1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47 * struct cpuhp_cpu_state - Per cpu hotplug state storage
48 * @state: The current cpu state
49 * @target: The target state
50 * @fail: Current CPU hotplug callback state
51 * @thread: Pointer to the hotplug thread
52 * @should_run: Thread should execute
53 * @rollback: Perform a rollback
54 * @single: Single callback invocation
55 * @bringup: Single callback bringup or teardown selector
56 * @cpu: CPU number
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * struct cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 * @multi_instance: State has multiple instances which get added afterwards
122 */
123 struct cpuhp_step {
124 const char *name;
125 union {
126 int (*single)(unsigned int cpu);
127 int (*multi)(unsigned int cpu,
128 struct hlist_node *node);
129 } startup;
130 union {
131 int (*single)(unsigned int cpu);
132 int (*multi)(unsigned int cpu,
133 struct hlist_node *node);
134 } teardown;
135 /* private: */
136 struct hlist_head list;
137 /* public: */
138 bool cant_stop;
139 bool multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
cpuhp_get_step(enum cpuhp_state state)145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 return cpuhp_hp_states + state;
148 }
149
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156 * cpuhp_invoke_callback - Invoke the callbacks for a given state
157 * @cpu: The cpu for which the callback should be invoked
158 * @state: The state to do callbacks for
159 * @bringup: True if the bringup callback should be invoked
160 * @node: For multi-instance, do a single entry callback for install/remove
161 * @lastp: For multi-instance rollback, remember how far we got
162 *
163 * Called from cpu hotplug and from the state register machinery.
164 *
165 * Return: %0 on success or a negative errno code
166 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 bool bringup, struct hlist_node *node,
169 struct hlist_node **lastp)
170 {
171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 struct cpuhp_step *step = cpuhp_get_step(state);
173 int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 int (*cb)(unsigned int cpu);
175 int ret, cnt;
176
177 if (st->fail == state) {
178 st->fail = CPUHP_INVALID;
179 return -EAGAIN;
180 }
181
182 if (cpuhp_step_empty(bringup, step)) {
183 WARN_ON_ONCE(1);
184 return 0;
185 }
186
187 if (!step->multi_instance) {
188 WARN_ON_ONCE(lastp && *lastp);
189 cb = bringup ? step->startup.single : step->teardown.single;
190
191 trace_cpuhp_enter(cpu, st->target, state, cb);
192 ret = cb(cpu);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 return ret;
195 }
196 cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198 /* Single invocation for instance add/remove */
199 if (node) {
200 WARN_ON_ONCE(lastp && *lastp);
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
204 return ret;
205 }
206
207 /* State transition. Invoke on all instances */
208 cnt = 0;
209 hlist_for_each(node, &step->list) {
210 if (lastp && node == *lastp)
211 break;
212
213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 ret = cbm(cpu, node);
215 trace_cpuhp_exit(cpu, st->state, state, ret);
216 if (ret) {
217 if (!lastp)
218 goto err;
219
220 *lastp = node;
221 return ret;
222 }
223 cnt++;
224 }
225 if (lastp)
226 *lastp = NULL;
227 return 0;
228 err:
229 /* Rollback the instances if one failed */
230 cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 if (!cbm)
232 return ret;
233
234 hlist_for_each(node, &step->list) {
235 if (!cnt--)
236 break;
237
238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 ret = cbm(cpu, node);
240 trace_cpuhp_exit(cpu, st->state, state, ret);
241 /*
242 * Rollback must not fail,
243 */
244 WARN_ON_ONCE(ret);
245 }
246 return ret;
247 }
248
249 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 /*
253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 * purposes as that state is handled explicitly in cpu_down.
255 */
256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 struct completion *done = bringup ? &st->done_up : &st->done_down;
262 wait_for_completion(done);
263 }
264
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 struct completion *done = bringup ? &st->done_up : &st->done_down;
268 complete(done);
269 }
270
271 /*
272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273 */
cpuhp_is_atomic_state(enum cpuhp_state state)274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285 * The following two APIs (cpu_maps_update_begin/done) must be used when
286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287 */
cpu_maps_update_begin(void)288 void cpu_maps_update_begin(void)
289 {
290 mutex_lock(&cpu_add_remove_lock);
291 }
292
cpu_maps_update_done(void)293 void cpu_maps_update_done(void)
294 {
295 mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300 * Should always be manipulated under cpu_add_remove_lock
301 */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
cpus_read_lock(void)308 void cpus_read_lock(void)
309 {
310 percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
cpus_read_trylock(void)314 int cpus_read_trylock(void)
315 {
316 return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
cpus_read_unlock(void)320 void cpus_read_unlock(void)
321 {
322 percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
cpus_write_lock(void)326 void cpus_write_lock(void)
327 {
328 percpu_down_write(&cpu_hotplug_lock);
329 }
330
cpus_write_unlock(void)331 void cpus_write_unlock(void)
332 {
333 percpu_up_write(&cpu_hotplug_lock);
334 }
335
lockdep_assert_cpus_held(void)336 void lockdep_assert_cpus_held(void)
337 {
338 /*
339 * We can't have hotplug operations before userspace starts running,
340 * and some init codepaths will knowingly not take the hotplug lock.
341 * This is all valid, so mute lockdep until it makes sense to report
342 * unheld locks.
343 */
344 if (system_state < SYSTEM_RUNNING)
345 return;
346
347 percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)351 int lockdep_is_cpus_held(void)
352 {
353 return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
lockdep_acquire_cpus_lock(void)357 static void lockdep_acquire_cpus_lock(void)
358 {
359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
lockdep_release_cpus_lock(void)362 static void lockdep_release_cpus_lock(void)
363 {
364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368 * Wait for currently running CPU hotplug operations to complete (if any) and
369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371 * hotplug path before performing hotplug operations. So acquiring that lock
372 * guarantees mutual exclusion from any currently running hotplug operations.
373 */
cpu_hotplug_disable(void)374 void cpu_hotplug_disable(void)
375 {
376 cpu_maps_update_begin();
377 cpu_hotplug_disabled++;
378 cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
__cpu_hotplug_enable(void)382 static void __cpu_hotplug_enable(void)
383 {
384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 return;
386 cpu_hotplug_disabled--;
387 }
388
cpu_hotplug_enable(void)389 void cpu_hotplug_enable(void)
390 {
391 cpu_maps_update_begin();
392 __cpu_hotplug_enable();
393 cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
lockdep_acquire_cpus_lock(void)399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
lockdep_release_cpus_lock(void)403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif /* CONFIG_HOTPLUG_CPU */
408
409 /*
410 * Architectures that need SMT-specific errata handling during SMT hotplug
411 * should override this.
412 */
arch_smt_update(void)413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
cpu_smt_disable(bool force)418 void __init cpu_smt_disable(bool force)
419 {
420 if (!cpu_smt_possible())
421 return;
422
423 if (force) {
424 pr_info("SMT: Force disabled\n");
425 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 } else {
427 pr_info("SMT: disabled\n");
428 cpu_smt_control = CPU_SMT_DISABLED;
429 }
430 }
431
432 /*
433 * The decision whether SMT is supported can only be done after the full
434 * CPU identification. Called from architecture code.
435 */
cpu_smt_check_topology(void)436 void __init cpu_smt_check_topology(void)
437 {
438 if (!topology_smt_supported())
439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
smt_cmdline_disable(char * str)442 static int __init smt_cmdline_disable(char *str)
443 {
444 cpu_smt_disable(str && !strcmp(str, "force"));
445 return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 if (cpu_smt_control == CPU_SMT_ENABLED)
452 return true;
453
454 if (topology_is_primary_thread(cpu))
455 return true;
456
457 /*
458 * On x86 it's required to boot all logical CPUs at least once so
459 * that the init code can get a chance to set CR4.MCE on each
460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 * core will shutdown the machine.
462 */
463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)467 bool cpu_smt_possible(void)
468 {
469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
cpu_smt_allowed(unsigned int cpu)474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 enum cpuhp_state prev_state = st->state;
481 bool bringup = st->state < target;
482
483 st->rollback = false;
484 st->last = NULL;
485
486 st->target = target;
487 st->single = false;
488 st->bringup = bringup;
489 if (cpu_dying(cpu) != !bringup)
490 set_cpu_dying(cpu, !bringup);
491
492 return prev_state;
493 }
494
495 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 enum cpuhp_state prev_state)
498 {
499 bool bringup = !st->bringup;
500
501 st->target = prev_state;
502
503 /*
504 * Already rolling back. No need invert the bringup value or to change
505 * the current state.
506 */
507 if (st->rollback)
508 return;
509
510 st->rollback = true;
511
512 /*
513 * If we have st->last we need to undo partial multi_instance of this
514 * state first. Otherwise start undo at the previous state.
515 */
516 if (!st->last) {
517 if (st->bringup)
518 st->state--;
519 else
520 st->state++;
521 }
522
523 st->bringup = bringup;
524 if (cpu_dying(cpu) != !bringup)
525 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 if (!st->single && st->state == st->target)
532 return;
533
534 st->result = 0;
535 /*
536 * Make sure the above stores are visible before should_run becomes
537 * true. Paired with the mb() above in cpuhp_thread_fun()
538 */
539 smp_mb();
540 st->should_run = true;
541 wake_up_process(st->thread);
542 wait_for_ap_thread(st, st->bringup);
543 }
544
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 enum cpuhp_state target)
547 {
548 enum cpuhp_state prev_state;
549 int ret;
550
551 prev_state = cpuhp_set_state(cpu, st, target);
552 __cpuhp_kick_ap(st);
553 if ((ret = st->result)) {
554 cpuhp_reset_state(cpu, st, prev_state);
555 __cpuhp_kick_ap(st);
556 }
557
558 return ret;
559 }
560
bringup_wait_for_ap(unsigned int cpu)561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 wait_for_ap_thread(st, true);
567 if (WARN_ON_ONCE((!cpu_online(cpu))))
568 return -ECANCELED;
569
570 /* Unpark the hotplug thread of the target cpu */
571 kthread_unpark(st->thread);
572
573 /*
574 * SMT soft disabling on X86 requires to bring the CPU out of the
575 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
576 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 * cpu_smt_allowed() check will now return false if this is not the
578 * primary sibling.
579 */
580 if (!cpu_smt_allowed(cpu))
581 return -ECANCELED;
582
583 if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 return 0;
585
586 return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
bringup_cpu(unsigned int cpu)589 static int bringup_cpu(unsigned int cpu)
590 {
591 struct task_struct *idle = idle_thread_get(cpu);
592 int ret;
593
594 /*
595 * Reset stale stack state from the last time this CPU was online.
596 */
597 scs_task_reset(idle);
598 kasan_unpoison_task_stack(idle);
599
600 /*
601 * Some architectures have to walk the irq descriptors to
602 * setup the vector space for the cpu which comes online.
603 * Prevent irq alloc/free across the bringup.
604 */
605 irq_lock_sparse();
606
607 /* Arch-specific enabling code. */
608 ret = __cpu_up(cpu, idle);
609 irq_unlock_sparse();
610 if (ret)
611 return ret;
612 return bringup_wait_for_ap(cpu);
613 }
614
finish_cpu(unsigned int cpu)615 static int finish_cpu(unsigned int cpu)
616 {
617 struct task_struct *idle = idle_thread_get(cpu);
618 struct mm_struct *mm = idle->active_mm;
619
620 /*
621 * idle_task_exit() will have switched to &init_mm, now
622 * clean up any remaining active_mm state.
623 */
624 if (mm != &init_mm)
625 idle->active_mm = &init_mm;
626 mmdrop(mm);
627 return 0;
628 }
629
630 /*
631 * Hotplug state machine related functions
632 */
633
634 /*
635 * Get the next state to run. Empty ones will be skipped. Returns true if a
636 * state must be run.
637 *
638 * st->state will be modified ahead of time, to match state_to_run, as if it
639 * has already ran.
640 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)641 static bool cpuhp_next_state(bool bringup,
642 enum cpuhp_state *state_to_run,
643 struct cpuhp_cpu_state *st,
644 enum cpuhp_state target)
645 {
646 do {
647 if (bringup) {
648 if (st->state >= target)
649 return false;
650
651 *state_to_run = ++st->state;
652 } else {
653 if (st->state <= target)
654 return false;
655
656 *state_to_run = st->state--;
657 }
658
659 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 break;
661 } while (true);
662
663 return true;
664 }
665
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)666 static int __cpuhp_invoke_callback_range(bool bringup,
667 unsigned int cpu,
668 struct cpuhp_cpu_state *st,
669 enum cpuhp_state target,
670 bool nofail)
671 {
672 enum cpuhp_state state;
673 int ret = 0;
674
675 while (cpuhp_next_state(bringup, &state, st, target)) {
676 int err;
677
678 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
679 if (!err)
680 continue;
681
682 if (nofail) {
683 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
684 cpu, bringup ? "UP" : "DOWN",
685 cpuhp_get_step(st->state)->name,
686 st->state, err);
687 ret = -1;
688 } else {
689 ret = err;
690 break;
691 }
692 }
693
694 return ret;
695 }
696
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)697 static inline int cpuhp_invoke_callback_range(bool bringup,
698 unsigned int cpu,
699 struct cpuhp_cpu_state *st,
700 enum cpuhp_state target)
701 {
702 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
703 }
704
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
706 unsigned int cpu,
707 struct cpuhp_cpu_state *st,
708 enum cpuhp_state target)
709 {
710 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
711 }
712
can_rollback_cpu(struct cpuhp_cpu_state * st)713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
714 {
715 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
716 return true;
717 /*
718 * When CPU hotplug is disabled, then taking the CPU down is not
719 * possible because takedown_cpu() and the architecture and
720 * subsystem specific mechanisms are not available. So the CPU
721 * which would be completely unplugged again needs to stay around
722 * in the current state.
723 */
724 return st->state <= CPUHP_BRINGUP_CPU;
725 }
726
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
728 enum cpuhp_state target)
729 {
730 enum cpuhp_state prev_state = st->state;
731 int ret = 0;
732
733 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
734 if (ret) {
735 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
736 ret, cpu, cpuhp_get_step(st->state)->name,
737 st->state);
738
739 cpuhp_reset_state(cpu, st, prev_state);
740 if (can_rollback_cpu(st))
741 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
742 prev_state));
743 }
744 return ret;
745 }
746
747 /*
748 * The cpu hotplug threads manage the bringup and teardown of the cpus
749 */
cpuhp_create(unsigned int cpu)750 static void cpuhp_create(unsigned int cpu)
751 {
752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753
754 init_completion(&st->done_up);
755 init_completion(&st->done_down);
756 }
757
cpuhp_should_run(unsigned int cpu)758 static int cpuhp_should_run(unsigned int cpu)
759 {
760 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
761
762 return st->should_run;
763 }
764
765 /*
766 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
767 * callbacks when a state gets [un]installed at runtime.
768 *
769 * Each invocation of this function by the smpboot thread does a single AP
770 * state callback.
771 *
772 * It has 3 modes of operation:
773 * - single: runs st->cb_state
774 * - up: runs ++st->state, while st->state < st->target
775 * - down: runs st->state--, while st->state > st->target
776 *
777 * When complete or on error, should_run is cleared and the completion is fired.
778 */
cpuhp_thread_fun(unsigned int cpu)779 static void cpuhp_thread_fun(unsigned int cpu)
780 {
781 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
782 bool bringup = st->bringup;
783 enum cpuhp_state state;
784
785 if (WARN_ON_ONCE(!st->should_run))
786 return;
787
788 /*
789 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
790 * that if we see ->should_run we also see the rest of the state.
791 */
792 smp_mb();
793
794 /*
795 * The BP holds the hotplug lock, but we're now running on the AP,
796 * ensure that anybody asserting the lock is held, will actually find
797 * it so.
798 */
799 lockdep_acquire_cpus_lock();
800 cpuhp_lock_acquire(bringup);
801
802 if (st->single) {
803 state = st->cb_state;
804 st->should_run = false;
805 } else {
806 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
807 if (!st->should_run)
808 goto end;
809 }
810
811 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
812
813 if (cpuhp_is_atomic_state(state)) {
814 local_irq_disable();
815 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
816 local_irq_enable();
817
818 /*
819 * STARTING/DYING must not fail!
820 */
821 WARN_ON_ONCE(st->result);
822 } else {
823 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
824 }
825
826 if (st->result) {
827 /*
828 * If we fail on a rollback, we're up a creek without no
829 * paddle, no way forward, no way back. We loose, thanks for
830 * playing.
831 */
832 WARN_ON_ONCE(st->rollback);
833 st->should_run = false;
834 }
835
836 end:
837 cpuhp_lock_release(bringup);
838 lockdep_release_cpus_lock();
839
840 if (!st->should_run)
841 complete_ap_thread(st, bringup);
842 }
843
844 /* Invoke a single callback on a remote cpu */
845 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)846 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
847 struct hlist_node *node)
848 {
849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 int ret;
851
852 if (!cpu_online(cpu))
853 return 0;
854
855 cpuhp_lock_acquire(false);
856 cpuhp_lock_release(false);
857
858 cpuhp_lock_acquire(true);
859 cpuhp_lock_release(true);
860
861 /*
862 * If we are up and running, use the hotplug thread. For early calls
863 * we invoke the thread function directly.
864 */
865 if (!st->thread)
866 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
867
868 st->rollback = false;
869 st->last = NULL;
870
871 st->node = node;
872 st->bringup = bringup;
873 st->cb_state = state;
874 st->single = true;
875
876 __cpuhp_kick_ap(st);
877
878 /*
879 * If we failed and did a partial, do a rollback.
880 */
881 if ((ret = st->result) && st->last) {
882 st->rollback = true;
883 st->bringup = !bringup;
884
885 __cpuhp_kick_ap(st);
886 }
887
888 /*
889 * Clean up the leftovers so the next hotplug operation wont use stale
890 * data.
891 */
892 st->node = st->last = NULL;
893 return ret;
894 }
895
cpuhp_kick_ap_work(unsigned int cpu)896 static int cpuhp_kick_ap_work(unsigned int cpu)
897 {
898 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 enum cpuhp_state prev_state = st->state;
900 int ret;
901
902 cpuhp_lock_acquire(false);
903 cpuhp_lock_release(false);
904
905 cpuhp_lock_acquire(true);
906 cpuhp_lock_release(true);
907
908 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
909 ret = cpuhp_kick_ap(cpu, st, st->target);
910 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
911
912 return ret;
913 }
914
915 static struct smp_hotplug_thread cpuhp_threads = {
916 .store = &cpuhp_state.thread,
917 .create = &cpuhp_create,
918 .thread_should_run = cpuhp_should_run,
919 .thread_fn = cpuhp_thread_fun,
920 .thread_comm = "cpuhp/%u",
921 .selfparking = true,
922 };
923
cpuhp_threads_init(void)924 void __init cpuhp_threads_init(void)
925 {
926 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
927 kthread_unpark(this_cpu_read(cpuhp_state.thread));
928 }
929
930 /*
931 *
932 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
933 * protected region.
934 *
935 * The operation is still serialized against concurrent CPU hotplug via
936 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
937 * serialized against other hotplug related activity like adding or
938 * removing of state callbacks and state instances, which invoke either the
939 * startup or the teardown callback of the affected state.
940 *
941 * This is required for subsystems which are unfixable vs. CPU hotplug and
942 * evade lock inversion problems by scheduling work which has to be
943 * completed _before_ cpu_up()/_cpu_down() returns.
944 *
945 * Don't even think about adding anything to this for any new code or even
946 * drivers. It's only purpose is to keep existing lock order trainwrecks
947 * working.
948 *
949 * For cpu_down() there might be valid reasons to finish cleanups which are
950 * not required to be done under cpu_hotplug_lock, but that's a different
951 * story and would be not invoked via this.
952 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)953 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
954 {
955 /*
956 * cpusets delegate hotplug operations to a worker to "solve" the
957 * lock order problems. Wait for the worker, but only if tasks are
958 * _not_ frozen (suspend, hibernate) as that would wait forever.
959 *
960 * The wait is required because otherwise the hotplug operation
961 * returns with inconsistent state, which could even be observed in
962 * user space when a new CPU is brought up. The CPU plug uevent
963 * would be delivered and user space reacting on it would fail to
964 * move tasks to the newly plugged CPU up to the point where the
965 * work has finished because up to that point the newly plugged CPU
966 * is not assignable in cpusets/cgroups. On unplug that's not
967 * necessarily a visible issue, but it is still inconsistent state,
968 * which is the real problem which needs to be "fixed". This can't
969 * prevent the transient state between scheduling the work and
970 * returning from waiting for it.
971 */
972 if (!tasks_frozen)
973 cpuset_wait_for_hotplug();
974 }
975
976 #ifdef CONFIG_HOTPLUG_CPU
977 #ifndef arch_clear_mm_cpumask_cpu
978 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
979 #endif
980
981 /**
982 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
983 * @cpu: a CPU id
984 *
985 * This function walks all processes, finds a valid mm struct for each one and
986 * then clears a corresponding bit in mm's cpumask. While this all sounds
987 * trivial, there are various non-obvious corner cases, which this function
988 * tries to solve in a safe manner.
989 *
990 * Also note that the function uses a somewhat relaxed locking scheme, so it may
991 * be called only for an already offlined CPU.
992 */
clear_tasks_mm_cpumask(int cpu)993 void clear_tasks_mm_cpumask(int cpu)
994 {
995 struct task_struct *p;
996
997 /*
998 * This function is called after the cpu is taken down and marked
999 * offline, so its not like new tasks will ever get this cpu set in
1000 * their mm mask. -- Peter Zijlstra
1001 * Thus, we may use rcu_read_lock() here, instead of grabbing
1002 * full-fledged tasklist_lock.
1003 */
1004 WARN_ON(cpu_online(cpu));
1005 rcu_read_lock();
1006 for_each_process(p) {
1007 struct task_struct *t;
1008
1009 /*
1010 * Main thread might exit, but other threads may still have
1011 * a valid mm. Find one.
1012 */
1013 t = find_lock_task_mm(p);
1014 if (!t)
1015 continue;
1016 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1017 task_unlock(t);
1018 }
1019 rcu_read_unlock();
1020 }
1021
1022 /* Take this CPU down. */
take_cpu_down(void * _param)1023 static int take_cpu_down(void *_param)
1024 {
1025 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1026 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1027 int err, cpu = smp_processor_id();
1028
1029 /* Ensure this CPU doesn't handle any more interrupts. */
1030 err = __cpu_disable();
1031 if (err < 0)
1032 return err;
1033
1034 /*
1035 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1036 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1037 */
1038 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1039
1040 /*
1041 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1042 */
1043 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1044
1045 /* Give up timekeeping duties */
1046 tick_handover_do_timer();
1047 /* Remove CPU from timer broadcasting */
1048 tick_offline_cpu(cpu);
1049 /* Park the stopper thread */
1050 stop_machine_park(cpu);
1051 return 0;
1052 }
1053
takedown_cpu(unsigned int cpu)1054 static int takedown_cpu(unsigned int cpu)
1055 {
1056 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1057 int err;
1058
1059 /* Park the smpboot threads */
1060 kthread_park(st->thread);
1061
1062 /*
1063 * Prevent irq alloc/free while the dying cpu reorganizes the
1064 * interrupt affinities.
1065 */
1066 irq_lock_sparse();
1067
1068 /*
1069 * So now all preempt/rcu users must observe !cpu_active().
1070 */
1071 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1072 if (err) {
1073 /* CPU refused to die */
1074 irq_unlock_sparse();
1075 /* Unpark the hotplug thread so we can rollback there */
1076 kthread_unpark(st->thread);
1077 return err;
1078 }
1079 BUG_ON(cpu_online(cpu));
1080
1081 /*
1082 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1083 * all runnable tasks from the CPU, there's only the idle task left now
1084 * that the migration thread is done doing the stop_machine thing.
1085 *
1086 * Wait for the stop thread to go away.
1087 */
1088 wait_for_ap_thread(st, false);
1089 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1090
1091 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1092 irq_unlock_sparse();
1093
1094 hotplug_cpu__broadcast_tick_pull(cpu);
1095 /* This actually kills the CPU. */
1096 __cpu_die(cpu);
1097
1098 tick_cleanup_dead_cpu(cpu);
1099 rcutree_migrate_callbacks(cpu);
1100 return 0;
1101 }
1102
cpuhp_complete_idle_dead(void * arg)1103 static void cpuhp_complete_idle_dead(void *arg)
1104 {
1105 struct cpuhp_cpu_state *st = arg;
1106
1107 complete_ap_thread(st, false);
1108 }
1109
cpuhp_report_idle_dead(void)1110 void cpuhp_report_idle_dead(void)
1111 {
1112 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1113
1114 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1115 rcu_report_dead(smp_processor_id());
1116 st->state = CPUHP_AP_IDLE_DEAD;
1117 /*
1118 * We cannot call complete after rcu_report_dead() so we delegate it
1119 * to an online cpu.
1120 */
1121 smp_call_function_single(cpumask_first(cpu_online_mask),
1122 cpuhp_complete_idle_dead, st, 0);
1123 }
1124
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1125 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1126 enum cpuhp_state target)
1127 {
1128 enum cpuhp_state prev_state = st->state;
1129 int ret = 0;
1130
1131 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1132 if (ret) {
1133 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1134 ret, cpu, cpuhp_get_step(st->state)->name,
1135 st->state);
1136
1137 cpuhp_reset_state(cpu, st, prev_state);
1138
1139 if (st->state < prev_state)
1140 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1141 prev_state));
1142 }
1143
1144 return ret;
1145 }
1146
1147 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1148 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1149 enum cpuhp_state target)
1150 {
1151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1152 int prev_state, ret = 0;
1153
1154 if (num_online_cpus() == 1)
1155 return -EBUSY;
1156
1157 if (!cpu_present(cpu))
1158 return -EINVAL;
1159
1160 cpus_write_lock();
1161
1162 cpuhp_tasks_frozen = tasks_frozen;
1163
1164 prev_state = cpuhp_set_state(cpu, st, target);
1165 /*
1166 * If the current CPU state is in the range of the AP hotplug thread,
1167 * then we need to kick the thread.
1168 */
1169 if (st->state > CPUHP_TEARDOWN_CPU) {
1170 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1171 ret = cpuhp_kick_ap_work(cpu);
1172 /*
1173 * The AP side has done the error rollback already. Just
1174 * return the error code..
1175 */
1176 if (ret)
1177 goto out;
1178
1179 /*
1180 * We might have stopped still in the range of the AP hotplug
1181 * thread. Nothing to do anymore.
1182 */
1183 if (st->state > CPUHP_TEARDOWN_CPU)
1184 goto out;
1185
1186 st->target = target;
1187 }
1188 /*
1189 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1190 * to do the further cleanups.
1191 */
1192 ret = cpuhp_down_callbacks(cpu, st, target);
1193 if (ret && st->state < prev_state) {
1194 if (st->state == CPUHP_TEARDOWN_CPU) {
1195 cpuhp_reset_state(cpu, st, prev_state);
1196 __cpuhp_kick_ap(st);
1197 } else {
1198 WARN(1, "DEAD callback error for CPU%d", cpu);
1199 }
1200 }
1201
1202 out:
1203 cpus_write_unlock();
1204 /*
1205 * Do post unplug cleanup. This is still protected against
1206 * concurrent CPU hotplug via cpu_add_remove_lock.
1207 */
1208 lockup_detector_cleanup();
1209 arch_smt_update();
1210 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1211 return ret;
1212 }
1213
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1214 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1215 {
1216 if (cpu_hotplug_disabled)
1217 return -EBUSY;
1218 return _cpu_down(cpu, 0, target);
1219 }
1220
cpu_down(unsigned int cpu,enum cpuhp_state target)1221 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1222 {
1223 int err;
1224
1225 cpu_maps_update_begin();
1226 err = cpu_down_maps_locked(cpu, target);
1227 cpu_maps_update_done();
1228 return err;
1229 }
1230
1231 /**
1232 * cpu_device_down - Bring down a cpu device
1233 * @dev: Pointer to the cpu device to offline
1234 *
1235 * This function is meant to be used by device core cpu subsystem only.
1236 *
1237 * Other subsystems should use remove_cpu() instead.
1238 *
1239 * Return: %0 on success or a negative errno code
1240 */
cpu_device_down(struct device * dev)1241 int cpu_device_down(struct device *dev)
1242 {
1243 return cpu_down(dev->id, CPUHP_OFFLINE);
1244 }
1245
remove_cpu(unsigned int cpu)1246 int remove_cpu(unsigned int cpu)
1247 {
1248 int ret;
1249
1250 lock_device_hotplug();
1251 ret = device_offline(get_cpu_device(cpu));
1252 unlock_device_hotplug();
1253
1254 return ret;
1255 }
1256 EXPORT_SYMBOL_GPL(remove_cpu);
1257
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1258 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1259 {
1260 unsigned int cpu;
1261 int error;
1262
1263 cpu_maps_update_begin();
1264
1265 /*
1266 * Make certain the cpu I'm about to reboot on is online.
1267 *
1268 * This is inline to what migrate_to_reboot_cpu() already do.
1269 */
1270 if (!cpu_online(primary_cpu))
1271 primary_cpu = cpumask_first(cpu_online_mask);
1272
1273 for_each_online_cpu(cpu) {
1274 if (cpu == primary_cpu)
1275 continue;
1276
1277 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1278 if (error) {
1279 pr_err("Failed to offline CPU%d - error=%d",
1280 cpu, error);
1281 break;
1282 }
1283 }
1284
1285 /*
1286 * Ensure all but the reboot CPU are offline.
1287 */
1288 BUG_ON(num_online_cpus() > 1);
1289
1290 /*
1291 * Make sure the CPUs won't be enabled by someone else after this
1292 * point. Kexec will reboot to a new kernel shortly resetting
1293 * everything along the way.
1294 */
1295 cpu_hotplug_disabled++;
1296
1297 cpu_maps_update_done();
1298 }
1299
1300 #else
1301 #define takedown_cpu NULL
1302 #endif /*CONFIG_HOTPLUG_CPU*/
1303
1304 /**
1305 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1306 * @cpu: cpu that just started
1307 *
1308 * It must be called by the arch code on the new cpu, before the new cpu
1309 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1310 */
notify_cpu_starting(unsigned int cpu)1311 void notify_cpu_starting(unsigned int cpu)
1312 {
1313 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1314 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1315
1316 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1317 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1318
1319 /*
1320 * STARTING must not fail!
1321 */
1322 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1323 }
1324
1325 /*
1326 * Called from the idle task. Wake up the controlling task which brings the
1327 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1328 * online bringup to the hotplug thread.
1329 */
cpuhp_online_idle(enum cpuhp_state state)1330 void cpuhp_online_idle(enum cpuhp_state state)
1331 {
1332 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1333
1334 /* Happens for the boot cpu */
1335 if (state != CPUHP_AP_ONLINE_IDLE)
1336 return;
1337
1338 /*
1339 * Unpart the stopper thread before we start the idle loop (and start
1340 * scheduling); this ensures the stopper task is always available.
1341 */
1342 stop_machine_unpark(smp_processor_id());
1343
1344 st->state = CPUHP_AP_ONLINE_IDLE;
1345 complete_ap_thread(st, true);
1346 }
1347
switch_to_rt_policy(void)1348 static int switch_to_rt_policy(void)
1349 {
1350 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1351 unsigned int policy = current->policy;
1352
1353 if (policy == SCHED_NORMAL)
1354 /* Switch to SCHED_FIFO from SCHED_NORMAL. */
1355 return sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
1356 else
1357 return 1;
1358 }
1359
switch_to_fair_policy(void)1360 static int switch_to_fair_policy(void)
1361 {
1362 struct sched_param param = { .sched_priority = 0 };
1363
1364 return sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
1365 }
1366
1367 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1368 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1369 {
1370 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1371 struct task_struct *idle;
1372 int ret = 0;
1373
1374 cpus_write_lock();
1375
1376 if (!cpu_present(cpu)) {
1377 ret = -EINVAL;
1378 goto out;
1379 }
1380
1381 /*
1382 * The caller of cpu_up() might have raced with another
1383 * caller. Nothing to do.
1384 */
1385 if (st->state >= target)
1386 goto out;
1387
1388 if (st->state == CPUHP_OFFLINE) {
1389 /* Let it fail before we try to bring the cpu up */
1390 idle = idle_thread_get(cpu);
1391 if (IS_ERR(idle)) {
1392 ret = PTR_ERR(idle);
1393 goto out;
1394 }
1395 }
1396
1397 cpuhp_tasks_frozen = tasks_frozen;
1398
1399 cpuhp_set_state(cpu, st, target);
1400 /*
1401 * If the current CPU state is in the range of the AP hotplug thread,
1402 * then we need to kick the thread once more.
1403 */
1404 if (st->state > CPUHP_BRINGUP_CPU) {
1405 ret = cpuhp_kick_ap_work(cpu);
1406 /*
1407 * The AP side has done the error rollback already. Just
1408 * return the error code..
1409 */
1410 if (ret)
1411 goto out;
1412 }
1413
1414 /*
1415 * Try to reach the target state. We max out on the BP at
1416 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1417 * responsible for bringing it up to the target state.
1418 */
1419 target = min((int)target, CPUHP_BRINGUP_CPU);
1420 ret = cpuhp_up_callbacks(cpu, st, target);
1421 out:
1422 cpus_write_unlock();
1423 arch_smt_update();
1424 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1425 return ret;
1426 }
1427
cpu_up(unsigned int cpu,enum cpuhp_state target)1428 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1429 {
1430 int err = 0;
1431 int switch_err;
1432
1433 if (!cpu_possible(cpu)) {
1434 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1435 cpu);
1436 #if defined(CONFIG_IA64)
1437 pr_err("please check additional_cpus= boot parameter\n");
1438 #endif
1439 return -EINVAL;
1440 }
1441
1442 /*
1443 * CPU hotplug operations consists of many steps and each step
1444 * calls a callback of core kernel subsystem. CPU hotplug-in
1445 * operation may get preempted by other CFS tasks and whole
1446 * operation of cpu hotplug in CPU gets delayed. Switch the
1447 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1448 * hotplug in operation may complete quickly in heavy loaded
1449 * conditions and new CPU will start handle the workload.
1450 */
1451
1452 switch_err = switch_to_rt_policy();
1453
1454 err = try_online_node(cpu_to_node(cpu));
1455 if (err)
1456 goto switch_out;
1457
1458 cpu_maps_update_begin();
1459
1460 if (cpu_hotplug_disabled) {
1461 err = -EBUSY;
1462 goto out;
1463 }
1464 if (!cpu_smt_allowed(cpu)) {
1465 err = -EPERM;
1466 goto out;
1467 }
1468
1469 err = _cpu_up(cpu, 0, target);
1470 out:
1471 cpu_maps_update_done();
1472 switch_out:
1473 if (!switch_err) {
1474 switch_err = switch_to_fair_policy();
1475 if (switch_err)
1476 pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1477 switch_err, current->comm, current->pid);
1478 }
1479
1480 return err;
1481 }
1482
1483 /**
1484 * cpu_device_up - Bring up a cpu device
1485 * @dev: Pointer to the cpu device to online
1486 *
1487 * This function is meant to be used by device core cpu subsystem only.
1488 *
1489 * Other subsystems should use add_cpu() instead.
1490 *
1491 * Return: %0 on success or a negative errno code
1492 */
cpu_device_up(struct device * dev)1493 int cpu_device_up(struct device *dev)
1494 {
1495 return cpu_up(dev->id, CPUHP_ONLINE);
1496 }
1497
add_cpu(unsigned int cpu)1498 int add_cpu(unsigned int cpu)
1499 {
1500 int ret;
1501
1502 lock_device_hotplug();
1503 ret = device_online(get_cpu_device(cpu));
1504 unlock_device_hotplug();
1505
1506 return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(add_cpu);
1509
1510 /**
1511 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1512 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1513 *
1514 * On some architectures like arm64, we can hibernate on any CPU, but on
1515 * wake up the CPU we hibernated on might be offline as a side effect of
1516 * using maxcpus= for example.
1517 *
1518 * Return: %0 on success or a negative errno code
1519 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1520 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1521 {
1522 int ret;
1523
1524 if (!cpu_online(sleep_cpu)) {
1525 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1526 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1527 if (ret) {
1528 pr_err("Failed to bring hibernate-CPU up!\n");
1529 return ret;
1530 }
1531 }
1532 return 0;
1533 }
1534
bringup_nonboot_cpus(unsigned int setup_max_cpus)1535 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1536 {
1537 unsigned int cpu;
1538
1539 for_each_present_cpu(cpu) {
1540 if (num_online_cpus() >= setup_max_cpus)
1541 break;
1542 if (!cpu_online(cpu))
1543 cpu_up(cpu, CPUHP_ONLINE);
1544 }
1545 }
1546
1547 #ifdef CONFIG_PM_SLEEP_SMP
1548 static cpumask_var_t frozen_cpus;
1549
freeze_secondary_cpus(int primary)1550 int freeze_secondary_cpus(int primary)
1551 {
1552 int cpu, error = 0;
1553
1554 cpu_maps_update_begin();
1555 if (primary == -1) {
1556 primary = cpumask_first(cpu_online_mask);
1557 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1558 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1559 } else {
1560 if (!cpu_online(primary))
1561 primary = cpumask_first(cpu_online_mask);
1562 }
1563
1564 /*
1565 * We take down all of the non-boot CPUs in one shot to avoid races
1566 * with the userspace trying to use the CPU hotplug at the same time
1567 */
1568 cpumask_clear(frozen_cpus);
1569
1570 pr_info("Disabling non-boot CPUs ...\n");
1571 for_each_online_cpu(cpu) {
1572 if (cpu == primary)
1573 continue;
1574
1575 if (pm_wakeup_pending()) {
1576 pr_info("Wakeup pending. Abort CPU freeze\n");
1577 error = -EBUSY;
1578 break;
1579 }
1580
1581 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1582 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1583 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1584 if (!error)
1585 cpumask_set_cpu(cpu, frozen_cpus);
1586 else {
1587 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1588 break;
1589 }
1590 }
1591
1592 if (!error)
1593 BUG_ON(num_online_cpus() > 1);
1594 else
1595 pr_err("Non-boot CPUs are not disabled\n");
1596
1597 /*
1598 * Make sure the CPUs won't be enabled by someone else. We need to do
1599 * this even in case of failure as all freeze_secondary_cpus() users are
1600 * supposed to do thaw_secondary_cpus() on the failure path.
1601 */
1602 cpu_hotplug_disabled++;
1603
1604 cpu_maps_update_done();
1605 return error;
1606 }
1607
arch_thaw_secondary_cpus_begin(void)1608 void __weak arch_thaw_secondary_cpus_begin(void)
1609 {
1610 }
1611
arch_thaw_secondary_cpus_end(void)1612 void __weak arch_thaw_secondary_cpus_end(void)
1613 {
1614 }
1615
thaw_secondary_cpus(void)1616 void thaw_secondary_cpus(void)
1617 {
1618 int cpu, error;
1619
1620 /* Allow everyone to use the CPU hotplug again */
1621 cpu_maps_update_begin();
1622 __cpu_hotplug_enable();
1623 if (cpumask_empty(frozen_cpus))
1624 goto out;
1625
1626 pr_info("Enabling non-boot CPUs ...\n");
1627
1628 arch_thaw_secondary_cpus_begin();
1629
1630 for_each_cpu(cpu, frozen_cpus) {
1631 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1632 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1633 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1634 if (!error) {
1635 pr_info("CPU%d is up\n", cpu);
1636 continue;
1637 }
1638 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1639 }
1640
1641 arch_thaw_secondary_cpus_end();
1642
1643 cpumask_clear(frozen_cpus);
1644 out:
1645 cpu_maps_update_done();
1646 }
1647
alloc_frozen_cpus(void)1648 static int __init alloc_frozen_cpus(void)
1649 {
1650 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1651 return -ENOMEM;
1652 return 0;
1653 }
1654 core_initcall(alloc_frozen_cpus);
1655
1656 /*
1657 * When callbacks for CPU hotplug notifications are being executed, we must
1658 * ensure that the state of the system with respect to the tasks being frozen
1659 * or not, as reported by the notification, remains unchanged *throughout the
1660 * duration* of the execution of the callbacks.
1661 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1662 *
1663 * This synchronization is implemented by mutually excluding regular CPU
1664 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1665 * Hibernate notifications.
1666 */
1667 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1668 cpu_hotplug_pm_callback(struct notifier_block *nb,
1669 unsigned long action, void *ptr)
1670 {
1671 switch (action) {
1672
1673 case PM_SUSPEND_PREPARE:
1674 case PM_HIBERNATION_PREPARE:
1675 cpu_hotplug_disable();
1676 break;
1677
1678 case PM_POST_SUSPEND:
1679 case PM_POST_HIBERNATION:
1680 cpu_hotplug_enable();
1681 break;
1682
1683 default:
1684 return NOTIFY_DONE;
1685 }
1686
1687 return NOTIFY_OK;
1688 }
1689
1690
cpu_hotplug_pm_sync_init(void)1691 static int __init cpu_hotplug_pm_sync_init(void)
1692 {
1693 /*
1694 * cpu_hotplug_pm_callback has higher priority than x86
1695 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1696 * to disable cpu hotplug to avoid cpu hotplug race.
1697 */
1698 pm_notifier(cpu_hotplug_pm_callback, 0);
1699 return 0;
1700 }
1701 core_initcall(cpu_hotplug_pm_sync_init);
1702
1703 #endif /* CONFIG_PM_SLEEP_SMP */
1704
1705 int __boot_cpu_id;
1706
1707 /* Horrific hacks because we can't add more to cpuhp_hp_states. */
random_and_perf_prepare_fusion(unsigned int cpu)1708 static int random_and_perf_prepare_fusion(unsigned int cpu)
1709 {
1710 int (*fn)(unsigned int cpu);
1711 fn = perf_event_init_cpu;
1712 if (fn)
1713 fn(cpu);
1714 fn = random_prepare_cpu;
1715 if (fn)
1716 fn(cpu);
1717 return 0;
1718 }
random_and_workqueue_online_fusion(unsigned int cpu)1719 static int random_and_workqueue_online_fusion(unsigned int cpu)
1720 {
1721 int (*fn)(unsigned int cpu);
1722 fn = workqueue_online_cpu;
1723 if (fn)
1724 fn(cpu);
1725 fn = random_online_cpu;
1726 if (fn)
1727 fn(cpu);
1728 return 0;
1729 }
1730
1731 #endif /* CONFIG_SMP */
1732
1733 /* Boot processor state steps */
1734 static struct cpuhp_step cpuhp_hp_states[] = {
1735 [CPUHP_OFFLINE] = {
1736 .name = "offline",
1737 .startup.single = NULL,
1738 .teardown.single = NULL,
1739 },
1740 #ifdef CONFIG_SMP
1741 [CPUHP_CREATE_THREADS]= {
1742 .name = "threads:prepare",
1743 .startup.single = smpboot_create_threads,
1744 .teardown.single = NULL,
1745 .cant_stop = true,
1746 },
1747 [CPUHP_PERF_PREPARE] = {
1748 .name = "perf:prepare",
1749 .startup.single = random_and_perf_prepare_fusion,
1750 .teardown.single = perf_event_exit_cpu,
1751 },
1752 [CPUHP_WORKQUEUE_PREP] = {
1753 .name = "workqueue:prepare",
1754 .startup.single = workqueue_prepare_cpu,
1755 .teardown.single = NULL,
1756 },
1757 [CPUHP_HRTIMERS_PREPARE] = {
1758 .name = "hrtimers:prepare",
1759 .startup.single = hrtimers_prepare_cpu,
1760 .teardown.single = hrtimers_dead_cpu,
1761 },
1762 [CPUHP_SMPCFD_PREPARE] = {
1763 .name = "smpcfd:prepare",
1764 .startup.single = smpcfd_prepare_cpu,
1765 .teardown.single = smpcfd_dead_cpu,
1766 },
1767 [CPUHP_RELAY_PREPARE] = {
1768 .name = "relay:prepare",
1769 .startup.single = relay_prepare_cpu,
1770 .teardown.single = NULL,
1771 },
1772 [CPUHP_SLAB_PREPARE] = {
1773 .name = "slab:prepare",
1774 .startup.single = slab_prepare_cpu,
1775 .teardown.single = slab_dead_cpu,
1776 },
1777 [CPUHP_RCUTREE_PREP] = {
1778 .name = "RCU/tree:prepare",
1779 .startup.single = rcutree_prepare_cpu,
1780 .teardown.single = rcutree_dead_cpu,
1781 },
1782 /*
1783 * On the tear-down path, timers_dead_cpu() must be invoked
1784 * before blk_mq_queue_reinit_notify() from notify_dead(),
1785 * otherwise a RCU stall occurs.
1786 */
1787 [CPUHP_TIMERS_PREPARE] = {
1788 .name = "timers:prepare",
1789 .startup.single = timers_prepare_cpu,
1790 .teardown.single = timers_dead_cpu,
1791 },
1792 /* Kicks the plugged cpu into life */
1793 [CPUHP_BRINGUP_CPU] = {
1794 .name = "cpu:bringup",
1795 .startup.single = bringup_cpu,
1796 .teardown.single = finish_cpu,
1797 .cant_stop = true,
1798 },
1799 /* Final state before CPU kills itself */
1800 [CPUHP_AP_IDLE_DEAD] = {
1801 .name = "idle:dead",
1802 },
1803 /*
1804 * Last state before CPU enters the idle loop to die. Transient state
1805 * for synchronization.
1806 */
1807 [CPUHP_AP_OFFLINE] = {
1808 .name = "ap:offline",
1809 .cant_stop = true,
1810 },
1811 /* First state is scheduler control. Interrupts are disabled */
1812 [CPUHP_AP_SCHED_STARTING] = {
1813 .name = "sched:starting",
1814 .startup.single = sched_cpu_starting,
1815 .teardown.single = sched_cpu_dying,
1816 },
1817 [CPUHP_AP_RCUTREE_DYING] = {
1818 .name = "RCU/tree:dying",
1819 .startup.single = NULL,
1820 .teardown.single = rcutree_dying_cpu,
1821 },
1822 [CPUHP_AP_SMPCFD_DYING] = {
1823 .name = "smpcfd:dying",
1824 .startup.single = NULL,
1825 .teardown.single = smpcfd_dying_cpu,
1826 },
1827 /* Entry state on starting. Interrupts enabled from here on. Transient
1828 * state for synchronsization */
1829 [CPUHP_AP_ONLINE] = {
1830 .name = "ap:online",
1831 },
1832 /*
1833 * Handled on control processor until the plugged processor manages
1834 * this itself.
1835 */
1836 [CPUHP_TEARDOWN_CPU] = {
1837 .name = "cpu:teardown",
1838 .startup.single = NULL,
1839 .teardown.single = takedown_cpu,
1840 .cant_stop = true,
1841 },
1842
1843 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1844 .name = "sched:waitempty",
1845 .startup.single = NULL,
1846 .teardown.single = sched_cpu_wait_empty,
1847 },
1848
1849 /* Handle smpboot threads park/unpark */
1850 [CPUHP_AP_SMPBOOT_THREADS] = {
1851 .name = "smpboot/threads:online",
1852 .startup.single = smpboot_unpark_threads,
1853 .teardown.single = smpboot_park_threads,
1854 },
1855 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1856 .name = "irq/affinity:online",
1857 .startup.single = irq_affinity_online_cpu,
1858 .teardown.single = NULL,
1859 },
1860 [CPUHP_AP_PERF_ONLINE] = {
1861 .name = "perf:online",
1862 .startup.single = perf_event_init_cpu,
1863 .teardown.single = perf_event_exit_cpu,
1864 },
1865 [CPUHP_AP_WATCHDOG_ONLINE] = {
1866 .name = "lockup_detector:online",
1867 .startup.single = lockup_detector_online_cpu,
1868 .teardown.single = lockup_detector_offline_cpu,
1869 },
1870 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1871 .name = "workqueue:online",
1872 .startup.single = random_and_workqueue_online_fusion,
1873 .teardown.single = workqueue_offline_cpu,
1874 },
1875 [CPUHP_AP_RCUTREE_ONLINE] = {
1876 .name = "RCU/tree:online",
1877 .startup.single = rcutree_online_cpu,
1878 .teardown.single = rcutree_offline_cpu,
1879 },
1880 #endif
1881 /*
1882 * The dynamically registered state space is here
1883 */
1884
1885 #ifdef CONFIG_SMP
1886 /* Last state is scheduler control setting the cpu active */
1887 [CPUHP_AP_ACTIVE] = {
1888 .name = "sched:active",
1889 .startup.single = sched_cpu_activate,
1890 .teardown.single = sched_cpu_deactivate,
1891 },
1892 #endif
1893
1894 /* CPU is fully up and running. */
1895 [CPUHP_ONLINE] = {
1896 .name = "online",
1897 .startup.single = NULL,
1898 .teardown.single = NULL,
1899 },
1900 };
1901
1902 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1903 static int cpuhp_cb_check(enum cpuhp_state state)
1904 {
1905 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1906 return -EINVAL;
1907 return 0;
1908 }
1909
1910 /*
1911 * Returns a free for dynamic slot assignment of the Online state. The states
1912 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1913 * by having no name assigned.
1914 */
cpuhp_reserve_state(enum cpuhp_state state)1915 static int cpuhp_reserve_state(enum cpuhp_state state)
1916 {
1917 enum cpuhp_state i, end;
1918 struct cpuhp_step *step;
1919
1920 switch (state) {
1921 case CPUHP_AP_ONLINE_DYN:
1922 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1923 end = CPUHP_AP_ONLINE_DYN_END;
1924 break;
1925 case CPUHP_BP_PREPARE_DYN:
1926 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1927 end = CPUHP_BP_PREPARE_DYN_END;
1928 break;
1929 default:
1930 return -EINVAL;
1931 }
1932
1933 for (i = state; i <= end; i++, step++) {
1934 if (!step->name)
1935 return i;
1936 }
1937 WARN(1, "No more dynamic states available for CPU hotplug\n");
1938 return -ENOSPC;
1939 }
1940
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1941 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1942 int (*startup)(unsigned int cpu),
1943 int (*teardown)(unsigned int cpu),
1944 bool multi_instance)
1945 {
1946 /* (Un)Install the callbacks for further cpu hotplug operations */
1947 struct cpuhp_step *sp;
1948 int ret = 0;
1949
1950 /*
1951 * If name is NULL, then the state gets removed.
1952 *
1953 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1954 * the first allocation from these dynamic ranges, so the removal
1955 * would trigger a new allocation and clear the wrong (already
1956 * empty) state, leaving the callbacks of the to be cleared state
1957 * dangling, which causes wreckage on the next hotplug operation.
1958 */
1959 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1960 state == CPUHP_BP_PREPARE_DYN)) {
1961 ret = cpuhp_reserve_state(state);
1962 if (ret < 0)
1963 return ret;
1964 state = ret;
1965 }
1966 sp = cpuhp_get_step(state);
1967 if (name && sp->name)
1968 return -EBUSY;
1969
1970 sp->startup.single = startup;
1971 sp->teardown.single = teardown;
1972 sp->name = name;
1973 sp->multi_instance = multi_instance;
1974 INIT_HLIST_HEAD(&sp->list);
1975 return ret;
1976 }
1977
cpuhp_get_teardown_cb(enum cpuhp_state state)1978 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1979 {
1980 return cpuhp_get_step(state)->teardown.single;
1981 }
1982
1983 /*
1984 * Call the startup/teardown function for a step either on the AP or
1985 * on the current CPU.
1986 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1987 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1988 struct hlist_node *node)
1989 {
1990 struct cpuhp_step *sp = cpuhp_get_step(state);
1991 int ret;
1992
1993 /*
1994 * If there's nothing to do, we done.
1995 * Relies on the union for multi_instance.
1996 */
1997 if (cpuhp_step_empty(bringup, sp))
1998 return 0;
1999 /*
2000 * The non AP bound callbacks can fail on bringup. On teardown
2001 * e.g. module removal we crash for now.
2002 */
2003 #ifdef CONFIG_SMP
2004 if (cpuhp_is_ap_state(state))
2005 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2006 else
2007 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2008 #else
2009 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2010 #endif
2011 BUG_ON(ret && !bringup);
2012 return ret;
2013 }
2014
2015 /*
2016 * Called from __cpuhp_setup_state on a recoverable failure.
2017 *
2018 * Note: The teardown callbacks for rollback are not allowed to fail!
2019 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2020 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2021 struct hlist_node *node)
2022 {
2023 int cpu;
2024
2025 /* Roll back the already executed steps on the other cpus */
2026 for_each_present_cpu(cpu) {
2027 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2028 int cpustate = st->state;
2029
2030 if (cpu >= failedcpu)
2031 break;
2032
2033 /* Did we invoke the startup call on that cpu ? */
2034 if (cpustate >= state)
2035 cpuhp_issue_call(cpu, state, false, node);
2036 }
2037 }
2038
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2039 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2040 struct hlist_node *node,
2041 bool invoke)
2042 {
2043 struct cpuhp_step *sp;
2044 int cpu;
2045 int ret;
2046
2047 lockdep_assert_cpus_held();
2048
2049 sp = cpuhp_get_step(state);
2050 if (sp->multi_instance == false)
2051 return -EINVAL;
2052
2053 mutex_lock(&cpuhp_state_mutex);
2054
2055 if (!invoke || !sp->startup.multi)
2056 goto add_node;
2057
2058 /*
2059 * Try to call the startup callback for each present cpu
2060 * depending on the hotplug state of the cpu.
2061 */
2062 for_each_present_cpu(cpu) {
2063 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2064 int cpustate = st->state;
2065
2066 if (cpustate < state)
2067 continue;
2068
2069 ret = cpuhp_issue_call(cpu, state, true, node);
2070 if (ret) {
2071 if (sp->teardown.multi)
2072 cpuhp_rollback_install(cpu, state, node);
2073 goto unlock;
2074 }
2075 }
2076 add_node:
2077 ret = 0;
2078 hlist_add_head(node, &sp->list);
2079 unlock:
2080 mutex_unlock(&cpuhp_state_mutex);
2081 return ret;
2082 }
2083
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2084 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2085 bool invoke)
2086 {
2087 int ret;
2088
2089 cpus_read_lock();
2090 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2091 cpus_read_unlock();
2092 return ret;
2093 }
2094 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2095
2096 /**
2097 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2098 * @state: The state to setup
2099 * @name: Name of the step
2100 * @invoke: If true, the startup function is invoked for cpus where
2101 * cpu state >= @state
2102 * @startup: startup callback function
2103 * @teardown: teardown callback function
2104 * @multi_instance: State is set up for multiple instances which get
2105 * added afterwards.
2106 *
2107 * The caller needs to hold cpus read locked while calling this function.
2108 * Return:
2109 * On success:
2110 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2111 * 0 for all other states
2112 * On failure: proper (negative) error code
2113 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2114 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2115 const char *name, bool invoke,
2116 int (*startup)(unsigned int cpu),
2117 int (*teardown)(unsigned int cpu),
2118 bool multi_instance)
2119 {
2120 int cpu, ret = 0;
2121 bool dynstate;
2122
2123 lockdep_assert_cpus_held();
2124
2125 if (cpuhp_cb_check(state) || !name)
2126 return -EINVAL;
2127
2128 mutex_lock(&cpuhp_state_mutex);
2129
2130 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2131 multi_instance);
2132
2133 dynstate = state == CPUHP_AP_ONLINE_DYN;
2134 if (ret > 0 && dynstate) {
2135 state = ret;
2136 ret = 0;
2137 }
2138
2139 if (ret || !invoke || !startup)
2140 goto out;
2141
2142 /*
2143 * Try to call the startup callback for each present cpu
2144 * depending on the hotplug state of the cpu.
2145 */
2146 for_each_present_cpu(cpu) {
2147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2148 int cpustate = st->state;
2149
2150 if (cpustate < state)
2151 continue;
2152
2153 ret = cpuhp_issue_call(cpu, state, true, NULL);
2154 if (ret) {
2155 if (teardown)
2156 cpuhp_rollback_install(cpu, state, NULL);
2157 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2158 goto out;
2159 }
2160 }
2161 out:
2162 mutex_unlock(&cpuhp_state_mutex);
2163 /*
2164 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2165 * dynamically allocated state in case of success.
2166 */
2167 if (!ret && dynstate)
2168 return state;
2169 return ret;
2170 }
2171 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2172
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2173 int __cpuhp_setup_state(enum cpuhp_state state,
2174 const char *name, bool invoke,
2175 int (*startup)(unsigned int cpu),
2176 int (*teardown)(unsigned int cpu),
2177 bool multi_instance)
2178 {
2179 int ret;
2180
2181 cpus_read_lock();
2182 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2183 teardown, multi_instance);
2184 cpus_read_unlock();
2185 return ret;
2186 }
2187 EXPORT_SYMBOL(__cpuhp_setup_state);
2188
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2189 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2190 struct hlist_node *node, bool invoke)
2191 {
2192 struct cpuhp_step *sp = cpuhp_get_step(state);
2193 int cpu;
2194
2195 BUG_ON(cpuhp_cb_check(state));
2196
2197 if (!sp->multi_instance)
2198 return -EINVAL;
2199
2200 cpus_read_lock();
2201 mutex_lock(&cpuhp_state_mutex);
2202
2203 if (!invoke || !cpuhp_get_teardown_cb(state))
2204 goto remove;
2205 /*
2206 * Call the teardown callback for each present cpu depending
2207 * on the hotplug state of the cpu. This function is not
2208 * allowed to fail currently!
2209 */
2210 for_each_present_cpu(cpu) {
2211 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2212 int cpustate = st->state;
2213
2214 if (cpustate >= state)
2215 cpuhp_issue_call(cpu, state, false, node);
2216 }
2217
2218 remove:
2219 hlist_del(node);
2220 mutex_unlock(&cpuhp_state_mutex);
2221 cpus_read_unlock();
2222
2223 return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2226
2227 /**
2228 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2229 * @state: The state to remove
2230 * @invoke: If true, the teardown function is invoked for cpus where
2231 * cpu state >= @state
2232 *
2233 * The caller needs to hold cpus read locked while calling this function.
2234 * The teardown callback is currently not allowed to fail. Think
2235 * about module removal!
2236 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2237 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2238 {
2239 struct cpuhp_step *sp = cpuhp_get_step(state);
2240 int cpu;
2241
2242 BUG_ON(cpuhp_cb_check(state));
2243
2244 lockdep_assert_cpus_held();
2245
2246 mutex_lock(&cpuhp_state_mutex);
2247 if (sp->multi_instance) {
2248 WARN(!hlist_empty(&sp->list),
2249 "Error: Removing state %d which has instances left.\n",
2250 state);
2251 goto remove;
2252 }
2253
2254 if (!invoke || !cpuhp_get_teardown_cb(state))
2255 goto remove;
2256
2257 /*
2258 * Call the teardown callback for each present cpu depending
2259 * on the hotplug state of the cpu. This function is not
2260 * allowed to fail currently!
2261 */
2262 for_each_present_cpu(cpu) {
2263 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2264 int cpustate = st->state;
2265
2266 if (cpustate >= state)
2267 cpuhp_issue_call(cpu, state, false, NULL);
2268 }
2269 remove:
2270 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2271 mutex_unlock(&cpuhp_state_mutex);
2272 }
2273 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2274
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2275 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2276 {
2277 cpus_read_lock();
2278 __cpuhp_remove_state_cpuslocked(state, invoke);
2279 cpus_read_unlock();
2280 }
2281 EXPORT_SYMBOL(__cpuhp_remove_state);
2282
2283 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2284 static void cpuhp_offline_cpu_device(unsigned int cpu)
2285 {
2286 struct device *dev = get_cpu_device(cpu);
2287
2288 dev->offline = true;
2289 /* Tell user space about the state change */
2290 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2291 }
2292
cpuhp_online_cpu_device(unsigned int cpu)2293 static void cpuhp_online_cpu_device(unsigned int cpu)
2294 {
2295 struct device *dev = get_cpu_device(cpu);
2296
2297 dev->offline = false;
2298 /* Tell user space about the state change */
2299 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2300 }
2301
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2302 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2303 {
2304 int cpu, ret = 0;
2305
2306 cpu_maps_update_begin();
2307 for_each_online_cpu(cpu) {
2308 if (topology_is_primary_thread(cpu))
2309 continue;
2310 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2311 if (ret)
2312 break;
2313 /*
2314 * As this needs to hold the cpu maps lock it's impossible
2315 * to call device_offline() because that ends up calling
2316 * cpu_down() which takes cpu maps lock. cpu maps lock
2317 * needs to be held as this might race against in kernel
2318 * abusers of the hotplug machinery (thermal management).
2319 *
2320 * So nothing would update device:offline state. That would
2321 * leave the sysfs entry stale and prevent onlining after
2322 * smt control has been changed to 'off' again. This is
2323 * called under the sysfs hotplug lock, so it is properly
2324 * serialized against the regular offline usage.
2325 */
2326 cpuhp_offline_cpu_device(cpu);
2327 }
2328 if (!ret)
2329 cpu_smt_control = ctrlval;
2330 cpu_maps_update_done();
2331 return ret;
2332 }
2333
cpuhp_smt_enable(void)2334 int cpuhp_smt_enable(void)
2335 {
2336 int cpu, ret = 0;
2337
2338 cpu_maps_update_begin();
2339 cpu_smt_control = CPU_SMT_ENABLED;
2340 for_each_present_cpu(cpu) {
2341 /* Skip online CPUs and CPUs on offline nodes */
2342 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2343 continue;
2344 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2345 if (ret)
2346 break;
2347 /* See comment in cpuhp_smt_disable() */
2348 cpuhp_online_cpu_device(cpu);
2349 }
2350 cpu_maps_update_done();
2351 return ret;
2352 }
2353 #endif
2354
2355 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2356 static ssize_t state_show(struct device *dev,
2357 struct device_attribute *attr, char *buf)
2358 {
2359 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2360
2361 return sprintf(buf, "%d\n", st->state);
2362 }
2363 static DEVICE_ATTR_RO(state);
2364
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2365 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2366 const char *buf, size_t count)
2367 {
2368 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2369 struct cpuhp_step *sp;
2370 int target, ret;
2371
2372 ret = kstrtoint(buf, 10, &target);
2373 if (ret)
2374 return ret;
2375
2376 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2377 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2378 return -EINVAL;
2379 #else
2380 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2381 return -EINVAL;
2382 #endif
2383
2384 ret = lock_device_hotplug_sysfs();
2385 if (ret)
2386 return ret;
2387
2388 mutex_lock(&cpuhp_state_mutex);
2389 sp = cpuhp_get_step(target);
2390 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2391 mutex_unlock(&cpuhp_state_mutex);
2392 if (ret)
2393 goto out;
2394
2395 if (st->state < target)
2396 ret = cpu_up(dev->id, target);
2397 else if (st->state > target)
2398 ret = cpu_down(dev->id, target);
2399 else if (WARN_ON(st->target != target))
2400 st->target = target;
2401 out:
2402 unlock_device_hotplug();
2403 return ret ? ret : count;
2404 }
2405
target_show(struct device * dev,struct device_attribute * attr,char * buf)2406 static ssize_t target_show(struct device *dev,
2407 struct device_attribute *attr, char *buf)
2408 {
2409 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2410
2411 return sprintf(buf, "%d\n", st->target);
2412 }
2413 static DEVICE_ATTR_RW(target);
2414
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2415 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2416 const char *buf, size_t count)
2417 {
2418 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2419 struct cpuhp_step *sp;
2420 int fail, ret;
2421
2422 ret = kstrtoint(buf, 10, &fail);
2423 if (ret)
2424 return ret;
2425
2426 if (fail == CPUHP_INVALID) {
2427 st->fail = fail;
2428 return count;
2429 }
2430
2431 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2432 return -EINVAL;
2433
2434 /*
2435 * Cannot fail STARTING/DYING callbacks.
2436 */
2437 if (cpuhp_is_atomic_state(fail))
2438 return -EINVAL;
2439
2440 /*
2441 * DEAD callbacks cannot fail...
2442 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2443 * triggering STARTING callbacks, a failure in this state would
2444 * hinder rollback.
2445 */
2446 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2447 return -EINVAL;
2448
2449 /*
2450 * Cannot fail anything that doesn't have callbacks.
2451 */
2452 mutex_lock(&cpuhp_state_mutex);
2453 sp = cpuhp_get_step(fail);
2454 if (!sp->startup.single && !sp->teardown.single)
2455 ret = -EINVAL;
2456 mutex_unlock(&cpuhp_state_mutex);
2457 if (ret)
2458 return ret;
2459
2460 st->fail = fail;
2461
2462 return count;
2463 }
2464
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2465 static ssize_t fail_show(struct device *dev,
2466 struct device_attribute *attr, char *buf)
2467 {
2468 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2469
2470 return sprintf(buf, "%d\n", st->fail);
2471 }
2472
2473 static DEVICE_ATTR_RW(fail);
2474
2475 static struct attribute *cpuhp_cpu_attrs[] = {
2476 &dev_attr_state.attr,
2477 &dev_attr_target.attr,
2478 &dev_attr_fail.attr,
2479 NULL
2480 };
2481
2482 static const struct attribute_group cpuhp_cpu_attr_group = {
2483 .attrs = cpuhp_cpu_attrs,
2484 .name = "hotplug",
2485 NULL
2486 };
2487
states_show(struct device * dev,struct device_attribute * attr,char * buf)2488 static ssize_t states_show(struct device *dev,
2489 struct device_attribute *attr, char *buf)
2490 {
2491 ssize_t cur, res = 0;
2492 int i;
2493
2494 mutex_lock(&cpuhp_state_mutex);
2495 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2496 struct cpuhp_step *sp = cpuhp_get_step(i);
2497
2498 if (sp->name) {
2499 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2500 buf += cur;
2501 res += cur;
2502 }
2503 }
2504 mutex_unlock(&cpuhp_state_mutex);
2505 return res;
2506 }
2507 static DEVICE_ATTR_RO(states);
2508
2509 static struct attribute *cpuhp_cpu_root_attrs[] = {
2510 &dev_attr_states.attr,
2511 NULL
2512 };
2513
2514 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2515 .attrs = cpuhp_cpu_root_attrs,
2516 .name = "hotplug",
2517 NULL
2518 };
2519
2520 #ifdef CONFIG_HOTPLUG_SMT
2521
2522 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2523 __store_smt_control(struct device *dev, struct device_attribute *attr,
2524 const char *buf, size_t count)
2525 {
2526 int ctrlval, ret;
2527
2528 if (sysfs_streq(buf, "on"))
2529 ctrlval = CPU_SMT_ENABLED;
2530 else if (sysfs_streq(buf, "off"))
2531 ctrlval = CPU_SMT_DISABLED;
2532 else if (sysfs_streq(buf, "forceoff"))
2533 ctrlval = CPU_SMT_FORCE_DISABLED;
2534 else
2535 return -EINVAL;
2536
2537 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2538 return -EPERM;
2539
2540 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2541 return -ENODEV;
2542
2543 ret = lock_device_hotplug_sysfs();
2544 if (ret)
2545 return ret;
2546
2547 if (ctrlval != cpu_smt_control) {
2548 switch (ctrlval) {
2549 case CPU_SMT_ENABLED:
2550 ret = cpuhp_smt_enable();
2551 break;
2552 case CPU_SMT_DISABLED:
2553 case CPU_SMT_FORCE_DISABLED:
2554 ret = cpuhp_smt_disable(ctrlval);
2555 break;
2556 }
2557 }
2558
2559 unlock_device_hotplug();
2560 return ret ? ret : count;
2561 }
2562
2563 #else /* !CONFIG_HOTPLUG_SMT */
2564 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2565 __store_smt_control(struct device *dev, struct device_attribute *attr,
2566 const char *buf, size_t count)
2567 {
2568 return -ENODEV;
2569 }
2570 #endif /* CONFIG_HOTPLUG_SMT */
2571
2572 static const char *smt_states[] = {
2573 [CPU_SMT_ENABLED] = "on",
2574 [CPU_SMT_DISABLED] = "off",
2575 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2576 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2577 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2578 };
2579
control_show(struct device * dev,struct device_attribute * attr,char * buf)2580 static ssize_t control_show(struct device *dev,
2581 struct device_attribute *attr, char *buf)
2582 {
2583 const char *state = smt_states[cpu_smt_control];
2584
2585 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2586 }
2587
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2588 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2589 const char *buf, size_t count)
2590 {
2591 return __store_smt_control(dev, attr, buf, count);
2592 }
2593 static DEVICE_ATTR_RW(control);
2594
active_show(struct device * dev,struct device_attribute * attr,char * buf)2595 static ssize_t active_show(struct device *dev,
2596 struct device_attribute *attr, char *buf)
2597 {
2598 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2599 }
2600 static DEVICE_ATTR_RO(active);
2601
2602 static struct attribute *cpuhp_smt_attrs[] = {
2603 &dev_attr_control.attr,
2604 &dev_attr_active.attr,
2605 NULL
2606 };
2607
2608 static const struct attribute_group cpuhp_smt_attr_group = {
2609 .attrs = cpuhp_smt_attrs,
2610 .name = "smt",
2611 NULL
2612 };
2613
cpu_smt_sysfs_init(void)2614 static int __init cpu_smt_sysfs_init(void)
2615 {
2616 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2617 &cpuhp_smt_attr_group);
2618 }
2619
cpuhp_sysfs_init(void)2620 static int __init cpuhp_sysfs_init(void)
2621 {
2622 int cpu, ret;
2623
2624 ret = cpu_smt_sysfs_init();
2625 if (ret)
2626 return ret;
2627
2628 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2629 &cpuhp_cpu_root_attr_group);
2630 if (ret)
2631 return ret;
2632
2633 for_each_possible_cpu(cpu) {
2634 struct device *dev = get_cpu_device(cpu);
2635
2636 if (!dev)
2637 continue;
2638 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2639 if (ret)
2640 return ret;
2641 }
2642 return 0;
2643 }
2644 device_initcall(cpuhp_sysfs_init);
2645 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2646
2647 /*
2648 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2649 * represents all NR_CPUS bits binary values of 1<<nr.
2650 *
2651 * It is used by cpumask_of() to get a constant address to a CPU
2652 * mask value that has a single bit set only.
2653 */
2654
2655 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2656 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2657 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2658 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2659 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2660
2661 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2662
2663 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2664 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2665 #if BITS_PER_LONG > 32
2666 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2667 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2668 #endif
2669 };
2670 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2671
2672 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2673 EXPORT_SYMBOL(cpu_all_bits);
2674
2675 #ifdef CONFIG_INIT_ALL_POSSIBLE
2676 struct cpumask __cpu_possible_mask __read_mostly
2677 = {CPU_BITS_ALL};
2678 #else
2679 struct cpumask __cpu_possible_mask __read_mostly;
2680 #endif
2681 EXPORT_SYMBOL(__cpu_possible_mask);
2682
2683 struct cpumask __cpu_online_mask __read_mostly;
2684 EXPORT_SYMBOL(__cpu_online_mask);
2685
2686 struct cpumask __cpu_present_mask __read_mostly;
2687 EXPORT_SYMBOL(__cpu_present_mask);
2688
2689 struct cpumask __cpu_active_mask __read_mostly;
2690 EXPORT_SYMBOL(__cpu_active_mask);
2691
2692 struct cpumask __cpu_dying_mask __read_mostly;
2693 EXPORT_SYMBOL(__cpu_dying_mask);
2694
2695 atomic_t __num_online_cpus __read_mostly;
2696 EXPORT_SYMBOL(__num_online_cpus);
2697
init_cpu_present(const struct cpumask * src)2698 void init_cpu_present(const struct cpumask *src)
2699 {
2700 cpumask_copy(&__cpu_present_mask, src);
2701 }
2702
init_cpu_possible(const struct cpumask * src)2703 void init_cpu_possible(const struct cpumask *src)
2704 {
2705 cpumask_copy(&__cpu_possible_mask, src);
2706 }
2707
init_cpu_online(const struct cpumask * src)2708 void init_cpu_online(const struct cpumask *src)
2709 {
2710 cpumask_copy(&__cpu_online_mask, src);
2711 }
2712
set_cpu_online(unsigned int cpu,bool online)2713 void set_cpu_online(unsigned int cpu, bool online)
2714 {
2715 /*
2716 * atomic_inc/dec() is required to handle the horrid abuse of this
2717 * function by the reboot and kexec code which invoke it from
2718 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2719 * regular CPU hotplug is properly serialized.
2720 *
2721 * Note, that the fact that __num_online_cpus is of type atomic_t
2722 * does not protect readers which are not serialized against
2723 * concurrent hotplug operations.
2724 */
2725 if (online) {
2726 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2727 atomic_inc(&__num_online_cpus);
2728 } else {
2729 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2730 atomic_dec(&__num_online_cpus);
2731 }
2732 }
2733
2734 /*
2735 * Activate the first processor.
2736 */
boot_cpu_init(void)2737 void __init boot_cpu_init(void)
2738 {
2739 int cpu = smp_processor_id();
2740
2741 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2742 set_cpu_online(cpu, true);
2743 set_cpu_active(cpu, true);
2744 set_cpu_present(cpu, true);
2745 set_cpu_possible(cpu, true);
2746
2747 #ifdef CONFIG_SMP
2748 __boot_cpu_id = cpu;
2749 #endif
2750 }
2751
2752 /*
2753 * Must be called _AFTER_ setting up the per_cpu areas
2754 */
boot_cpu_hotplug_init(void)2755 void __init boot_cpu_hotplug_init(void)
2756 {
2757 #ifdef CONFIG_SMP
2758 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2759 #endif
2760 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2761 }
2762
2763 /*
2764 * These are used for a global "mitigations=" cmdline option for toggling
2765 * optional CPU mitigations.
2766 */
2767 enum cpu_mitigations {
2768 CPU_MITIGATIONS_OFF,
2769 CPU_MITIGATIONS_AUTO,
2770 CPU_MITIGATIONS_AUTO_NOSMT,
2771 };
2772
2773 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2774 CPU_MITIGATIONS_AUTO;
2775
mitigations_parse_cmdline(char * arg)2776 static int __init mitigations_parse_cmdline(char *arg)
2777 {
2778 if (!strcmp(arg, "off"))
2779 cpu_mitigations = CPU_MITIGATIONS_OFF;
2780 else if (!strcmp(arg, "auto"))
2781 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2782 else if (!strcmp(arg, "auto,nosmt"))
2783 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2784 else
2785 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2786 arg);
2787
2788 return 0;
2789 }
2790 early_param("mitigations", mitigations_parse_cmdline);
2791
2792 /* mitigations=off */
cpu_mitigations_off(void)2793 bool cpu_mitigations_off(void)
2794 {
2795 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2796 }
2797 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2798
2799 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2800 bool cpu_mitigations_auto_nosmt(void)
2801 {
2802 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2803 }
2804 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2805