• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73 #include <trace/hooks/dtask.h>
74 
75 /*
76  * The default value should be high enough to not crash a system that randomly
77  * crashes its kernel from time to time, but low enough to at least not permit
78  * overflowing 32-bit refcounts or the ldsem writer count.
79  */
80 static unsigned int oops_limit = 10000;
81 
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_exit_table[] = {
84 	{
85 		.procname       = "oops_limit",
86 		.data           = &oops_limit,
87 		.maxlen         = sizeof(oops_limit),
88 		.mode           = 0644,
89 		.proc_handler   = proc_douintvec,
90 	},
91 	{ }
92 };
93 
kernel_exit_sysctls_init(void)94 static __init int kernel_exit_sysctls_init(void)
95 {
96 	register_sysctl_init("kernel", kern_exit_table);
97 	return 0;
98 }
99 late_initcall(kernel_exit_sysctls_init);
100 #endif
101 
102 static atomic_t oops_count = ATOMIC_INIT(0);
103 
104 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)105 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
106 			       char *page)
107 {
108 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
109 }
110 
111 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
112 
kernel_exit_sysfs_init(void)113 static __init int kernel_exit_sysfs_init(void)
114 {
115 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
116 	return 0;
117 }
118 late_initcall(kernel_exit_sysfs_init);
119 #endif
120 
__unhash_process(struct task_struct * p,bool group_dead)121 static void __unhash_process(struct task_struct *p, bool group_dead)
122 {
123 	nr_threads--;
124 	detach_pid(p, PIDTYPE_PID);
125 	if (group_dead) {
126 		detach_pid(p, PIDTYPE_TGID);
127 		detach_pid(p, PIDTYPE_PGID);
128 		detach_pid(p, PIDTYPE_SID);
129 
130 		list_del_rcu(&p->tasks);
131 		list_del_init(&p->sibling);
132 		__this_cpu_dec(process_counts);
133 	}
134 	list_del_rcu(&p->thread_group);
135 	list_del_rcu(&p->thread_node);
136 }
137 
138 /*
139  * This function expects the tasklist_lock write-locked.
140  */
__exit_signal(struct task_struct * tsk)141 static void __exit_signal(struct task_struct *tsk)
142 {
143 	struct signal_struct *sig = tsk->signal;
144 	bool group_dead = thread_group_leader(tsk);
145 	struct sighand_struct *sighand;
146 	struct tty_struct *tty;
147 	u64 utime, stime;
148 
149 	sighand = rcu_dereference_check(tsk->sighand,
150 					lockdep_tasklist_lock_is_held());
151 	spin_lock(&sighand->siglock);
152 
153 #ifdef CONFIG_POSIX_TIMERS
154 	posix_cpu_timers_exit(tsk);
155 	if (group_dead)
156 		posix_cpu_timers_exit_group(tsk);
157 #endif
158 
159 	if (group_dead) {
160 		tty = sig->tty;
161 		sig->tty = NULL;
162 	} else {
163 		/*
164 		 * If there is any task waiting for the group exit
165 		 * then notify it:
166 		 */
167 		if (sig->notify_count > 0 && !--sig->notify_count)
168 			wake_up_process(sig->group_exit_task);
169 
170 		if (tsk == sig->curr_target)
171 			sig->curr_target = next_thread(tsk);
172 	}
173 
174 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
175 			      sizeof(unsigned long long));
176 
177 	/*
178 	 * Accumulate here the counters for all threads as they die. We could
179 	 * skip the group leader because it is the last user of signal_struct,
180 	 * but we want to avoid the race with thread_group_cputime() which can
181 	 * see the empty ->thread_head list.
182 	 */
183 	task_cputime(tsk, &utime, &stime);
184 	write_seqlock(&sig->stats_lock);
185 	sig->utime += utime;
186 	sig->stime += stime;
187 	sig->gtime += task_gtime(tsk);
188 	sig->min_flt += tsk->min_flt;
189 	sig->maj_flt += tsk->maj_flt;
190 	sig->nvcsw += tsk->nvcsw;
191 	sig->nivcsw += tsk->nivcsw;
192 	sig->inblock += task_io_get_inblock(tsk);
193 	sig->oublock += task_io_get_oublock(tsk);
194 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
195 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
196 	sig->nr_threads--;
197 	__unhash_process(tsk, group_dead);
198 	write_sequnlock(&sig->stats_lock);
199 
200 	/*
201 	 * Do this under ->siglock, we can race with another thread
202 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
203 	 */
204 	flush_sigqueue(&tsk->pending);
205 	tsk->sighand = NULL;
206 	spin_unlock(&sighand->siglock);
207 
208 	__cleanup_sighand(sighand);
209 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
210 	if (group_dead) {
211 		flush_sigqueue(&sig->shared_pending);
212 		tty_kref_put(tty);
213 	}
214 }
215 
delayed_put_task_struct(struct rcu_head * rhp)216 static void delayed_put_task_struct(struct rcu_head *rhp)
217 {
218 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
219 
220 	perf_event_delayed_put(tsk);
221 	trace_sched_process_free(tsk);
222 	put_task_struct(tsk);
223 }
224 
put_task_struct_rcu_user(struct task_struct * task)225 void put_task_struct_rcu_user(struct task_struct *task)
226 {
227 	if (refcount_dec_and_test(&task->rcu_users))
228 		call_rcu(&task->rcu, delayed_put_task_struct);
229 }
230 
release_task(struct task_struct * p)231 void release_task(struct task_struct *p)
232 {
233 	struct task_struct *leader;
234 	struct pid *thread_pid;
235 	int zap_leader;
236 repeat:
237 	/* don't need to get the RCU readlock here - the process is dead and
238 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
239 	rcu_read_lock();
240 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
241 	rcu_read_unlock();
242 
243 	cgroup_release(p);
244 
245 	write_lock_irq(&tasklist_lock);
246 	ptrace_release_task(p);
247 	thread_pid = get_pid(p->thread_pid);
248 	__exit_signal(p);
249 
250 	/*
251 	 * If we are the last non-leader member of the thread
252 	 * group, and the leader is zombie, then notify the
253 	 * group leader's parent process. (if it wants notification.)
254 	 */
255 	zap_leader = 0;
256 	leader = p->group_leader;
257 	if (leader != p && thread_group_empty(leader)
258 			&& leader->exit_state == EXIT_ZOMBIE) {
259 		/*
260 		 * If we were the last child thread and the leader has
261 		 * exited already, and the leader's parent ignores SIGCHLD,
262 		 * then we are the one who should release the leader.
263 		 */
264 		zap_leader = do_notify_parent(leader, leader->exit_signal);
265 		if (zap_leader)
266 			leader->exit_state = EXIT_DEAD;
267 	}
268 
269 	write_unlock_irq(&tasklist_lock);
270 	seccomp_filter_release(p);
271 	proc_flush_pid(thread_pid);
272 	put_pid(thread_pid);
273 	release_thread(p);
274 	put_task_struct_rcu_user(p);
275 
276 	p = leader;
277 	if (unlikely(zap_leader))
278 		goto repeat;
279 }
280 
rcuwait_wake_up(struct rcuwait * w)281 int rcuwait_wake_up(struct rcuwait *w)
282 {
283 	int ret = 0;
284 	struct task_struct *task;
285 
286 	rcu_read_lock();
287 
288 	/*
289 	 * Order condition vs @task, such that everything prior to the load
290 	 * of @task is visible. This is the condition as to why the user called
291 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
292 	 * barrier (A) in rcuwait_wait_event().
293 	 *
294 	 *    WAIT                WAKE
295 	 *    [S] tsk = current	  [S] cond = true
296 	 *        MB (A)	      MB (B)
297 	 *    [L] cond		  [L] tsk
298 	 */
299 	smp_mb(); /* (B) */
300 
301 	task = rcu_dereference(w->task);
302 	if (task)
303 		ret = wake_up_process(task);
304 	rcu_read_unlock();
305 
306 	return ret;
307 }
308 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
309 
310 /*
311  * Determine if a process group is "orphaned", according to the POSIX
312  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
313  * by terminal-generated stop signals.  Newly orphaned process groups are
314  * to receive a SIGHUP and a SIGCONT.
315  *
316  * "I ask you, have you ever known what it is to be an orphan?"
317  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)318 static int will_become_orphaned_pgrp(struct pid *pgrp,
319 					struct task_struct *ignored_task)
320 {
321 	struct task_struct *p;
322 
323 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
324 		if ((p == ignored_task) ||
325 		    (p->exit_state && thread_group_empty(p)) ||
326 		    is_global_init(p->real_parent))
327 			continue;
328 
329 		if (task_pgrp(p->real_parent) != pgrp &&
330 		    task_session(p->real_parent) == task_session(p))
331 			return 0;
332 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
333 
334 	return 1;
335 }
336 
is_current_pgrp_orphaned(void)337 int is_current_pgrp_orphaned(void)
338 {
339 	int retval;
340 
341 	read_lock(&tasklist_lock);
342 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
343 	read_unlock(&tasklist_lock);
344 
345 	return retval;
346 }
347 
has_stopped_jobs(struct pid * pgrp)348 static bool has_stopped_jobs(struct pid *pgrp)
349 {
350 	struct task_struct *p;
351 
352 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
353 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
354 			return true;
355 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356 
357 	return false;
358 }
359 
360 /*
361  * Check to see if any process groups have become orphaned as
362  * a result of our exiting, and if they have any stopped jobs,
363  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
364  */
365 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)366 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
367 {
368 	struct pid *pgrp = task_pgrp(tsk);
369 	struct task_struct *ignored_task = tsk;
370 
371 	if (!parent)
372 		/* exit: our father is in a different pgrp than
373 		 * we are and we were the only connection outside.
374 		 */
375 		parent = tsk->real_parent;
376 	else
377 		/* reparent: our child is in a different pgrp than
378 		 * we are, and it was the only connection outside.
379 		 */
380 		ignored_task = NULL;
381 
382 	if (task_pgrp(parent) != pgrp &&
383 	    task_session(parent) == task_session(tsk) &&
384 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
385 	    has_stopped_jobs(pgrp)) {
386 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
387 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
388 	}
389 }
390 
391 #ifdef CONFIG_MEMCG
392 /*
393  * A task is exiting.   If it owned this mm, find a new owner for the mm.
394  */
mm_update_next_owner(struct mm_struct * mm)395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 	struct task_struct *c, *g, *p = current;
398 
399 retry:
400 	/*
401 	 * If the exiting or execing task is not the owner, it's
402 	 * someone else's problem.
403 	 */
404 	if (mm->owner != p)
405 		return;
406 	/*
407 	 * The current owner is exiting/execing and there are no other
408 	 * candidates.  Do not leave the mm pointing to a possibly
409 	 * freed task structure.
410 	 */
411 	if (atomic_read(&mm->mm_users) <= 1) {
412 		WRITE_ONCE(mm->owner, NULL);
413 		return;
414 	}
415 
416 	read_lock(&tasklist_lock);
417 	/*
418 	 * Search in the children
419 	 */
420 	list_for_each_entry(c, &p->children, sibling) {
421 		if (c->mm == mm)
422 			goto assign_new_owner;
423 	}
424 
425 	/*
426 	 * Search in the siblings
427 	 */
428 	list_for_each_entry(c, &p->real_parent->children, sibling) {
429 		if (c->mm == mm)
430 			goto assign_new_owner;
431 	}
432 
433 	/*
434 	 * Search through everything else, we should not get here often.
435 	 */
436 	for_each_process(g) {
437 		if (g->flags & PF_KTHREAD)
438 			continue;
439 		for_each_thread(g, c) {
440 			if (c->mm == mm)
441 				goto assign_new_owner;
442 			if (c->mm)
443 				break;
444 		}
445 	}
446 	read_unlock(&tasklist_lock);
447 	/*
448 	 * We found no owner yet mm_users > 1: this implies that we are
449 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
451 	 */
452 	WRITE_ONCE(mm->owner, NULL);
453 	return;
454 
455 assign_new_owner:
456 	BUG_ON(c == p);
457 	get_task_struct(c);
458 	/*
459 	 * The task_lock protects c->mm from changing.
460 	 * We always want mm->owner->mm == mm
461 	 */
462 	task_lock(c);
463 	/*
464 	 * Delay read_unlock() till we have the task_lock()
465 	 * to ensure that c does not slip away underneath us
466 	 */
467 	read_unlock(&tasklist_lock);
468 	if (c->mm != mm) {
469 		task_unlock(c);
470 		put_task_struct(c);
471 		goto retry;
472 	}
473 	WRITE_ONCE(mm->owner, c);
474 	lru_gen_migrate_mm(mm);
475 	task_unlock(c);
476 	put_task_struct(c);
477 }
478 #endif /* CONFIG_MEMCG */
479 
480 /*
481  * Turn us into a lazy TLB process if we
482  * aren't already..
483  */
exit_mm(void)484 static void exit_mm(void)
485 {
486 	struct mm_struct *mm = current->mm;
487 	struct core_state *core_state;
488 
489 	exit_mm_release(current, mm);
490 	if (!mm)
491 		return;
492 	sync_mm_rss(mm);
493 	/*
494 	 * Serialize with any possible pending coredump.
495 	 * We must hold mmap_lock around checking core_state
496 	 * and clearing tsk->mm.  The core-inducing thread
497 	 * will increment ->nr_threads for each thread in the
498 	 * group with ->mm != NULL.
499 	 */
500 	mmap_read_lock(mm);
501 	core_state = mm->core_state;
502 	if (core_state) {
503 		struct core_thread self;
504 
505 		mmap_read_unlock(mm);
506 
507 		self.task = current;
508 		if (self.task->flags & PF_SIGNALED)
509 			self.next = xchg(&core_state->dumper.next, &self);
510 		else
511 			self.task = NULL;
512 		/*
513 		 * Implies mb(), the result of xchg() must be visible
514 		 * to core_state->dumper.
515 		 */
516 		if (atomic_dec_and_test(&core_state->nr_threads))
517 			complete(&core_state->startup);
518 
519 		for (;;) {
520 			set_current_state(TASK_UNINTERRUPTIBLE);
521 			if (!self.task) /* see coredump_finish() */
522 				break;
523 			freezable_schedule();
524 		}
525 		__set_current_state(TASK_RUNNING);
526 		mmap_read_lock(mm);
527 	}
528 	mmgrab(mm);
529 	BUG_ON(mm != current->active_mm);
530 	/* more a memory barrier than a real lock */
531 	task_lock(current);
532 	/*
533 	 * When a thread stops operating on an address space, the loop
534 	 * in membarrier_private_expedited() may not observe that
535 	 * tsk->mm, and the loop in membarrier_global_expedited() may
536 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
537 	 * rq->membarrier_state, so those would not issue an IPI.
538 	 * Membarrier requires a memory barrier after accessing
539 	 * user-space memory, before clearing tsk->mm or the
540 	 * rq->membarrier_state.
541 	 */
542 	smp_mb__after_spinlock();
543 	local_irq_disable();
544 	current->mm = NULL;
545 	membarrier_update_current_mm(NULL);
546 	enter_lazy_tlb(mm, current);
547 	local_irq_enable();
548 	task_unlock(current);
549 	mmap_read_unlock(mm);
550 	mm_update_next_owner(mm);
551 	trace_android_vh_exit_mm(mm);
552 	mmput(mm);
553 	if (test_thread_flag(TIF_MEMDIE))
554 		exit_oom_victim();
555 }
556 
find_alive_thread(struct task_struct * p)557 static struct task_struct *find_alive_thread(struct task_struct *p)
558 {
559 	struct task_struct *t;
560 
561 	for_each_thread(p, t) {
562 		if (!(t->flags & PF_EXITING))
563 			return t;
564 	}
565 	return NULL;
566 }
567 
find_child_reaper(struct task_struct * father,struct list_head * dead)568 static struct task_struct *find_child_reaper(struct task_struct *father,
569 						struct list_head *dead)
570 	__releases(&tasklist_lock)
571 	__acquires(&tasklist_lock)
572 {
573 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
574 	struct task_struct *reaper = pid_ns->child_reaper;
575 	struct task_struct *p, *n;
576 
577 	if (likely(reaper != father))
578 		return reaper;
579 
580 	reaper = find_alive_thread(father);
581 	if (reaper) {
582 		pid_ns->child_reaper = reaper;
583 		return reaper;
584 	}
585 
586 	write_unlock_irq(&tasklist_lock);
587 
588 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
589 		list_del_init(&p->ptrace_entry);
590 		release_task(p);
591 	}
592 
593 	zap_pid_ns_processes(pid_ns);
594 	write_lock_irq(&tasklist_lock);
595 
596 	return father;
597 }
598 
599 /*
600  * When we die, we re-parent all our children, and try to:
601  * 1. give them to another thread in our thread group, if such a member exists
602  * 2. give it to the first ancestor process which prctl'd itself as a
603  *    child_subreaper for its children (like a service manager)
604  * 3. give it to the init process (PID 1) in our pid namespace
605  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)606 static struct task_struct *find_new_reaper(struct task_struct *father,
607 					   struct task_struct *child_reaper)
608 {
609 	struct task_struct *thread, *reaper;
610 
611 	thread = find_alive_thread(father);
612 	if (thread)
613 		return thread;
614 
615 	if (father->signal->has_child_subreaper) {
616 		unsigned int ns_level = task_pid(father)->level;
617 		/*
618 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
619 		 * We can't check reaper != child_reaper to ensure we do not
620 		 * cross the namespaces, the exiting parent could be injected
621 		 * by setns() + fork().
622 		 * We check pid->level, this is slightly more efficient than
623 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
624 		 */
625 		for (reaper = father->real_parent;
626 		     task_pid(reaper)->level == ns_level;
627 		     reaper = reaper->real_parent) {
628 			if (reaper == &init_task)
629 				break;
630 			if (!reaper->signal->is_child_subreaper)
631 				continue;
632 			thread = find_alive_thread(reaper);
633 			if (thread)
634 				return thread;
635 		}
636 	}
637 
638 	return child_reaper;
639 }
640 
641 /*
642 * Any that need to be release_task'd are put on the @dead list.
643  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)644 static void reparent_leader(struct task_struct *father, struct task_struct *p,
645 				struct list_head *dead)
646 {
647 	if (unlikely(p->exit_state == EXIT_DEAD))
648 		return;
649 
650 	/* We don't want people slaying init. */
651 	p->exit_signal = SIGCHLD;
652 
653 	/* If it has exited notify the new parent about this child's death. */
654 	if (!p->ptrace &&
655 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
656 		if (do_notify_parent(p, p->exit_signal)) {
657 			p->exit_state = EXIT_DEAD;
658 			list_add(&p->ptrace_entry, dead);
659 		}
660 	}
661 
662 	kill_orphaned_pgrp(p, father);
663 }
664 
665 /*
666  * This does two things:
667  *
668  * A.  Make init inherit all the child processes
669  * B.  Check to see if any process groups have become orphaned
670  *	as a result of our exiting, and if they have any stopped
671  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
672  */
forget_original_parent(struct task_struct * father,struct list_head * dead)673 static void forget_original_parent(struct task_struct *father,
674 					struct list_head *dead)
675 {
676 	struct task_struct *p, *t, *reaper;
677 
678 	if (unlikely(!list_empty(&father->ptraced)))
679 		exit_ptrace(father, dead);
680 
681 	/* Can drop and reacquire tasklist_lock */
682 	reaper = find_child_reaper(father, dead);
683 	if (list_empty(&father->children))
684 		return;
685 
686 	reaper = find_new_reaper(father, reaper);
687 	list_for_each_entry(p, &father->children, sibling) {
688 		for_each_thread(p, t) {
689 			RCU_INIT_POINTER(t->real_parent, reaper);
690 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
691 			if (likely(!t->ptrace))
692 				t->parent = t->real_parent;
693 			if (t->pdeath_signal)
694 				group_send_sig_info(t->pdeath_signal,
695 						    SEND_SIG_NOINFO, t,
696 						    PIDTYPE_TGID);
697 		}
698 		/*
699 		 * If this is a threaded reparent there is no need to
700 		 * notify anyone anything has happened.
701 		 */
702 		if (!same_thread_group(reaper, father))
703 			reparent_leader(father, p, dead);
704 	}
705 	list_splice_tail_init(&father->children, &reaper->children);
706 }
707 
708 /*
709  * Send signals to all our closest relatives so that they know
710  * to properly mourn us..
711  */
exit_notify(struct task_struct * tsk,int group_dead)712 static void exit_notify(struct task_struct *tsk, int group_dead)
713 {
714 	bool autoreap;
715 	struct task_struct *p, *n;
716 	LIST_HEAD(dead);
717 
718 	write_lock_irq(&tasklist_lock);
719 	forget_original_parent(tsk, &dead);
720 
721 	if (group_dead)
722 		kill_orphaned_pgrp(tsk->group_leader, NULL);
723 
724 	tsk->exit_state = EXIT_ZOMBIE;
725 	if (unlikely(tsk->ptrace)) {
726 		int sig = thread_group_leader(tsk) &&
727 				thread_group_empty(tsk) &&
728 				!ptrace_reparented(tsk) ?
729 			tsk->exit_signal : SIGCHLD;
730 		autoreap = do_notify_parent(tsk, sig);
731 	} else if (thread_group_leader(tsk)) {
732 		autoreap = thread_group_empty(tsk) &&
733 			do_notify_parent(tsk, tsk->exit_signal);
734 	} else {
735 		autoreap = true;
736 	}
737 
738 	if (autoreap) {
739 		tsk->exit_state = EXIT_DEAD;
740 		list_add(&tsk->ptrace_entry, &dead);
741 	}
742 
743 	/* mt-exec, de_thread() is waiting for group leader */
744 	if (unlikely(tsk->signal->notify_count < 0))
745 		wake_up_process(tsk->signal->group_exit_task);
746 	write_unlock_irq(&tasklist_lock);
747 
748 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
749 		list_del_init(&p->ptrace_entry);
750 		release_task(p);
751 	}
752 }
753 
754 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)755 static void check_stack_usage(void)
756 {
757 	static DEFINE_SPINLOCK(low_water_lock);
758 	static int lowest_to_date = THREAD_SIZE;
759 	unsigned long free;
760 
761 	free = stack_not_used(current);
762 
763 	if (free >= lowest_to_date)
764 		return;
765 
766 	spin_lock(&low_water_lock);
767 	if (free < lowest_to_date) {
768 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
769 			current->comm, task_pid_nr(current), free);
770 		lowest_to_date = free;
771 	}
772 	spin_unlock(&low_water_lock);
773 }
774 #else
check_stack_usage(void)775 static inline void check_stack_usage(void) {}
776 #endif
777 
do_exit(long code)778 void __noreturn do_exit(long code)
779 {
780 	struct task_struct *tsk = current;
781 	int group_dead;
782 
783 	/*
784 	 * We can get here from a kernel oops, sometimes with preemption off.
785 	 * Start by checking for critical errors.
786 	 * Then fix up important state like USER_DS and preemption.
787 	 * Then do everything else.
788 	 */
789 
790 	WARN_ON(blk_needs_flush_plug(tsk));
791 
792 	if (unlikely(in_interrupt()))
793 		panic("Aiee, killing interrupt handler!");
794 	if (unlikely(!tsk->pid))
795 		panic("Attempted to kill the idle task!");
796 
797 	/*
798 	 * If do_exit is called because this processes oopsed, it's possible
799 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
800 	 * continuing. Amongst other possible reasons, this is to prevent
801 	 * mm_release()->clear_child_tid() from writing to a user-controlled
802 	 * kernel address.
803 	 */
804 	force_uaccess_begin();
805 
806 	if (unlikely(in_atomic())) {
807 		pr_info("note: %s[%d] exited with preempt_count %d\n",
808 			current->comm, task_pid_nr(current),
809 			preempt_count());
810 		preempt_count_set(PREEMPT_ENABLED);
811 	}
812 
813 	profile_task_exit(tsk);
814 	kcov_task_exit(tsk);
815 
816 	ptrace_event(PTRACE_EVENT_EXIT, code);
817 
818 	validate_creds_for_do_exit(tsk);
819 
820 	/*
821 	 * We're taking recursive faults here in do_exit. Safest is to just
822 	 * leave this task alone and wait for reboot.
823 	 */
824 	if (unlikely(tsk->flags & PF_EXITING)) {
825 		pr_alert("Fixing recursive fault but reboot is needed!\n");
826 		futex_exit_recursive(tsk);
827 		set_current_state(TASK_UNINTERRUPTIBLE);
828 		schedule();
829 	}
830 
831 	io_uring_files_cancel();
832 	exit_signals(tsk);  /* sets PF_EXITING */
833 
834 	trace_android_vh_exit_check(current);
835 
836 	/* sync mm's RSS info before statistics gathering */
837 	if (tsk->mm)
838 		sync_mm_rss(tsk->mm);
839 	acct_update_integrals(tsk);
840 	group_dead = atomic_dec_and_test(&tsk->signal->live);
841 	if (group_dead) {
842 		/*
843 		 * If the last thread of global init has exited, panic
844 		 * immediately to get a useable coredump.
845 		 */
846 		if (unlikely(is_global_init(tsk)))
847 			panic("Attempted to kill init! exitcode=0x%08x\n",
848 				tsk->signal->group_exit_code ?: (int)code);
849 
850 #ifdef CONFIG_POSIX_TIMERS
851 		hrtimer_cancel(&tsk->signal->real_timer);
852 		exit_itimers(tsk);
853 #endif
854 		if (tsk->mm)
855 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856 	}
857 	acct_collect(code, group_dead);
858 	if (group_dead)
859 		tty_audit_exit();
860 	audit_free(tsk);
861 
862 	tsk->exit_code = code;
863 	taskstats_exit(tsk, group_dead);
864 
865 	exit_mm();
866 
867 	if (group_dead)
868 		acct_process();
869 	trace_sched_process_exit(tsk);
870 
871 	exit_sem(tsk);
872 	exit_shm(tsk);
873 	exit_files(tsk);
874 	exit_fs(tsk);
875 	if (group_dead)
876 		disassociate_ctty(1);
877 	exit_task_namespaces(tsk);
878 	exit_task_work(tsk);
879 	exit_thread(tsk);
880 
881 	/*
882 	 * Flush inherited counters to the parent - before the parent
883 	 * gets woken up by child-exit notifications.
884 	 *
885 	 * because of cgroup mode, must be called before cgroup_exit()
886 	 */
887 	perf_event_exit_task(tsk);
888 
889 	sched_autogroup_exit_task(tsk);
890 	cgroup_exit(tsk);
891 
892 	/*
893 	 * FIXME: do that only when needed, using sched_exit tracepoint
894 	 */
895 	flush_ptrace_hw_breakpoint(tsk);
896 
897 	exit_tasks_rcu_start();
898 	exit_notify(tsk, group_dead);
899 	proc_exit_connector(tsk);
900 	mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 	if (unlikely(current->pi_state_cache))
903 		kfree(current->pi_state_cache);
904 #endif
905 	/*
906 	 * Make sure we are holding no locks:
907 	 */
908 	debug_check_no_locks_held();
909 
910 	if (tsk->io_context)
911 		exit_io_context(tsk);
912 
913 	if (tsk->splice_pipe)
914 		free_pipe_info(tsk->splice_pipe);
915 
916 	if (tsk->task_frag.page)
917 		put_page(tsk->task_frag.page);
918 
919 	validate_creds_for_do_exit(tsk);
920 
921 	check_stack_usage();
922 	preempt_disable();
923 	if (tsk->nr_dirtied)
924 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925 	exit_rcu();
926 	exit_tasks_rcu_finish();
927 
928 	lockdep_free_task(tsk);
929 	do_task_dead();
930 }
931 EXPORT_SYMBOL_GPL(do_exit);
932 
make_task_dead(int signr)933 void __noreturn make_task_dead(int signr)
934 {
935 	/*
936 	 * Take the task off the cpu after something catastrophic has
937 	 * happened.
938 	 */
939 	unsigned int limit;
940 
941 	/*
942 	 * Every time the system oopses, if the oops happens while a reference
943 	 * to an object was held, the reference leaks.
944 	 * If the oops doesn't also leak memory, repeated oopsing can cause
945 	 * reference counters to wrap around (if they're not using refcount_t).
946 	 * This means that repeated oopsing can make unexploitable-looking bugs
947 	 * exploitable through repeated oopsing.
948 	 * To make sure this can't happen, place an upper bound on how often the
949 	 * kernel may oops without panic().
950 	 */
951 	limit = READ_ONCE(oops_limit);
952 	if (atomic_inc_return(&oops_count) >= limit && limit)
953 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
954 
955 	do_exit(signr);
956 }
957 
complete_and_exit(struct completion * comp,long code)958 void complete_and_exit(struct completion *comp, long code)
959 {
960 	if (comp)
961 		complete(comp);
962 
963 	do_exit(code);
964 }
965 EXPORT_SYMBOL(complete_and_exit);
966 
SYSCALL_DEFINE1(exit,int,error_code)967 SYSCALL_DEFINE1(exit, int, error_code)
968 {
969 	do_exit((error_code&0xff)<<8);
970 }
971 
972 /*
973  * Take down every thread in the group.  This is called by fatal signals
974  * as well as by sys_exit_group (below).
975  */
976 void
do_group_exit(int exit_code)977 do_group_exit(int exit_code)
978 {
979 	struct signal_struct *sig = current->signal;
980 
981 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
982 
983 	if (signal_group_exit(sig))
984 		exit_code = sig->group_exit_code;
985 	else if (!thread_group_empty(current)) {
986 		struct sighand_struct *const sighand = current->sighand;
987 
988 		spin_lock_irq(&sighand->siglock);
989 		if (signal_group_exit(sig))
990 			/* Another thread got here before we took the lock.  */
991 			exit_code = sig->group_exit_code;
992 		else {
993 			sig->group_exit_code = exit_code;
994 			sig->flags = SIGNAL_GROUP_EXIT;
995 			zap_other_threads(current);
996 		}
997 		spin_unlock_irq(&sighand->siglock);
998 	}
999 
1000 	do_exit(exit_code);
1001 	/* NOTREACHED */
1002 }
1003 
1004 /*
1005  * this kills every thread in the thread group. Note that any externally
1006  * wait4()-ing process will get the correct exit code - even if this
1007  * thread is not the thread group leader.
1008  */
SYSCALL_DEFINE1(exit_group,int,error_code)1009 SYSCALL_DEFINE1(exit_group, int, error_code)
1010 {
1011 	do_group_exit((error_code & 0xff) << 8);
1012 	/* NOTREACHED */
1013 	return 0;
1014 }
1015 
1016 struct waitid_info {
1017 	pid_t pid;
1018 	uid_t uid;
1019 	int status;
1020 	int cause;
1021 };
1022 
1023 struct wait_opts {
1024 	enum pid_type		wo_type;
1025 	int			wo_flags;
1026 	struct pid		*wo_pid;
1027 
1028 	struct waitid_info	*wo_info;
1029 	int			wo_stat;
1030 	struct rusage		*wo_rusage;
1031 
1032 	wait_queue_entry_t		child_wait;
1033 	int			notask_error;
1034 };
1035 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1036 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1037 {
1038 	return	wo->wo_type == PIDTYPE_MAX ||
1039 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1040 }
1041 
1042 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1043 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1044 {
1045 	if (!eligible_pid(wo, p))
1046 		return 0;
1047 
1048 	/*
1049 	 * Wait for all children (clone and not) if __WALL is set or
1050 	 * if it is traced by us.
1051 	 */
1052 	if (ptrace || (wo->wo_flags & __WALL))
1053 		return 1;
1054 
1055 	/*
1056 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1057 	 * otherwise, wait for non-clone children *only*.
1058 	 *
1059 	 * Note: a "clone" child here is one that reports to its parent
1060 	 * using a signal other than SIGCHLD, or a non-leader thread which
1061 	 * we can only see if it is traced by us.
1062 	 */
1063 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1064 		return 0;
1065 
1066 	return 1;
1067 }
1068 
1069 /*
1070  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1071  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1072  * the lock and this task is uninteresting.  If we return nonzero, we have
1073  * released the lock and the system call should return.
1074  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1075 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1076 {
1077 	int state, status;
1078 	pid_t pid = task_pid_vnr(p);
1079 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080 	struct waitid_info *infop;
1081 
1082 	if (!likely(wo->wo_flags & WEXITED))
1083 		return 0;
1084 
1085 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1086 		status = p->exit_code;
1087 		get_task_struct(p);
1088 		read_unlock(&tasklist_lock);
1089 		sched_annotate_sleep();
1090 		if (wo->wo_rusage)
1091 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1092 		put_task_struct(p);
1093 		goto out_info;
1094 	}
1095 	/*
1096 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1097 	 */
1098 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1099 		EXIT_TRACE : EXIT_DEAD;
1100 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1101 		return 0;
1102 	/*
1103 	 * We own this thread, nobody else can reap it.
1104 	 */
1105 	read_unlock(&tasklist_lock);
1106 	sched_annotate_sleep();
1107 
1108 	/*
1109 	 * Check thread_group_leader() to exclude the traced sub-threads.
1110 	 */
1111 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1112 		struct signal_struct *sig = p->signal;
1113 		struct signal_struct *psig = current->signal;
1114 		unsigned long maxrss;
1115 		u64 tgutime, tgstime;
1116 
1117 		/*
1118 		 * The resource counters for the group leader are in its
1119 		 * own task_struct.  Those for dead threads in the group
1120 		 * are in its signal_struct, as are those for the child
1121 		 * processes it has previously reaped.  All these
1122 		 * accumulate in the parent's signal_struct c* fields.
1123 		 *
1124 		 * We don't bother to take a lock here to protect these
1125 		 * p->signal fields because the whole thread group is dead
1126 		 * and nobody can change them.
1127 		 *
1128 		 * psig->stats_lock also protects us from our sub-theads
1129 		 * which can reap other children at the same time. Until
1130 		 * we change k_getrusage()-like users to rely on this lock
1131 		 * we have to take ->siglock as well.
1132 		 *
1133 		 * We use thread_group_cputime_adjusted() to get times for
1134 		 * the thread group, which consolidates times for all threads
1135 		 * in the group including the group leader.
1136 		 */
1137 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1138 		spin_lock_irq(&current->sighand->siglock);
1139 		write_seqlock(&psig->stats_lock);
1140 		psig->cutime += tgutime + sig->cutime;
1141 		psig->cstime += tgstime + sig->cstime;
1142 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1143 		psig->cmin_flt +=
1144 			p->min_flt + sig->min_flt + sig->cmin_flt;
1145 		psig->cmaj_flt +=
1146 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1147 		psig->cnvcsw +=
1148 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1149 		psig->cnivcsw +=
1150 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1151 		psig->cinblock +=
1152 			task_io_get_inblock(p) +
1153 			sig->inblock + sig->cinblock;
1154 		psig->coublock +=
1155 			task_io_get_oublock(p) +
1156 			sig->oublock + sig->coublock;
1157 		maxrss = max(sig->maxrss, sig->cmaxrss);
1158 		if (psig->cmaxrss < maxrss)
1159 			psig->cmaxrss = maxrss;
1160 		task_io_accounting_add(&psig->ioac, &p->ioac);
1161 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1162 		write_sequnlock(&psig->stats_lock);
1163 		spin_unlock_irq(&current->sighand->siglock);
1164 	}
1165 
1166 	if (wo->wo_rusage)
1167 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 		? p->signal->group_exit_code : p->exit_code;
1170 	wo->wo_stat = status;
1171 
1172 	if (state == EXIT_TRACE) {
1173 		write_lock_irq(&tasklist_lock);
1174 		/* We dropped tasklist, ptracer could die and untrace */
1175 		ptrace_unlink(p);
1176 
1177 		/* If parent wants a zombie, don't release it now */
1178 		state = EXIT_ZOMBIE;
1179 		if (do_notify_parent(p, p->exit_signal))
1180 			state = EXIT_DEAD;
1181 		p->exit_state = state;
1182 		write_unlock_irq(&tasklist_lock);
1183 	}
1184 	if (state == EXIT_DEAD)
1185 		release_task(p);
1186 
1187 out_info:
1188 	infop = wo->wo_info;
1189 	if (infop) {
1190 		if ((status & 0x7f) == 0) {
1191 			infop->cause = CLD_EXITED;
1192 			infop->status = status >> 8;
1193 		} else {
1194 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 			infop->status = status & 0x7f;
1196 		}
1197 		infop->pid = pid;
1198 		infop->uid = uid;
1199 	}
1200 
1201 	return pid;
1202 }
1203 
task_stopped_code(struct task_struct * p,bool ptrace)1204 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1205 {
1206 	if (ptrace) {
1207 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1208 			return &p->exit_code;
1209 	} else {
1210 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211 			return &p->signal->group_exit_code;
1212 	}
1213 	return NULL;
1214 }
1215 
1216 /**
1217  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1218  * @wo: wait options
1219  * @ptrace: is the wait for ptrace
1220  * @p: task to wait for
1221  *
1222  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1223  *
1224  * CONTEXT:
1225  * read_lock(&tasklist_lock), which is released if return value is
1226  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1227  *
1228  * RETURNS:
1229  * 0 if wait condition didn't exist and search for other wait conditions
1230  * should continue.  Non-zero return, -errno on failure and @p's pid on
1231  * success, implies that tasklist_lock is released and wait condition
1232  * search should terminate.
1233  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1234 static int wait_task_stopped(struct wait_opts *wo,
1235 				int ptrace, struct task_struct *p)
1236 {
1237 	struct waitid_info *infop;
1238 	int exit_code, *p_code, why;
1239 	uid_t uid = 0; /* unneeded, required by compiler */
1240 	pid_t pid;
1241 
1242 	/*
1243 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1244 	 */
1245 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1246 		return 0;
1247 
1248 	if (!task_stopped_code(p, ptrace))
1249 		return 0;
1250 
1251 	exit_code = 0;
1252 	spin_lock_irq(&p->sighand->siglock);
1253 
1254 	p_code = task_stopped_code(p, ptrace);
1255 	if (unlikely(!p_code))
1256 		goto unlock_sig;
1257 
1258 	exit_code = *p_code;
1259 	if (!exit_code)
1260 		goto unlock_sig;
1261 
1262 	if (!unlikely(wo->wo_flags & WNOWAIT))
1263 		*p_code = 0;
1264 
1265 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1266 unlock_sig:
1267 	spin_unlock_irq(&p->sighand->siglock);
1268 	if (!exit_code)
1269 		return 0;
1270 
1271 	/*
1272 	 * Now we are pretty sure this task is interesting.
1273 	 * Make sure it doesn't get reaped out from under us while we
1274 	 * give up the lock and then examine it below.  We don't want to
1275 	 * keep holding onto the tasklist_lock while we call getrusage and
1276 	 * possibly take page faults for user memory.
1277 	 */
1278 	get_task_struct(p);
1279 	pid = task_pid_vnr(p);
1280 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281 	read_unlock(&tasklist_lock);
1282 	sched_annotate_sleep();
1283 	if (wo->wo_rusage)
1284 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1285 	put_task_struct(p);
1286 
1287 	if (likely(!(wo->wo_flags & WNOWAIT)))
1288 		wo->wo_stat = (exit_code << 8) | 0x7f;
1289 
1290 	infop = wo->wo_info;
1291 	if (infop) {
1292 		infop->cause = why;
1293 		infop->status = exit_code;
1294 		infop->pid = pid;
1295 		infop->uid = uid;
1296 	}
1297 	return pid;
1298 }
1299 
1300 /*
1301  * Handle do_wait work for one task in a live, non-stopped state.
1302  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1303  * the lock and this task is uninteresting.  If we return nonzero, we have
1304  * released the lock and the system call should return.
1305  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1306 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1307 {
1308 	struct waitid_info *infop;
1309 	pid_t pid;
1310 	uid_t uid;
1311 
1312 	if (!unlikely(wo->wo_flags & WCONTINUED))
1313 		return 0;
1314 
1315 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1316 		return 0;
1317 
1318 	spin_lock_irq(&p->sighand->siglock);
1319 	/* Re-check with the lock held.  */
1320 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1321 		spin_unlock_irq(&p->sighand->siglock);
1322 		return 0;
1323 	}
1324 	if (!unlikely(wo->wo_flags & WNOWAIT))
1325 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1326 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1327 	spin_unlock_irq(&p->sighand->siglock);
1328 
1329 	pid = task_pid_vnr(p);
1330 	get_task_struct(p);
1331 	read_unlock(&tasklist_lock);
1332 	sched_annotate_sleep();
1333 	if (wo->wo_rusage)
1334 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1335 	put_task_struct(p);
1336 
1337 	infop = wo->wo_info;
1338 	if (!infop) {
1339 		wo->wo_stat = 0xffff;
1340 	} else {
1341 		infop->cause = CLD_CONTINUED;
1342 		infop->pid = pid;
1343 		infop->uid = uid;
1344 		infop->status = SIGCONT;
1345 	}
1346 	return pid;
1347 }
1348 
1349 /*
1350  * Consider @p for a wait by @parent.
1351  *
1352  * -ECHILD should be in ->notask_error before the first call.
1353  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354  * Returns zero if the search for a child should continue;
1355  * then ->notask_error is 0 if @p is an eligible child,
1356  * or still -ECHILD.
1357  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 				struct task_struct *p)
1360 {
1361 	/*
1362 	 * We can race with wait_task_zombie() from another thread.
1363 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1364 	 * can't confuse the checks below.
1365 	 */
1366 	int exit_state = READ_ONCE(p->exit_state);
1367 	int ret;
1368 
1369 	if (unlikely(exit_state == EXIT_DEAD))
1370 		return 0;
1371 
1372 	ret = eligible_child(wo, ptrace, p);
1373 	if (!ret)
1374 		return ret;
1375 
1376 	if (unlikely(exit_state == EXIT_TRACE)) {
1377 		/*
1378 		 * ptrace == 0 means we are the natural parent. In this case
1379 		 * we should clear notask_error, debugger will notify us.
1380 		 */
1381 		if (likely(!ptrace))
1382 			wo->notask_error = 0;
1383 		return 0;
1384 	}
1385 
1386 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1387 		/*
1388 		 * If it is traced by its real parent's group, just pretend
1389 		 * the caller is ptrace_do_wait() and reap this child if it
1390 		 * is zombie.
1391 		 *
1392 		 * This also hides group stop state from real parent; otherwise
1393 		 * a single stop can be reported twice as group and ptrace stop.
1394 		 * If a ptracer wants to distinguish these two events for its
1395 		 * own children it should create a separate process which takes
1396 		 * the role of real parent.
1397 		 */
1398 		if (!ptrace_reparented(p))
1399 			ptrace = 1;
1400 	}
1401 
1402 	/* slay zombie? */
1403 	if (exit_state == EXIT_ZOMBIE) {
1404 		/* we don't reap group leaders with subthreads */
1405 		if (!delay_group_leader(p)) {
1406 			/*
1407 			 * A zombie ptracee is only visible to its ptracer.
1408 			 * Notification and reaping will be cascaded to the
1409 			 * real parent when the ptracer detaches.
1410 			 */
1411 			if (unlikely(ptrace) || likely(!p->ptrace))
1412 				return wait_task_zombie(wo, p);
1413 		}
1414 
1415 		/*
1416 		 * Allow access to stopped/continued state via zombie by
1417 		 * falling through.  Clearing of notask_error is complex.
1418 		 *
1419 		 * When !@ptrace:
1420 		 *
1421 		 * If WEXITED is set, notask_error should naturally be
1422 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1423 		 * so, if there are live subthreads, there are events to
1424 		 * wait for.  If all subthreads are dead, it's still safe
1425 		 * to clear - this function will be called again in finite
1426 		 * amount time once all the subthreads are released and
1427 		 * will then return without clearing.
1428 		 *
1429 		 * When @ptrace:
1430 		 *
1431 		 * Stopped state is per-task and thus can't change once the
1432 		 * target task dies.  Only continued and exited can happen.
1433 		 * Clear notask_error if WCONTINUED | WEXITED.
1434 		 */
1435 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1436 			wo->notask_error = 0;
1437 	} else {
1438 		/*
1439 		 * @p is alive and it's gonna stop, continue or exit, so
1440 		 * there always is something to wait for.
1441 		 */
1442 		wo->notask_error = 0;
1443 	}
1444 
1445 	/*
1446 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1447 	 * is used and the two don't interact with each other.
1448 	 */
1449 	ret = wait_task_stopped(wo, ptrace, p);
1450 	if (ret)
1451 		return ret;
1452 
1453 	/*
1454 	 * Wait for continued.  There's only one continued state and the
1455 	 * ptracer can consume it which can confuse the real parent.  Don't
1456 	 * use WCONTINUED from ptracer.  You don't need or want it.
1457 	 */
1458 	return wait_task_continued(wo, p);
1459 }
1460 
1461 /*
1462  * Do the work of do_wait() for one thread in the group, @tsk.
1463  *
1464  * -ECHILD should be in ->notask_error before the first call.
1465  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466  * Returns zero if the search for a child should continue; then
1467  * ->notask_error is 0 if there were any eligible children,
1468  * or still -ECHILD.
1469  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1470 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1471 {
1472 	struct task_struct *p;
1473 
1474 	list_for_each_entry(p, &tsk->children, sibling) {
1475 		int ret = wait_consider_task(wo, 0, p);
1476 
1477 		if (ret)
1478 			return ret;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1485 {
1486 	struct task_struct *p;
1487 
1488 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489 		int ret = wait_consider_task(wo, 1, p);
1490 
1491 		if (ret)
1492 			return ret;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1498 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1499 				int sync, void *key)
1500 {
1501 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1502 						child_wait);
1503 	struct task_struct *p = key;
1504 
1505 	if (!eligible_pid(wo, p))
1506 		return 0;
1507 
1508 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1509 		return 0;
1510 
1511 	return default_wake_function(wait, mode, sync, key);
1512 }
1513 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1514 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1515 {
1516 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1517 			   TASK_INTERRUPTIBLE, p);
1518 }
1519 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1520 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1521 				 struct task_struct *target)
1522 {
1523 	struct task_struct *parent =
1524 		!ptrace ? target->real_parent : target->parent;
1525 
1526 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1527 				     same_thread_group(current, parent));
1528 }
1529 
1530 /*
1531  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1532  * and tracee lists to find the target task.
1533  */
do_wait_pid(struct wait_opts * wo)1534 static int do_wait_pid(struct wait_opts *wo)
1535 {
1536 	bool ptrace;
1537 	struct task_struct *target;
1538 	int retval;
1539 
1540 	ptrace = false;
1541 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1542 	if (target && is_effectively_child(wo, ptrace, target)) {
1543 		retval = wait_consider_task(wo, ptrace, target);
1544 		if (retval)
1545 			return retval;
1546 	}
1547 
1548 	ptrace = true;
1549 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1550 	if (target && target->ptrace &&
1551 	    is_effectively_child(wo, ptrace, target)) {
1552 		retval = wait_consider_task(wo, ptrace, target);
1553 		if (retval)
1554 			return retval;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
do_wait(struct wait_opts * wo)1560 static long do_wait(struct wait_opts *wo)
1561 {
1562 	int retval;
1563 
1564 	trace_sched_process_wait(wo->wo_pid);
1565 
1566 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1567 	wo->child_wait.private = current;
1568 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1569 repeat:
1570 	/*
1571 	 * If there is nothing that can match our criteria, just get out.
1572 	 * We will clear ->notask_error to zero if we see any child that
1573 	 * might later match our criteria, even if we are not able to reap
1574 	 * it yet.
1575 	 */
1576 	wo->notask_error = -ECHILD;
1577 	if ((wo->wo_type < PIDTYPE_MAX) &&
1578 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1579 		goto notask;
1580 
1581 	set_current_state(TASK_INTERRUPTIBLE);
1582 	read_lock(&tasklist_lock);
1583 
1584 	if (wo->wo_type == PIDTYPE_PID) {
1585 		retval = do_wait_pid(wo);
1586 		if (retval)
1587 			goto end;
1588 	} else {
1589 		struct task_struct *tsk = current;
1590 
1591 		do {
1592 			retval = do_wait_thread(wo, tsk);
1593 			if (retval)
1594 				goto end;
1595 
1596 			retval = ptrace_do_wait(wo, tsk);
1597 			if (retval)
1598 				goto end;
1599 
1600 			if (wo->wo_flags & __WNOTHREAD)
1601 				break;
1602 		} while_each_thread(current, tsk);
1603 	}
1604 	read_unlock(&tasklist_lock);
1605 
1606 notask:
1607 	retval = wo->notask_error;
1608 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1609 		retval = -ERESTARTSYS;
1610 		if (!signal_pending(current)) {
1611 			schedule();
1612 			goto repeat;
1613 		}
1614 	}
1615 end:
1616 	__set_current_state(TASK_RUNNING);
1617 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1618 	return retval;
1619 }
1620 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1621 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1622 			  int options, struct rusage *ru)
1623 {
1624 	struct wait_opts wo;
1625 	struct pid *pid = NULL;
1626 	enum pid_type type;
1627 	long ret;
1628 	unsigned int f_flags = 0;
1629 
1630 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1631 			__WNOTHREAD|__WCLONE|__WALL))
1632 		return -EINVAL;
1633 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1634 		return -EINVAL;
1635 
1636 	switch (which) {
1637 	case P_ALL:
1638 		type = PIDTYPE_MAX;
1639 		break;
1640 	case P_PID:
1641 		type = PIDTYPE_PID;
1642 		if (upid <= 0)
1643 			return -EINVAL;
1644 
1645 		pid = find_get_pid(upid);
1646 		break;
1647 	case P_PGID:
1648 		type = PIDTYPE_PGID;
1649 		if (upid < 0)
1650 			return -EINVAL;
1651 
1652 		if (upid)
1653 			pid = find_get_pid(upid);
1654 		else
1655 			pid = get_task_pid(current, PIDTYPE_PGID);
1656 		break;
1657 	case P_PIDFD:
1658 		type = PIDTYPE_PID;
1659 		if (upid < 0)
1660 			return -EINVAL;
1661 
1662 		pid = pidfd_get_pid(upid, &f_flags);
1663 		if (IS_ERR(pid))
1664 			return PTR_ERR(pid);
1665 
1666 		break;
1667 	default:
1668 		return -EINVAL;
1669 	}
1670 
1671 	wo.wo_type	= type;
1672 	wo.wo_pid	= pid;
1673 	wo.wo_flags	= options;
1674 	wo.wo_info	= infop;
1675 	wo.wo_rusage	= ru;
1676 	if (f_flags & O_NONBLOCK)
1677 		wo.wo_flags |= WNOHANG;
1678 
1679 	ret = do_wait(&wo);
1680 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1681 		ret = -EAGAIN;
1682 
1683 	put_pid(pid);
1684 	return ret;
1685 }
1686 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1687 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1688 		infop, int, options, struct rusage __user *, ru)
1689 {
1690 	struct rusage r;
1691 	struct waitid_info info = {.status = 0};
1692 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1693 	int signo = 0;
1694 
1695 	if (err > 0) {
1696 		signo = SIGCHLD;
1697 		err = 0;
1698 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1699 			return -EFAULT;
1700 	}
1701 	if (!infop)
1702 		return err;
1703 
1704 	if (!user_write_access_begin(infop, sizeof(*infop)))
1705 		return -EFAULT;
1706 
1707 	unsafe_put_user(signo, &infop->si_signo, Efault);
1708 	unsafe_put_user(0, &infop->si_errno, Efault);
1709 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1710 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1711 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1712 	unsafe_put_user(info.status, &infop->si_status, Efault);
1713 	user_write_access_end();
1714 	return err;
1715 Efault:
1716 	user_write_access_end();
1717 	return -EFAULT;
1718 }
1719 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1720 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1721 		  struct rusage *ru)
1722 {
1723 	struct wait_opts wo;
1724 	struct pid *pid = NULL;
1725 	enum pid_type type;
1726 	long ret;
1727 
1728 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1729 			__WNOTHREAD|__WCLONE|__WALL))
1730 		return -EINVAL;
1731 
1732 	/* -INT_MIN is not defined */
1733 	if (upid == INT_MIN)
1734 		return -ESRCH;
1735 
1736 	if (upid == -1)
1737 		type = PIDTYPE_MAX;
1738 	else if (upid < 0) {
1739 		type = PIDTYPE_PGID;
1740 		pid = find_get_pid(-upid);
1741 	} else if (upid == 0) {
1742 		type = PIDTYPE_PGID;
1743 		pid = get_task_pid(current, PIDTYPE_PGID);
1744 	} else /* upid > 0 */ {
1745 		type = PIDTYPE_PID;
1746 		pid = find_get_pid(upid);
1747 	}
1748 
1749 	wo.wo_type	= type;
1750 	wo.wo_pid	= pid;
1751 	wo.wo_flags	= options | WEXITED;
1752 	wo.wo_info	= NULL;
1753 	wo.wo_stat	= 0;
1754 	wo.wo_rusage	= ru;
1755 	ret = do_wait(&wo);
1756 	put_pid(pid);
1757 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1758 		ret = -EFAULT;
1759 
1760 	return ret;
1761 }
1762 
kernel_wait(pid_t pid,int * stat)1763 int kernel_wait(pid_t pid, int *stat)
1764 {
1765 	struct wait_opts wo = {
1766 		.wo_type	= PIDTYPE_PID,
1767 		.wo_pid		= find_get_pid(pid),
1768 		.wo_flags	= WEXITED,
1769 	};
1770 	int ret;
1771 
1772 	ret = do_wait(&wo);
1773 	if (ret > 0 && wo.wo_stat)
1774 		*stat = wo.wo_stat;
1775 	put_pid(wo.wo_pid);
1776 	return ret;
1777 }
1778 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1779 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1780 		int, options, struct rusage __user *, ru)
1781 {
1782 	struct rusage r;
1783 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1784 
1785 	if (err > 0) {
1786 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1787 			return -EFAULT;
1788 	}
1789 	return err;
1790 }
1791 
1792 #ifdef __ARCH_WANT_SYS_WAITPID
1793 
1794 /*
1795  * sys_waitpid() remains for compatibility. waitpid() should be
1796  * implemented by calling sys_wait4() from libc.a.
1797  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1798 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1799 {
1800 	return kernel_wait4(pid, stat_addr, options, NULL);
1801 }
1802 
1803 #endif
1804 
1805 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1806 COMPAT_SYSCALL_DEFINE4(wait4,
1807 	compat_pid_t, pid,
1808 	compat_uint_t __user *, stat_addr,
1809 	int, options,
1810 	struct compat_rusage __user *, ru)
1811 {
1812 	struct rusage r;
1813 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1814 	if (err > 0) {
1815 		if (ru && put_compat_rusage(&r, ru))
1816 			return -EFAULT;
1817 	}
1818 	return err;
1819 }
1820 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1821 COMPAT_SYSCALL_DEFINE5(waitid,
1822 		int, which, compat_pid_t, pid,
1823 		struct compat_siginfo __user *, infop, int, options,
1824 		struct compat_rusage __user *, uru)
1825 {
1826 	struct rusage ru;
1827 	struct waitid_info info = {.status = 0};
1828 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1829 	int signo = 0;
1830 	if (err > 0) {
1831 		signo = SIGCHLD;
1832 		err = 0;
1833 		if (uru) {
1834 			/* kernel_waitid() overwrites everything in ru */
1835 			if (COMPAT_USE_64BIT_TIME)
1836 				err = copy_to_user(uru, &ru, sizeof(ru));
1837 			else
1838 				err = put_compat_rusage(&ru, uru);
1839 			if (err)
1840 				return -EFAULT;
1841 		}
1842 	}
1843 
1844 	if (!infop)
1845 		return err;
1846 
1847 	if (!user_write_access_begin(infop, sizeof(*infop)))
1848 		return -EFAULT;
1849 
1850 	unsafe_put_user(signo, &infop->si_signo, Efault);
1851 	unsafe_put_user(0, &infop->si_errno, Efault);
1852 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1853 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1854 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1855 	unsafe_put_user(info.status, &infop->si_status, Efault);
1856 	user_write_access_end();
1857 	return err;
1858 Efault:
1859 	user_write_access_end();
1860 	return -EFAULT;
1861 }
1862 #endif
1863 
1864 /**
1865  * thread_group_exited - check that a thread group has exited
1866  * @pid: tgid of thread group to be checked.
1867  *
1868  * Test if the thread group represented by tgid has exited (all
1869  * threads are zombies, dead or completely gone).
1870  *
1871  * Return: true if the thread group has exited. false otherwise.
1872  */
thread_group_exited(struct pid * pid)1873 bool thread_group_exited(struct pid *pid)
1874 {
1875 	struct task_struct *task;
1876 	bool exited;
1877 
1878 	rcu_read_lock();
1879 	task = pid_task(pid, PIDTYPE_PID);
1880 	exited = !task ||
1881 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1882 	rcu_read_unlock();
1883 
1884 	return exited;
1885 }
1886 EXPORT_SYMBOL(thread_group_exited);
1887 
abort(void)1888 __weak void abort(void)
1889 {
1890 	BUG();
1891 
1892 	/* if that doesn't kill us, halt */
1893 	panic("Oops failed to kill thread");
1894 }
1895 EXPORT_SYMBOL(abort);
1896