	int i, btf_id;
4525 
4526 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4527 		ops = btf_vmlinux_map_ops[i];
4528 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4529 			continue;
4530 		if (!ops->map_btf_name || !ops->map_btf_id) {
4531 			bpf_log(log, "map type %d is misconfigured\n", i);
4532 			return -EINVAL;
4533 		}
4534 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4535 					       BTF_KIND_STRUCT);
4536 		if (btf_id < 0)
4537 			return btf_id;
4538 		*ops->map_btf_id = btf_id;
4539 	}
4540 
4541 	return 0;
4542 }
4543 
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4544 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4545 				     struct btf *btf,
4546 				     const struct btf_type *t,
4547 				     enum bpf_prog_type prog_type,
4548 				     int arg)
4549 {
4550 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4551 
4552 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4553 	if (!prog_ctx_type)
4554 		return -ENOENT;
4555 	kern_ctx_type = prog_ctx_type + 1;
4556 	return kern_ctx_type->type;
4557 }
4558 
4559 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)4560 BTF_ID(struct, bpf_ctx_convert)
4561 
4562 struct btf *btf_parse_vmlinux(void)
4563 {
4564 	struct btf_verifier_env *env = NULL;
4565 	struct bpf_verifier_log *log;
4566 	struct btf *btf = NULL;
4567 	int err;
4568 
4569 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4570 	if (!env)
4571 		return ERR_PTR(-ENOMEM);
4572 
4573 	log = &env->log;
4574 	log->level = BPF_LOG_KERNEL;
4575 
4576 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4577 	if (!btf) {
4578 		err = -ENOMEM;
4579 		goto errout;
4580 	}
4581 	env->btf = btf;
4582 
4583 	btf->data = __start_BTF;
4584 	btf->data_size = __stop_BTF - __start_BTF;
4585 	btf->kernel_btf = true;
4586 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4587 
4588 	err = btf_parse_hdr(env);
4589 	if (err)
4590 		goto errout;
4591 
4592 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4593 
4594 	err = btf_parse_str_sec(env);
4595 	if (err)
4596 		goto errout;
4597 
4598 	err = btf_check_all_metas(env);
4599 	if (err)
4600 		goto errout;
4601 
4602 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4603 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4604 
4605 	/* find bpf map structs for map_ptr access checking */
4606 	err = btf_vmlinux_map_ids_init(btf, log);
4607 	if (err < 0)
4608 		goto errout;
4609 
4610 	bpf_struct_ops_init(btf, log);
4611 
4612 	refcount_set(&btf->refcnt, 1);
4613 
4614 	err = btf_alloc_id(btf);
4615 	if (err)
4616 		goto errout;
4617 
4618 	btf_verifier_env_free(env);
4619 	return btf;
4620 
4621 errout:
4622 	btf_verifier_env_free(env);
4623 	if (btf) {
4624 		kvfree(btf->types);
4625 		kfree(btf);
4626 	}
4627 	return ERR_PTR(err);
4628 }
4629 
4630 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4631 
btf_parse_module(const char * module_name,const void * data,unsigned int data_size)4632 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4633 {
4634 	struct btf_verifier_env *env = NULL;
4635 	struct bpf_verifier_log *log;
4636 	struct btf *btf = NULL, *base_btf;
4637 	int err;
4638 
4639 	base_btf = bpf_get_btf_vmlinux();
4640 	if (IS_ERR(base_btf))
4641 		return base_btf;
4642 	if (!base_btf)
4643 		return ERR_PTR(-EINVAL);
4644 
4645 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4646 	if (!env)
4647 		return ERR_PTR(-ENOMEM);
4648 
4649 	log = &env->log;
4650 	log->level = BPF_LOG_KERNEL;
4651 
4652 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4653 	if (!btf) {
4654 		err = -ENOMEM;
4655 		goto errout;
4656 	}
4657 	env->btf = btf;
4658 
4659 	btf->base_btf = base_btf;
4660 	btf->start_id = base_btf->nr_types;
4661 	btf->start_str_off = base_btf->hdr.str_len;
4662 	btf->kernel_btf = true;
4663 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4664 
4665 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4666 	if (!btf->data) {
4667 		err = -ENOMEM;
4668 		goto errout;
4669 	}
4670 	memcpy(btf->data, data, data_size);
4671 	btf->data_size = data_size;
4672 
4673 	err = btf_parse_hdr(env);
4674 	if (err)
4675 		goto errout;
4676 
4677 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4678 
4679 	err = btf_parse_str_sec(env);
4680 	if (err)
4681 		goto errout;
4682 
4683 	err = btf_check_all_metas(env);
4684 	if (err)
4685 		goto errout;
4686 
4687 	btf_verifier_env_free(env);
4688 	refcount_set(&btf->refcnt, 1);
4689 	return btf;
4690 
4691 errout:
4692 	btf_verifier_env_free(env);
4693 	if (btf) {
4694 		kvfree(btf->data);
4695 		kvfree(btf->types);
4696 		kfree(btf);
4697 	}
4698 	return ERR_PTR(err);
4699 }
4700 
4701 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4702 
bpf_prog_get_target_btf(const struct bpf_prog * prog)4703 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4704 {
4705 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4706 
4707 	if (tgt_prog)
4708 		return tgt_prog->aux->btf;
4709 	else
4710 		return prog->aux->attach_btf;
4711 }
4712 
is_string_ptr(struct btf * btf,const struct btf_type * t)4713 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4714 {
4715 	/* t comes in already as a pointer */
4716 	t = btf_type_by_id(btf, t->type);
4717 
4718 	/* allow const */
4719 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4720 		t = btf_type_by_id(btf, t->type);
4721 
4722 	/* char, signed char, unsigned char */
4723 	return btf_type_is_int(t) && t->size == 1;
4724 }
4725 
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)4726 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4727 		    const struct bpf_prog *prog,
4728 		    struct bpf_insn_access_aux *info)
4729 {
4730 	const struct btf_type *t = prog->aux->attach_func_proto;
4731 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4732 	struct btf *btf = bpf_prog_get_target_btf(prog);
4733 	const char *tname = prog->aux->attach_func_name;
4734 	struct bpf_verifier_log *log = info->log;
4735 	const struct btf_param *args;
4736 	u32 nr_args, arg;
4737 	int i, ret;
4738 
4739 	if (off % 8) {
4740 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4741 			tname, off);
4742 		return false;
4743 	}
4744 	arg = off / 8;
4745 	args = (const struct btf_param *)(t + 1);
4746 	/* if (t == NULL) Fall back to default BPF prog with
4747 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4748 	 */
4749 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4750 	if (prog->aux->attach_btf_trace) {
4751 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4752 		args++;
4753 		nr_args--;
4754 	}
4755 
4756 	if (arg > nr_args) {
4757 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4758 			tname, arg + 1);
4759 		return false;
4760 	}
4761 
4762 	if (arg == nr_args) {
4763 		switch (prog->expected_attach_type) {
4764 		case BPF_LSM_MAC:
4765 		case BPF_TRACE_FEXIT:
4766 			/* When LSM programs are attached to void LSM hooks
4767 			 * they use FEXIT trampolines and when attached to
4768 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4769 			 *
4770 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4771 			 * the check:
4772 			 *
4773 			 *	if (ret_type != 'int')
4774 			 *		return -EINVAL;
4775 			 *
4776 			 * is _not_ done here. This is still safe as LSM hooks
4777 			 * have only void and int return types.
4778 			 */
4779 			if (!t)
4780 				return true;
4781 			t = btf_type_by_id(btf, t->type);
4782 			break;
4783 		case BPF_MODIFY_RETURN:
4784 			/* For now the BPF_MODIFY_RETURN can only be attached to
4785 			 * functions that return an int.
4786 			 */
4787 			if (!t)
4788 				return false;
4789 
4790 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4791 			if (!btf_type_is_small_int(t)) {
4792 				bpf_log(log,
4793 					"ret type %s not allowed for fmod_ret\n",
4794 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4795 				return false;
4796 			}
4797 			break;
4798 		default:
4799 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4800 				tname, arg + 1);
4801 			return false;
4802 		}
4803 	} else {
4804 		if (!t)
4805 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4806 			return true;
4807 		t = btf_type_by_id(btf, args[arg].type);
4808 	}
4809 
4810 	/* skip modifiers */
4811 	while (btf_type_is_modifier(t))
4812 		t = btf_type_by_id(btf, t->type);
4813 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4814 		/* accessing a scalar */
4815 		return true;
4816 	if (!btf_type_is_ptr(t)) {
4817 		bpf_log(log,
4818 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4819 			tname, arg,
4820 			__btf_name_by_offset(btf, t->name_off),
4821 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4822 		return false;
4823 	}
4824 
4825 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4826 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4827 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4828 		u32 type, flag;
4829 
4830 		type = base_type(ctx_arg_info->reg_type);
4831 		flag = type_flag(ctx_arg_info->reg_type);
4832 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
4833 		    (flag & PTR_MAYBE_NULL)) {
4834 			info->reg_type = ctx_arg_info->reg_type;
4835 			return true;
4836 		}
4837 	}
4838 
4839 	if (t->type == 0)
4840 		/* This is a pointer to void.
4841 		 * It is the same as scalar from the verifier safety pov.
4842 		 * No further pointer walking is allowed.
4843 		 */
4844 		return true;
4845 
4846 	if (is_string_ptr(btf, t))
4847 		return true;
4848 
4849 	/* this is a pointer to another type */
4850 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4851 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4852 
4853 		if (ctx_arg_info->offset == off) {
4854 			if (!ctx_arg_info->btf_id) {
4855 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4856 				return false;
4857 			}
4858 
4859 			info->reg_type = ctx_arg_info->reg_type;
4860 			info->btf = btf_vmlinux;
4861 			info->btf_id = ctx_arg_info->btf_id;
4862 			return true;
4863 		}
4864 	}
4865 
4866 	info->reg_type = PTR_TO_BTF_ID;
4867 	if (tgt_prog) {
4868 		enum bpf_prog_type tgt_type;
4869 
4870 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4871 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4872 		else
4873 			tgt_type = tgt_prog->type;
4874 
4875 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4876 		if (ret > 0) {
4877 			info->btf = btf_vmlinux;
4878 			info->btf_id = ret;
4879 			return true;
4880 		} else {
4881 			return false;
4882 		}
4883 	}
4884 
4885 	info->btf = btf;
4886 	info->btf_id = t->type;
4887 	t = btf_type_by_id(btf, t->type);
4888 	/* skip modifiers */
4889 	while (btf_type_is_modifier(t)) {
4890 		info->btf_id = t->type;
4891 		t = btf_type_by_id(btf, t->type);
4892 	}
4893 	if (!btf_type_is_struct(t)) {
4894 		bpf_log(log,
4895 			"func '%s' arg%d type %s is not a struct\n",
4896 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4897 		return false;
4898 	}
4899 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4900 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4901 		__btf_name_by_offset(btf, t->name_off));
4902 	return true;
4903 }
4904 
4905 enum bpf_struct_walk_result {
4906 	/* < 0 error */
4907 	WALK_SCALAR = 0,
4908 	WALK_PTR,
4909 	WALK_STRUCT,
4910 };
4911 
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id)4912 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4913 			   const struct btf_type *t, int off, int size,
4914 			   u32 *next_btf_id)
4915 {
4916 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4917 	const struct btf_type *mtype, *elem_type = NULL;
4918 	const struct btf_member *member;
4919 	const char *tname, *mname;
4920 	u32 vlen, elem_id, mid;
4921 
4922 again:
4923 	tname = __btf_name_by_offset(btf, t->name_off);
4924 	if (!btf_type_is_struct(t)) {
4925 		bpf_log(log, "Type '%s' is not a struct\n", tname);
4926 		return -EINVAL;
4927 	}
4928 
4929 	vlen = btf_type_vlen(t);
4930 	if (off + size > t->size) {
4931 		/* If the last element is a variable size array, we may
4932 		 * need to relax the rule.
4933 		 */
4934 		struct btf_array *array_elem;
4935 
4936 		if (vlen == 0)
4937 			goto error;
4938 
4939 		member = btf_type_member(t) + vlen - 1;
4940 		mtype = btf_type_skip_modifiers(btf, member->type,
4941 						NULL);
4942 		if (!btf_type_is_array(mtype))
4943 			goto error;
4944 
4945 		array_elem = (struct btf_array *)(mtype + 1);
4946 		if (array_elem->nelems != 0)
4947 			goto error;
4948 
4949 		moff = btf_member_bit_offset(t, member) / 8;
4950 		if (off < moff)
4951 			goto error;
4952 
4953 		/* Only allow structure for now, can be relaxed for
4954 		 * other types later.
4955 		 */
4956 		t = btf_type_skip_modifiers(btf, array_elem->type,
4957 					    NULL);
4958 		if (!btf_type_is_struct(t))
4959 			goto error;
4960 
4961 		off = (off - moff) % t->size;
4962 		goto again;
4963 
4964 error:
4965 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
4966 			tname, off, size);
4967 		return -EACCES;
4968 	}
4969 
4970 	for_each_member(i, t, member) {
4971 		/* offset of the field in bytes */
4972 		moff = btf_member_bit_offset(t, member) / 8;
4973 		if (off + size <= moff)
4974 			/* won't find anything, field is already too far */
4975 			break;
4976 
4977 		if (btf_member_bitfield_size(t, member)) {
4978 			u32 end_bit = btf_member_bit_offset(t, member) +
4979 				btf_member_bitfield_size(t, member);
4980 
4981 			/* off <= moff instead of off == moff because clang
4982 			 * does not generate a BTF member for anonymous
4983 			 * bitfield like the ":16" here:
4984 			 * struct {
4985 			 *	int :16;
4986 			 *	int x:8;
4987 			 * };
4988 			 */
4989 			if (off <= moff &&
4990 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4991 				return WALK_SCALAR;
4992 
4993 			/* off may be accessing a following member
4994 			 *
4995 			 * or
4996 			 *
4997 			 * Doing partial access at either end of this
4998 			 * bitfield.  Continue on this case also to
4999 			 * treat it as not accessing this bitfield
5000 			 * and eventually error out as field not
5001 			 * found to keep it simple.
5002 			 * It could be relaxed if there was a legit
5003 			 * partial access case later.
5004 			 */
5005 			continue;
5006 		}
5007 
5008 		/* In case of "off" is pointing to holes of a struct */
5009 		if (off < moff)
5010 			break;
5011 
5012 		/* type of the field */
5013 		mid = member->type;
5014 		mtype = btf_type_by_id(btf, member->type);
5015 		mname = __btf_name_by_offset(btf, member->name_off);
5016 
5017 		mtype = __btf_resolve_size(btf, mtype, &msize,
5018 					   &elem_type, &elem_id, &total_nelems,
5019 					   &mid);
5020 		if (IS_ERR(mtype)) {
5021 			bpf_log(log, "field %s doesn't have size\n", mname);
5022 			return -EFAULT;
5023 		}
5024 
5025 		mtrue_end = moff + msize;
5026 		if (off >= mtrue_end)
5027 			/* no overlap with member, keep iterating */
5028 			continue;
5029 
5030 		if (btf_type_is_array(mtype)) {
5031 			u32 elem_idx;
5032 
5033 			/* __btf_resolve_size() above helps to
5034 			 * linearize a multi-dimensional array.
5035 			 *
5036 			 * The logic here is treating an array
5037 			 * in a struct as the following way:
5038 			 *
5039 			 * struct outer {
5040 			 *	struct inner array[2][2];
5041 			 * };
5042 			 *
5043 			 * looks like:
5044 			 *
5045 			 * struct outer {
5046 			 *	struct inner array_elem0;
5047 			 *	struct inner array_elem1;
5048 			 *	struct inner array_elem2;
5049 			 *	struct inner array_elem3;
5050 			 * };
5051 			 *
5052 			 * When accessing outer->array[1][0], it moves
5053 			 * moff to "array_elem2", set mtype to
5054 			 * "struct inner", and msize also becomes
5055 			 * sizeof(struct inner).  Then most of the
5056 			 * remaining logic will fall through without
5057 			 * caring the current member is an array or
5058 			 * not.
5059 			 *
5060 			 * Unlike mtype/msize/moff, mtrue_end does not
5061 			 * change.  The naming difference ("_true") tells
5062 			 * that it is not always corresponding to
5063 			 * the current mtype/msize/moff.
5064 			 * It is the true end of the current
5065 			 * member (i.e. array in this case).  That
5066 			 * will allow an int array to be accessed like
5067 			 * a scratch space,
5068 			 * i.e. allow access beyond the size of
5069 			 *      the array's element as long as it is
5070 			 *      within the mtrue_end boundary.
5071 			 */
5072 
5073 			/* skip empty array */
5074 			if (moff == mtrue_end)
5075 				continue;
5076 
5077 			msize /= total_nelems;
5078 			elem_idx = (off - moff) / msize;
5079 			moff += elem_idx * msize;
5080 			mtype = elem_type;
5081 			mid = elem_id;
5082 		}
5083 
5084 		/* the 'off' we're looking for is either equal to start
5085 		 * of this field or inside of this struct
5086 		 */
5087 		if (btf_type_is_struct(mtype)) {
5088 			/* our field must be inside that union or struct */
5089 			t = mtype;
5090 
5091 			/* return if the offset matches the member offset */
5092 			if (off == moff) {
5093 				*next_btf_id = mid;
5094 				return WALK_STRUCT;
5095 			}
5096 
5097 			/* adjust offset we're looking for */
5098 			off -= moff;
5099 			goto again;
5100 		}
5101 
5102 		if (btf_type_is_ptr(mtype)) {
5103 			const struct btf_type *stype;
5104 			u32 id;
5105 
5106 			if (msize != size || off != moff) {
5107 				bpf_log(log,
5108 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5109 					mname, moff, tname, off, size);
5110 				return -EACCES;
5111 			}
5112 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5113 			if (btf_type_is_struct(stype)) {
5114 				*next_btf_id = id;
5115 				return WALK_PTR;
5116 			}
5117 		}
5118 
5119 		/* Allow more flexible access within an int as long as
5120 		 * it is within mtrue_end.
5121 		 * Since mtrue_end could be the end of an array,
5122 		 * that also allows using an array of int as a scratch
5123 		 * space. e.g. skb->cb[].
5124 		 */
5125 		if (off + size > mtrue_end) {
5126 			bpf_log(log,
5127 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5128 				mname, mtrue_end, tname, off, size);
5129 			return -EACCES;
5130 		}
5131 
5132 		return WALK_SCALAR;
5133 	}
5134 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5135 	return -EINVAL;
5136 }
5137 
btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id)5138 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5139 		      const struct btf_type *t, int off, int size,
5140 		      enum bpf_access_type atype __maybe_unused,
5141 		      u32 *next_btf_id)
5142 {
5143 	int err;
5144 	u32 id;
5145 
5146 	do {
5147 		err = btf_struct_walk(log, btf, t, off, size, &id);
5148 
5149 		switch (err) {
5150 		case WALK_PTR:
5151 			/* If we found the pointer or scalar on t+off,
5152 			 * we're done.
5153 			 */
5154 			*next_btf_id = id;
5155 			return PTR_TO_BTF_ID;
5156 		case WALK_SCALAR:
5157 			return SCALAR_VALUE;
5158 		case WALK_STRUCT:
5159 			/* We found nested struct, so continue the search
5160 			 * by diving in it. At this point the offset is
5161 			 * aligned with the new type, so set it to 0.
5162 			 */
5163 			t = btf_type_by_id(btf, id);
5164 			off = 0;
5165 			break;
5166 		default:
5167 			/* It's either error or unknown return value..
5168 			 * scream and leave.
5169 			 */
5170 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5171 				return -EINVAL;
5172 			return err;
5173 		}
5174 	} while (t);
5175 
5176 	return -EINVAL;
5177 }
5178 
5179 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5180  * the same. Trivial ID check is not enough due to module BTFs, because we can
5181  * end up with two different module BTFs, but IDs point to the common type in
5182  * vmlinux BTF.
5183  */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)5184 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5185 			       const struct btf *btf2, u32 id2)
5186 {
5187 	if (id1 != id2)
5188 		return false;
5189 	if (btf1 == btf2)
5190 		return true;
5191 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5192 }
5193 
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id)5194 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5195 			  const struct btf *btf, u32 id, int off,
5196 			  const struct btf *need_btf, u32 need_type_id)
5197 {
5198 	const struct btf_type *type;
5199 	int err;
5200 
5201 	/* Are we already done? */
5202 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5203 		return true;
5204 
5205 again:
5206 	type = btf_type_by_id(btf, id);
5207 	if (!type)
5208 		return false;
5209 	err = btf_struct_walk(log, btf, type, off, 1, &id);
5210 	if (err != WALK_STRUCT)
5211 		return false;
5212 
5213 	/* We found nested struct object. If it matches
5214 	 * the requested ID, we're done. Otherwise let's
5215 	 * continue the search with offset 0 in the new
5216 	 * type.
5217 	 */
5218 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5219 		off = 0;
5220 		goto again;
5221 	}
5222 
5223 	return true;
5224 }
5225 
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** bad_type)5226 static int __get_type_size(struct btf *btf, u32 btf_id,
5227 			   const struct btf_type **bad_type)
5228 {
5229 	const struct btf_type *t;
5230 
5231 	if (!btf_id)
5232 		/* void */
5233 		return 0;
5234 	t = btf_type_by_id(btf, btf_id);
5235 	while (t && btf_type_is_modifier(t))
5236 		t = btf_type_by_id(btf, t->type);
5237 	if (!t) {
5238 		*bad_type = btf_type_by_id(btf, 0);
5239 		return -EINVAL;
5240 	}
5241 	if (btf_type_is_ptr(t))
5242 		/* kernel size of pointer. Not BPF's size of pointer*/
5243 		return sizeof(void *);
5244 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5245 		return t->size;
5246 	*bad_type = t;
5247 	return -EINVAL;
5248 }
5249 
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)5250 int btf_distill_func_proto(struct bpf_verifier_log *log,
5251 			   struct btf *btf,
5252 			   const struct btf_type *func,
5253 			   const char *tname,
5254 			   struct btf_func_model *m)
5255 {
5256 	const struct btf_param *args;
5257 	const struct btf_type *t;
5258 	u32 i, nargs;
5259 	int ret;
5260 
5261 	if (!func) {
5262 		/* BTF function prototype doesn't match the verifier types.
5263 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5264 		 */
5265 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5266 			m->arg_size[i] = 8;
5267 		m->ret_size = 8;
5268 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5269 		return 0;
5270 	}
5271 	args = (const struct btf_param *)(func + 1);
5272 	nargs = btf_type_vlen(func);
5273 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5274 		bpf_log(log,
5275 			"The function %s has %d arguments. Too many.\n",
5276 			tname, nargs);
5277 		return -EINVAL;
5278 	}
5279 	ret = __get_type_size(btf, func->type, &t);
5280 	if (ret < 0) {
5281 		bpf_log(log,
5282 			"The function %s return type %s is unsupported.\n",
5283 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5284 		return -EINVAL;
5285 	}
5286 	m->ret_size = ret;
5287 
5288 	for (i = 0; i < nargs; i++) {
5289 		if (i == nargs - 1 && args[i].type == 0) {
5290 			bpf_log(log,
5291 				"The function %s with variable args is unsupported.\n",
5292 				tname);
5293 			return -EINVAL;
5294 		}
5295 		ret = __get_type_size(btf, args[i].type, &t);
5296 		if (ret < 0) {
5297 			bpf_log(log,
5298 				"The function %s arg%d type %s is unsupported.\n",
5299 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5300 			return -EINVAL;
5301 		}
5302 		if (ret == 0) {
5303 			bpf_log(log,
5304 				"The function %s has malformed void argument.\n",
5305 				tname);
5306 			return -EINVAL;
5307 		}
5308 		m->arg_size[i] = ret;
5309 	}
5310 	m->nr_args = nargs;
5311 	return 0;
5312 }
5313 
5314 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5315  * t1 points to BTF_KIND_FUNC in btf1
5316  * t2 points to BTF_KIND_FUNC in btf2
5317  * Returns:
5318  * EINVAL - function prototype mismatch
5319  * EFAULT - verifier bug
5320  * 0 - 99% match. The last 1% is validated by the verifier.
5321  */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)5322 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5323 				     struct btf *btf1, const struct btf_type *t1,
5324 				     struct btf *btf2, const struct btf_type *t2)
5325 {
5326 	const struct btf_param *args1, *args2;
5327 	const char *fn1, *fn2, *s1, *s2;
5328 	u32 nargs1, nargs2, i;
5329 
5330 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5331 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5332 
5333 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5334 		bpf_log(log, "%s() is not a global function\n", fn1);
5335 		return -EINVAL;
5336 	}
5337 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5338 		bpf_log(log, "%s() is not a global function\n", fn2);
5339 		return -EINVAL;
5340 	}
5341 
5342 	t1 = btf_type_by_id(btf1, t1->type);
5343 	if (!t1 || !btf_type_is_func_proto(t1))
5344 		return -EFAULT;
5345 	t2 = btf_type_by_id(btf2, t2->type);
5346 	if (!t2 || !btf_type_is_func_proto(t2))
5347 		return -EFAULT;
5348 
5349 	args1 = (const struct btf_param *)(t1 + 1);
5350 	nargs1 = btf_type_vlen(t1);
5351 	args2 = (const struct btf_param *)(t2 + 1);
5352 	nargs2 = btf_type_vlen(t2);
5353 
5354 	if (nargs1 != nargs2) {
5355 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5356 			fn1, nargs1, fn2, nargs2);
5357 		return -EINVAL;
5358 	}
5359 
5360 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5361 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5362 	if (t1->info != t2->info) {
5363 		bpf_log(log,
5364 			"Return type %s of %s() doesn't match type %s of %s()\n",
5365 			btf_type_str(t1), fn1,
5366 			btf_type_str(t2), fn2);
5367 		return -EINVAL;
5368 	}
5369 
5370 	for (i = 0; i < nargs1; i++) {
5371 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5372 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5373 
5374 		if (t1->info != t2->info) {
5375 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5376 				i, fn1, btf_type_str(t1),
5377 				fn2, btf_type_str(t2));
5378 			return -EINVAL;
5379 		}
5380 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5381 			bpf_log(log,
5382 				"arg%d in %s() has size %d while %s() has %d\n",
5383 				i, fn1, t1->size,
5384 				fn2, t2->size);
5385 			return -EINVAL;
5386 		}
5387 
5388 		/* global functions are validated with scalars and pointers
5389 		 * to context only. And only global functions can be replaced.
5390 		 * Hence type check only those types.
5391 		 */
5392 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5393 			continue;
5394 		if (!btf_type_is_ptr(t1)) {
5395 			bpf_log(log,
5396 				"arg%d in %s() has unrecognized type\n",
5397 				i, fn1);
5398 			return -EINVAL;
5399 		}
5400 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5401 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5402 		if (!btf_type_is_struct(t1)) {
5403 			bpf_log(log,
5404 				"arg%d in %s() is not a pointer to context\n",
5405 				i, fn1);
5406 			return -EINVAL;
5407 		}
5408 		if (!btf_type_is_struct(t2)) {
5409 			bpf_log(log,
5410 				"arg%d in %s() is not a pointer to context\n",
5411 				i, fn2);
5412 			return -EINVAL;
5413 		}
5414 		/* This is an optional check to make program writing easier.
5415 		 * Compare names of structs and report an error to the user.
5416 		 * btf_prepare_func_args() already checked that t2 struct
5417 		 * is a context type. btf_prepare_func_args() will check
5418 		 * later that t1 struct is a context type as well.
5419 		 */
5420 		s1 = btf_name_by_offset(btf1, t1->name_off);
5421 		s2 = btf_name_by_offset(btf2, t2->name_off);
5422 		if (strcmp(s1, s2)) {
5423 			bpf_log(log,
5424 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5425 				i, fn1, s1, fn2, s2);
5426 			return -EINVAL;
5427 		}
5428 	}
5429 	return 0;
5430 }
5431 
5432 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)5433 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5434 			 struct btf *btf2, const struct btf_type *t2)
5435 {
5436 	struct btf *btf1 = prog->aux->btf;
5437 	const struct btf_type *t1;
5438 	u32 btf_id = 0;
5439 
5440 	if (!prog->aux->func_info) {
5441 		bpf_log(log, "Program extension requires BTF\n");
5442 		return -EINVAL;
5443 	}
5444 
5445 	btf_id = prog->aux->func_info[0].type_id;
5446 	if (!btf_id)
5447 		return -EFAULT;
5448 
5449 	t1 = btf_type_by_id(btf1, btf_id);
5450 	if (!t1 || !btf_type_is_func(t1))
5451 		return -EFAULT;
5452 
5453 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5454 }
5455 
5456 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5457 #ifdef CONFIG_NET
5458 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5459 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5460 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5461 #endif
5462 };
5463 
btf_check_func_arg_match(struct bpf_verifier_env * env,const struct btf * btf,u32 func_id,struct bpf_reg_state * regs,bool ptr_to_mem_ok)5464 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5465 				    const struct btf *btf, u32 func_id,
5466 				    struct bpf_reg_state *regs,
5467 				    bool ptr_to_mem_ok)
5468 {
5469 	enum bpf_prog_type prog_type = env->prog->type == BPF_PROG_TYPE_EXT ?
5470 		env->prog->aux->dst_prog->type : env->prog->type;
5471 	struct bpf_verifier_log *log = &env->log;
5472 	const char *func_name, *ref_tname;
5473 	const struct btf_type *t, *ref_t;
5474 	const struct btf_param *args;
5475 	u32 i, nargs, ref_id;
5476 
5477 	t = btf_type_by_id(btf, func_id);
5478 	if (!t || !btf_type_is_func(t)) {
5479 		/* These checks were already done by the verifier while loading
5480 		 * struct bpf_func_info or in add_kfunc_call().
5481 		 */
5482 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5483 			func_id);
5484 		return -EFAULT;
5485 	}
5486 	func_name = btf_name_by_offset(btf, t->name_off);
5487 
5488 	t = btf_type_by_id(btf, t->type);
5489 	if (!t || !btf_type_is_func_proto(t)) {
5490 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5491 		return -EFAULT;
5492 	}
5493 	args = (const struct btf_param *)(t + 1);
5494 	nargs = btf_type_vlen(t);
5495 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5496 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5497 			MAX_BPF_FUNC_REG_ARGS);
5498 		return -EINVAL;
5499 	}
5500 
5501 	/* check that BTF function arguments match actual types that the
5502 	 * verifier sees.
5503 	 */
5504 	for (i = 0; i < nargs; i++) {
5505 		u32 regno = i + 1;
5506 		struct bpf_reg_state *reg = &regs[regno];
5507 
5508 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5509 		if (btf_type_is_scalar(t)) {
5510 			if (reg->type == SCALAR_VALUE)
5511 				continue;
5512 			bpf_log(log, "R%d is not a scalar\n", regno);
5513 			return -EINVAL;
5514 		}
5515 
5516 		if (!btf_type_is_ptr(t)) {
5517 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5518 				i, btf_type_str(t));
5519 			return -EINVAL;
5520 		}
5521 
5522 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5523 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5524 		if (btf_is_kernel(btf)) {
5525 			const struct btf_type *reg_ref_t;
5526 			const struct btf *reg_btf;
5527 			const char *reg_ref_tname;
5528 			u32 reg_ref_id;
5529 
5530 			if (!btf_type_is_struct(ref_t)) {
5531 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5532 					func_name, i, btf_type_str(ref_t),
5533 					ref_tname);
5534 				return -EINVAL;
5535 			}
5536 
5537 			if (reg->type == PTR_TO_BTF_ID) {
5538 				reg_btf = reg->btf;
5539 				reg_ref_id = reg->btf_id;
5540 			} else if (reg2btf_ids[base_type(reg->type)]) {
5541 				reg_btf = btf_vmlinux;
5542 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
5543 			} else {
5544 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5545 					func_name, i,
5546 					btf_type_str(ref_t), ref_tname, regno);
5547 				return -EINVAL;
5548 			}
5549 
5550 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5551 							    &reg_ref_id);
5552 			reg_ref_tname = btf_name_by_offset(reg_btf,
5553 							   reg_ref_t->name_off);
5554 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5555 						  reg->off, btf, ref_id)) {
5556 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5557 					func_name, i,
5558 					btf_type_str(ref_t), ref_tname,
5559 					regno, btf_type_str(reg_ref_t),
5560 					reg_ref_tname);
5561 				return -EINVAL;
5562 			}
5563 		} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5564 			/* If function expects ctx type in BTF check that caller
5565 			 * is passing PTR_TO_CTX.
5566 			 */
5567 			if (reg->type != PTR_TO_CTX) {
5568 				bpf_log(log,
5569 					"arg#%d expected pointer to ctx, but got %s\n",
5570 					i, btf_type_str(t));
5571 				return -EINVAL;
5572 			}
5573 			if (check_ctx_reg(env, reg, regno))
5574 				return -EINVAL;
5575 		} else if (ptr_to_mem_ok) {
5576 			const struct btf_type *resolve_ret;
5577 			u32 type_size;
5578 
5579 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5580 			if (IS_ERR(resolve_ret)) {
5581 				bpf_log(log,
5582 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5583 					i, btf_type_str(ref_t), ref_tname,
5584 					PTR_ERR(resolve_ret));
5585 				return -EINVAL;
5586 			}
5587 
5588 			if (check_mem_reg(env, reg, regno, type_size))
5589 				return -EINVAL;
5590 		} else {
5591 			return -EINVAL;
5592 		}
5593 	}
5594 
5595 	return 0;
5596 }
5597 
5598 /* Compare BTF of a function with given bpf_reg_state.
5599  * Returns:
5600  * EFAULT - there is a verifier bug. Abort verification.
5601  * EINVAL - there is a type mismatch or BTF is not available.
5602  * 0 - BTF matches with what bpf_reg_state expects.
5603  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5604  */
btf_check_subprog_arg_match(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)5605 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5606 				struct bpf_reg_state *regs)
5607 {
5608 	struct bpf_prog *prog = env->prog;
5609 	struct btf *btf = prog->aux->btf;
5610 	bool is_global;
5611 	u32 btf_id;
5612 	int err;
5613 
5614 	if (!prog->aux->func_info)
5615 		return -EINVAL;
5616 
5617 	btf_id = prog->aux->func_info[subprog].type_id;
5618 	if (!btf_id)
5619 		return -EFAULT;
5620 
5621 	if (prog->aux->func_info_aux[subprog].unreliable)
5622 		return -EINVAL;
5623 
5624 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5625 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5626 
5627 	/* Compiler optimizations can remove arguments from static functions
5628 	 * or mismatched type can be passed into a global function.
5629 	 * In such cases mark the function as unreliable from BTF point of view.
5630 	 */
5631 	if (err)
5632 		prog->aux->func_info_aux[subprog].unreliable = true;
5633 	return err;
5634 }
5635 
btf_check_kfunc_arg_match(struct bpf_verifier_env * env,const struct btf * btf,u32 func_id,struct bpf_reg_state * regs)5636 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5637 			      const struct btf *btf, u32 func_id,
5638 			      struct bpf_reg_state *regs)
5639 {
5640 	return btf_check_func_arg_match(env, btf, func_id, regs, false);
5641 }
5642 
5643 /* Convert BTF of a function into bpf_reg_state if possible
5644  * Returns:
5645  * EFAULT - there is a verifier bug. Abort verification.
5646  * EINVAL - cannot convert BTF.
5647  * 0 - Successfully converted BTF into bpf_reg_state
5648  * (either PTR_TO_CTX or SCALAR_VALUE).
5649  */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)5650 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5651 			  struct bpf_reg_state *regs)
5652 {
5653 	struct bpf_verifier_log *log = &env->log;
5654 	struct bpf_prog *prog = env->prog;
5655 	enum bpf_prog_type prog_type = prog->type;
5656 	struct btf *btf = prog->aux->btf;
5657 	const struct btf_param *args;
5658 	const struct btf_type *t, *ref_t;
5659 	u32 i, nargs, btf_id;
5660 	const char *tname;
5661 
5662 	if (!prog->aux->func_info ||
5663 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5664 		bpf_log(log, "Verifier bug\n");
5665 		return -EFAULT;
5666 	}
5667 
5668 	btf_id = prog->aux->func_info[subprog].type_id;
5669 	if (!btf_id) {
5670 		bpf_log(log, "Global functions need valid BTF\n");
5671 		return -EFAULT;
5672 	}
5673 
5674 	t = btf_type_by_id(btf, btf_id);
5675 	if (!t || !btf_type_is_func(t)) {
5676 		/* These checks were already done by the verifier while loading
5677 		 * struct bpf_func_info
5678 		 */
5679 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5680 			subprog);
5681 		return -EFAULT;
5682 	}
5683 	tname = btf_name_by_offset(btf, t->name_off);
5684 
5685 	if (log->level & BPF_LOG_LEVEL)
5686 		bpf_log(log, "Validating %s() func#%d...\n",
5687 			tname, subprog);
5688 
5689 	if (prog->aux->func_info_aux[subprog].unreliable) {
5690 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5691 		return -EFAULT;
5692 	}
5693 	if (prog_type == BPF_PROG_TYPE_EXT)
5694 		prog_type = prog->aux->dst_prog->type;
5695 
5696 	t = btf_type_by_id(btf, t->type);
5697 	if (!t || !btf_type_is_func_proto(t)) {
5698 		bpf_log(log, "Invalid type of function %s()\n", tname);
5699 		return -EFAULT;
5700 	}
5701 	args = (const struct btf_param *)(t + 1);
5702 	nargs = btf_type_vlen(t);
5703 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5704 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5705 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5706 		return -EINVAL;
5707 	}
5708 	/* check that function returns int */
5709 	t = btf_type_by_id(btf, t->type);
5710 	while (btf_type_is_modifier(t))
5711 		t = btf_type_by_id(btf, t->type);
5712 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5713 		bpf_log(log,
5714 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5715 			tname);
5716 		return -EINVAL;
5717 	}
5718 	/* Convert BTF function arguments into verifier types.
5719 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5720 	 */
5721 	for (i = 0; i < nargs; i++) {
5722 		struct bpf_reg_state *reg = &regs[i + 1];
5723 
5724 		t = btf_type_by_id(btf, args[i].type);
5725 		while (btf_type_is_modifier(t))
5726 			t = btf_type_by_id(btf, t->type);
5727 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5728 			reg->type = SCALAR_VALUE;
5729 			continue;
5730 		}
5731 		if (btf_type_is_ptr(t)) {
5732 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5733 				reg->type = PTR_TO_CTX;
5734 				continue;
5735 			}
5736 
5737 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5738 
5739 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5740 			if (IS_ERR(ref_t)) {
5741 				bpf_log(log,
5742 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5743 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5744 					PTR_ERR(ref_t));
5745 				return -EINVAL;
5746 			}
5747 
5748 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5749 			reg->id = ++env->id_gen;
5750 
5751 			continue;
5752 		}
5753 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5754 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5755 		return -EINVAL;
5756 	}
5757 	return 0;
5758 }
5759 
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)5760 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5761 			  struct btf_show *show)
5762 {
5763 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5764 
5765 	show->btf = btf;
5766 	memset(&show->state, 0, sizeof(show->state));
5767 	memset(&show->obj, 0, sizeof(show->obj));
5768 
5769 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5770 }
5771 
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)5772 static void btf_seq_show(struct btf_show *show, const char *fmt,
5773 			 va_list args)
5774 {
5775 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5776 }
5777 
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)5778 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5779 			    void *obj, struct seq_file *m, u64 flags)
5780 {
5781 	struct btf_show sseq;
5782 
5783 	sseq.target = m;
5784 	sseq.showfn = btf_seq_show;
5785 	sseq.flags = flags;
5786 
5787 	btf_type_show(btf, type_id, obj, &sseq);
5788 
5789 	return sseq.state.status;
5790 }
5791 
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)5792 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5793 		       struct seq_file *m)
5794 {
5795 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5796 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5797 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5798 }
5799 
5800 struct btf_show_snprintf {
5801 	struct btf_show show;
5802 	int len_left;		/* space left in string */
5803 	int len;		/* length we would have written */
5804 };
5805 
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)5806 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5807 			      va_list args)
5808 {
5809 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5810 	int len;
5811 
5812 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5813 
5814 	if (len < 0) {
5815 		ssnprintf->len_left = 0;
5816 		ssnprintf->len = len;
5817 	} else if (len > ssnprintf->len_left) {
5818 		/* no space, drive on to get length we would have written */
5819 		ssnprintf->len_left = 0;
5820 		ssnprintf->len += len;
5821 	} else {
5822 		ssnprintf->len_left -= len;
5823 		ssnprintf->len += len;
5824 		show->target += len;
5825 	}
5826 }
5827 
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)5828 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5829 			   char *buf, int len, u64 flags)
5830 {
5831 	struct btf_show_snprintf ssnprintf;
5832 
5833 	ssnprintf.show.target = buf;
5834 	ssnprintf.show.flags = flags;
5835 	ssnprintf.show.showfn = btf_snprintf_show;
5836 	ssnprintf.len_left = len;
5837 	ssnprintf.len = 0;
5838 
5839 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5840 
5841 	/* If we encontered an error, return it. */
5842 	if (ssnprintf.show.state.status)
5843 		return ssnprintf.show.state.status;
5844 
5845 	/* Otherwise return length we would have written */
5846 	return ssnprintf.len;
5847 }
5848 
5849 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)5850 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5851 {
5852 	const struct btf *btf = filp->private_data;
5853 
5854 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5855 }
5856 #endif
5857 
btf_release(struct inode * inode,struct file * filp)5858 static int btf_release(struct inode *inode, struct file *filp)
5859 {
5860 	btf_put(filp->private_data);
5861 	return 0;
5862 }
5863 
5864 const struct file_operations btf_fops = {
5865 #ifdef CONFIG_PROC_FS
5866 	.show_fdinfo	= bpf_btf_show_fdinfo,
5867 #endif
5868 	.release	= btf_release,
5869 };
5870 
__btf_new_fd(struct btf * btf)5871 static int __btf_new_fd(struct btf *btf)
5872 {
5873 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5874 }
5875 
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr)5876 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
5877 {
5878 	struct btf *btf;
5879 	int ret;
5880 
5881 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
5882 			attr->btf_size, attr->btf_log_level,
5883 			u64_to_user_ptr(attr->btf_log_buf),
5884 			attr->btf_log_size);
5885 	if (IS_ERR(btf))
5886 		return PTR_ERR(btf);
5887 
5888 	ret = btf_alloc_id(btf);
5889 	if (ret) {
5890 		btf_free(btf);
5891 		return ret;
5892 	}
5893 
5894 	/*
5895 	 * The BTF ID is published to the userspace.
5896 	 * All BTF free must go through call_rcu() from
5897 	 * now on (i.e. free by calling btf_put()).
5898 	 */
5899 
5900 	ret = __btf_new_fd(btf);
5901 	if (ret < 0)
5902 		btf_put(btf);
5903 
5904 	return ret;
5905 }
5906 
btf_get_by_fd(int fd)5907 struct btf *btf_get_by_fd(int fd)
5908 {
5909 	struct btf *btf;
5910 	struct fd f;
5911 
5912 	f = fdget(fd);
5913 
5914 	if (!f.file)
5915 		return ERR_PTR(-EBADF);
5916 
5917 	if (f.file->f_op != &btf_fops) {
5918 		fdput(f);
5919 		return ERR_PTR(-EINVAL);
5920 	}
5921 
5922 	btf = f.file->private_data;
5923 	refcount_inc(&btf->refcnt);
5924 	fdput(f);
5925 
5926 	return btf;
5927 }
5928 
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)5929 int btf_get_info_by_fd(const struct btf *btf,
5930 		       const union bpf_attr *attr,
5931 		       union bpf_attr __user *uattr)
5932 {
5933 	struct bpf_btf_info __user *uinfo;
5934 	struct bpf_btf_info info;
5935 	u32 info_copy, btf_copy;
5936 	void __user *ubtf;
5937 	char __user *uname;
5938 	u32 uinfo_len, uname_len, name_len;
5939 	int ret = 0;
5940 
5941 	uinfo = u64_to_user_ptr(attr->info.info);
5942 	uinfo_len = attr->info.info_len;
5943 
5944 	info_copy = min_t(u32, uinfo_len, sizeof(info));
5945 	memset(&info, 0, sizeof(info));
5946 	if (copy_from_user(&info, uinfo, info_copy))
5947 		return -EFAULT;
5948 
5949 	info.id = btf->id;
5950 	ubtf = u64_to_user_ptr(info.btf);
5951 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
5952 	if (copy_to_user(ubtf, btf->data, btf_copy))
5953 		return -EFAULT;
5954 	info.btf_size = btf->data_size;
5955 
5956 	info.kernel_btf = btf->kernel_btf;
5957 
5958 	uname = u64_to_user_ptr(info.name);
5959 	uname_len = info.name_len;
5960 	if (!uname ^ !uname_len)
5961 		return -EINVAL;
5962 
5963 	name_len = strlen(btf->name);
5964 	info.name_len = name_len;
5965 
5966 	if (uname) {
5967 		if (uname_len >= name_len + 1) {
5968 			if (copy_to_user(uname, btf->name, name_len + 1))
5969 				return -EFAULT;
5970 		} else {
5971 			char zero = '\0';
5972 
5973 			if (copy_to_user(uname, btf->name, uname_len - 1))
5974 				return -EFAULT;
5975 			if (put_user(zero, uname + uname_len - 1))
5976 				return -EFAULT;
5977 			/* let user-space know about too short buffer */
5978 			ret = -ENOSPC;
5979 		}
5980 	}
5981 
5982 	if (copy_to_user(uinfo, &info, info_copy) ||
5983 	    put_user(info_copy, &uattr->info.info_len))
5984 		return -EFAULT;
5985 
5986 	return ret;
5987 }
5988 
btf_get_fd_by_id(u32 id)5989 int btf_get_fd_by_id(u32 id)
5990 {
5991 	struct btf *btf;
5992 	int fd;
5993 
5994 	rcu_read_lock();
5995 	btf = idr_find(&btf_idr, id);
5996 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5997 		btf = ERR_PTR(-ENOENT);
5998 	rcu_read_unlock();
5999 
6000 	if (IS_ERR(btf))
6001 		return PTR_ERR(btf);
6002 
6003 	fd = __btf_new_fd(btf);
6004 	if (fd < 0)
6005 		btf_put(btf);
6006 
6007 	return fd;
6008 }
6009 
btf_obj_id(const struct btf * btf)6010 u32 btf_obj_id(const struct btf *btf)
6011 {
6012 	return btf->id;
6013 }
6014 
btf_is_kernel(const struct btf * btf)6015 bool btf_is_kernel(const struct btf *btf)
6016 {
6017 	return btf->kernel_btf;
6018 }
6019 
btf_is_module(const struct btf * btf)6020 bool btf_is_module(const struct btf *btf)
6021 {
6022 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6023 }
6024 
btf_id_cmp_func(const void * a,const void * b)6025 static int btf_id_cmp_func(const void *a, const void *b)
6026 {
6027 	const int *pa = a, *pb = b;
6028 
6029 	return *pa - *pb;
6030 }
6031 
btf_id_set_contains(const struct btf_id_set * set,u32 id)6032 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6033 {
6034 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6035 }
6036 
6037 enum {
6038 	BTF_MODULE_F_LIVE = (1 << 0),
6039 };
6040 
6041 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6042 struct btf_module {
6043 	struct list_head list;
6044 	struct module *module;
6045 	struct btf *btf;
6046 	struct bin_attribute *sysfs_attr;
6047 	int flags;
6048 };
6049 
6050 static LIST_HEAD(btf_modules);
6051 static DEFINE_MUTEX(btf_module_mutex);
6052 
6053 static ssize_t
btf_module_read(struct file * file,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t len)6054 btf_module_read(struct file *file, struct kobject *kobj,
6055 		struct bin_attribute *bin_attr,
6056 		char *buf, loff_t off, size_t len)
6057 {
6058 	const struct btf *btf = bin_attr->private;
6059 
6060 	memcpy(buf, btf->data + off, len);
6061 	return len;
6062 }
6063 
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)6064 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6065 			     void *module)
6066 {
6067 	struct btf_module *btf_mod, *tmp;
6068 	struct module *mod = module;
6069 	struct btf *btf;
6070 	int err = 0;
6071 
6072 	if (mod->btf_data_size == 0 ||
6073 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
6074 	     op != MODULE_STATE_GOING))
6075 		goto out;
6076 
6077 	switch (op) {
6078 	case MODULE_STATE_COMING:
6079 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6080 		if (!btf_mod) {
6081 			err = -ENOMEM;
6082 			goto out;
6083 		}
6084 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6085 		if (IS_ERR(btf)) {
6086 			kfree(btf_mod);
6087 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
6088 				pr_warn("failed to validate module [%s] BTF: %ld\n",
6089 					mod->name, PTR_ERR(btf));
6090 				err = PTR_ERR(btf);
6091 			} else {
6092 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
6093 			}
6094 			goto out;
6095 		}
6096 		err = btf_alloc_id(btf);
6097 		if (err) {
6098 			btf_free(btf);
6099 			kfree(btf_mod);
6100 			goto out;
6101 		}
6102 
6103 		mutex_lock(&btf_module_mutex);
6104 		btf_mod->module = module;
6105 		btf_mod->btf = btf;
6106 		list_add(&btf_mod->list, &btf_modules);
6107 		mutex_unlock(&btf_module_mutex);
6108 
6109 		if (IS_ENABLED(CONFIG_SYSFS)) {
6110 			struct bin_attribute *attr;
6111 
6112 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6113 			if (!attr)
6114 				goto out;
6115 
6116 			sysfs_bin_attr_init(attr);
6117 			attr->attr.name = btf->name;
6118 			attr->attr.mode = 0444;
6119 			attr->size = btf->data_size;
6120 			attr->private = btf;
6121 			attr->read = btf_module_read;
6122 
6123 			err = sysfs_create_bin_file(btf_kobj, attr);
6124 			if (err) {
6125 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6126 					mod->name, err);
6127 				kfree(attr);
6128 				err = 0;
6129 				goto out;
6130 			}
6131 
6132 			btf_mod->sysfs_attr = attr;
6133 		}
6134 
6135 		break;
6136 	case MODULE_STATE_LIVE:
6137 		mutex_lock(&btf_module_mutex);
6138 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6139 			if (btf_mod->module != module)
6140 				continue;
6141 
6142 			btf_mod->flags |= BTF_MODULE_F_LIVE;
6143 			break;
6144 		}
6145 		mutex_unlock(&btf_module_mutex);
6146 		break;
6147 	case MODULE_STATE_GOING:
6148 		mutex_lock(&btf_module_mutex);
6149 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6150 			if (btf_mod->module != module)
6151 				continue;
6152 
6153 			list_del(&btf_mod->list);
6154 			if (btf_mod->sysfs_attr)
6155 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6156 			btf_put(btf_mod->btf);
6157 			kfree(btf_mod->sysfs_attr);
6158 			kfree(btf_mod);
6159 			break;
6160 		}
6161 		mutex_unlock(&btf_module_mutex);
6162 		break;
6163 	}
6164 out:
6165 	return notifier_from_errno(err);
6166 }
6167 
6168 static struct notifier_block btf_module_nb = {
6169 	.notifier_call = btf_module_notify,
6170 };
6171 
btf_module_init(void)6172 static int __init btf_module_init(void)
6173 {
6174 	register_module_notifier(&btf_module_nb);
6175 	return 0;
6176 }
6177 
6178 fs_initcall(btf_module_init);
6179 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6180 
btf_try_get_module(const struct btf * btf)6181 struct module *btf_try_get_module(const struct btf *btf)
6182 {
6183 	struct module *res = NULL;
6184 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6185 	struct btf_module *btf_mod, *tmp;
6186 
6187 	mutex_lock(&btf_module_mutex);
6188 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6189 		if (btf_mod->btf != btf)
6190 			continue;
6191 
6192 		/* We must only consider module whose __init routine has
6193 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
6194 		 * which is set from the notifier callback for
6195 		 * MODULE_STATE_LIVE.
6196 		 */
6197 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
6198 			res = btf_mod->module;
6199 
6200 		break;
6201 	}
6202 	mutex_unlock(&btf_module_mutex);
6203 #endif
6204 
6205 	return res;
6206 }
6207 
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)6208 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6209 {
6210 	struct btf *btf;
6211 	long ret;
6212 
6213 	if (flags)
6214 		return -EINVAL;
6215 
6216 	if (name_sz <= 1 || name[name_sz - 1])
6217 		return -EINVAL;
6218 
6219 	btf = bpf_get_btf_vmlinux();
6220 	if (IS_ERR(btf))
6221 		return PTR_ERR(btf);
6222 
6223 	ret = btf_find_by_name_kind(btf, name, kind);
6224 	/* ret is never zero, since btf_find_by_name_kind returns
6225 	 * positive btf_id or negative error.
6226 	 */
6227 	if (ret < 0) {
6228 		struct btf *mod_btf;
6229 		int id;
6230 
6231 		/* If name is not found in vmlinux's BTF then search in module's BTFs */
6232 		spin_lock_bh(&btf_idr_lock);
6233 		idr_for_each_entry(&btf_idr, mod_btf, id) {
6234 			if (!btf_is_module(mod_btf))
6235 				continue;
6236 			/* linear search could be slow hence unlock/lock
6237 			 * the IDR to avoiding holding it for too long
6238 			 */
6239 			btf_get(mod_btf);
6240 			spin_unlock_bh(&btf_idr_lock);
6241 			ret = btf_find_by_name_kind(mod_btf, name, kind);
6242 			if (ret > 0) {
6243 				int btf_obj_fd;
6244 
6245 				btf_obj_fd = __btf_new_fd(mod_btf);
6246 				if (btf_obj_fd < 0) {
6247 					btf_put(mod_btf);
6248 					return btf_obj_fd;
6249 				}
6250 				return ret | (((u64)btf_obj_fd) << 32);
6251 			}
6252 			spin_lock_bh(&btf_idr_lock);
6253 			btf_put(mod_btf);
6254 		}
6255 		spin_unlock_bh(&btf_idr_lock);
6256 	}
6257 	return ret;
6258 }
6259 
6260 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6261 	.func		= bpf_btf_find_by_name_kind,
6262 	.gpl_only	= false,
6263 	.ret_type	= RET_INTEGER,
6264 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6265 	.arg2_type	= ARG_CONST_SIZE,
6266 	.arg3_type	= ARG_ANYTHING,
6267 	.arg4_type	= ARG_ANYTHING,
6268 };
6269 
6270 BTF_ID_LIST_GLOBAL_SINGLE(btf_task_struct_ids, struct, task_struct)
6271