1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21
22 #define pr_fmt(fmt) "kprobes: " fmt
23
24 #include <linux/kprobes.h>
25 #include <linux/hash.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/stddef.h>
29 #include <linux/export.h>
30 #include <linux/moduleloader.h>
31 #include <linux/kallsyms.h>
32 #include <linux/freezer.h>
33 #include <linux/seq_file.h>
34 #include <linux/debugfs.h>
35 #include <linux/sysctl.h>
36 #include <linux/kdebug.h>
37 #include <linux/memory.h>
38 #include <linux/ftrace.h>
39 #include <linux/cpu.h>
40 #include <linux/jump_label.h>
41 #include <linux/static_call.h>
42 #include <linux/perf_event.h>
43
44 #include <asm/sections.h>
45 #include <asm/cacheflush.h>
46 #include <asm/errno.h>
47 #include <linux/uaccess.h>
48
49 #define KPROBE_HASH_BITS 6
50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51
52
53 static int kprobes_initialized;
54 /* kprobe_table can be accessed by
55 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
56 * Or
57 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
58 */
59 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
60
61 /* NOTE: change this value only with kprobe_mutex held */
62 static bool kprobes_all_disarmed;
63
64 /* This protects kprobe_table and optimizing_list */
65 static DEFINE_MUTEX(kprobe_mutex);
66 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
67
kprobe_lookup_name(const char * name,unsigned int __unused)68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 unsigned int __unused)
70 {
71 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72 }
73
74 /* Blacklist -- list of struct kprobe_blacklist_entry */
75 static LIST_HEAD(kprobe_blacklist);
76
77 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
78 /*
79 * kprobe->ainsn.insn points to the copy of the instruction to be
80 * single-stepped. x86_64, POWER4 and above have no-exec support and
81 * stepping on the instruction on a vmalloced/kmalloced/data page
82 * is a recipe for disaster
83 */
84 struct kprobe_insn_page {
85 struct list_head list;
86 kprobe_opcode_t *insns; /* Page of instruction slots */
87 struct kprobe_insn_cache *cache;
88 int nused;
89 int ngarbage;
90 char slot_used[];
91 };
92
93 #define KPROBE_INSN_PAGE_SIZE(slots) \
94 (offsetof(struct kprobe_insn_page, slot_used) + \
95 (sizeof(char) * (slots)))
96
slots_per_page(struct kprobe_insn_cache * c)97 static int slots_per_page(struct kprobe_insn_cache *c)
98 {
99 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
100 }
101
102 enum kprobe_slot_state {
103 SLOT_CLEAN = 0,
104 SLOT_DIRTY = 1,
105 SLOT_USED = 2,
106 };
107
alloc_insn_page(void)108 void __weak *alloc_insn_page(void)
109 {
110 return module_alloc(PAGE_SIZE);
111 }
112
free_insn_page(void * page)113 static void free_insn_page(void *page)
114 {
115 module_memfree(page);
116 }
117
118 struct kprobe_insn_cache kprobe_insn_slots = {
119 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
120 .alloc = alloc_insn_page,
121 .free = free_insn_page,
122 .sym = KPROBE_INSN_PAGE_SYM,
123 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
124 .insn_size = MAX_INSN_SIZE,
125 .nr_garbage = 0,
126 };
127 static int collect_garbage_slots(struct kprobe_insn_cache *c);
128
129 /**
130 * __get_insn_slot() - Find a slot on an executable page for an instruction.
131 * We allocate an executable page if there's no room on existing ones.
132 */
__get_insn_slot(struct kprobe_insn_cache * c)133 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
134 {
135 struct kprobe_insn_page *kip;
136 kprobe_opcode_t *slot = NULL;
137
138 /* Since the slot array is not protected by rcu, we need a mutex */
139 mutex_lock(&c->mutex);
140 retry:
141 rcu_read_lock();
142 list_for_each_entry_rcu(kip, &c->pages, list) {
143 if (kip->nused < slots_per_page(c)) {
144 int i;
145 for (i = 0; i < slots_per_page(c); i++) {
146 if (kip->slot_used[i] == SLOT_CLEAN) {
147 kip->slot_used[i] = SLOT_USED;
148 kip->nused++;
149 slot = kip->insns + (i * c->insn_size);
150 rcu_read_unlock();
151 goto out;
152 }
153 }
154 /* kip->nused is broken. Fix it. */
155 kip->nused = slots_per_page(c);
156 WARN_ON(1);
157 }
158 }
159 rcu_read_unlock();
160
161 /* If there are any garbage slots, collect it and try again. */
162 if (c->nr_garbage && collect_garbage_slots(c) == 0)
163 goto retry;
164
165 /* All out of space. Need to allocate a new page. */
166 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
167 if (!kip)
168 goto out;
169
170 /*
171 * Use module_alloc so this page is within +/- 2GB of where the
172 * kernel image and loaded module images reside. This is required
173 * so x86_64 can correctly handle the %rip-relative fixups.
174 */
175 kip->insns = c->alloc();
176 if (!kip->insns) {
177 kfree(kip);
178 goto out;
179 }
180 INIT_LIST_HEAD(&kip->list);
181 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
182 kip->slot_used[0] = SLOT_USED;
183 kip->nused = 1;
184 kip->ngarbage = 0;
185 kip->cache = c;
186 list_add_rcu(&kip->list, &c->pages);
187 slot = kip->insns;
188
189 /* Record the perf ksymbol register event after adding the page */
190 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
191 PAGE_SIZE, false, c->sym);
192 out:
193 mutex_unlock(&c->mutex);
194 return slot;
195 }
196
197 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)198 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
199 {
200 kip->slot_used[idx] = SLOT_CLEAN;
201 kip->nused--;
202 if (kip->nused == 0) {
203 /*
204 * Page is no longer in use. Free it unless
205 * it's the last one. We keep the last one
206 * so as not to have to set it up again the
207 * next time somebody inserts a probe.
208 */
209 if (!list_is_singular(&kip->list)) {
210 /*
211 * Record perf ksymbol unregister event before removing
212 * the page.
213 */
214 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
215 (unsigned long)kip->insns, PAGE_SIZE, true,
216 kip->cache->sym);
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
collect_garbage_slots(struct kprobe_insn_cache * c)227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_rcu();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)306 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
307 unsigned long *value, char *type, char *sym)
308 {
309 struct kprobe_insn_page *kip;
310 int ret = -ERANGE;
311
312 rcu_read_lock();
313 list_for_each_entry_rcu(kip, &c->pages, list) {
314 if ((*symnum)--)
315 continue;
316 strlcpy(sym, c->sym, KSYM_NAME_LEN);
317 *type = 't';
318 *value = (unsigned long)kip->insns;
319 ret = 0;
320 break;
321 }
322 rcu_read_unlock();
323
324 return ret;
325 }
326
327 #ifdef CONFIG_OPTPROBES
alloc_optinsn_page(void)328 void __weak *alloc_optinsn_page(void)
329 {
330 return alloc_insn_page();
331 }
332
free_optinsn_page(void * page)333 void __weak free_optinsn_page(void *page)
334 {
335 free_insn_page(page);
336 }
337
338 /* For optimized_kprobe buffer */
339 struct kprobe_insn_cache kprobe_optinsn_slots = {
340 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
341 .alloc = alloc_optinsn_page,
342 .free = free_optinsn_page,
343 .sym = KPROBE_OPTINSN_PAGE_SYM,
344 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
345 /* .insn_size is initialized later */
346 .nr_garbage = 0,
347 };
348 #endif
349 #endif
350
351 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)352 static inline void set_kprobe_instance(struct kprobe *kp)
353 {
354 __this_cpu_write(kprobe_instance, kp);
355 }
356
reset_kprobe_instance(void)357 static inline void reset_kprobe_instance(void)
358 {
359 __this_cpu_write(kprobe_instance, NULL);
360 }
361
362 /*
363 * This routine is called either:
364 * - under the kprobe_mutex - during kprobe_[un]register()
365 * OR
366 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
367 */
get_kprobe(void * addr)368 struct kprobe *get_kprobe(void *addr)
369 {
370 struct hlist_head *head;
371 struct kprobe *p;
372
373 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
374 hlist_for_each_entry_rcu(p, head, hlist,
375 lockdep_is_held(&kprobe_mutex)) {
376 if (p->addr == addr)
377 return p;
378 }
379
380 return NULL;
381 }
382 NOKPROBE_SYMBOL(get_kprobe);
383
384 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
385
386 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)387 static inline int kprobe_aggrprobe(struct kprobe *p)
388 {
389 return p->pre_handler == aggr_pre_handler;
390 }
391
392 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)393 static inline int kprobe_unused(struct kprobe *p)
394 {
395 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
396 list_empty(&p->list);
397 }
398
399 /*
400 * Keep all fields in the kprobe consistent
401 */
copy_kprobe(struct kprobe * ap,struct kprobe * p)402 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
403 {
404 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
405 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
406 }
407
408 #ifdef CONFIG_OPTPROBES
409 /* NOTE: change this value only with kprobe_mutex held */
410 static bool kprobes_allow_optimization;
411
412 /*
413 * Call all pre_handler on the list, but ignores its return value.
414 * This must be called from arch-dep optimized caller.
415 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)416 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
417 {
418 struct kprobe *kp;
419
420 list_for_each_entry_rcu(kp, &p->list, list) {
421 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
422 set_kprobe_instance(kp);
423 kp->pre_handler(kp, regs);
424 }
425 reset_kprobe_instance();
426 }
427 }
428 NOKPROBE_SYMBOL(opt_pre_handler);
429
430 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)431 static void free_aggr_kprobe(struct kprobe *p)
432 {
433 struct optimized_kprobe *op;
434
435 op = container_of(p, struct optimized_kprobe, kp);
436 arch_remove_optimized_kprobe(op);
437 arch_remove_kprobe(p);
438 kfree(op);
439 }
440
441 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)442 static inline int kprobe_optready(struct kprobe *p)
443 {
444 struct optimized_kprobe *op;
445
446 if (kprobe_aggrprobe(p)) {
447 op = container_of(p, struct optimized_kprobe, kp);
448 return arch_prepared_optinsn(&op->optinsn);
449 }
450
451 return 0;
452 }
453
454 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)455 bool kprobe_disarmed(struct kprobe *p)
456 {
457 struct optimized_kprobe *op;
458
459 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
460 if (!kprobe_aggrprobe(p))
461 return kprobe_disabled(p);
462
463 op = container_of(p, struct optimized_kprobe, kp);
464
465 return kprobe_disabled(p) && list_empty(&op->list);
466 }
467
468 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)469 static int kprobe_queued(struct kprobe *p)
470 {
471 struct optimized_kprobe *op;
472
473 if (kprobe_aggrprobe(p)) {
474 op = container_of(p, struct optimized_kprobe, kp);
475 if (!list_empty(&op->list))
476 return 1;
477 }
478 return 0;
479 }
480
481 /*
482 * Return an optimized kprobe whose optimizing code replaces
483 * instructions including addr (exclude breakpoint).
484 */
get_optimized_kprobe(unsigned long addr)485 static struct kprobe *get_optimized_kprobe(unsigned long addr)
486 {
487 int i;
488 struct kprobe *p = NULL;
489 struct optimized_kprobe *op;
490
491 /* Don't check i == 0, since that is a breakpoint case. */
492 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
493 p = get_kprobe((void *)(addr - i));
494
495 if (p && kprobe_optready(p)) {
496 op = container_of(p, struct optimized_kprobe, kp);
497 if (arch_within_optimized_kprobe(op, addr))
498 return p;
499 }
500
501 return NULL;
502 }
503
504 /* Optimization staging list, protected by kprobe_mutex */
505 static LIST_HEAD(optimizing_list);
506 static LIST_HEAD(unoptimizing_list);
507 static LIST_HEAD(freeing_list);
508
509 static void kprobe_optimizer(struct work_struct *work);
510 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
511 #define OPTIMIZE_DELAY 5
512
513 /*
514 * Optimize (replace a breakpoint with a jump) kprobes listed on
515 * optimizing_list.
516 */
do_optimize_kprobes(void)517 static void do_optimize_kprobes(void)
518 {
519 lockdep_assert_held(&text_mutex);
520 /*
521 * The optimization/unoptimization refers online_cpus via
522 * stop_machine() and cpu-hotplug modifies online_cpus.
523 * And same time, text_mutex will be held in cpu-hotplug and here.
524 * This combination can cause a deadlock (cpu-hotplug try to lock
525 * text_mutex but stop_machine can not be done because online_cpus
526 * has been changed)
527 * To avoid this deadlock, caller must have locked cpu hotplug
528 * for preventing cpu-hotplug outside of text_mutex locking.
529 */
530 lockdep_assert_cpus_held();
531
532 /* Optimization never be done when disarmed */
533 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
534 list_empty(&optimizing_list))
535 return;
536
537 arch_optimize_kprobes(&optimizing_list);
538 }
539
540 /*
541 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
542 * if need) kprobes listed on unoptimizing_list.
543 */
do_unoptimize_kprobes(void)544 static void do_unoptimize_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 lockdep_assert_held(&text_mutex);
549 /* See comment in do_optimize_kprobes() */
550 lockdep_assert_cpus_held();
551
552 if (!list_empty(&unoptimizing_list))
553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554
555 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
556 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
557 /* Switching from detour code to origin */
558 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
559 /* Disarm probes if marked disabled and not gone */
560 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
561 arch_disarm_kprobe(&op->kp);
562 if (kprobe_unused(&op->kp)) {
563 /*
564 * Remove unused probes from hash list. After waiting
565 * for synchronization, these probes are reclaimed.
566 * (reclaiming is done by do_free_cleaned_kprobes.)
567 */
568 hlist_del_rcu(&op->kp.hlist);
569 } else
570 list_del_init(&op->list);
571 }
572 }
573
574 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)575 static void do_free_cleaned_kprobes(void)
576 {
577 struct optimized_kprobe *op, *tmp;
578
579 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
580 list_del_init(&op->list);
581 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
582 /*
583 * This must not happen, but if there is a kprobe
584 * still in use, keep it on kprobes hash list.
585 */
586 continue;
587 }
588 free_aggr_kprobe(&op->kp);
589 }
590 }
591
592 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)593 static void kick_kprobe_optimizer(void)
594 {
595 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
596 }
597
598 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)599 static void kprobe_optimizer(struct work_struct *work)
600 {
601 mutex_lock(&kprobe_mutex);
602 cpus_read_lock();
603 mutex_lock(&text_mutex);
604
605 /*
606 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
607 * kprobes before waiting for quiesence period.
608 */
609 do_unoptimize_kprobes();
610
611 /*
612 * Step 2: Wait for quiesence period to ensure all potentially
613 * preempted tasks to have normally scheduled. Because optprobe
614 * may modify multiple instructions, there is a chance that Nth
615 * instruction is preempted. In that case, such tasks can return
616 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
617 * Note that on non-preemptive kernel, this is transparently converted
618 * to synchronoze_sched() to wait for all interrupts to have completed.
619 */
620 synchronize_rcu_tasks();
621
622 /* Step 3: Optimize kprobes after quiesence period */
623 do_optimize_kprobes();
624
625 /* Step 4: Free cleaned kprobes after quiesence period */
626 do_free_cleaned_kprobes();
627
628 mutex_unlock(&text_mutex);
629 cpus_read_unlock();
630
631 /* Step 5: Kick optimizer again if needed */
632 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
633 kick_kprobe_optimizer();
634
635 mutex_unlock(&kprobe_mutex);
636 }
637
638 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)639 void wait_for_kprobe_optimizer(void)
640 {
641 mutex_lock(&kprobe_mutex);
642
643 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
644 mutex_unlock(&kprobe_mutex);
645
646 /* this will also make optimizing_work execute immmediately */
647 flush_delayed_work(&optimizing_work);
648 /* @optimizing_work might not have been queued yet, relax */
649 cpu_relax();
650
651 mutex_lock(&kprobe_mutex);
652 }
653
654 mutex_unlock(&kprobe_mutex);
655 }
656
optprobe_queued_unopt(struct optimized_kprobe * op)657 bool optprobe_queued_unopt(struct optimized_kprobe *op)
658 {
659 struct optimized_kprobe *_op;
660
661 list_for_each_entry(_op, &unoptimizing_list, list) {
662 if (op == _op)
663 return true;
664 }
665
666 return false;
667 }
668
669 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)670 static void optimize_kprobe(struct kprobe *p)
671 {
672 struct optimized_kprobe *op;
673
674 /* Check if the kprobe is disabled or not ready for optimization. */
675 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
676 (kprobe_disabled(p) || kprobes_all_disarmed))
677 return;
678
679 /* kprobes with post_handler can not be optimized */
680 if (p->post_handler)
681 return;
682
683 op = container_of(p, struct optimized_kprobe, kp);
684
685 /* Check there is no other kprobes at the optimized instructions */
686 if (arch_check_optimized_kprobe(op) < 0)
687 return;
688
689 /* Check if it is already optimized. */
690 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
691 if (optprobe_queued_unopt(op)) {
692 /* This is under unoptimizing. Just dequeue the probe */
693 list_del_init(&op->list);
694 }
695 return;
696 }
697 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
698
699 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
700 if (WARN_ON_ONCE(!list_empty(&op->list)))
701 return;
702
703 list_add(&op->list, &optimizing_list);
704 kick_kprobe_optimizer();
705 }
706
707 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)708 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
709 {
710 lockdep_assert_cpus_held();
711 arch_unoptimize_kprobe(op);
712 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
713 }
714
715 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)716 static void unoptimize_kprobe(struct kprobe *p, bool force)
717 {
718 struct optimized_kprobe *op;
719
720 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
721 return; /* This is not an optprobe nor optimized */
722
723 op = container_of(p, struct optimized_kprobe, kp);
724 if (!kprobe_optimized(p))
725 return;
726
727 if (!list_empty(&op->list)) {
728 if (optprobe_queued_unopt(op)) {
729 /* Queued in unoptimizing queue */
730 if (force) {
731 /*
732 * Forcibly unoptimize the kprobe here, and queue it
733 * in the freeing list for release afterwards.
734 */
735 force_unoptimize_kprobe(op);
736 list_move(&op->list, &freeing_list);
737 }
738 } else {
739 /* Dequeue from the optimizing queue */
740 list_del_init(&op->list);
741 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
742 }
743 return;
744 }
745
746 /* Optimized kprobe case */
747 if (force) {
748 /* Forcibly update the code: this is a special case */
749 force_unoptimize_kprobe(op);
750 } else {
751 list_add(&op->list, &unoptimizing_list);
752 kick_kprobe_optimizer();
753 }
754 }
755
756 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)757 static int reuse_unused_kprobe(struct kprobe *ap)
758 {
759 struct optimized_kprobe *op;
760
761 /*
762 * Unused kprobe MUST be on the way of delayed unoptimizing (means
763 * there is still a relative jump) and disabled.
764 */
765 op = container_of(ap, struct optimized_kprobe, kp);
766 WARN_ON_ONCE(list_empty(&op->list));
767 /* Enable the probe again */
768 ap->flags &= ~KPROBE_FLAG_DISABLED;
769 /* Optimize it again (remove from op->list) */
770 if (!kprobe_optready(ap))
771 return -EINVAL;
772
773 optimize_kprobe(ap);
774 return 0;
775 }
776
777 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)778 static void kill_optimized_kprobe(struct kprobe *p)
779 {
780 struct optimized_kprobe *op;
781
782 op = container_of(p, struct optimized_kprobe, kp);
783 if (!list_empty(&op->list))
784 /* Dequeue from the (un)optimization queue */
785 list_del_init(&op->list);
786 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
787
788 if (kprobe_unused(p)) {
789 /*
790 * Unused kprobe is on unoptimizing or freeing list. We move it
791 * to freeing_list and let the kprobe_optimizer() remove it from
792 * the kprobe hash list and free it.
793 */
794 if (optprobe_queued_unopt(op))
795 list_move(&op->list, &freeing_list);
796 }
797
798 /* Don't touch the code, because it is already freed. */
799 arch_remove_optimized_kprobe(op);
800 }
801
802 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804 {
805 if (!kprobe_ftrace(p))
806 arch_prepare_optimized_kprobe(op, p);
807 }
808
809 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)810 static void prepare_optimized_kprobe(struct kprobe *p)
811 {
812 struct optimized_kprobe *op;
813
814 op = container_of(p, struct optimized_kprobe, kp);
815 __prepare_optimized_kprobe(op, p);
816 }
817
818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820 {
821 struct optimized_kprobe *op;
822
823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 if (!op)
825 return NULL;
826
827 INIT_LIST_HEAD(&op->list);
828 op->kp.addr = p->addr;
829 __prepare_optimized_kprobe(op, p);
830
831 return &op->kp;
832 }
833
834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836 /*
837 * Prepare an optimized_kprobe and optimize it
838 * NOTE: p must be a normal registered kprobe
839 */
try_to_optimize_kprobe(struct kprobe * p)840 static void try_to_optimize_kprobe(struct kprobe *p)
841 {
842 struct kprobe *ap;
843 struct optimized_kprobe *op;
844
845 /* Impossible to optimize ftrace-based kprobe */
846 if (kprobe_ftrace(p))
847 return;
848
849 /* For preparing optimization, jump_label_text_reserved() is called */
850 cpus_read_lock();
851 jump_label_lock();
852 mutex_lock(&text_mutex);
853
854 ap = alloc_aggr_kprobe(p);
855 if (!ap)
856 goto out;
857
858 op = container_of(ap, struct optimized_kprobe, kp);
859 if (!arch_prepared_optinsn(&op->optinsn)) {
860 /* If failed to setup optimizing, fallback to kprobe */
861 arch_remove_optimized_kprobe(op);
862 kfree(op);
863 goto out;
864 }
865
866 init_aggr_kprobe(ap, p);
867 optimize_kprobe(ap); /* This just kicks optimizer thread */
868
869 out:
870 mutex_unlock(&text_mutex);
871 jump_label_unlock();
872 cpus_read_unlock();
873 }
874
optimize_all_kprobes(void)875 static void optimize_all_kprobes(void)
876 {
877 struct hlist_head *head;
878 struct kprobe *p;
879 unsigned int i;
880
881 mutex_lock(&kprobe_mutex);
882 /* If optimization is already allowed, just return */
883 if (kprobes_allow_optimization)
884 goto out;
885
886 cpus_read_lock();
887 kprobes_allow_optimization = true;
888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 head = &kprobe_table[i];
890 hlist_for_each_entry(p, head, hlist)
891 if (!kprobe_disabled(p))
892 optimize_kprobe(p);
893 }
894 cpus_read_unlock();
895 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
896 out:
897 mutex_unlock(&kprobe_mutex);
898 }
899
900 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)901 static void unoptimize_all_kprobes(void)
902 {
903 struct hlist_head *head;
904 struct kprobe *p;
905 unsigned int i;
906
907 mutex_lock(&kprobe_mutex);
908 /* If optimization is already prohibited, just return */
909 if (!kprobes_allow_optimization) {
910 mutex_unlock(&kprobe_mutex);
911 return;
912 }
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 mutex_unlock(&kprobe_mutex);
925
926 /* Wait for unoptimizing completion */
927 wait_for_kprobe_optimizer();
928 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
929 }
930
931 static DEFINE_MUTEX(kprobe_sysctl_mutex);
932 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 void *buffer, size_t *length,
935 loff_t *ppos)
936 {
937 int ret;
938
939 mutex_lock(&kprobe_sysctl_mutex);
940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943 if (sysctl_kprobes_optimization)
944 optimize_all_kprobes();
945 else
946 unoptimize_all_kprobes();
947 mutex_unlock(&kprobe_sysctl_mutex);
948
949 return ret;
950 }
951 #endif /* CONFIG_SYSCTL */
952
953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)954 static void __arm_kprobe(struct kprobe *p)
955 {
956 struct kprobe *_p;
957
958 /* Check collision with other optimized kprobes */
959 _p = get_optimized_kprobe((unsigned long)p->addr);
960 if (unlikely(_p))
961 /* Fallback to unoptimized kprobe */
962 unoptimize_kprobe(_p, true);
963
964 arch_arm_kprobe(p);
965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
966 }
967
968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)969 static void __disarm_kprobe(struct kprobe *p, bool reopt)
970 {
971 struct kprobe *_p;
972
973 /* Try to unoptimize */
974 unoptimize_kprobe(p, kprobes_all_disarmed);
975
976 if (!kprobe_queued(p)) {
977 arch_disarm_kprobe(p);
978 /* If another kprobe was blocked, optimize it. */
979 _p = get_optimized_kprobe((unsigned long)p->addr);
980 if (unlikely(_p) && reopt)
981 optimize_kprobe(_p);
982 }
983 /* TODO: reoptimize others after unoptimized this probe */
984 }
985
986 #else /* !CONFIG_OPTPROBES */
987
988 #define optimize_kprobe(p) do {} while (0)
989 #define unoptimize_kprobe(p, f) do {} while (0)
990 #define kill_optimized_kprobe(p) do {} while (0)
991 #define prepare_optimized_kprobe(p) do {} while (0)
992 #define try_to_optimize_kprobe(p) do {} while (0)
993 #define __arm_kprobe(p) arch_arm_kprobe(p)
994 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
995 #define kprobe_disarmed(p) kprobe_disabled(p)
996 #define wait_for_kprobe_optimizer() do {} while (0)
997
reuse_unused_kprobe(struct kprobe * ap)998 static int reuse_unused_kprobe(struct kprobe *ap)
999 {
1000 /*
1001 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 * released at the same time that the last aggregated kprobe is
1003 * unregistered.
1004 * Thus there should be no chance to reuse unused kprobe.
1005 */
1006 WARN_ON_ONCE(1);
1007 return -EINVAL;
1008 }
1009
free_aggr_kprobe(struct kprobe * p)1010 static void free_aggr_kprobe(struct kprobe *p)
1011 {
1012 arch_remove_kprobe(p);
1013 kfree(p);
1014 }
1015
alloc_aggr_kprobe(struct kprobe * p)1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017 {
1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019 }
1020 #endif /* CONFIG_OPTPROBES */
1021
1022 #ifdef CONFIG_KPROBES_ON_FTRACE
1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 .func = kprobe_ftrace_handler,
1025 .flags = FTRACE_OPS_FL_SAVE_REGS,
1026 };
1027
1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 .func = kprobe_ftrace_handler,
1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031 };
1032
1033 static int kprobe_ipmodify_enabled;
1034 static int kprobe_ftrace_enabled;
1035
1036 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1037 static int prepare_kprobe(struct kprobe *p)
1038 {
1039 if (!kprobe_ftrace(p))
1040 return arch_prepare_kprobe(p);
1041
1042 return arch_prepare_kprobe_ftrace(p);
1043 }
1044
1045 /* Caller must lock kprobe_mutex */
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1046 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 int *cnt)
1048 {
1049 int ret = 0;
1050
1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1053 return ret;
1054
1055 if (*cnt == 0) {
1056 ret = register_ftrace_function(ops);
1057 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1058 goto err_ftrace;
1059 }
1060
1061 (*cnt)++;
1062 return ret;
1063
1064 err_ftrace:
1065 /*
1066 * At this point, sinec ops is not registered, we should be sefe from
1067 * registering empty filter.
1068 */
1069 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1070 return ret;
1071 }
1072
arm_kprobe_ftrace(struct kprobe * p)1073 static int arm_kprobe_ftrace(struct kprobe *p)
1074 {
1075 bool ipmodify = (p->post_handler != NULL);
1076
1077 return __arm_kprobe_ftrace(p,
1078 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1079 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1080 }
1081
1082 /* Caller must lock kprobe_mutex */
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1083 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1084 int *cnt)
1085 {
1086 int ret = 0;
1087
1088 if (*cnt == 1) {
1089 ret = unregister_ftrace_function(ops);
1090 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1091 return ret;
1092 }
1093
1094 (*cnt)--;
1095
1096 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1097 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1098 p->addr, ret);
1099 return ret;
1100 }
1101
disarm_kprobe_ftrace(struct kprobe * p)1102 static int disarm_kprobe_ftrace(struct kprobe *p)
1103 {
1104 bool ipmodify = (p->post_handler != NULL);
1105
1106 return __disarm_kprobe_ftrace(p,
1107 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1108 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1109 }
1110 #else /* !CONFIG_KPROBES_ON_FTRACE */
prepare_kprobe(struct kprobe * p)1111 static inline int prepare_kprobe(struct kprobe *p)
1112 {
1113 return arch_prepare_kprobe(p);
1114 }
1115
arm_kprobe_ftrace(struct kprobe * p)1116 static inline int arm_kprobe_ftrace(struct kprobe *p)
1117 {
1118 return -ENODEV;
1119 }
1120
disarm_kprobe_ftrace(struct kprobe * p)1121 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1122 {
1123 return -ENODEV;
1124 }
1125 #endif
1126
1127 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1128 static int arm_kprobe(struct kprobe *kp)
1129 {
1130 if (unlikely(kprobe_ftrace(kp)))
1131 return arm_kprobe_ftrace(kp);
1132
1133 cpus_read_lock();
1134 mutex_lock(&text_mutex);
1135 __arm_kprobe(kp);
1136 mutex_unlock(&text_mutex);
1137 cpus_read_unlock();
1138
1139 return 0;
1140 }
1141
1142 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1143 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1144 {
1145 if (unlikely(kprobe_ftrace(kp)))
1146 return disarm_kprobe_ftrace(kp);
1147
1148 cpus_read_lock();
1149 mutex_lock(&text_mutex);
1150 __disarm_kprobe(kp, reopt);
1151 mutex_unlock(&text_mutex);
1152 cpus_read_unlock();
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * Aggregate handlers for multiple kprobes support - these handlers
1159 * take care of invoking the individual kprobe handlers on p->list
1160 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1161 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1162 {
1163 struct kprobe *kp;
1164
1165 list_for_each_entry_rcu(kp, &p->list, list) {
1166 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1167 set_kprobe_instance(kp);
1168 if (kp->pre_handler(kp, regs))
1169 return 1;
1170 }
1171 reset_kprobe_instance();
1172 }
1173 return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_pre_handler);
1176
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1177 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1178 unsigned long flags)
1179 {
1180 struct kprobe *kp;
1181
1182 list_for_each_entry_rcu(kp, &p->list, list) {
1183 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1184 set_kprobe_instance(kp);
1185 kp->post_handler(kp, regs, flags);
1186 reset_kprobe_instance();
1187 }
1188 }
1189 }
1190 NOKPROBE_SYMBOL(aggr_post_handler);
1191
1192 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1193 void kprobes_inc_nmissed_count(struct kprobe *p)
1194 {
1195 struct kprobe *kp;
1196 if (!kprobe_aggrprobe(p)) {
1197 p->nmissed++;
1198 } else {
1199 list_for_each_entry_rcu(kp, &p->list, list)
1200 kp->nmissed++;
1201 }
1202 return;
1203 }
1204 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1205
free_rp_inst_rcu(struct rcu_head * head)1206 static void free_rp_inst_rcu(struct rcu_head *head)
1207 {
1208 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1209
1210 if (refcount_dec_and_test(&ri->rph->ref))
1211 kfree(ri->rph);
1212 kfree(ri);
1213 }
1214 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1215
recycle_rp_inst(struct kretprobe_instance * ri)1216 static void recycle_rp_inst(struct kretprobe_instance *ri)
1217 {
1218 struct kretprobe *rp = get_kretprobe(ri);
1219
1220 if (likely(rp)) {
1221 freelist_add(&ri->freelist, &rp->freelist);
1222 } else
1223 call_rcu(&ri->rcu, free_rp_inst_rcu);
1224 }
1225 NOKPROBE_SYMBOL(recycle_rp_inst);
1226
1227 static struct kprobe kprobe_busy = {
1228 .addr = (void *) get_kprobe,
1229 };
1230
kprobe_busy_begin(void)1231 void kprobe_busy_begin(void)
1232 {
1233 struct kprobe_ctlblk *kcb;
1234
1235 preempt_disable();
1236 __this_cpu_write(current_kprobe, &kprobe_busy);
1237 kcb = get_kprobe_ctlblk();
1238 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1239 }
1240
kprobe_busy_end(void)1241 void kprobe_busy_end(void)
1242 {
1243 __this_cpu_write(current_kprobe, NULL);
1244 preempt_enable();
1245 }
1246
1247 /*
1248 * This function is called from finish_task_switch when task tk becomes dead,
1249 * so that we can recycle any function-return probe instances associated
1250 * with this task. These left over instances represent probed functions
1251 * that have been called but will never return.
1252 */
kprobe_flush_task(struct task_struct * tk)1253 void kprobe_flush_task(struct task_struct *tk)
1254 {
1255 struct kretprobe_instance *ri;
1256 struct llist_node *node;
1257
1258 /* Early boot, not yet initialized. */
1259 if (unlikely(!kprobes_initialized))
1260 return;
1261
1262 kprobe_busy_begin();
1263
1264 node = __llist_del_all(&tk->kretprobe_instances);
1265 while (node) {
1266 ri = container_of(node, struct kretprobe_instance, llist);
1267 node = node->next;
1268
1269 recycle_rp_inst(ri);
1270 }
1271
1272 kprobe_busy_end();
1273 }
1274 NOKPROBE_SYMBOL(kprobe_flush_task);
1275
free_rp_inst(struct kretprobe * rp)1276 static inline void free_rp_inst(struct kretprobe *rp)
1277 {
1278 struct kretprobe_instance *ri;
1279 struct freelist_node *node;
1280 int count = 0;
1281
1282 node = rp->freelist.head;
1283 while (node) {
1284 ri = container_of(node, struct kretprobe_instance, freelist);
1285 node = node->next;
1286
1287 kfree(ri);
1288 count++;
1289 }
1290
1291 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1292 kfree(rp->rph);
1293 rp->rph = NULL;
1294 }
1295 }
1296
1297 /* Add the new probe to ap->list */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1298 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1299 {
1300 if (p->post_handler)
1301 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1302
1303 list_add_rcu(&p->list, &ap->list);
1304 if (p->post_handler && !ap->post_handler)
1305 ap->post_handler = aggr_post_handler;
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * Fill in the required fields of the "manager kprobe". Replace the
1312 * earlier kprobe in the hlist with the manager kprobe
1313 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1314 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1315 {
1316 /* Copy p's insn slot to ap */
1317 copy_kprobe(p, ap);
1318 flush_insn_slot(ap);
1319 ap->addr = p->addr;
1320 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1321 ap->pre_handler = aggr_pre_handler;
1322 /* We don't care the kprobe which has gone. */
1323 if (p->post_handler && !kprobe_gone(p))
1324 ap->post_handler = aggr_post_handler;
1325
1326 INIT_LIST_HEAD(&ap->list);
1327 INIT_HLIST_NODE(&ap->hlist);
1328
1329 list_add_rcu(&p->list, &ap->list);
1330 hlist_replace_rcu(&p->hlist, &ap->hlist);
1331 }
1332
1333 /*
1334 * This is the second or subsequent kprobe at the address - handle
1335 * the intricacies
1336 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1337 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1338 {
1339 int ret = 0;
1340 struct kprobe *ap = orig_p;
1341
1342 cpus_read_lock();
1343
1344 /* For preparing optimization, jump_label_text_reserved() is called */
1345 jump_label_lock();
1346 mutex_lock(&text_mutex);
1347
1348 if (!kprobe_aggrprobe(orig_p)) {
1349 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1350 ap = alloc_aggr_kprobe(orig_p);
1351 if (!ap) {
1352 ret = -ENOMEM;
1353 goto out;
1354 }
1355 init_aggr_kprobe(ap, orig_p);
1356 } else if (kprobe_unused(ap)) {
1357 /* This probe is going to die. Rescue it */
1358 ret = reuse_unused_kprobe(ap);
1359 if (ret)
1360 goto out;
1361 }
1362
1363 if (kprobe_gone(ap)) {
1364 /*
1365 * Attempting to insert new probe at the same location that
1366 * had a probe in the module vaddr area which already
1367 * freed. So, the instruction slot has already been
1368 * released. We need a new slot for the new probe.
1369 */
1370 ret = arch_prepare_kprobe(ap);
1371 if (ret)
1372 /*
1373 * Even if fail to allocate new slot, don't need to
1374 * free aggr_probe. It will be used next time, or
1375 * freed by unregister_kprobe.
1376 */
1377 goto out;
1378
1379 /* Prepare optimized instructions if possible. */
1380 prepare_optimized_kprobe(ap);
1381
1382 /*
1383 * Clear gone flag to prevent allocating new slot again, and
1384 * set disabled flag because it is not armed yet.
1385 */
1386 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1387 | KPROBE_FLAG_DISABLED;
1388 }
1389
1390 /* Copy ap's insn slot to p */
1391 copy_kprobe(ap, p);
1392 ret = add_new_kprobe(ap, p);
1393
1394 out:
1395 mutex_unlock(&text_mutex);
1396 jump_label_unlock();
1397 cpus_read_unlock();
1398
1399 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1400 ap->flags &= ~KPROBE_FLAG_DISABLED;
1401 if (!kprobes_all_disarmed) {
1402 /* Arm the breakpoint again. */
1403 ret = arm_kprobe(ap);
1404 if (ret) {
1405 ap->flags |= KPROBE_FLAG_DISABLED;
1406 list_del_rcu(&p->list);
1407 synchronize_rcu();
1408 }
1409 }
1410 }
1411 return ret;
1412 }
1413
arch_within_kprobe_blacklist(unsigned long addr)1414 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1415 {
1416 /* The __kprobes marked functions and entry code must not be probed */
1417 return addr >= (unsigned long)__kprobes_text_start &&
1418 addr < (unsigned long)__kprobes_text_end;
1419 }
1420
__within_kprobe_blacklist(unsigned long addr)1421 static bool __within_kprobe_blacklist(unsigned long addr)
1422 {
1423 struct kprobe_blacklist_entry *ent;
1424
1425 if (arch_within_kprobe_blacklist(addr))
1426 return true;
1427 /*
1428 * If there exists a kprobe_blacklist, verify and
1429 * fail any probe registration in the prohibited area
1430 */
1431 list_for_each_entry(ent, &kprobe_blacklist, list) {
1432 if (addr >= ent->start_addr && addr < ent->end_addr)
1433 return true;
1434 }
1435 return false;
1436 }
1437
within_kprobe_blacklist(unsigned long addr)1438 bool within_kprobe_blacklist(unsigned long addr)
1439 {
1440 char symname[KSYM_NAME_LEN], *p;
1441
1442 if (__within_kprobe_blacklist(addr))
1443 return true;
1444
1445 /* Check if the address is on a suffixed-symbol */
1446 if (!lookup_symbol_name(addr, symname)) {
1447 p = strchr(symname, '.');
1448 if (!p)
1449 return false;
1450 *p = '\0';
1451 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1452 if (addr)
1453 return __within_kprobe_blacklist(addr);
1454 }
1455 return false;
1456 }
1457
1458 /*
1459 * If we have a symbol_name argument, look it up and add the offset field
1460 * to it. This way, we can specify a relative address to a symbol.
1461 * This returns encoded errors if it fails to look up symbol or invalid
1462 * combination of parameters.
1463 */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1464 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1465 const char *symbol_name, unsigned int offset)
1466 {
1467 if ((symbol_name && addr) || (!symbol_name && !addr))
1468 goto invalid;
1469
1470 if (symbol_name) {
1471 addr = kprobe_lookup_name(symbol_name, offset);
1472 if (!addr)
1473 return ERR_PTR(-ENOENT);
1474 }
1475
1476 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1477 if (addr)
1478 return addr;
1479
1480 invalid:
1481 return ERR_PTR(-EINVAL);
1482 }
1483
kprobe_addr(struct kprobe * p)1484 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1485 {
1486 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1487 }
1488
1489 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1490 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1491 {
1492 struct kprobe *ap, *list_p;
1493
1494 lockdep_assert_held(&kprobe_mutex);
1495
1496 ap = get_kprobe(p->addr);
1497 if (unlikely(!ap))
1498 return NULL;
1499
1500 if (p != ap) {
1501 list_for_each_entry(list_p, &ap->list, list)
1502 if (list_p == p)
1503 /* kprobe p is a valid probe */
1504 goto valid;
1505 return NULL;
1506 }
1507 valid:
1508 return ap;
1509 }
1510
1511 /*
1512 * Warn and return error if the kprobe is being re-registered since
1513 * there must be a software bug.
1514 */
warn_kprobe_rereg(struct kprobe * p)1515 static inline int warn_kprobe_rereg(struct kprobe *p)
1516 {
1517 int ret = 0;
1518
1519 mutex_lock(&kprobe_mutex);
1520 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1521 ret = -EINVAL;
1522 mutex_unlock(&kprobe_mutex);
1523
1524 return ret;
1525 }
1526
arch_check_ftrace_location(struct kprobe * p)1527 int __weak arch_check_ftrace_location(struct kprobe *p)
1528 {
1529 unsigned long ftrace_addr;
1530
1531 ftrace_addr = ftrace_location((unsigned long)p->addr);
1532 if (ftrace_addr) {
1533 #ifdef CONFIG_KPROBES_ON_FTRACE
1534 /* Given address is not on the instruction boundary */
1535 if ((unsigned long)p->addr != ftrace_addr)
1536 return -EILSEQ;
1537 p->flags |= KPROBE_FLAG_FTRACE;
1538 #else /* !CONFIG_KPROBES_ON_FTRACE */
1539 return -EINVAL;
1540 #endif
1541 }
1542 return 0;
1543 }
1544
is_cfi_preamble_symbol(unsigned long addr)1545 static bool is_cfi_preamble_symbol(unsigned long addr)
1546 {
1547 char symbuf[KSYM_NAME_LEN];
1548
1549 if (lookup_symbol_name(addr, symbuf))
1550 return false;
1551
1552 return str_has_prefix("__cfi_", symbuf) ||
1553 str_has_prefix("__pfx_", symbuf);
1554 }
1555
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1556 static int check_kprobe_address_safe(struct kprobe *p,
1557 struct module **probed_mod)
1558 {
1559 int ret;
1560
1561 ret = arch_check_ftrace_location(p);
1562 if (ret)
1563 return ret;
1564 jump_label_lock();
1565 preempt_disable();
1566
1567 /* Ensure it is not in reserved area nor out of text */
1568 if (!(core_kernel_text((unsigned long) p->addr) ||
1569 is_module_text_address((unsigned long) p->addr)) ||
1570 in_gate_area_no_mm((unsigned long) p->addr) ||
1571 within_kprobe_blacklist((unsigned long) p->addr) ||
1572 jump_label_text_reserved(p->addr, p->addr) ||
1573 static_call_text_reserved(p->addr, p->addr) ||
1574 find_bug((unsigned long)p->addr) ||
1575 is_cfi_preamble_symbol((unsigned long)p->addr)) {
1576 ret = -EINVAL;
1577 goto out;
1578 }
1579
1580 /* Check if are we probing a module */
1581 *probed_mod = __module_text_address((unsigned long) p->addr);
1582 if (*probed_mod) {
1583 /*
1584 * We must hold a refcount of the probed module while updating
1585 * its code to prohibit unexpected unloading.
1586 */
1587 if (unlikely(!try_module_get(*probed_mod))) {
1588 ret = -ENOENT;
1589 goto out;
1590 }
1591
1592 /*
1593 * If the module freed .init.text, we couldn't insert
1594 * kprobes in there.
1595 */
1596 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1597 (*probed_mod)->state != MODULE_STATE_COMING) {
1598 module_put(*probed_mod);
1599 *probed_mod = NULL;
1600 ret = -ENOENT;
1601 }
1602 }
1603 out:
1604 preempt_enable();
1605 jump_label_unlock();
1606
1607 return ret;
1608 }
1609
register_kprobe(struct kprobe * p)1610 int register_kprobe(struct kprobe *p)
1611 {
1612 int ret;
1613 struct kprobe *old_p;
1614 struct module *probed_mod;
1615 kprobe_opcode_t *addr;
1616
1617 /* Adjust probe address from symbol */
1618 addr = kprobe_addr(p);
1619 if (IS_ERR(addr))
1620 return PTR_ERR(addr);
1621 p->addr = addr;
1622
1623 ret = warn_kprobe_rereg(p);
1624 if (ret)
1625 return ret;
1626
1627 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1628 p->flags &= KPROBE_FLAG_DISABLED;
1629 p->nmissed = 0;
1630 INIT_LIST_HEAD(&p->list);
1631
1632 ret = check_kprobe_address_safe(p, &probed_mod);
1633 if (ret)
1634 return ret;
1635
1636 mutex_lock(&kprobe_mutex);
1637
1638 old_p = get_kprobe(p->addr);
1639 if (old_p) {
1640 /* Since this may unoptimize old_p, locking text_mutex. */
1641 ret = register_aggr_kprobe(old_p, p);
1642 goto out;
1643 }
1644
1645 cpus_read_lock();
1646 /* Prevent text modification */
1647 mutex_lock(&text_mutex);
1648 ret = prepare_kprobe(p);
1649 mutex_unlock(&text_mutex);
1650 cpus_read_unlock();
1651 if (ret)
1652 goto out;
1653
1654 INIT_HLIST_NODE(&p->hlist);
1655 hlist_add_head_rcu(&p->hlist,
1656 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1657
1658 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1659 ret = arm_kprobe(p);
1660 if (ret) {
1661 hlist_del_rcu(&p->hlist);
1662 synchronize_rcu();
1663 goto out;
1664 }
1665 }
1666
1667 /* Try to optimize kprobe */
1668 try_to_optimize_kprobe(p);
1669 out:
1670 mutex_unlock(&kprobe_mutex);
1671
1672 if (probed_mod)
1673 module_put(probed_mod);
1674
1675 return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(register_kprobe);
1678
1679 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1680 static int aggr_kprobe_disabled(struct kprobe *ap)
1681 {
1682 struct kprobe *kp;
1683
1684 lockdep_assert_held(&kprobe_mutex);
1685
1686 list_for_each_entry(kp, &ap->list, list)
1687 if (!kprobe_disabled(kp))
1688 /*
1689 * There is an active probe on the list.
1690 * We can't disable this ap.
1691 */
1692 return 0;
1693
1694 return 1;
1695 }
1696
1697 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1698 static struct kprobe *__disable_kprobe(struct kprobe *p)
1699 {
1700 struct kprobe *orig_p;
1701 int ret;
1702
1703 /* Get an original kprobe for return */
1704 orig_p = __get_valid_kprobe(p);
1705 if (unlikely(orig_p == NULL))
1706 return ERR_PTR(-EINVAL);
1707
1708 if (!kprobe_disabled(p)) {
1709 /* Disable probe if it is a child probe */
1710 if (p != orig_p)
1711 p->flags |= KPROBE_FLAG_DISABLED;
1712
1713 /* Try to disarm and disable this/parent probe */
1714 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1715 /*
1716 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1717 * is false, 'orig_p' might not have been armed yet.
1718 * Note arm_all_kprobes() __tries__ to arm all kprobes
1719 * on the best effort basis.
1720 */
1721 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1722 ret = disarm_kprobe(orig_p, true);
1723 if (ret) {
1724 p->flags &= ~KPROBE_FLAG_DISABLED;
1725 return ERR_PTR(ret);
1726 }
1727 }
1728 orig_p->flags |= KPROBE_FLAG_DISABLED;
1729 }
1730 }
1731
1732 return orig_p;
1733 }
1734
1735 /*
1736 * Unregister a kprobe without a scheduler synchronization.
1737 */
__unregister_kprobe_top(struct kprobe * p)1738 static int __unregister_kprobe_top(struct kprobe *p)
1739 {
1740 struct kprobe *ap, *list_p;
1741
1742 /* Disable kprobe. This will disarm it if needed. */
1743 ap = __disable_kprobe(p);
1744 if (IS_ERR(ap))
1745 return PTR_ERR(ap);
1746
1747 if (ap == p)
1748 /*
1749 * This probe is an independent(and non-optimized) kprobe
1750 * (not an aggrprobe). Remove from the hash list.
1751 */
1752 goto disarmed;
1753
1754 /* Following process expects this probe is an aggrprobe */
1755 WARN_ON(!kprobe_aggrprobe(ap));
1756
1757 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1758 /*
1759 * !disarmed could be happen if the probe is under delayed
1760 * unoptimizing.
1761 */
1762 goto disarmed;
1763 else {
1764 /* If disabling probe has special handlers, update aggrprobe */
1765 if (p->post_handler && !kprobe_gone(p)) {
1766 list_for_each_entry(list_p, &ap->list, list) {
1767 if ((list_p != p) && (list_p->post_handler))
1768 goto noclean;
1769 }
1770 /*
1771 * For the kprobe-on-ftrace case, we keep the
1772 * post_handler setting to identify this aggrprobe
1773 * armed with kprobe_ipmodify_ops.
1774 */
1775 if (!kprobe_ftrace(ap))
1776 ap->post_handler = NULL;
1777 }
1778 noclean:
1779 /*
1780 * Remove from the aggrprobe: this path will do nothing in
1781 * __unregister_kprobe_bottom().
1782 */
1783 list_del_rcu(&p->list);
1784 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1785 /*
1786 * Try to optimize this probe again, because post
1787 * handler may have been changed.
1788 */
1789 optimize_kprobe(ap);
1790 }
1791 return 0;
1792
1793 disarmed:
1794 hlist_del_rcu(&ap->hlist);
1795 return 0;
1796 }
1797
__unregister_kprobe_bottom(struct kprobe * p)1798 static void __unregister_kprobe_bottom(struct kprobe *p)
1799 {
1800 struct kprobe *ap;
1801
1802 if (list_empty(&p->list))
1803 /* This is an independent kprobe */
1804 arch_remove_kprobe(p);
1805 else if (list_is_singular(&p->list)) {
1806 /* This is the last child of an aggrprobe */
1807 ap = list_entry(p->list.next, struct kprobe, list);
1808 list_del(&p->list);
1809 free_aggr_kprobe(ap);
1810 }
1811 /* Otherwise, do nothing. */
1812 }
1813
register_kprobes(struct kprobe ** kps,int num)1814 int register_kprobes(struct kprobe **kps, int num)
1815 {
1816 int i, ret = 0;
1817
1818 if (num <= 0)
1819 return -EINVAL;
1820 for (i = 0; i < num; i++) {
1821 ret = register_kprobe(kps[i]);
1822 if (ret < 0) {
1823 if (i > 0)
1824 unregister_kprobes(kps, i);
1825 break;
1826 }
1827 }
1828 return ret;
1829 }
1830 EXPORT_SYMBOL_GPL(register_kprobes);
1831
unregister_kprobe(struct kprobe * p)1832 void unregister_kprobe(struct kprobe *p)
1833 {
1834 unregister_kprobes(&p, 1);
1835 }
1836 EXPORT_SYMBOL_GPL(unregister_kprobe);
1837
unregister_kprobes(struct kprobe ** kps,int num)1838 void unregister_kprobes(struct kprobe **kps, int num)
1839 {
1840 int i;
1841
1842 if (num <= 0)
1843 return;
1844 mutex_lock(&kprobe_mutex);
1845 for (i = 0; i < num; i++)
1846 if (__unregister_kprobe_top(kps[i]) < 0)
1847 kps[i]->addr = NULL;
1848 mutex_unlock(&kprobe_mutex);
1849
1850 synchronize_rcu();
1851 for (i = 0; i < num; i++)
1852 if (kps[i]->addr)
1853 __unregister_kprobe_bottom(kps[i]);
1854 }
1855 EXPORT_SYMBOL_GPL(unregister_kprobes);
1856
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1857 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1858 unsigned long val, void *data)
1859 {
1860 return NOTIFY_DONE;
1861 }
1862 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1863
1864 static struct notifier_block kprobe_exceptions_nb = {
1865 .notifier_call = kprobe_exceptions_notify,
1866 .priority = 0x7fffffff /* we need to be notified first */
1867 };
1868
arch_deref_entry_point(void * entry)1869 unsigned long __weak arch_deref_entry_point(void *entry)
1870 {
1871 return (unsigned long)entry;
1872 }
1873
1874 #ifdef CONFIG_KRETPROBES
1875
__kretprobe_trampoline_handler(struct pt_regs * regs,void * trampoline_address,void * frame_pointer)1876 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1877 void *trampoline_address,
1878 void *frame_pointer)
1879 {
1880 kprobe_opcode_t *correct_ret_addr = NULL;
1881 struct kretprobe_instance *ri = NULL;
1882 struct llist_node *first, *node;
1883 struct kretprobe *rp;
1884
1885 /* Find all nodes for this frame. */
1886 first = node = current->kretprobe_instances.first;
1887 while (node) {
1888 ri = container_of(node, struct kretprobe_instance, llist);
1889
1890 BUG_ON(ri->fp != frame_pointer);
1891
1892 if (ri->ret_addr != trampoline_address) {
1893 correct_ret_addr = ri->ret_addr;
1894 /*
1895 * This is the real return address. Any other
1896 * instances associated with this task are for
1897 * other calls deeper on the call stack
1898 */
1899 goto found;
1900 }
1901
1902 node = node->next;
1903 }
1904 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
1905 BUG_ON(1);
1906
1907 found:
1908 /* Unlink all nodes for this frame. */
1909 current->kretprobe_instances.first = node->next;
1910 node->next = NULL;
1911
1912 /* Run them.. */
1913 while (first) {
1914 ri = container_of(first, struct kretprobe_instance, llist);
1915 first = first->next;
1916
1917 rp = get_kretprobe(ri);
1918 if (rp && rp->handler) {
1919 struct kprobe *prev = kprobe_running();
1920
1921 __this_cpu_write(current_kprobe, &rp->kp);
1922 ri->ret_addr = correct_ret_addr;
1923 rp->handler(ri, regs);
1924 __this_cpu_write(current_kprobe, prev);
1925 }
1926
1927 recycle_rp_inst(ri);
1928 }
1929
1930 return (unsigned long)correct_ret_addr;
1931 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)1932 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1933
1934 /*
1935 * This kprobe pre_handler is registered with every kretprobe. When probe
1936 * hits it will set up the return probe.
1937 */
1938 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1939 {
1940 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1941 struct kretprobe_instance *ri;
1942 struct freelist_node *fn;
1943
1944 fn = freelist_try_get(&rp->freelist);
1945 if (!fn) {
1946 rp->nmissed++;
1947 return 0;
1948 }
1949
1950 ri = container_of(fn, struct kretprobe_instance, freelist);
1951
1952 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1953 freelist_add(&ri->freelist, &rp->freelist);
1954 return 0;
1955 }
1956
1957 arch_prepare_kretprobe(ri, regs);
1958
1959 __llist_add(&ri->llist, ¤t->kretprobe_instances);
1960
1961 return 0;
1962 }
1963 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964
arch_kprobe_on_func_entry(unsigned long offset)1965 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1966 {
1967 return !offset;
1968 }
1969
1970 /**
1971 * kprobe_on_func_entry() -- check whether given address is function entry
1972 * @addr: Target address
1973 * @sym: Target symbol name
1974 * @offset: The offset from the symbol or the address
1975 *
1976 * This checks whether the given @addr+@offset or @sym+@offset is on the
1977 * function entry address or not.
1978 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1979 * And also it returns -ENOENT if it fails the symbol or address lookup.
1980 * Caller must pass @addr or @sym (either one must be NULL), or this
1981 * returns -EINVAL.
1982 */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)1983 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1984 {
1985 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1986
1987 if (IS_ERR(kp_addr))
1988 return PTR_ERR(kp_addr);
1989
1990 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1991 return -ENOENT;
1992
1993 if (!arch_kprobe_on_func_entry(offset))
1994 return -EINVAL;
1995
1996 return 0;
1997 }
1998
register_kretprobe(struct kretprobe * rp)1999 int register_kretprobe(struct kretprobe *rp)
2000 {
2001 int ret;
2002 struct kretprobe_instance *inst;
2003 int i;
2004 void *addr;
2005
2006 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2007 if (ret)
2008 return ret;
2009
2010 /* If only rp->kp.addr is specified, check reregistering kprobes */
2011 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2012 return -EINVAL;
2013
2014 if (kretprobe_blacklist_size) {
2015 addr = kprobe_addr(&rp->kp);
2016 if (IS_ERR(addr))
2017 return PTR_ERR(addr);
2018
2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020 if (kretprobe_blacklist[i].addr == addr)
2021 return -EINVAL;
2022 }
2023 }
2024
2025 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2026 return -E2BIG;
2027
2028 rp->kp.pre_handler = pre_handler_kretprobe;
2029 rp->kp.post_handler = NULL;
2030
2031 /* Pre-allocate memory for max kretprobe instances */
2032 if (rp->maxactive <= 0) {
2033 #ifdef CONFIG_PREEMPTION
2034 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2035 #else
2036 rp->maxactive = num_possible_cpus();
2037 #endif
2038 }
2039 rp->freelist.head = NULL;
2040 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2041 if (!rp->rph)
2042 return -ENOMEM;
2043
2044 rcu_assign_pointer(rp->rph->rp, rp);
2045 for (i = 0; i < rp->maxactive; i++) {
2046 inst = kzalloc(sizeof(struct kretprobe_instance) +
2047 rp->data_size, GFP_KERNEL);
2048 if (inst == NULL) {
2049 refcount_set(&rp->rph->ref, i);
2050 free_rp_inst(rp);
2051 return -ENOMEM;
2052 }
2053 inst->rph = rp->rph;
2054 freelist_add(&inst->freelist, &rp->freelist);
2055 }
2056 refcount_set(&rp->rph->ref, i);
2057
2058 rp->nmissed = 0;
2059 /* Establish function entry probe point */
2060 ret = register_kprobe(&rp->kp);
2061 if (ret != 0)
2062 free_rp_inst(rp);
2063 return ret;
2064 }
2065 EXPORT_SYMBOL_GPL(register_kretprobe);
2066
register_kretprobes(struct kretprobe ** rps,int num)2067 int register_kretprobes(struct kretprobe **rps, int num)
2068 {
2069 int ret = 0, i;
2070
2071 if (num <= 0)
2072 return -EINVAL;
2073 for (i = 0; i < num; i++) {
2074 ret = register_kretprobe(rps[i]);
2075 if (ret < 0) {
2076 if (i > 0)
2077 unregister_kretprobes(rps, i);
2078 break;
2079 }
2080 }
2081 return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(register_kretprobes);
2084
unregister_kretprobe(struct kretprobe * rp)2085 void unregister_kretprobe(struct kretprobe *rp)
2086 {
2087 unregister_kretprobes(&rp, 1);
2088 }
2089 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2090
unregister_kretprobes(struct kretprobe ** rps,int num)2091 void unregister_kretprobes(struct kretprobe **rps, int num)
2092 {
2093 int i;
2094
2095 if (num <= 0)
2096 return;
2097 mutex_lock(&kprobe_mutex);
2098 for (i = 0; i < num; i++) {
2099 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2100 rps[i]->kp.addr = NULL;
2101 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2102 }
2103 mutex_unlock(&kprobe_mutex);
2104
2105 synchronize_rcu();
2106 for (i = 0; i < num; i++) {
2107 if (rps[i]->kp.addr) {
2108 __unregister_kprobe_bottom(&rps[i]->kp);
2109 free_rp_inst(rps[i]);
2110 }
2111 }
2112 }
2113 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2114
2115 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2116 int register_kretprobe(struct kretprobe *rp)
2117 {
2118 return -ENOSYS;
2119 }
2120 EXPORT_SYMBOL_GPL(register_kretprobe);
2121
register_kretprobes(struct kretprobe ** rps,int num)2122 int register_kretprobes(struct kretprobe **rps, int num)
2123 {
2124 return -ENOSYS;
2125 }
2126 EXPORT_SYMBOL_GPL(register_kretprobes);
2127
unregister_kretprobe(struct kretprobe * rp)2128 void unregister_kretprobe(struct kretprobe *rp)
2129 {
2130 }
2131 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2132
unregister_kretprobes(struct kretprobe ** rps,int num)2133 void unregister_kretprobes(struct kretprobe **rps, int num)
2134 {
2135 }
2136 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2137
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2138 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2139 {
2140 return 0;
2141 }
2142 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2143
2144 #endif /* CONFIG_KRETPROBES */
2145
2146 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2147 static void kill_kprobe(struct kprobe *p)
2148 {
2149 struct kprobe *kp;
2150
2151 lockdep_assert_held(&kprobe_mutex);
2152
2153 p->flags |= KPROBE_FLAG_GONE;
2154 if (kprobe_aggrprobe(p)) {
2155 /*
2156 * If this is an aggr_kprobe, we have to list all the
2157 * chained probes and mark them GONE.
2158 */
2159 list_for_each_entry(kp, &p->list, list)
2160 kp->flags |= KPROBE_FLAG_GONE;
2161 p->post_handler = NULL;
2162 kill_optimized_kprobe(p);
2163 }
2164 /*
2165 * Here, we can remove insn_slot safely, because no thread calls
2166 * the original probed function (which will be freed soon) any more.
2167 */
2168 arch_remove_kprobe(p);
2169
2170 /*
2171 * The module is going away. We should disarm the kprobe which
2172 * is using ftrace, because ftrace framework is still available at
2173 * MODULE_STATE_GOING notification.
2174 */
2175 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2176 disarm_kprobe_ftrace(p);
2177 }
2178
2179 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2180 int disable_kprobe(struct kprobe *kp)
2181 {
2182 int ret = 0;
2183 struct kprobe *p;
2184
2185 mutex_lock(&kprobe_mutex);
2186
2187 /* Disable this kprobe */
2188 p = __disable_kprobe(kp);
2189 if (IS_ERR(p))
2190 ret = PTR_ERR(p);
2191
2192 mutex_unlock(&kprobe_mutex);
2193 return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(disable_kprobe);
2196
2197 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2198 int enable_kprobe(struct kprobe *kp)
2199 {
2200 int ret = 0;
2201 struct kprobe *p;
2202
2203 mutex_lock(&kprobe_mutex);
2204
2205 /* Check whether specified probe is valid. */
2206 p = __get_valid_kprobe(kp);
2207 if (unlikely(p == NULL)) {
2208 ret = -EINVAL;
2209 goto out;
2210 }
2211
2212 if (kprobe_gone(kp)) {
2213 /* This kprobe has gone, we couldn't enable it. */
2214 ret = -EINVAL;
2215 goto out;
2216 }
2217
2218 if (p != kp)
2219 kp->flags &= ~KPROBE_FLAG_DISABLED;
2220
2221 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2222 p->flags &= ~KPROBE_FLAG_DISABLED;
2223 ret = arm_kprobe(p);
2224 if (ret) {
2225 p->flags |= KPROBE_FLAG_DISABLED;
2226 if (p != kp)
2227 kp->flags |= KPROBE_FLAG_DISABLED;
2228 }
2229 }
2230 out:
2231 mutex_unlock(&kprobe_mutex);
2232 return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(enable_kprobe);
2235
2236 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2237 void dump_kprobe(struct kprobe *kp)
2238 {
2239 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2240 kp->symbol_name, kp->offset, kp->addr);
2241 }
2242 NOKPROBE_SYMBOL(dump_kprobe);
2243
kprobe_add_ksym_blacklist(unsigned long entry)2244 int kprobe_add_ksym_blacklist(unsigned long entry)
2245 {
2246 struct kprobe_blacklist_entry *ent;
2247 unsigned long offset = 0, size = 0;
2248
2249 if (!kernel_text_address(entry) ||
2250 !kallsyms_lookup_size_offset(entry, &size, &offset))
2251 return -EINVAL;
2252
2253 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2254 if (!ent)
2255 return -ENOMEM;
2256 ent->start_addr = entry;
2257 ent->end_addr = entry + size;
2258 INIT_LIST_HEAD(&ent->list);
2259 list_add_tail(&ent->list, &kprobe_blacklist);
2260
2261 return (int)size;
2262 }
2263
2264 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2265 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2266 {
2267 unsigned long entry;
2268 int ret = 0;
2269
2270 for (entry = start; entry < end; entry += ret) {
2271 ret = kprobe_add_ksym_blacklist(entry);
2272 if (ret < 0)
2273 return ret;
2274 if (ret == 0) /* In case of alias symbol */
2275 ret = 1;
2276 }
2277 return 0;
2278 }
2279
2280 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2281 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2282 {
2283 struct kprobe_blacklist_entry *ent, *n;
2284
2285 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2286 if (ent->start_addr < start || ent->start_addr >= end)
2287 continue;
2288 list_del(&ent->list);
2289 kfree(ent);
2290 }
2291 }
2292
kprobe_remove_ksym_blacklist(unsigned long entry)2293 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2294 {
2295 kprobe_remove_area_blacklist(entry, entry + 1);
2296 }
2297
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2298 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2299 char *type, char *sym)
2300 {
2301 return -ERANGE;
2302 }
2303
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2304 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2305 char *sym)
2306 {
2307 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2308 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2309 return 0;
2310 #ifdef CONFIG_OPTPROBES
2311 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2312 return 0;
2313 #endif
2314 #endif
2315 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2316 return 0;
2317 return -ERANGE;
2318 }
2319
arch_populate_kprobe_blacklist(void)2320 int __init __weak arch_populate_kprobe_blacklist(void)
2321 {
2322 return 0;
2323 }
2324
2325 /*
2326 * Lookup and populate the kprobe_blacklist.
2327 *
2328 * Unlike the kretprobe blacklist, we'll need to determine
2329 * the range of addresses that belong to the said functions,
2330 * since a kprobe need not necessarily be at the beginning
2331 * of a function.
2332 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2333 static int __init populate_kprobe_blacklist(unsigned long *start,
2334 unsigned long *end)
2335 {
2336 unsigned long entry;
2337 unsigned long *iter;
2338 int ret;
2339
2340 for (iter = start; iter < end; iter++) {
2341 entry = arch_deref_entry_point((void *)*iter);
2342 ret = kprobe_add_ksym_blacklist(entry);
2343 if (ret == -EINVAL)
2344 continue;
2345 if (ret < 0)
2346 return ret;
2347 }
2348
2349 /* Symbols in __kprobes_text are blacklisted */
2350 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2351 (unsigned long)__kprobes_text_end);
2352 if (ret)
2353 return ret;
2354
2355 /* Symbols in noinstr section are blacklisted */
2356 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2357 (unsigned long)__noinstr_text_end);
2358
2359 return ret ? : arch_populate_kprobe_blacklist();
2360 }
2361
add_module_kprobe_blacklist(struct module * mod)2362 static void add_module_kprobe_blacklist(struct module *mod)
2363 {
2364 unsigned long start, end;
2365 int i;
2366
2367 if (mod->kprobe_blacklist) {
2368 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2369 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2370 }
2371
2372 start = (unsigned long)mod->kprobes_text_start;
2373 if (start) {
2374 end = start + mod->kprobes_text_size;
2375 kprobe_add_area_blacklist(start, end);
2376 }
2377
2378 start = (unsigned long)mod->noinstr_text_start;
2379 if (start) {
2380 end = start + mod->noinstr_text_size;
2381 kprobe_add_area_blacklist(start, end);
2382 }
2383 }
2384
remove_module_kprobe_blacklist(struct module * mod)2385 static void remove_module_kprobe_blacklist(struct module *mod)
2386 {
2387 unsigned long start, end;
2388 int i;
2389
2390 if (mod->kprobe_blacklist) {
2391 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2392 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2393 }
2394
2395 start = (unsigned long)mod->kprobes_text_start;
2396 if (start) {
2397 end = start + mod->kprobes_text_size;
2398 kprobe_remove_area_blacklist(start, end);
2399 }
2400
2401 start = (unsigned long)mod->noinstr_text_start;
2402 if (start) {
2403 end = start + mod->noinstr_text_size;
2404 kprobe_remove_area_blacklist(start, end);
2405 }
2406 }
2407
2408 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2409 static int kprobes_module_callback(struct notifier_block *nb,
2410 unsigned long val, void *data)
2411 {
2412 struct module *mod = data;
2413 struct hlist_head *head;
2414 struct kprobe *p;
2415 unsigned int i;
2416 int checkcore = (val == MODULE_STATE_GOING);
2417
2418 if (val == MODULE_STATE_COMING) {
2419 mutex_lock(&kprobe_mutex);
2420 add_module_kprobe_blacklist(mod);
2421 mutex_unlock(&kprobe_mutex);
2422 }
2423 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2424 return NOTIFY_DONE;
2425
2426 /*
2427 * When MODULE_STATE_GOING was notified, both of module .text and
2428 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2429 * notified, only .init.text section would be freed. We need to
2430 * disable kprobes which have been inserted in the sections.
2431 */
2432 mutex_lock(&kprobe_mutex);
2433 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2434 head = &kprobe_table[i];
2435 hlist_for_each_entry(p, head, hlist)
2436 if (within_module_init((unsigned long)p->addr, mod) ||
2437 (checkcore &&
2438 within_module_core((unsigned long)p->addr, mod))) {
2439 /*
2440 * The vaddr this probe is installed will soon
2441 * be vfreed buy not synced to disk. Hence,
2442 * disarming the breakpoint isn't needed.
2443 *
2444 * Note, this will also move any optimized probes
2445 * that are pending to be removed from their
2446 * corresponding lists to the freeing_list and
2447 * will not be touched by the delayed
2448 * kprobe_optimizer work handler.
2449 */
2450 kill_kprobe(p);
2451 }
2452 }
2453 if (val == MODULE_STATE_GOING)
2454 remove_module_kprobe_blacklist(mod);
2455 mutex_unlock(&kprobe_mutex);
2456 return NOTIFY_DONE;
2457 }
2458
2459 static struct notifier_block kprobe_module_nb = {
2460 .notifier_call = kprobes_module_callback,
2461 .priority = 0
2462 };
2463
2464 /* Markers of _kprobe_blacklist section */
2465 extern unsigned long __start_kprobe_blacklist[];
2466 extern unsigned long __stop_kprobe_blacklist[];
2467
kprobe_free_init_mem(void)2468 void kprobe_free_init_mem(void)
2469 {
2470 void *start = (void *)(&__init_begin);
2471 void *end = (void *)(&__init_end);
2472 struct hlist_head *head;
2473 struct kprobe *p;
2474 int i;
2475
2476 mutex_lock(&kprobe_mutex);
2477
2478 /* Kill all kprobes on initmem */
2479 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2480 head = &kprobe_table[i];
2481 hlist_for_each_entry(p, head, hlist) {
2482 if (start <= (void *)p->addr && (void *)p->addr < end)
2483 kill_kprobe(p);
2484 }
2485 }
2486
2487 mutex_unlock(&kprobe_mutex);
2488 }
2489
init_kprobes(void)2490 static int __init init_kprobes(void)
2491 {
2492 int i, err = 0;
2493
2494 /* FIXME allocate the probe table, currently defined statically */
2495 /* initialize all list heads */
2496 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2497 INIT_HLIST_HEAD(&kprobe_table[i]);
2498
2499 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2500 __stop_kprobe_blacklist);
2501 if (err) {
2502 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2503 }
2504
2505 if (kretprobe_blacklist_size) {
2506 /* lookup the function address from its name */
2507 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2508 kretprobe_blacklist[i].addr =
2509 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2510 if (!kretprobe_blacklist[i].addr)
2511 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2512 kretprobe_blacklist[i].name);
2513 }
2514 }
2515
2516 /* By default, kprobes are armed */
2517 kprobes_all_disarmed = false;
2518
2519 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2520 /* Init kprobe_optinsn_slots for allocation */
2521 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2522 #endif
2523
2524 err = arch_init_kprobes();
2525 if (!err)
2526 err = register_die_notifier(&kprobe_exceptions_nb);
2527 if (!err)
2528 err = register_module_notifier(&kprobe_module_nb);
2529
2530 kprobes_initialized = (err == 0);
2531
2532 if (!err)
2533 init_test_probes();
2534 return err;
2535 }
2536 early_initcall(init_kprobes);
2537
2538 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2539 static int __init init_optprobes(void)
2540 {
2541 /*
2542 * Enable kprobe optimization - this kicks the optimizer which
2543 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2544 * not spawned in early initcall. So delay the optimization.
2545 */
2546 optimize_all_kprobes();
2547
2548 return 0;
2549 }
2550 subsys_initcall(init_optprobes);
2551 #endif
2552
2553 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2554 static void report_probe(struct seq_file *pi, struct kprobe *p,
2555 const char *sym, int offset, char *modname, struct kprobe *pp)
2556 {
2557 char *kprobe_type;
2558 void *addr = p->addr;
2559
2560 if (p->pre_handler == pre_handler_kretprobe)
2561 kprobe_type = "r";
2562 else
2563 kprobe_type = "k";
2564
2565 if (!kallsyms_show_value(pi->file->f_cred))
2566 addr = NULL;
2567
2568 if (sym)
2569 seq_printf(pi, "%px %s %s+0x%x %s ",
2570 addr, kprobe_type, sym, offset,
2571 (modname ? modname : " "));
2572 else /* try to use %pS */
2573 seq_printf(pi, "%px %s %pS ",
2574 addr, kprobe_type, p->addr);
2575
2576 if (!pp)
2577 pp = p;
2578 seq_printf(pi, "%s%s%s%s\n",
2579 (kprobe_gone(p) ? "[GONE]" : ""),
2580 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2581 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2582 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2583 }
2584
kprobe_seq_start(struct seq_file * f,loff_t * pos)2585 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2586 {
2587 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2588 }
2589
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2590 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2591 {
2592 (*pos)++;
2593 if (*pos >= KPROBE_TABLE_SIZE)
2594 return NULL;
2595 return pos;
2596 }
2597
kprobe_seq_stop(struct seq_file * f,void * v)2598 static void kprobe_seq_stop(struct seq_file *f, void *v)
2599 {
2600 /* Nothing to do */
2601 }
2602
show_kprobe_addr(struct seq_file * pi,void * v)2603 static int show_kprobe_addr(struct seq_file *pi, void *v)
2604 {
2605 struct hlist_head *head;
2606 struct kprobe *p, *kp;
2607 const char *sym = NULL;
2608 unsigned int i = *(loff_t *) v;
2609 unsigned long offset = 0;
2610 char *modname, namebuf[KSYM_NAME_LEN];
2611
2612 head = &kprobe_table[i];
2613 preempt_disable();
2614 hlist_for_each_entry_rcu(p, head, hlist) {
2615 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2616 &offset, &modname, namebuf);
2617 if (kprobe_aggrprobe(p)) {
2618 list_for_each_entry_rcu(kp, &p->list, list)
2619 report_probe(pi, kp, sym, offset, modname, p);
2620 } else
2621 report_probe(pi, p, sym, offset, modname, NULL);
2622 }
2623 preempt_enable();
2624 return 0;
2625 }
2626
2627 static const struct seq_operations kprobes_sops = {
2628 .start = kprobe_seq_start,
2629 .next = kprobe_seq_next,
2630 .stop = kprobe_seq_stop,
2631 .show = show_kprobe_addr
2632 };
2633
2634 DEFINE_SEQ_ATTRIBUTE(kprobes);
2635
2636 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2637 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2638 {
2639 mutex_lock(&kprobe_mutex);
2640 return seq_list_start(&kprobe_blacklist, *pos);
2641 }
2642
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2643 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2644 {
2645 return seq_list_next(v, &kprobe_blacklist, pos);
2646 }
2647
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2648 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2649 {
2650 struct kprobe_blacklist_entry *ent =
2651 list_entry(v, struct kprobe_blacklist_entry, list);
2652
2653 /*
2654 * If /proc/kallsyms is not showing kernel address, we won't
2655 * show them here either.
2656 */
2657 if (!kallsyms_show_value(m->file->f_cred))
2658 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2659 (void *)ent->start_addr);
2660 else
2661 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2662 (void *)ent->end_addr, (void *)ent->start_addr);
2663 return 0;
2664 }
2665
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2666 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2667 {
2668 mutex_unlock(&kprobe_mutex);
2669 }
2670
2671 static const struct seq_operations kprobe_blacklist_sops = {
2672 .start = kprobe_blacklist_seq_start,
2673 .next = kprobe_blacklist_seq_next,
2674 .stop = kprobe_blacklist_seq_stop,
2675 .show = kprobe_blacklist_seq_show,
2676 };
2677 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2678
arm_all_kprobes(void)2679 static int arm_all_kprobes(void)
2680 {
2681 struct hlist_head *head;
2682 struct kprobe *p;
2683 unsigned int i, total = 0, errors = 0;
2684 int err, ret = 0;
2685
2686 mutex_lock(&kprobe_mutex);
2687
2688 /* If kprobes are armed, just return */
2689 if (!kprobes_all_disarmed)
2690 goto already_enabled;
2691
2692 /*
2693 * optimize_kprobe() called by arm_kprobe() checks
2694 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2695 * arm_kprobe.
2696 */
2697 kprobes_all_disarmed = false;
2698 /* Arming kprobes doesn't optimize kprobe itself */
2699 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2700 head = &kprobe_table[i];
2701 /* Arm all kprobes on a best-effort basis */
2702 hlist_for_each_entry(p, head, hlist) {
2703 if (!kprobe_disabled(p)) {
2704 err = arm_kprobe(p);
2705 if (err) {
2706 errors++;
2707 ret = err;
2708 }
2709 total++;
2710 }
2711 }
2712 }
2713
2714 if (errors)
2715 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2716 errors, total);
2717 else
2718 pr_info("Kprobes globally enabled\n");
2719
2720 already_enabled:
2721 mutex_unlock(&kprobe_mutex);
2722 return ret;
2723 }
2724
disarm_all_kprobes(void)2725 static int disarm_all_kprobes(void)
2726 {
2727 struct hlist_head *head;
2728 struct kprobe *p;
2729 unsigned int i, total = 0, errors = 0;
2730 int err, ret = 0;
2731
2732 mutex_lock(&kprobe_mutex);
2733
2734 /* If kprobes are already disarmed, just return */
2735 if (kprobes_all_disarmed) {
2736 mutex_unlock(&kprobe_mutex);
2737 return 0;
2738 }
2739
2740 kprobes_all_disarmed = true;
2741
2742 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2743 head = &kprobe_table[i];
2744 /* Disarm all kprobes on a best-effort basis */
2745 hlist_for_each_entry(p, head, hlist) {
2746 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2747 err = disarm_kprobe(p, false);
2748 if (err) {
2749 errors++;
2750 ret = err;
2751 }
2752 total++;
2753 }
2754 }
2755 }
2756
2757 if (errors)
2758 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2759 errors, total);
2760 else
2761 pr_info("Kprobes globally disabled\n");
2762
2763 mutex_unlock(&kprobe_mutex);
2764
2765 /* Wait for disarming all kprobes by optimizer */
2766 wait_for_kprobe_optimizer();
2767
2768 return ret;
2769 }
2770
2771 /*
2772 * XXX: The debugfs bool file interface doesn't allow for callbacks
2773 * when the bool state is switched. We can reuse that facility when
2774 * available
2775 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2776 static ssize_t read_enabled_file_bool(struct file *file,
2777 char __user *user_buf, size_t count, loff_t *ppos)
2778 {
2779 char buf[3];
2780
2781 if (!kprobes_all_disarmed)
2782 buf[0] = '1';
2783 else
2784 buf[0] = '0';
2785 buf[1] = '\n';
2786 buf[2] = 0x00;
2787 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2788 }
2789
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2790 static ssize_t write_enabled_file_bool(struct file *file,
2791 const char __user *user_buf, size_t count, loff_t *ppos)
2792 {
2793 char buf[32];
2794 size_t buf_size;
2795 int ret = 0;
2796
2797 buf_size = min(count, (sizeof(buf)-1));
2798 if (copy_from_user(buf, user_buf, buf_size))
2799 return -EFAULT;
2800
2801 buf[buf_size] = '\0';
2802 switch (buf[0]) {
2803 case 'y':
2804 case 'Y':
2805 case '1':
2806 ret = arm_all_kprobes();
2807 break;
2808 case 'n':
2809 case 'N':
2810 case '0':
2811 ret = disarm_all_kprobes();
2812 break;
2813 default:
2814 return -EINVAL;
2815 }
2816
2817 if (ret)
2818 return ret;
2819
2820 return count;
2821 }
2822
2823 static const struct file_operations fops_kp = {
2824 .read = read_enabled_file_bool,
2825 .write = write_enabled_file_bool,
2826 .llseek = default_llseek,
2827 };
2828
debugfs_kprobe_init(void)2829 static int __init debugfs_kprobe_init(void)
2830 {
2831 struct dentry *dir;
2832
2833 dir = debugfs_create_dir("kprobes", NULL);
2834
2835 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2836
2837 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2838
2839 debugfs_create_file("blacklist", 0400, dir, NULL,
2840 &kprobe_blacklist_fops);
2841
2842 return 0;
2843 }
2844
2845 late_initcall(debugfs_kprobe_init);
2846 #endif /* CONFIG_DEBUG_FS */
2847