1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73 #include <trace/hooks/dtask.h>
74
75 /*
76 * The default value should be high enough to not crash a system that randomly
77 * crashes its kernel from time to time, but low enough to at least not permit
78 * overflowing 32-bit refcounts or the ldsem writer count.
79 */
80 static unsigned int oops_limit = 10000;
81
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_exit_table[] = {
84 {
85 .procname = "oops_limit",
86 .data = &oops_limit,
87 .maxlen = sizeof(oops_limit),
88 .mode = 0644,
89 .proc_handler = proc_douintvec,
90 },
91 { }
92 };
93
kernel_exit_sysctls_init(void)94 static __init int kernel_exit_sysctls_init(void)
95 {
96 register_sysctl_init("kernel", kern_exit_table);
97 return 0;
98 }
99 late_initcall(kernel_exit_sysctls_init);
100 #endif
101
102 static atomic_t oops_count = ATOMIC_INIT(0);
103
104 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)105 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
106 char *page)
107 {
108 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
109 }
110
111 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
112
kernel_exit_sysfs_init(void)113 static __init int kernel_exit_sysfs_init(void)
114 {
115 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
116 return 0;
117 }
118 late_initcall(kernel_exit_sysfs_init);
119 #endif
120
__unhash_process(struct task_struct * p,bool group_dead)121 static void __unhash_process(struct task_struct *p, bool group_dead)
122 {
123 nr_threads--;
124 detach_pid(p, PIDTYPE_PID);
125 if (group_dead) {
126 detach_pid(p, PIDTYPE_TGID);
127 detach_pid(p, PIDTYPE_PGID);
128 detach_pid(p, PIDTYPE_SID);
129
130 list_del_rcu(&p->tasks);
131 list_del_init(&p->sibling);
132 __this_cpu_dec(process_counts);
133 }
134 list_del_rcu(&p->thread_group);
135 list_del_rcu(&p->thread_node);
136 }
137
138 /*
139 * This function expects the tasklist_lock write-locked.
140 */
__exit_signal(struct task_struct * tsk)141 static void __exit_signal(struct task_struct *tsk)
142 {
143 struct signal_struct *sig = tsk->signal;
144 bool group_dead = thread_group_leader(tsk);
145 struct sighand_struct *sighand;
146 struct tty_struct *tty;
147 u64 utime, stime;
148
149 sighand = rcu_dereference_check(tsk->sighand,
150 lockdep_tasklist_lock_is_held());
151 spin_lock(&sighand->siglock);
152
153 #ifdef CONFIG_POSIX_TIMERS
154 posix_cpu_timers_exit(tsk);
155 if (group_dead)
156 posix_cpu_timers_exit_group(tsk);
157 #endif
158
159 if (group_dead) {
160 tty = sig->tty;
161 sig->tty = NULL;
162 } else {
163 /*
164 * If there is any task waiting for the group exit
165 * then notify it:
166 */
167 if (sig->notify_count > 0 && !--sig->notify_count)
168 wake_up_process(sig->group_exit_task);
169
170 if (tsk == sig->curr_target)
171 sig->curr_target = next_thread(tsk);
172 }
173
174 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
175 sizeof(unsigned long long));
176
177 /*
178 * Accumulate here the counters for all threads as they die. We could
179 * skip the group leader because it is the last user of signal_struct,
180 * but we want to avoid the race with thread_group_cputime() which can
181 * see the empty ->thread_head list.
182 */
183 task_cputime(tsk, &utime, &stime);
184 write_seqlock(&sig->stats_lock);
185 sig->utime += utime;
186 sig->stime += stime;
187 sig->gtime += task_gtime(tsk);
188 sig->min_flt += tsk->min_flt;
189 sig->maj_flt += tsk->maj_flt;
190 sig->nvcsw += tsk->nvcsw;
191 sig->nivcsw += tsk->nivcsw;
192 sig->inblock += task_io_get_inblock(tsk);
193 sig->oublock += task_io_get_oublock(tsk);
194 task_io_accounting_add(&sig->ioac, &tsk->ioac);
195 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
196 sig->nr_threads--;
197 __unhash_process(tsk, group_dead);
198 write_sequnlock(&sig->stats_lock);
199
200 /*
201 * Do this under ->siglock, we can race with another thread
202 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
203 */
204 flush_sigqueue(&tsk->pending);
205 tsk->sighand = NULL;
206 spin_unlock(&sighand->siglock);
207
208 __cleanup_sighand(sighand);
209 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
210 if (group_dead) {
211 flush_sigqueue(&sig->shared_pending);
212 tty_kref_put(tty);
213 }
214 }
215
delayed_put_task_struct(struct rcu_head * rhp)216 static void delayed_put_task_struct(struct rcu_head *rhp)
217 {
218 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
219
220 perf_event_delayed_put(tsk);
221 trace_sched_process_free(tsk);
222 put_task_struct(tsk);
223 }
224
put_task_struct_rcu_user(struct task_struct * task)225 void put_task_struct_rcu_user(struct task_struct *task)
226 {
227 if (refcount_dec_and_test(&task->rcu_users))
228 call_rcu(&task->rcu, delayed_put_task_struct);
229 }
230
release_task(struct task_struct * p)231 void release_task(struct task_struct *p)
232 {
233 struct task_struct *leader;
234 struct pid *thread_pid;
235 int zap_leader;
236 repeat:
237 /* don't need to get the RCU readlock here - the process is dead and
238 * can't be modifying its own credentials. But shut RCU-lockdep up */
239 rcu_read_lock();
240 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
241 rcu_read_unlock();
242
243 cgroup_release(p);
244
245 write_lock_irq(&tasklist_lock);
246 ptrace_release_task(p);
247 thread_pid = get_pid(p->thread_pid);
248 __exit_signal(p);
249
250 /*
251 * If we are the last non-leader member of the thread
252 * group, and the leader is zombie, then notify the
253 * group leader's parent process. (if it wants notification.)
254 */
255 zap_leader = 0;
256 leader = p->group_leader;
257 if (leader != p && thread_group_empty(leader)
258 && leader->exit_state == EXIT_ZOMBIE) {
259 /*
260 * If we were the last child thread and the leader has
261 * exited already, and the leader's parent ignores SIGCHLD,
262 * then we are the one who should release the leader.
263 */
264 zap_leader = do_notify_parent(leader, leader->exit_signal);
265 if (zap_leader)
266 leader->exit_state = EXIT_DEAD;
267 }
268
269 write_unlock_irq(&tasklist_lock);
270 seccomp_filter_release(p);
271 proc_flush_pid(thread_pid);
272 put_pid(thread_pid);
273 release_thread(p);
274 put_task_struct_rcu_user(p);
275
276 p = leader;
277 if (unlikely(zap_leader))
278 goto repeat;
279 }
280
rcuwait_wake_up(struct rcuwait * w)281 int rcuwait_wake_up(struct rcuwait *w)
282 {
283 int ret = 0;
284 struct task_struct *task;
285
286 rcu_read_lock();
287
288 /*
289 * Order condition vs @task, such that everything prior to the load
290 * of @task is visible. This is the condition as to why the user called
291 * rcuwait_wake() in the first place. Pairs with set_current_state()
292 * barrier (A) in rcuwait_wait_event().
293 *
294 * WAIT WAKE
295 * [S] tsk = current [S] cond = true
296 * MB (A) MB (B)
297 * [L] cond [L] tsk
298 */
299 smp_mb(); /* (B) */
300
301 task = rcu_dereference(w->task);
302 if (task)
303 ret = wake_up_process(task);
304 rcu_read_unlock();
305
306 return ret;
307 }
308 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
309
310 /*
311 * Determine if a process group is "orphaned", according to the POSIX
312 * definition in 2.2.2.52. Orphaned process groups are not to be affected
313 * by terminal-generated stop signals. Newly orphaned process groups are
314 * to receive a SIGHUP and a SIGCONT.
315 *
316 * "I ask you, have you ever known what it is to be an orphan?"
317 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)318 static int will_become_orphaned_pgrp(struct pid *pgrp,
319 struct task_struct *ignored_task)
320 {
321 struct task_struct *p;
322
323 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
324 if ((p == ignored_task) ||
325 (p->exit_state && thread_group_empty(p)) ||
326 is_global_init(p->real_parent))
327 continue;
328
329 if (task_pgrp(p->real_parent) != pgrp &&
330 task_session(p->real_parent) == task_session(p))
331 return 0;
332 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
333
334 return 1;
335 }
336
is_current_pgrp_orphaned(void)337 int is_current_pgrp_orphaned(void)
338 {
339 int retval;
340
341 read_lock(&tasklist_lock);
342 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
343 read_unlock(&tasklist_lock);
344
345 return retval;
346 }
347
has_stopped_jobs(struct pid * pgrp)348 static bool has_stopped_jobs(struct pid *pgrp)
349 {
350 struct task_struct *p;
351
352 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
353 if (p->signal->flags & SIGNAL_STOP_STOPPED)
354 return true;
355 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356
357 return false;
358 }
359
360 /*
361 * Check to see if any process groups have become orphaned as
362 * a result of our exiting, and if they have any stopped jobs,
363 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
364 */
365 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)366 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
367 {
368 struct pid *pgrp = task_pgrp(tsk);
369 struct task_struct *ignored_task = tsk;
370
371 if (!parent)
372 /* exit: our father is in a different pgrp than
373 * we are and we were the only connection outside.
374 */
375 parent = tsk->real_parent;
376 else
377 /* reparent: our child is in a different pgrp than
378 * we are, and it was the only connection outside.
379 */
380 ignored_task = NULL;
381
382 if (task_pgrp(parent) != pgrp &&
383 task_session(parent) == task_session(tsk) &&
384 will_become_orphaned_pgrp(pgrp, ignored_task) &&
385 has_stopped_jobs(pgrp)) {
386 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
387 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
388 }
389 }
390
391 #ifdef CONFIG_MEMCG
392 /*
393 * A task is exiting. If it owned this mm, find a new owner for the mm.
394 */
mm_update_next_owner(struct mm_struct * mm)395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 struct task_struct *c, *g, *p = current;
398
399 retry:
400 /*
401 * If the exiting or execing task is not the owner, it's
402 * someone else's problem.
403 */
404 if (mm->owner != p)
405 return;
406 /*
407 * The current owner is exiting/execing and there are no other
408 * candidates. Do not leave the mm pointing to a possibly
409 * freed task structure.
410 */
411 if (atomic_read(&mm->mm_users) <= 1) {
412 WRITE_ONCE(mm->owner, NULL);
413 return;
414 }
415
416 read_lock(&tasklist_lock);
417 /*
418 * Search in the children
419 */
420 list_for_each_entry(c, &p->children, sibling) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 }
424
425 /*
426 * Search in the siblings
427 */
428 list_for_each_entry(c, &p->real_parent->children, sibling) {
429 if (c->mm == mm)
430 goto assign_new_owner;
431 }
432
433 /*
434 * Search through everything else, we should not get here often.
435 */
436 for_each_process(g) {
437 if (g->flags & PF_KTHREAD)
438 continue;
439 for_each_thread(g, c) {
440 if (c->mm == mm)
441 goto assign_new_owner;
442 if (c->mm)
443 break;
444 }
445 }
446 read_unlock(&tasklist_lock);
447 /*
448 * We found no owner yet mm_users > 1: this implies that we are
449 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
451 */
452 WRITE_ONCE(mm->owner, NULL);
453 return;
454
455 assign_new_owner:
456 BUG_ON(c == p);
457 get_task_struct(c);
458 /*
459 * The task_lock protects c->mm from changing.
460 * We always want mm->owner->mm == mm
461 */
462 task_lock(c);
463 /*
464 * Delay read_unlock() till we have the task_lock()
465 * to ensure that c does not slip away underneath us
466 */
467 read_unlock(&tasklist_lock);
468 if (c->mm != mm) {
469 task_unlock(c);
470 put_task_struct(c);
471 goto retry;
472 }
473 WRITE_ONCE(mm->owner, c);
474 lru_gen_migrate_mm(mm);
475 task_unlock(c);
476 put_task_struct(c);
477 }
478 #endif /* CONFIG_MEMCG */
479
480 /*
481 * Turn us into a lazy TLB process if we
482 * aren't already..
483 */
exit_mm(void)484 static void exit_mm(void)
485 {
486 struct mm_struct *mm = current->mm;
487 struct core_state *core_state;
488
489 exit_mm_release(current, mm);
490 if (!mm)
491 return;
492 sync_mm_rss(mm);
493 /*
494 * Serialize with any possible pending coredump.
495 * We must hold mmap_lock around checking core_state
496 * and clearing tsk->mm. The core-inducing thread
497 * will increment ->nr_threads for each thread in the
498 * group with ->mm != NULL.
499 */
500 mmap_read_lock(mm);
501 core_state = mm->core_state;
502 if (core_state) {
503 struct core_thread self;
504
505 mmap_read_unlock(mm);
506
507 self.task = current;
508 if (self.task->flags & PF_SIGNALED)
509 self.next = xchg(&core_state->dumper.next, &self);
510 else
511 self.task = NULL;
512 /*
513 * Implies mb(), the result of xchg() must be visible
514 * to core_state->dumper.
515 */
516 if (atomic_dec_and_test(&core_state->nr_threads))
517 complete(&core_state->startup);
518
519 for (;;) {
520 set_current_state(TASK_UNINTERRUPTIBLE);
521 if (!self.task) /* see coredump_finish() */
522 break;
523 freezable_schedule();
524 }
525 __set_current_state(TASK_RUNNING);
526 mmap_read_lock(mm);
527 }
528 mmgrab(mm);
529 BUG_ON(mm != current->active_mm);
530 /* more a memory barrier than a real lock */
531 task_lock(current);
532 /*
533 * When a thread stops operating on an address space, the loop
534 * in membarrier_private_expedited() may not observe that
535 * tsk->mm, and the loop in membarrier_global_expedited() may
536 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
537 * rq->membarrier_state, so those would not issue an IPI.
538 * Membarrier requires a memory barrier after accessing
539 * user-space memory, before clearing tsk->mm or the
540 * rq->membarrier_state.
541 */
542 smp_mb__after_spinlock();
543 local_irq_disable();
544 current->mm = NULL;
545 membarrier_update_current_mm(NULL);
546 enter_lazy_tlb(mm, current);
547 local_irq_enable();
548 task_unlock(current);
549 mmap_read_unlock(mm);
550 mm_update_next_owner(mm);
551 trace_android_vh_exit_mm(mm);
552 mmput(mm);
553 if (test_thread_flag(TIF_MEMDIE))
554 exit_oom_victim();
555 }
556
find_alive_thread(struct task_struct * p)557 static struct task_struct *find_alive_thread(struct task_struct *p)
558 {
559 struct task_struct *t;
560
561 for_each_thread(p, t) {
562 if (!(t->flags & PF_EXITING))
563 return t;
564 }
565 return NULL;
566 }
567
find_child_reaper(struct task_struct * father,struct list_head * dead)568 static struct task_struct *find_child_reaper(struct task_struct *father,
569 struct list_head *dead)
570 __releases(&tasklist_lock)
571 __acquires(&tasklist_lock)
572 {
573 struct pid_namespace *pid_ns = task_active_pid_ns(father);
574 struct task_struct *reaper = pid_ns->child_reaper;
575 struct task_struct *p, *n;
576
577 if (likely(reaper != father))
578 return reaper;
579
580 reaper = find_alive_thread(father);
581 if (reaper) {
582 pid_ns->child_reaper = reaper;
583 return reaper;
584 }
585
586 write_unlock_irq(&tasklist_lock);
587
588 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
589 list_del_init(&p->ptrace_entry);
590 release_task(p);
591 }
592
593 zap_pid_ns_processes(pid_ns);
594 write_lock_irq(&tasklist_lock);
595
596 return father;
597 }
598
599 /*
600 * When we die, we re-parent all our children, and try to:
601 * 1. give them to another thread in our thread group, if such a member exists
602 * 2. give it to the first ancestor process which prctl'd itself as a
603 * child_subreaper for its children (like a service manager)
604 * 3. give it to the init process (PID 1) in our pid namespace
605 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)606 static struct task_struct *find_new_reaper(struct task_struct *father,
607 struct task_struct *child_reaper)
608 {
609 struct task_struct *thread, *reaper;
610
611 thread = find_alive_thread(father);
612 if (thread)
613 return thread;
614
615 if (father->signal->has_child_subreaper) {
616 unsigned int ns_level = task_pid(father)->level;
617 /*
618 * Find the first ->is_child_subreaper ancestor in our pid_ns.
619 * We can't check reaper != child_reaper to ensure we do not
620 * cross the namespaces, the exiting parent could be injected
621 * by setns() + fork().
622 * We check pid->level, this is slightly more efficient than
623 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
624 */
625 for (reaper = father->real_parent;
626 task_pid(reaper)->level == ns_level;
627 reaper = reaper->real_parent) {
628 if (reaper == &init_task)
629 break;
630 if (!reaper->signal->is_child_subreaper)
631 continue;
632 thread = find_alive_thread(reaper);
633 if (thread)
634 return thread;
635 }
636 }
637
638 return child_reaper;
639 }
640
641 /*
642 * Any that need to be release_task'd are put on the @dead list.
643 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)644 static void reparent_leader(struct task_struct *father, struct task_struct *p,
645 struct list_head *dead)
646 {
647 if (unlikely(p->exit_state == EXIT_DEAD))
648 return;
649
650 /* We don't want people slaying init. */
651 p->exit_signal = SIGCHLD;
652
653 /* If it has exited notify the new parent about this child's death. */
654 if (!p->ptrace &&
655 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
656 if (do_notify_parent(p, p->exit_signal)) {
657 p->exit_state = EXIT_DEAD;
658 list_add(&p->ptrace_entry, dead);
659 }
660 }
661
662 kill_orphaned_pgrp(p, father);
663 }
664
665 /*
666 * This does two things:
667 *
668 * A. Make init inherit all the child processes
669 * B. Check to see if any process groups have become orphaned
670 * as a result of our exiting, and if they have any stopped
671 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
672 */
forget_original_parent(struct task_struct * father,struct list_head * dead)673 static void forget_original_parent(struct task_struct *father,
674 struct list_head *dead)
675 {
676 struct task_struct *p, *t, *reaper;
677
678 if (unlikely(!list_empty(&father->ptraced)))
679 exit_ptrace(father, dead);
680
681 /* Can drop and reacquire tasklist_lock */
682 reaper = find_child_reaper(father, dead);
683 if (list_empty(&father->children))
684 return;
685
686 reaper = find_new_reaper(father, reaper);
687 list_for_each_entry(p, &father->children, sibling) {
688 for_each_thread(p, t) {
689 RCU_INIT_POINTER(t->real_parent, reaper);
690 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
691 if (likely(!t->ptrace))
692 t->parent = t->real_parent;
693 if (t->pdeath_signal)
694 group_send_sig_info(t->pdeath_signal,
695 SEND_SIG_NOINFO, t,
696 PIDTYPE_TGID);
697 }
698 /*
699 * If this is a threaded reparent there is no need to
700 * notify anyone anything has happened.
701 */
702 if (!same_thread_group(reaper, father))
703 reparent_leader(father, p, dead);
704 }
705 list_splice_tail_init(&father->children, &reaper->children);
706 }
707
708 /*
709 * Send signals to all our closest relatives so that they know
710 * to properly mourn us..
711 */
exit_notify(struct task_struct * tsk,int group_dead)712 static void exit_notify(struct task_struct *tsk, int group_dead)
713 {
714 bool autoreap;
715 struct task_struct *p, *n;
716 LIST_HEAD(dead);
717
718 write_lock_irq(&tasklist_lock);
719 forget_original_parent(tsk, &dead);
720
721 if (group_dead)
722 kill_orphaned_pgrp(tsk->group_leader, NULL);
723
724 tsk->exit_state = EXIT_ZOMBIE;
725 if (unlikely(tsk->ptrace)) {
726 int sig = thread_group_leader(tsk) &&
727 thread_group_empty(tsk) &&
728 !ptrace_reparented(tsk) ?
729 tsk->exit_signal : SIGCHLD;
730 autoreap = do_notify_parent(tsk, sig);
731 } else if (thread_group_leader(tsk)) {
732 autoreap = thread_group_empty(tsk) &&
733 do_notify_parent(tsk, tsk->exit_signal);
734 } else {
735 autoreap = true;
736 }
737
738 if (autoreap) {
739 tsk->exit_state = EXIT_DEAD;
740 list_add(&tsk->ptrace_entry, &dead);
741 }
742
743 /* mt-exec, de_thread() is waiting for group leader */
744 if (unlikely(tsk->signal->notify_count < 0))
745 wake_up_process(tsk->signal->group_exit_task);
746 write_unlock_irq(&tasklist_lock);
747
748 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
749 list_del_init(&p->ptrace_entry);
750 release_task(p);
751 }
752 }
753
754 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)755 static void check_stack_usage(void)
756 {
757 static DEFINE_SPINLOCK(low_water_lock);
758 static int lowest_to_date = THREAD_SIZE;
759 unsigned long free;
760
761 free = stack_not_used(current);
762
763 if (free >= lowest_to_date)
764 return;
765
766 spin_lock(&low_water_lock);
767 if (free < lowest_to_date) {
768 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
769 current->comm, task_pid_nr(current), free);
770 lowest_to_date = free;
771 }
772 spin_unlock(&low_water_lock);
773 }
774 #else
check_stack_usage(void)775 static inline void check_stack_usage(void) {}
776 #endif
777
do_exit(long code)778 void __noreturn do_exit(long code)
779 {
780 struct task_struct *tsk = current;
781 int group_dead;
782
783 /*
784 * We can get here from a kernel oops, sometimes with preemption off.
785 * Start by checking for critical errors.
786 * Then fix up important state like USER_DS and preemption.
787 * Then do everything else.
788 */
789
790 WARN_ON(blk_needs_flush_plug(tsk));
791
792 if (unlikely(in_interrupt()))
793 panic("Aiee, killing interrupt handler!");
794 if (unlikely(!tsk->pid))
795 panic("Attempted to kill the idle task!");
796
797 /*
798 * If do_exit is called because this processes oopsed, it's possible
799 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
800 * continuing. Amongst other possible reasons, this is to prevent
801 * mm_release()->clear_child_tid() from writing to a user-controlled
802 * kernel address.
803 */
804 force_uaccess_begin();
805
806 if (unlikely(in_atomic())) {
807 pr_info("note: %s[%d] exited with preempt_count %d\n",
808 current->comm, task_pid_nr(current),
809 preempt_count());
810 preempt_count_set(PREEMPT_ENABLED);
811 }
812
813 profile_task_exit(tsk);
814 kcov_task_exit(tsk);
815
816 ptrace_event(PTRACE_EVENT_EXIT, code);
817
818 validate_creds_for_do_exit(tsk);
819
820 /*
821 * We're taking recursive faults here in do_exit. Safest is to just
822 * leave this task alone and wait for reboot.
823 */
824 if (unlikely(tsk->flags & PF_EXITING)) {
825 pr_alert("Fixing recursive fault but reboot is needed!\n");
826 futex_exit_recursive(tsk);
827 set_current_state(TASK_UNINTERRUPTIBLE);
828 schedule();
829 }
830
831 io_uring_files_cancel();
832 exit_signals(tsk); /* sets PF_EXITING */
833
834 trace_android_vh_exit_check(current);
835
836 /* sync mm's RSS info before statistics gathering */
837 if (tsk->mm)
838 sync_mm_rss(tsk->mm);
839 acct_update_integrals(tsk);
840 group_dead = atomic_dec_and_test(&tsk->signal->live);
841 if (group_dead) {
842 /*
843 * If the last thread of global init has exited, panic
844 * immediately to get a useable coredump.
845 */
846 if (unlikely(is_global_init(tsk)))
847 panic("Attempted to kill init! exitcode=0x%08x\n",
848 tsk->signal->group_exit_code ?: (int)code);
849
850 #ifdef CONFIG_POSIX_TIMERS
851 hrtimer_cancel(&tsk->signal->real_timer);
852 exit_itimers(tsk);
853 #endif
854 if (tsk->mm)
855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856 }
857 acct_collect(code, group_dead);
858 if (group_dead)
859 tty_audit_exit();
860 audit_free(tsk);
861
862 tsk->exit_code = code;
863 taskstats_exit(tsk, group_dead);
864
865 exit_mm();
866
867 if (group_dead)
868 acct_process();
869 trace_sched_process_exit(tsk);
870
871 exit_sem(tsk);
872 exit_shm(tsk);
873 exit_files(tsk);
874 exit_fs(tsk);
875 if (group_dead)
876 disassociate_ctty(1);
877 exit_task_namespaces(tsk);
878 exit_task_work(tsk);
879 exit_thread(tsk);
880
881 /*
882 * Flush inherited counters to the parent - before the parent
883 * gets woken up by child-exit notifications.
884 *
885 * because of cgroup mode, must be called before cgroup_exit()
886 */
887 perf_event_exit_task(tsk);
888
889 sched_autogroup_exit_task(tsk);
890 cgroup_exit(tsk);
891
892 /*
893 * FIXME: do that only when needed, using sched_exit tracepoint
894 */
895 flush_ptrace_hw_breakpoint(tsk);
896
897 exit_tasks_rcu_start();
898 exit_notify(tsk, group_dead);
899 proc_exit_connector(tsk);
900 mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 if (unlikely(current->pi_state_cache))
903 kfree(current->pi_state_cache);
904 #endif
905 /*
906 * Make sure we are holding no locks:
907 */
908 debug_check_no_locks_held();
909
910 if (tsk->io_context)
911 exit_io_context(tsk);
912
913 if (tsk->splice_pipe)
914 free_pipe_info(tsk->splice_pipe);
915
916 if (tsk->task_frag.page)
917 put_page(tsk->task_frag.page);
918
919 validate_creds_for_do_exit(tsk);
920
921 check_stack_usage();
922 preempt_disable();
923 if (tsk->nr_dirtied)
924 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925 exit_rcu();
926 exit_tasks_rcu_finish();
927
928 lockdep_free_task(tsk);
929 do_task_dead();
930 }
931 EXPORT_SYMBOL_GPL(do_exit);
932
make_task_dead(int signr)933 void __noreturn make_task_dead(int signr)
934 {
935 /*
936 * Take the task off the cpu after something catastrophic has
937 * happened.
938 */
939 unsigned int limit;
940
941 /*
942 * Every time the system oopses, if the oops happens while a reference
943 * to an object was held, the reference leaks.
944 * If the oops doesn't also leak memory, repeated oopsing can cause
945 * reference counters to wrap around (if they're not using refcount_t).
946 * This means that repeated oopsing can make unexploitable-looking bugs
947 * exploitable through repeated oopsing.
948 * To make sure this can't happen, place an upper bound on how often the
949 * kernel may oops without panic().
950 */
951 limit = READ_ONCE(oops_limit);
952 if (atomic_inc_return(&oops_count) >= limit && limit)
953 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
954
955 do_exit(signr);
956 }
957
complete_and_exit(struct completion * comp,long code)958 void complete_and_exit(struct completion *comp, long code)
959 {
960 if (comp)
961 complete(comp);
962
963 do_exit(code);
964 }
965 EXPORT_SYMBOL(complete_and_exit);
966
SYSCALL_DEFINE1(exit,int,error_code)967 SYSCALL_DEFINE1(exit, int, error_code)
968 {
969 do_exit((error_code&0xff)<<8);
970 }
971
972 /*
973 * Take down every thread in the group. This is called by fatal signals
974 * as well as by sys_exit_group (below).
975 */
976 void
do_group_exit(int exit_code)977 do_group_exit(int exit_code)
978 {
979 struct signal_struct *sig = current->signal;
980
981 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
982
983 if (signal_group_exit(sig))
984 exit_code = sig->group_exit_code;
985 else if (!thread_group_empty(current)) {
986 struct sighand_struct *const sighand = current->sighand;
987
988 spin_lock_irq(&sighand->siglock);
989 if (signal_group_exit(sig))
990 /* Another thread got here before we took the lock. */
991 exit_code = sig->group_exit_code;
992 else {
993 sig->group_exit_code = exit_code;
994 sig->flags = SIGNAL_GROUP_EXIT;
995 zap_other_threads(current);
996 }
997 spin_unlock_irq(&sighand->siglock);
998 }
999
1000 do_exit(exit_code);
1001 /* NOTREACHED */
1002 }
1003
1004 /*
1005 * this kills every thread in the thread group. Note that any externally
1006 * wait4()-ing process will get the correct exit code - even if this
1007 * thread is not the thread group leader.
1008 */
SYSCALL_DEFINE1(exit_group,int,error_code)1009 SYSCALL_DEFINE1(exit_group, int, error_code)
1010 {
1011 do_group_exit((error_code & 0xff) << 8);
1012 /* NOTREACHED */
1013 return 0;
1014 }
1015
1016 struct waitid_info {
1017 pid_t pid;
1018 uid_t uid;
1019 int status;
1020 int cause;
1021 };
1022
1023 struct wait_opts {
1024 enum pid_type wo_type;
1025 int wo_flags;
1026 struct pid *wo_pid;
1027
1028 struct waitid_info *wo_info;
1029 int wo_stat;
1030 struct rusage *wo_rusage;
1031
1032 wait_queue_entry_t child_wait;
1033 int notask_error;
1034 };
1035
eligible_pid(struct wait_opts * wo,struct task_struct * p)1036 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1037 {
1038 return wo->wo_type == PIDTYPE_MAX ||
1039 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1040 }
1041
1042 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1043 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1044 {
1045 if (!eligible_pid(wo, p))
1046 return 0;
1047
1048 /*
1049 * Wait for all children (clone and not) if __WALL is set or
1050 * if it is traced by us.
1051 */
1052 if (ptrace || (wo->wo_flags & __WALL))
1053 return 1;
1054
1055 /*
1056 * Otherwise, wait for clone children *only* if __WCLONE is set;
1057 * otherwise, wait for non-clone children *only*.
1058 *
1059 * Note: a "clone" child here is one that reports to its parent
1060 * using a signal other than SIGCHLD, or a non-leader thread which
1061 * we can only see if it is traced by us.
1062 */
1063 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1064 return 0;
1065
1066 return 1;
1067 }
1068
1069 /*
1070 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1071 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1072 * the lock and this task is uninteresting. If we return nonzero, we have
1073 * released the lock and the system call should return.
1074 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1075 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1076 {
1077 int state, status;
1078 pid_t pid = task_pid_vnr(p);
1079 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080 struct waitid_info *infop;
1081
1082 if (!likely(wo->wo_flags & WEXITED))
1083 return 0;
1084
1085 if (unlikely(wo->wo_flags & WNOWAIT)) {
1086 status = p->exit_code;
1087 get_task_struct(p);
1088 read_unlock(&tasklist_lock);
1089 sched_annotate_sleep();
1090 if (wo->wo_rusage)
1091 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1092 put_task_struct(p);
1093 goto out_info;
1094 }
1095 /*
1096 * Move the task's state to DEAD/TRACE, only one thread can do this.
1097 */
1098 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1099 EXIT_TRACE : EXIT_DEAD;
1100 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1101 return 0;
1102 /*
1103 * We own this thread, nobody else can reap it.
1104 */
1105 read_unlock(&tasklist_lock);
1106 sched_annotate_sleep();
1107
1108 /*
1109 * Check thread_group_leader() to exclude the traced sub-threads.
1110 */
1111 if (state == EXIT_DEAD && thread_group_leader(p)) {
1112 struct signal_struct *sig = p->signal;
1113 struct signal_struct *psig = current->signal;
1114 unsigned long maxrss;
1115 u64 tgutime, tgstime;
1116
1117 /*
1118 * The resource counters for the group leader are in its
1119 * own task_struct. Those for dead threads in the group
1120 * are in its signal_struct, as are those for the child
1121 * processes it has previously reaped. All these
1122 * accumulate in the parent's signal_struct c* fields.
1123 *
1124 * We don't bother to take a lock here to protect these
1125 * p->signal fields because the whole thread group is dead
1126 * and nobody can change them.
1127 *
1128 * psig->stats_lock also protects us from our sub-theads
1129 * which can reap other children at the same time. Until
1130 * we change k_getrusage()-like users to rely on this lock
1131 * we have to take ->siglock as well.
1132 *
1133 * We use thread_group_cputime_adjusted() to get times for
1134 * the thread group, which consolidates times for all threads
1135 * in the group including the group leader.
1136 */
1137 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1138 spin_lock_irq(¤t->sighand->siglock);
1139 write_seqlock(&psig->stats_lock);
1140 psig->cutime += tgutime + sig->cutime;
1141 psig->cstime += tgstime + sig->cstime;
1142 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1143 psig->cmin_flt +=
1144 p->min_flt + sig->min_flt + sig->cmin_flt;
1145 psig->cmaj_flt +=
1146 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1147 psig->cnvcsw +=
1148 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1149 psig->cnivcsw +=
1150 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1151 psig->cinblock +=
1152 task_io_get_inblock(p) +
1153 sig->inblock + sig->cinblock;
1154 psig->coublock +=
1155 task_io_get_oublock(p) +
1156 sig->oublock + sig->coublock;
1157 maxrss = max(sig->maxrss, sig->cmaxrss);
1158 if (psig->cmaxrss < maxrss)
1159 psig->cmaxrss = maxrss;
1160 task_io_accounting_add(&psig->ioac, &p->ioac);
1161 task_io_accounting_add(&psig->ioac, &sig->ioac);
1162 write_sequnlock(&psig->stats_lock);
1163 spin_unlock_irq(¤t->sighand->siglock);
1164 }
1165
1166 if (wo->wo_rusage)
1167 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 ? p->signal->group_exit_code : p->exit_code;
1170 wo->wo_stat = status;
1171
1172 if (state == EXIT_TRACE) {
1173 write_lock_irq(&tasklist_lock);
1174 /* We dropped tasklist, ptracer could die and untrace */
1175 ptrace_unlink(p);
1176
1177 /* If parent wants a zombie, don't release it now */
1178 state = EXIT_ZOMBIE;
1179 if (do_notify_parent(p, p->exit_signal))
1180 state = EXIT_DEAD;
1181 p->exit_state = state;
1182 write_unlock_irq(&tasklist_lock);
1183 }
1184 if (state == EXIT_DEAD)
1185 release_task(p);
1186
1187 out_info:
1188 infop = wo->wo_info;
1189 if (infop) {
1190 if ((status & 0x7f) == 0) {
1191 infop->cause = CLD_EXITED;
1192 infop->status = status >> 8;
1193 } else {
1194 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 infop->status = status & 0x7f;
1196 }
1197 infop->pid = pid;
1198 infop->uid = uid;
1199 }
1200
1201 return pid;
1202 }
1203
task_stopped_code(struct task_struct * p,bool ptrace)1204 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1205 {
1206 if (ptrace) {
1207 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1208 return &p->exit_code;
1209 } else {
1210 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211 return &p->signal->group_exit_code;
1212 }
1213 return NULL;
1214 }
1215
1216 /**
1217 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1218 * @wo: wait options
1219 * @ptrace: is the wait for ptrace
1220 * @p: task to wait for
1221 *
1222 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1223 *
1224 * CONTEXT:
1225 * read_lock(&tasklist_lock), which is released if return value is
1226 * non-zero. Also, grabs and releases @p->sighand->siglock.
1227 *
1228 * RETURNS:
1229 * 0 if wait condition didn't exist and search for other wait conditions
1230 * should continue. Non-zero return, -errno on failure and @p's pid on
1231 * success, implies that tasklist_lock is released and wait condition
1232 * search should terminate.
1233 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1234 static int wait_task_stopped(struct wait_opts *wo,
1235 int ptrace, struct task_struct *p)
1236 {
1237 struct waitid_info *infop;
1238 int exit_code, *p_code, why;
1239 uid_t uid = 0; /* unneeded, required by compiler */
1240 pid_t pid;
1241
1242 /*
1243 * Traditionally we see ptrace'd stopped tasks regardless of options.
1244 */
1245 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1246 return 0;
1247
1248 if (!task_stopped_code(p, ptrace))
1249 return 0;
1250
1251 exit_code = 0;
1252 spin_lock_irq(&p->sighand->siglock);
1253
1254 p_code = task_stopped_code(p, ptrace);
1255 if (unlikely(!p_code))
1256 goto unlock_sig;
1257
1258 exit_code = *p_code;
1259 if (!exit_code)
1260 goto unlock_sig;
1261
1262 if (!unlikely(wo->wo_flags & WNOWAIT))
1263 *p_code = 0;
1264
1265 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1266 unlock_sig:
1267 spin_unlock_irq(&p->sighand->siglock);
1268 if (!exit_code)
1269 return 0;
1270
1271 /*
1272 * Now we are pretty sure this task is interesting.
1273 * Make sure it doesn't get reaped out from under us while we
1274 * give up the lock and then examine it below. We don't want to
1275 * keep holding onto the tasklist_lock while we call getrusage and
1276 * possibly take page faults for user memory.
1277 */
1278 get_task_struct(p);
1279 pid = task_pid_vnr(p);
1280 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281 read_unlock(&tasklist_lock);
1282 sched_annotate_sleep();
1283 if (wo->wo_rusage)
1284 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1285 put_task_struct(p);
1286
1287 if (likely(!(wo->wo_flags & WNOWAIT)))
1288 wo->wo_stat = (exit_code << 8) | 0x7f;
1289
1290 infop = wo->wo_info;
1291 if (infop) {
1292 infop->cause = why;
1293 infop->status = exit_code;
1294 infop->pid = pid;
1295 infop->uid = uid;
1296 }
1297 return pid;
1298 }
1299
1300 /*
1301 * Handle do_wait work for one task in a live, non-stopped state.
1302 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1303 * the lock and this task is uninteresting. If we return nonzero, we have
1304 * released the lock and the system call should return.
1305 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1306 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1307 {
1308 struct waitid_info *infop;
1309 pid_t pid;
1310 uid_t uid;
1311
1312 if (!unlikely(wo->wo_flags & WCONTINUED))
1313 return 0;
1314
1315 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1316 return 0;
1317
1318 spin_lock_irq(&p->sighand->siglock);
1319 /* Re-check with the lock held. */
1320 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1321 spin_unlock_irq(&p->sighand->siglock);
1322 return 0;
1323 }
1324 if (!unlikely(wo->wo_flags & WNOWAIT))
1325 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1326 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1327 spin_unlock_irq(&p->sighand->siglock);
1328
1329 pid = task_pid_vnr(p);
1330 get_task_struct(p);
1331 read_unlock(&tasklist_lock);
1332 sched_annotate_sleep();
1333 if (wo->wo_rusage)
1334 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1335 put_task_struct(p);
1336
1337 infop = wo->wo_info;
1338 if (!infop) {
1339 wo->wo_stat = 0xffff;
1340 } else {
1341 infop->cause = CLD_CONTINUED;
1342 infop->pid = pid;
1343 infop->uid = uid;
1344 infop->status = SIGCONT;
1345 }
1346 return pid;
1347 }
1348
1349 /*
1350 * Consider @p for a wait by @parent.
1351 *
1352 * -ECHILD should be in ->notask_error before the first call.
1353 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354 * Returns zero if the search for a child should continue;
1355 * then ->notask_error is 0 if @p is an eligible child,
1356 * or still -ECHILD.
1357 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 struct task_struct *p)
1360 {
1361 /*
1362 * We can race with wait_task_zombie() from another thread.
1363 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1364 * can't confuse the checks below.
1365 */
1366 int exit_state = READ_ONCE(p->exit_state);
1367 int ret;
1368
1369 if (unlikely(exit_state == EXIT_DEAD))
1370 return 0;
1371
1372 ret = eligible_child(wo, ptrace, p);
1373 if (!ret)
1374 return ret;
1375
1376 if (unlikely(exit_state == EXIT_TRACE)) {
1377 /*
1378 * ptrace == 0 means we are the natural parent. In this case
1379 * we should clear notask_error, debugger will notify us.
1380 */
1381 if (likely(!ptrace))
1382 wo->notask_error = 0;
1383 return 0;
1384 }
1385
1386 if (likely(!ptrace) && unlikely(p->ptrace)) {
1387 /*
1388 * If it is traced by its real parent's group, just pretend
1389 * the caller is ptrace_do_wait() and reap this child if it
1390 * is zombie.
1391 *
1392 * This also hides group stop state from real parent; otherwise
1393 * a single stop can be reported twice as group and ptrace stop.
1394 * If a ptracer wants to distinguish these two events for its
1395 * own children it should create a separate process which takes
1396 * the role of real parent.
1397 */
1398 if (!ptrace_reparented(p))
1399 ptrace = 1;
1400 }
1401
1402 /* slay zombie? */
1403 if (exit_state == EXIT_ZOMBIE) {
1404 /* we don't reap group leaders with subthreads */
1405 if (!delay_group_leader(p)) {
1406 /*
1407 * A zombie ptracee is only visible to its ptracer.
1408 * Notification and reaping will be cascaded to the
1409 * real parent when the ptracer detaches.
1410 */
1411 if (unlikely(ptrace) || likely(!p->ptrace))
1412 return wait_task_zombie(wo, p);
1413 }
1414
1415 /*
1416 * Allow access to stopped/continued state via zombie by
1417 * falling through. Clearing of notask_error is complex.
1418 *
1419 * When !@ptrace:
1420 *
1421 * If WEXITED is set, notask_error should naturally be
1422 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1423 * so, if there are live subthreads, there are events to
1424 * wait for. If all subthreads are dead, it's still safe
1425 * to clear - this function will be called again in finite
1426 * amount time once all the subthreads are released and
1427 * will then return without clearing.
1428 *
1429 * When @ptrace:
1430 *
1431 * Stopped state is per-task and thus can't change once the
1432 * target task dies. Only continued and exited can happen.
1433 * Clear notask_error if WCONTINUED | WEXITED.
1434 */
1435 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1436 wo->notask_error = 0;
1437 } else {
1438 /*
1439 * @p is alive and it's gonna stop, continue or exit, so
1440 * there always is something to wait for.
1441 */
1442 wo->notask_error = 0;
1443 }
1444
1445 /*
1446 * Wait for stopped. Depending on @ptrace, different stopped state
1447 * is used and the two don't interact with each other.
1448 */
1449 ret = wait_task_stopped(wo, ptrace, p);
1450 if (ret)
1451 return ret;
1452
1453 /*
1454 * Wait for continued. There's only one continued state and the
1455 * ptracer can consume it which can confuse the real parent. Don't
1456 * use WCONTINUED from ptracer. You don't need or want it.
1457 */
1458 return wait_task_continued(wo, p);
1459 }
1460
1461 /*
1462 * Do the work of do_wait() for one thread in the group, @tsk.
1463 *
1464 * -ECHILD should be in ->notask_error before the first call.
1465 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466 * Returns zero if the search for a child should continue; then
1467 * ->notask_error is 0 if there were any eligible children,
1468 * or still -ECHILD.
1469 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1470 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1471 {
1472 struct task_struct *p;
1473
1474 list_for_each_entry(p, &tsk->children, sibling) {
1475 int ret = wait_consider_task(wo, 0, p);
1476
1477 if (ret)
1478 return ret;
1479 }
1480
1481 return 0;
1482 }
1483
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1485 {
1486 struct task_struct *p;
1487
1488 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489 int ret = wait_consider_task(wo, 1, p);
1490
1491 if (ret)
1492 return ret;
1493 }
1494
1495 return 0;
1496 }
1497
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1498 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1499 int sync, void *key)
1500 {
1501 struct wait_opts *wo = container_of(wait, struct wait_opts,
1502 child_wait);
1503 struct task_struct *p = key;
1504
1505 if (!eligible_pid(wo, p))
1506 return 0;
1507
1508 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1509 return 0;
1510
1511 return default_wake_function(wait, mode, sync, key);
1512 }
1513
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1514 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1515 {
1516 __wake_up_sync_key(&parent->signal->wait_chldexit,
1517 TASK_INTERRUPTIBLE, p);
1518 }
1519
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1520 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1521 struct task_struct *target)
1522 {
1523 struct task_struct *parent =
1524 !ptrace ? target->real_parent : target->parent;
1525
1526 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1527 same_thread_group(current, parent));
1528 }
1529
1530 /*
1531 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1532 * and tracee lists to find the target task.
1533 */
do_wait_pid(struct wait_opts * wo)1534 static int do_wait_pid(struct wait_opts *wo)
1535 {
1536 bool ptrace;
1537 struct task_struct *target;
1538 int retval;
1539
1540 ptrace = false;
1541 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1542 if (target && is_effectively_child(wo, ptrace, target)) {
1543 retval = wait_consider_task(wo, ptrace, target);
1544 if (retval)
1545 return retval;
1546 }
1547
1548 ptrace = true;
1549 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1550 if (target && target->ptrace &&
1551 is_effectively_child(wo, ptrace, target)) {
1552 retval = wait_consider_task(wo, ptrace, target);
1553 if (retval)
1554 return retval;
1555 }
1556
1557 return 0;
1558 }
1559
do_wait(struct wait_opts * wo)1560 static long do_wait(struct wait_opts *wo)
1561 {
1562 int retval;
1563
1564 trace_sched_process_wait(wo->wo_pid);
1565
1566 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1567 wo->child_wait.private = current;
1568 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1569 repeat:
1570 /*
1571 * If there is nothing that can match our criteria, just get out.
1572 * We will clear ->notask_error to zero if we see any child that
1573 * might later match our criteria, even if we are not able to reap
1574 * it yet.
1575 */
1576 wo->notask_error = -ECHILD;
1577 if ((wo->wo_type < PIDTYPE_MAX) &&
1578 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1579 goto notask;
1580
1581 set_current_state(TASK_INTERRUPTIBLE);
1582 read_lock(&tasklist_lock);
1583
1584 if (wo->wo_type == PIDTYPE_PID) {
1585 retval = do_wait_pid(wo);
1586 if (retval)
1587 goto end;
1588 } else {
1589 struct task_struct *tsk = current;
1590
1591 do {
1592 retval = do_wait_thread(wo, tsk);
1593 if (retval)
1594 goto end;
1595
1596 retval = ptrace_do_wait(wo, tsk);
1597 if (retval)
1598 goto end;
1599
1600 if (wo->wo_flags & __WNOTHREAD)
1601 break;
1602 } while_each_thread(current, tsk);
1603 }
1604 read_unlock(&tasklist_lock);
1605
1606 notask:
1607 retval = wo->notask_error;
1608 if (!retval && !(wo->wo_flags & WNOHANG)) {
1609 retval = -ERESTARTSYS;
1610 if (!signal_pending(current)) {
1611 schedule();
1612 goto repeat;
1613 }
1614 }
1615 end:
1616 __set_current_state(TASK_RUNNING);
1617 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1618 return retval;
1619 }
1620
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1621 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1622 int options, struct rusage *ru)
1623 {
1624 struct wait_opts wo;
1625 struct pid *pid = NULL;
1626 enum pid_type type;
1627 long ret;
1628 unsigned int f_flags = 0;
1629
1630 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1631 __WNOTHREAD|__WCLONE|__WALL))
1632 return -EINVAL;
1633 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1634 return -EINVAL;
1635
1636 switch (which) {
1637 case P_ALL:
1638 type = PIDTYPE_MAX;
1639 break;
1640 case P_PID:
1641 type = PIDTYPE_PID;
1642 if (upid <= 0)
1643 return -EINVAL;
1644
1645 pid = find_get_pid(upid);
1646 break;
1647 case P_PGID:
1648 type = PIDTYPE_PGID;
1649 if (upid < 0)
1650 return -EINVAL;
1651
1652 if (upid)
1653 pid = find_get_pid(upid);
1654 else
1655 pid = get_task_pid(current, PIDTYPE_PGID);
1656 break;
1657 case P_PIDFD:
1658 type = PIDTYPE_PID;
1659 if (upid < 0)
1660 return -EINVAL;
1661
1662 pid = pidfd_get_pid(upid, &f_flags);
1663 if (IS_ERR(pid))
1664 return PTR_ERR(pid);
1665
1666 break;
1667 default:
1668 return -EINVAL;
1669 }
1670
1671 wo.wo_type = type;
1672 wo.wo_pid = pid;
1673 wo.wo_flags = options;
1674 wo.wo_info = infop;
1675 wo.wo_rusage = ru;
1676 if (f_flags & O_NONBLOCK)
1677 wo.wo_flags |= WNOHANG;
1678
1679 ret = do_wait(&wo);
1680 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1681 ret = -EAGAIN;
1682
1683 put_pid(pid);
1684 return ret;
1685 }
1686
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1687 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1688 infop, int, options, struct rusage __user *, ru)
1689 {
1690 struct rusage r;
1691 struct waitid_info info = {.status = 0};
1692 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1693 int signo = 0;
1694
1695 if (err > 0) {
1696 signo = SIGCHLD;
1697 err = 0;
1698 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1699 return -EFAULT;
1700 }
1701 if (!infop)
1702 return err;
1703
1704 if (!user_write_access_begin(infop, sizeof(*infop)))
1705 return -EFAULT;
1706
1707 unsafe_put_user(signo, &infop->si_signo, Efault);
1708 unsafe_put_user(0, &infop->si_errno, Efault);
1709 unsafe_put_user(info.cause, &infop->si_code, Efault);
1710 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1711 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1712 unsafe_put_user(info.status, &infop->si_status, Efault);
1713 user_write_access_end();
1714 return err;
1715 Efault:
1716 user_write_access_end();
1717 return -EFAULT;
1718 }
1719
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1720 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1721 struct rusage *ru)
1722 {
1723 struct wait_opts wo;
1724 struct pid *pid = NULL;
1725 enum pid_type type;
1726 long ret;
1727
1728 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1729 __WNOTHREAD|__WCLONE|__WALL))
1730 return -EINVAL;
1731
1732 /* -INT_MIN is not defined */
1733 if (upid == INT_MIN)
1734 return -ESRCH;
1735
1736 if (upid == -1)
1737 type = PIDTYPE_MAX;
1738 else if (upid < 0) {
1739 type = PIDTYPE_PGID;
1740 pid = find_get_pid(-upid);
1741 } else if (upid == 0) {
1742 type = PIDTYPE_PGID;
1743 pid = get_task_pid(current, PIDTYPE_PGID);
1744 } else /* upid > 0 */ {
1745 type = PIDTYPE_PID;
1746 pid = find_get_pid(upid);
1747 }
1748
1749 wo.wo_type = type;
1750 wo.wo_pid = pid;
1751 wo.wo_flags = options | WEXITED;
1752 wo.wo_info = NULL;
1753 wo.wo_stat = 0;
1754 wo.wo_rusage = ru;
1755 ret = do_wait(&wo);
1756 put_pid(pid);
1757 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1758 ret = -EFAULT;
1759
1760 return ret;
1761 }
1762
kernel_wait(pid_t pid,int * stat)1763 int kernel_wait(pid_t pid, int *stat)
1764 {
1765 struct wait_opts wo = {
1766 .wo_type = PIDTYPE_PID,
1767 .wo_pid = find_get_pid(pid),
1768 .wo_flags = WEXITED,
1769 };
1770 int ret;
1771
1772 ret = do_wait(&wo);
1773 if (ret > 0 && wo.wo_stat)
1774 *stat = wo.wo_stat;
1775 put_pid(wo.wo_pid);
1776 return ret;
1777 }
1778
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1779 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1780 int, options, struct rusage __user *, ru)
1781 {
1782 struct rusage r;
1783 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1784
1785 if (err > 0) {
1786 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1787 return -EFAULT;
1788 }
1789 return err;
1790 }
1791
1792 #ifdef __ARCH_WANT_SYS_WAITPID
1793
1794 /*
1795 * sys_waitpid() remains for compatibility. waitpid() should be
1796 * implemented by calling sys_wait4() from libc.a.
1797 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1798 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1799 {
1800 return kernel_wait4(pid, stat_addr, options, NULL);
1801 }
1802
1803 #endif
1804
1805 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1806 COMPAT_SYSCALL_DEFINE4(wait4,
1807 compat_pid_t, pid,
1808 compat_uint_t __user *, stat_addr,
1809 int, options,
1810 struct compat_rusage __user *, ru)
1811 {
1812 struct rusage r;
1813 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1814 if (err > 0) {
1815 if (ru && put_compat_rusage(&r, ru))
1816 return -EFAULT;
1817 }
1818 return err;
1819 }
1820
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1821 COMPAT_SYSCALL_DEFINE5(waitid,
1822 int, which, compat_pid_t, pid,
1823 struct compat_siginfo __user *, infop, int, options,
1824 struct compat_rusage __user *, uru)
1825 {
1826 struct rusage ru;
1827 struct waitid_info info = {.status = 0};
1828 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1829 int signo = 0;
1830 if (err > 0) {
1831 signo = SIGCHLD;
1832 err = 0;
1833 if (uru) {
1834 /* kernel_waitid() overwrites everything in ru */
1835 if (COMPAT_USE_64BIT_TIME)
1836 err = copy_to_user(uru, &ru, sizeof(ru));
1837 else
1838 err = put_compat_rusage(&ru, uru);
1839 if (err)
1840 return -EFAULT;
1841 }
1842 }
1843
1844 if (!infop)
1845 return err;
1846
1847 if (!user_write_access_begin(infop, sizeof(*infop)))
1848 return -EFAULT;
1849
1850 unsafe_put_user(signo, &infop->si_signo, Efault);
1851 unsafe_put_user(0, &infop->si_errno, Efault);
1852 unsafe_put_user(info.cause, &infop->si_code, Efault);
1853 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1854 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1855 unsafe_put_user(info.status, &infop->si_status, Efault);
1856 user_write_access_end();
1857 return err;
1858 Efault:
1859 user_write_access_end();
1860 return -EFAULT;
1861 }
1862 #endif
1863
1864 /**
1865 * thread_group_exited - check that a thread group has exited
1866 * @pid: tgid of thread group to be checked.
1867 *
1868 * Test if the thread group represented by tgid has exited (all
1869 * threads are zombies, dead or completely gone).
1870 *
1871 * Return: true if the thread group has exited. false otherwise.
1872 */
thread_group_exited(struct pid * pid)1873 bool thread_group_exited(struct pid *pid)
1874 {
1875 struct task_struct *task;
1876 bool exited;
1877
1878 rcu_read_lock();
1879 task = pid_task(pid, PIDTYPE_PID);
1880 exited = !task ||
1881 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1882 rcu_read_unlock();
1883
1884 return exited;
1885 }
1886 EXPORT_SYMBOL(thread_group_exited);
1887
abort(void)1888 __weak void abort(void)
1889 {
1890 BUG();
1891
1892 /* if that doesn't kill us, halt */
1893 panic("Oops failed to kill thread");
1894 }
1895 EXPORT_SYMBOL(abort);
1896