1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 struct kthread_create_info
39 {
40 /* Information passed to kthread() from kthreadd. */
41 int (*threadfn)(void *data);
42 void *data;
43 int node;
44
45 /* Result passed back to kthread_create() from kthreadd. */
46 struct task_struct *result;
47 struct completion *done;
48
49 struct list_head list;
50 };
51
52 struct kthread {
53 unsigned long flags;
54 unsigned int cpu;
55 int (*threadfn)(void *);
56 void *data;
57 mm_segment_t oldfs;
58 struct completion parked;
59 struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 struct cgroup_subsys_state *blkcg_css;
62 #endif
63 /* To store the full name if task comm is truncated. */
64 char *full_name;
65 };
66
67 enum KTHREAD_BITS {
68 KTHREAD_IS_PER_CPU = 0,
69 KTHREAD_SHOULD_STOP,
70 KTHREAD_SHOULD_PARK,
71 };
72
to_kthread(struct task_struct * k)73 static inline struct kthread *to_kthread(struct task_struct *k)
74 {
75 WARN_ON(!(k->flags & PF_KTHREAD));
76 return (__force void *)k->set_child_tid;
77 }
78
79 /*
80 * Variant of to_kthread() that doesn't assume @p is a kthread.
81 *
82 * Per construction; when:
83 *
84 * (p->flags & PF_KTHREAD) && p->set_child_tid
85 *
86 * the task is both a kthread and struct kthread is persistent. However
87 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
88 * begin_new_exec()).
89 */
__to_kthread(struct task_struct * p)90 static inline struct kthread *__to_kthread(struct task_struct *p)
91 {
92 void *kthread = (__force void *)p->set_child_tid;
93 if (kthread && !(p->flags & PF_KTHREAD))
94 kthread = NULL;
95 return kthread;
96 }
97
get_kthread_comm(char * buf,size_t buf_size,struct task_struct * tsk)98 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
99 {
100 struct kthread *kthread = to_kthread(tsk);
101
102 if (!kthread || !kthread->full_name) {
103 __get_task_comm(buf, buf_size, tsk);
104 return;
105 }
106
107 strscpy_pad(buf, kthread->full_name, buf_size);
108 }
109
set_kthread_struct(struct task_struct * p)110 void set_kthread_struct(struct task_struct *p)
111 {
112 struct kthread *kthread;
113
114 if (__to_kthread(p))
115 return;
116
117 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
118 /*
119 * We abuse ->set_child_tid to avoid the new member and because it
120 * can't be wrongly copied by copy_process(). We also rely on fact
121 * that the caller can't exec, so PF_KTHREAD can't be cleared.
122 */
123 p->set_child_tid = (__force void __user *)kthread;
124 }
125
free_kthread_struct(struct task_struct * k)126 void free_kthread_struct(struct task_struct *k)
127 {
128 struct kthread *kthread;
129
130 /*
131 * Can be NULL if this kthread was created by kernel_thread()
132 * or if kmalloc() in kthread() failed.
133 */
134 kthread = to_kthread(k);
135 if (!kthread)
136 return;
137
138 #ifdef CONFIG_BLK_CGROUP
139 WARN_ON_ONCE(kthread->blkcg_css);
140 #endif
141 kfree(kthread->full_name);
142 kfree(kthread);
143 }
144
145 /**
146 * kthread_should_stop - should this kthread return now?
147 *
148 * When someone calls kthread_stop() on your kthread, it will be woken
149 * and this will return true. You should then return, and your return
150 * value will be passed through to kthread_stop().
151 */
kthread_should_stop(void)152 bool kthread_should_stop(void)
153 {
154 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
155 }
156 EXPORT_SYMBOL(kthread_should_stop);
157
__kthread_should_park(struct task_struct * k)158 bool __kthread_should_park(struct task_struct *k)
159 {
160 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
161 }
162 EXPORT_SYMBOL_GPL(__kthread_should_park);
163
164 /**
165 * kthread_should_park - should this kthread park now?
166 *
167 * When someone calls kthread_park() on your kthread, it will be woken
168 * and this will return true. You should then do the necessary
169 * cleanup and call kthread_parkme()
170 *
171 * Similar to kthread_should_stop(), but this keeps the thread alive
172 * and in a park position. kthread_unpark() "restarts" the thread and
173 * calls the thread function again.
174 */
kthread_should_park(void)175 bool kthread_should_park(void)
176 {
177 return __kthread_should_park(current);
178 }
179 EXPORT_SYMBOL_GPL(kthread_should_park);
180
181 /**
182 * kthread_freezable_should_stop - should this freezable kthread return now?
183 * @was_frozen: optional out parameter, indicates whether %current was frozen
184 *
185 * kthread_should_stop() for freezable kthreads, which will enter
186 * refrigerator if necessary. This function is safe from kthread_stop() /
187 * freezer deadlock and freezable kthreads should use this function instead
188 * of calling try_to_freeze() directly.
189 */
kthread_freezable_should_stop(bool * was_frozen)190 bool kthread_freezable_should_stop(bool *was_frozen)
191 {
192 bool frozen = false;
193
194 might_sleep();
195
196 if (unlikely(freezing(current)))
197 frozen = __refrigerator(true);
198
199 if (was_frozen)
200 *was_frozen = frozen;
201
202 return kthread_should_stop();
203 }
204 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
205
206 /**
207 * kthread_func - return the function specified on kthread creation
208 * @task: kthread task in question
209 *
210 * Returns NULL if the task is not a kthread.
211 */
kthread_func(struct task_struct * task)212 void *kthread_func(struct task_struct *task)
213 {
214 struct kthread *kthread = __to_kthread(task);
215 if (kthread)
216 return kthread->threadfn;
217 return NULL;
218 }
219 EXPORT_SYMBOL_GPL(kthread_func);
220
221 /**
222 * kthread_data - return data value specified on kthread creation
223 * @task: kthread task in question
224 *
225 * Return the data value specified when kthread @task was created.
226 * The caller is responsible for ensuring the validity of @task when
227 * calling this function.
228 */
kthread_data(struct task_struct * task)229 void *kthread_data(struct task_struct *task)
230 {
231 return to_kthread(task)->data;
232 }
233 EXPORT_SYMBOL_GPL(kthread_data);
234
235 /**
236 * kthread_probe_data - speculative version of kthread_data()
237 * @task: possible kthread task in question
238 *
239 * @task could be a kthread task. Return the data value specified when it
240 * was created if accessible. If @task isn't a kthread task or its data is
241 * inaccessible for any reason, %NULL is returned. This function requires
242 * that @task itself is safe to dereference.
243 */
kthread_probe_data(struct task_struct * task)244 void *kthread_probe_data(struct task_struct *task)
245 {
246 struct kthread *kthread = __to_kthread(task);
247 void *data = NULL;
248
249 if (kthread)
250 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
251 return data;
252 }
253
__kthread_parkme(struct kthread * self)254 static void __kthread_parkme(struct kthread *self)
255 {
256 for (;;) {
257 /*
258 * TASK_PARKED is a special state; we must serialize against
259 * possible pending wakeups to avoid store-store collisions on
260 * task->state.
261 *
262 * Such a collision might possibly result in the task state
263 * changin from TASK_PARKED and us failing the
264 * wait_task_inactive() in kthread_park().
265 */
266 set_special_state(TASK_PARKED);
267 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
268 break;
269
270 /*
271 * Thread is going to call schedule(), do not preempt it,
272 * or the caller of kthread_park() may spend more time in
273 * wait_task_inactive().
274 */
275 preempt_disable();
276 complete(&self->parked);
277 schedule_preempt_disabled();
278 preempt_enable();
279 }
280 __set_current_state(TASK_RUNNING);
281 }
282
kthread_parkme(void)283 void kthread_parkme(void)
284 {
285 __kthread_parkme(to_kthread(current));
286 }
287 EXPORT_SYMBOL_GPL(kthread_parkme);
288
kthread(void * _create)289 static int kthread(void *_create)
290 {
291 /* Copy data: it's on kthread's stack */
292 struct kthread_create_info *create = _create;
293 int (*threadfn)(void *data) = create->threadfn;
294 void *data = create->data;
295 struct completion *done;
296 struct kthread *self;
297 int ret;
298
299 set_kthread_struct(current);
300 self = to_kthread(current);
301
302 /* If user was SIGKILLed, I release the structure. */
303 done = xchg(&create->done, NULL);
304 if (!done) {
305 kfree(create);
306 do_exit(-EINTR);
307 }
308
309 if (!self) {
310 create->result = ERR_PTR(-ENOMEM);
311 complete(done);
312 do_exit(-ENOMEM);
313 }
314
315 self->threadfn = threadfn;
316 self->data = data;
317 init_completion(&self->exited);
318 init_completion(&self->parked);
319 current->vfork_done = &self->exited;
320
321 /* OK, tell user we're spawned, wait for stop or wakeup */
322 __set_current_state(TASK_UNINTERRUPTIBLE);
323 create->result = current;
324 /*
325 * Thread is going to call schedule(), do not preempt it,
326 * or the creator may spend more time in wait_task_inactive().
327 */
328 preempt_disable();
329 complete(done);
330 schedule_preempt_disabled();
331 preempt_enable();
332
333 ret = -EINTR;
334 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
335 cgroup_kthread_ready();
336 __kthread_parkme(self);
337 ret = threadfn(data);
338 }
339 do_exit(ret);
340 }
341
342 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)343 int tsk_fork_get_node(struct task_struct *tsk)
344 {
345 #ifdef CONFIG_NUMA
346 if (tsk == kthreadd_task)
347 return tsk->pref_node_fork;
348 #endif
349 return NUMA_NO_NODE;
350 }
351
create_kthread(struct kthread_create_info * create)352 static void create_kthread(struct kthread_create_info *create)
353 {
354 int pid;
355
356 #ifdef CONFIG_NUMA
357 current->pref_node_fork = create->node;
358 #endif
359 /* We want our own signal handler (we take no signals by default). */
360 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
361 if (pid < 0) {
362 /* If user was SIGKILLed, I release the structure. */
363 struct completion *done = xchg(&create->done, NULL);
364
365 if (!done) {
366 kfree(create);
367 return;
368 }
369 create->result = ERR_PTR(pid);
370 complete(done);
371 }
372 }
373
374 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)375 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
376 void *data, int node,
377 const char namefmt[],
378 va_list args)
379 {
380 DECLARE_COMPLETION_ONSTACK(done);
381 struct task_struct *task;
382 struct kthread_create_info *create = kmalloc(sizeof(*create),
383 GFP_KERNEL);
384
385 if (!create)
386 return ERR_PTR(-ENOMEM);
387 create->threadfn = threadfn;
388 create->data = data;
389 create->node = node;
390 create->done = &done;
391
392 spin_lock(&kthread_create_lock);
393 list_add_tail(&create->list, &kthread_create_list);
394 spin_unlock(&kthread_create_lock);
395
396 wake_up_process(kthreadd_task);
397 /*
398 * Wait for completion in killable state, for I might be chosen by
399 * the OOM killer while kthreadd is trying to allocate memory for
400 * new kernel thread.
401 */
402 if (unlikely(wait_for_completion_killable(&done))) {
403 /*
404 * If I was SIGKILLed before kthreadd (or new kernel thread)
405 * calls complete(), leave the cleanup of this structure to
406 * that thread.
407 */
408 if (xchg(&create->done, NULL))
409 return ERR_PTR(-EINTR);
410 /*
411 * kthreadd (or new kernel thread) will call complete()
412 * shortly.
413 */
414 wait_for_completion(&done);
415 }
416 task = create->result;
417 if (!IS_ERR(task)) {
418 static const struct sched_param param = { .sched_priority = 0 };
419 char name[TASK_COMM_LEN];
420 va_list aq;
421 int len;
422
423 /*
424 * task is already visible to other tasks, so updating
425 * COMM must be protected.
426 */
427 va_copy(aq, args);
428 len = vsnprintf(name, sizeof(name), namefmt, aq);
429 va_end(aq);
430 if (len >= TASK_COMM_LEN) {
431 struct kthread *kthread = to_kthread(task);
432
433 /* leave it truncated when out of memory. */
434 kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
435 }
436 set_task_comm(task, name);
437 /*
438 * root may have changed our (kthreadd's) priority or CPU mask.
439 * The kernel thread should not inherit these properties.
440 */
441 sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m);
442 set_cpus_allowed_ptr(task,
443 housekeeping_cpumask(HK_FLAG_KTHREAD));
444 }
445 kfree(create);
446 return task;
447 }
448
449 /**
450 * kthread_create_on_node - create a kthread.
451 * @threadfn: the function to run until signal_pending(current).
452 * @data: data ptr for @threadfn.
453 * @node: task and thread structures for the thread are allocated on this node
454 * @namefmt: printf-style name for the thread.
455 *
456 * Description: This helper function creates and names a kernel
457 * thread. The thread will be stopped: use wake_up_process() to start
458 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
459 * is affine to all CPUs.
460 *
461 * If thread is going to be bound on a particular cpu, give its node
462 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
463 * When woken, the thread will run @threadfn() with @data as its
464 * argument. @threadfn() can either call do_exit() directly if it is a
465 * standalone thread for which no one will call kthread_stop(), or
466 * return when 'kthread_should_stop()' is true (which means
467 * kthread_stop() has been called). The return value should be zero
468 * or a negative error number; it will be passed to kthread_stop().
469 *
470 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
471 */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)472 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
473 void *data, int node,
474 const char namefmt[],
475 ...)
476 {
477 struct task_struct *task;
478 va_list args;
479
480 va_start(args, namefmt);
481 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
482 va_end(args);
483
484 return task;
485 }
486 EXPORT_SYMBOL(kthread_create_on_node);
487
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)488 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
489 {
490 unsigned long flags;
491
492 if (!wait_task_inactive(p, state)) {
493 WARN_ON(1);
494 return;
495 }
496
497 /* It's safe because the task is inactive. */
498 raw_spin_lock_irqsave(&p->pi_lock, flags);
499 do_set_cpus_allowed(p, mask);
500 p->flags |= PF_NO_SETAFFINITY;
501 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
502 }
503
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)504 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
505 {
506 __kthread_bind_mask(p, cpumask_of(cpu), state);
507 }
508
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)509 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
510 {
511 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
512 }
513 EXPORT_SYMBOL_GPL(kthread_bind_mask);
514
515 /**
516 * kthread_bind - bind a just-created kthread to a cpu.
517 * @p: thread created by kthread_create().
518 * @cpu: cpu (might not be online, must be possible) for @k to run on.
519 *
520 * Description: This function is equivalent to set_cpus_allowed(),
521 * except that @cpu doesn't need to be online, and the thread must be
522 * stopped (i.e., just returned from kthread_create()).
523 */
kthread_bind(struct task_struct * p,unsigned int cpu)524 void kthread_bind(struct task_struct *p, unsigned int cpu)
525 {
526 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
527 }
528 EXPORT_SYMBOL(kthread_bind);
529
530 /**
531 * kthread_create_on_cpu - Create a cpu bound kthread
532 * @threadfn: the function to run until signal_pending(current).
533 * @data: data ptr for @threadfn.
534 * @cpu: The cpu on which the thread should be bound,
535 * @namefmt: printf-style name for the thread. Format is restricted
536 * to "name.*%u". Code fills in cpu number.
537 *
538 * Description: This helper function creates and names a kernel thread
539 */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)540 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
541 void *data, unsigned int cpu,
542 const char *namefmt)
543 {
544 struct task_struct *p;
545
546 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
547 cpu);
548 if (IS_ERR(p))
549 return p;
550 kthread_bind(p, cpu);
551 /* CPU hotplug need to bind once again when unparking the thread. */
552 to_kthread(p)->cpu = cpu;
553 return p;
554 }
555 EXPORT_SYMBOL(kthread_create_on_cpu);
556
kthread_set_per_cpu(struct task_struct * k,int cpu)557 void kthread_set_per_cpu(struct task_struct *k, int cpu)
558 {
559 struct kthread *kthread = to_kthread(k);
560 if (!kthread)
561 return;
562
563 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
564
565 if (cpu < 0) {
566 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
567 return;
568 }
569
570 kthread->cpu = cpu;
571 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
572 }
573
kthread_is_per_cpu(struct task_struct * p)574 bool kthread_is_per_cpu(struct task_struct *p)
575 {
576 struct kthread *kthread = __to_kthread(p);
577 if (!kthread)
578 return false;
579
580 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
581 }
582
583 /**
584 * kthread_unpark - unpark a thread created by kthread_create().
585 * @k: thread created by kthread_create().
586 *
587 * Sets kthread_should_park() for @k to return false, wakes it, and
588 * waits for it to return. If the thread is marked percpu then its
589 * bound to the cpu again.
590 */
kthread_unpark(struct task_struct * k)591 void kthread_unpark(struct task_struct *k)
592 {
593 struct kthread *kthread = to_kthread(k);
594
595 /*
596 * Newly created kthread was parked when the CPU was offline.
597 * The binding was lost and we need to set it again.
598 */
599 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
600 __kthread_bind(k, kthread->cpu, TASK_PARKED);
601
602 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
603 /*
604 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
605 */
606 wake_up_state(k, TASK_PARKED);
607 }
608 EXPORT_SYMBOL_GPL(kthread_unpark);
609
610 /**
611 * kthread_park - park a thread created by kthread_create().
612 * @k: thread created by kthread_create().
613 *
614 * Sets kthread_should_park() for @k to return true, wakes it, and
615 * waits for it to return. This can also be called after kthread_create()
616 * instead of calling wake_up_process(): the thread will park without
617 * calling threadfn().
618 *
619 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
620 * If called by the kthread itself just the park bit is set.
621 */
kthread_park(struct task_struct * k)622 int kthread_park(struct task_struct *k)
623 {
624 struct kthread *kthread = to_kthread(k);
625
626 if (WARN_ON(k->flags & PF_EXITING))
627 return -ENOSYS;
628
629 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
630 return -EBUSY;
631
632 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
633 if (k != current) {
634 wake_up_process(k);
635 /*
636 * Wait for __kthread_parkme() to complete(), this means we
637 * _will_ have TASK_PARKED and are about to call schedule().
638 */
639 wait_for_completion(&kthread->parked);
640 /*
641 * Now wait for that schedule() to complete and the task to
642 * get scheduled out.
643 */
644 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
645 }
646
647 return 0;
648 }
649 EXPORT_SYMBOL_GPL(kthread_park);
650
651 /**
652 * kthread_stop - stop a thread created by kthread_create().
653 * @k: thread created by kthread_create().
654 *
655 * Sets kthread_should_stop() for @k to return true, wakes it, and
656 * waits for it to exit. This can also be called after kthread_create()
657 * instead of calling wake_up_process(): the thread will exit without
658 * calling threadfn().
659 *
660 * If threadfn() may call do_exit() itself, the caller must ensure
661 * task_struct can't go away.
662 *
663 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
664 * was never called.
665 */
kthread_stop(struct task_struct * k)666 int kthread_stop(struct task_struct *k)
667 {
668 struct kthread *kthread;
669 int ret;
670
671 trace_sched_kthread_stop(k);
672
673 get_task_struct(k);
674 kthread = to_kthread(k);
675 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
676 kthread_unpark(k);
677 wake_up_process(k);
678 wait_for_completion(&kthread->exited);
679 ret = k->exit_code;
680 put_task_struct(k);
681
682 trace_sched_kthread_stop_ret(ret);
683 return ret;
684 }
685 EXPORT_SYMBOL(kthread_stop);
686
kthreadd(void * unused)687 int kthreadd(void *unused)
688 {
689 struct task_struct *tsk = current;
690
691 /* Setup a clean context for our children to inherit. */
692 set_task_comm(tsk, "kthreadd");
693 ignore_signals(tsk);
694 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
695 set_mems_allowed(node_states[N_MEMORY]);
696
697 current->flags |= PF_NOFREEZE;
698 cgroup_init_kthreadd();
699
700 for (;;) {
701 set_current_state(TASK_INTERRUPTIBLE);
702 if (list_empty(&kthread_create_list))
703 schedule();
704 __set_current_state(TASK_RUNNING);
705
706 spin_lock(&kthread_create_lock);
707 while (!list_empty(&kthread_create_list)) {
708 struct kthread_create_info *create;
709
710 create = list_entry(kthread_create_list.next,
711 struct kthread_create_info, list);
712 list_del_init(&create->list);
713 spin_unlock(&kthread_create_lock);
714
715 create_kthread(create);
716
717 spin_lock(&kthread_create_lock);
718 }
719 spin_unlock(&kthread_create_lock);
720 }
721
722 return 0;
723 }
724
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)725 void __kthread_init_worker(struct kthread_worker *worker,
726 const char *name,
727 struct lock_class_key *key)
728 {
729 memset(worker, 0, sizeof(struct kthread_worker));
730 raw_spin_lock_init(&worker->lock);
731 lockdep_set_class_and_name(&worker->lock, key, name);
732 INIT_LIST_HEAD(&worker->work_list);
733 INIT_LIST_HEAD(&worker->delayed_work_list);
734 }
735 EXPORT_SYMBOL_GPL(__kthread_init_worker);
736
737 /**
738 * kthread_worker_fn - kthread function to process kthread_worker
739 * @worker_ptr: pointer to initialized kthread_worker
740 *
741 * This function implements the main cycle of kthread worker. It processes
742 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
743 * is empty.
744 *
745 * The works are not allowed to keep any locks, disable preemption or interrupts
746 * when they finish. There is defined a safe point for freezing when one work
747 * finishes and before a new one is started.
748 *
749 * Also the works must not be handled by more than one worker at the same time,
750 * see also kthread_queue_work().
751 */
kthread_worker_fn(void * worker_ptr)752 int kthread_worker_fn(void *worker_ptr)
753 {
754 struct kthread_worker *worker = worker_ptr;
755 struct kthread_work *work;
756
757 /*
758 * FIXME: Update the check and remove the assignment when all kthread
759 * worker users are created using kthread_create_worker*() functions.
760 */
761 WARN_ON(worker->task && worker->task != current);
762 worker->task = current;
763
764 if (worker->flags & KTW_FREEZABLE)
765 set_freezable();
766
767 repeat:
768 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
769
770 if (kthread_should_stop()) {
771 __set_current_state(TASK_RUNNING);
772 raw_spin_lock_irq(&worker->lock);
773 worker->task = NULL;
774 raw_spin_unlock_irq(&worker->lock);
775 return 0;
776 }
777
778 work = NULL;
779 raw_spin_lock_irq(&worker->lock);
780 if (!list_empty(&worker->work_list)) {
781 work = list_first_entry(&worker->work_list,
782 struct kthread_work, node);
783 list_del_init(&work->node);
784 }
785 worker->current_work = work;
786 raw_spin_unlock_irq(&worker->lock);
787
788 if (work) {
789 kthread_work_func_t func = work->func;
790 __set_current_state(TASK_RUNNING);
791 trace_sched_kthread_work_execute_start(work);
792 work->func(work);
793 /*
794 * Avoid dereferencing work after this point. The trace
795 * event only cares about the address.
796 */
797 trace_sched_kthread_work_execute_end(work, func);
798 } else if (!freezing(current))
799 schedule();
800
801 try_to_freeze();
802 cond_resched();
803 goto repeat;
804 }
805 EXPORT_SYMBOL_GPL(kthread_worker_fn);
806
807 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu,unsigned int flags,const char namefmt[],va_list args)808 __kthread_create_worker(int cpu, unsigned int flags,
809 const char namefmt[], va_list args)
810 {
811 struct kthread_worker *worker;
812 struct task_struct *task;
813 int node = NUMA_NO_NODE;
814
815 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
816 if (!worker)
817 return ERR_PTR(-ENOMEM);
818
819 kthread_init_worker(worker);
820
821 if (cpu >= 0)
822 node = cpu_to_node(cpu);
823
824 task = __kthread_create_on_node(kthread_worker_fn, worker,
825 node, namefmt, args);
826 if (IS_ERR(task))
827 goto fail_task;
828
829 if (cpu >= 0)
830 kthread_bind(task, cpu);
831
832 worker->flags = flags;
833 worker->task = task;
834 wake_up_process(task);
835 return worker;
836
837 fail_task:
838 kfree(worker);
839 return ERR_CAST(task);
840 }
841
842 /**
843 * kthread_create_worker - create a kthread worker
844 * @flags: flags modifying the default behavior of the worker
845 * @namefmt: printf-style name for the kthread worker (task).
846 *
847 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
848 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
849 * when the worker was SIGKILLed.
850 */
851 struct kthread_worker *
kthread_create_worker(unsigned int flags,const char namefmt[],...)852 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
853 {
854 struct kthread_worker *worker;
855 va_list args;
856
857 va_start(args, namefmt);
858 worker = __kthread_create_worker(-1, flags, namefmt, args);
859 va_end(args);
860
861 return worker;
862 }
863 EXPORT_SYMBOL(kthread_create_worker);
864
865 /**
866 * kthread_create_worker_on_cpu - create a kthread worker and bind it
867 * to a given CPU and the associated NUMA node.
868 * @cpu: CPU number
869 * @flags: flags modifying the default behavior of the worker
870 * @namefmt: printf-style name for the kthread worker (task).
871 *
872 * Use a valid CPU number if you want to bind the kthread worker
873 * to the given CPU and the associated NUMA node.
874 *
875 * A good practice is to add the cpu number also into the worker name.
876 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
877 *
878 * CPU hotplug:
879 * The kthread worker API is simple and generic. It just provides a way
880 * to create, use, and destroy workers.
881 *
882 * It is up to the API user how to handle CPU hotplug. They have to decide
883 * how to handle pending work items, prevent queuing new ones, and
884 * restore the functionality when the CPU goes off and on. There are a
885 * few catches:
886 *
887 * - CPU affinity gets lost when it is scheduled on an offline CPU.
888 *
889 * - The worker might not exist when the CPU was off when the user
890 * created the workers.
891 *
892 * Good practice is to implement two CPU hotplug callbacks and to
893 * destroy/create the worker when the CPU goes down/up.
894 *
895 * Return:
896 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
897 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
898 * when the worker was SIGKILLed.
899 */
900 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[],...)901 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
902 const char namefmt[], ...)
903 {
904 struct kthread_worker *worker;
905 va_list args;
906
907 va_start(args, namefmt);
908 worker = __kthread_create_worker(cpu, flags, namefmt, args);
909 va_end(args);
910
911 return worker;
912 }
913 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
914
915 /*
916 * Returns true when the work could not be queued at the moment.
917 * It happens when it is already pending in a worker list
918 * or when it is being cancelled.
919 */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)920 static inline bool queuing_blocked(struct kthread_worker *worker,
921 struct kthread_work *work)
922 {
923 lockdep_assert_held(&worker->lock);
924
925 return !list_empty(&work->node) || work->canceling;
926 }
927
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)928 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
929 struct kthread_work *work)
930 {
931 lockdep_assert_held(&worker->lock);
932 WARN_ON_ONCE(!list_empty(&work->node));
933 /* Do not use a work with >1 worker, see kthread_queue_work() */
934 WARN_ON_ONCE(work->worker && work->worker != worker);
935 }
936
937 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)938 static void kthread_insert_work(struct kthread_worker *worker,
939 struct kthread_work *work,
940 struct list_head *pos)
941 {
942 kthread_insert_work_sanity_check(worker, work);
943
944 trace_sched_kthread_work_queue_work(worker, work);
945
946 list_add_tail(&work->node, pos);
947 work->worker = worker;
948 if (!worker->current_work && likely(worker->task))
949 wake_up_process(worker->task);
950 }
951
952 /**
953 * kthread_queue_work - queue a kthread_work
954 * @worker: target kthread_worker
955 * @work: kthread_work to queue
956 *
957 * Queue @work to work processor @task for async execution. @task
958 * must have been created with kthread_worker_create(). Returns %true
959 * if @work was successfully queued, %false if it was already pending.
960 *
961 * Reinitialize the work if it needs to be used by another worker.
962 * For example, when the worker was stopped and started again.
963 */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)964 bool kthread_queue_work(struct kthread_worker *worker,
965 struct kthread_work *work)
966 {
967 bool ret = false;
968 unsigned long flags;
969
970 raw_spin_lock_irqsave(&worker->lock, flags);
971 if (!queuing_blocked(worker, work)) {
972 kthread_insert_work(worker, work, &worker->work_list);
973 ret = true;
974 }
975 raw_spin_unlock_irqrestore(&worker->lock, flags);
976 return ret;
977 }
978 EXPORT_SYMBOL_GPL(kthread_queue_work);
979
980 /**
981 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
982 * delayed work when the timer expires.
983 * @t: pointer to the expired timer
984 *
985 * The format of the function is defined by struct timer_list.
986 * It should have been called from irqsafe timer with irq already off.
987 */
kthread_delayed_work_timer_fn(struct timer_list * t)988 void kthread_delayed_work_timer_fn(struct timer_list *t)
989 {
990 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
991 struct kthread_work *work = &dwork->work;
992 struct kthread_worker *worker = work->worker;
993 unsigned long flags;
994
995 /*
996 * This might happen when a pending work is reinitialized.
997 * It means that it is used a wrong way.
998 */
999 if (WARN_ON_ONCE(!worker))
1000 return;
1001
1002 raw_spin_lock_irqsave(&worker->lock, flags);
1003 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1004 WARN_ON_ONCE(work->worker != worker);
1005
1006 /* Move the work from worker->delayed_work_list. */
1007 WARN_ON_ONCE(list_empty(&work->node));
1008 list_del_init(&work->node);
1009 if (!work->canceling)
1010 kthread_insert_work(worker, work, &worker->work_list);
1011
1012 raw_spin_unlock_irqrestore(&worker->lock, flags);
1013 }
1014 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1015
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1016 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1017 struct kthread_delayed_work *dwork,
1018 unsigned long delay)
1019 {
1020 struct timer_list *timer = &dwork->timer;
1021 struct kthread_work *work = &dwork->work;
1022
1023 WARN_ON_FUNCTION_MISMATCH(timer->function,
1024 kthread_delayed_work_timer_fn);
1025
1026 /*
1027 * If @delay is 0, queue @dwork->work immediately. This is for
1028 * both optimization and correctness. The earliest @timer can
1029 * expire is on the closest next tick and delayed_work users depend
1030 * on that there's no such delay when @delay is 0.
1031 */
1032 if (!delay) {
1033 kthread_insert_work(worker, work, &worker->work_list);
1034 return;
1035 }
1036
1037 /* Be paranoid and try to detect possible races already now. */
1038 kthread_insert_work_sanity_check(worker, work);
1039
1040 list_add(&work->node, &worker->delayed_work_list);
1041 work->worker = worker;
1042 timer->expires = jiffies + delay;
1043 add_timer(timer);
1044 }
1045
1046 /**
1047 * kthread_queue_delayed_work - queue the associated kthread work
1048 * after a delay.
1049 * @worker: target kthread_worker
1050 * @dwork: kthread_delayed_work to queue
1051 * @delay: number of jiffies to wait before queuing
1052 *
1053 * If the work has not been pending it starts a timer that will queue
1054 * the work after the given @delay. If @delay is zero, it queues the
1055 * work immediately.
1056 *
1057 * Return: %false if the @work has already been pending. It means that
1058 * either the timer was running or the work was queued. It returns %true
1059 * otherwise.
1060 */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1061 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1062 struct kthread_delayed_work *dwork,
1063 unsigned long delay)
1064 {
1065 struct kthread_work *work = &dwork->work;
1066 unsigned long flags;
1067 bool ret = false;
1068
1069 raw_spin_lock_irqsave(&worker->lock, flags);
1070
1071 if (!queuing_blocked(worker, work)) {
1072 __kthread_queue_delayed_work(worker, dwork, delay);
1073 ret = true;
1074 }
1075
1076 raw_spin_unlock_irqrestore(&worker->lock, flags);
1077 return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1080
1081 struct kthread_flush_work {
1082 struct kthread_work work;
1083 struct completion done;
1084 };
1085
kthread_flush_work_fn(struct kthread_work * work)1086 static void kthread_flush_work_fn(struct kthread_work *work)
1087 {
1088 struct kthread_flush_work *fwork =
1089 container_of(work, struct kthread_flush_work, work);
1090 complete(&fwork->done);
1091 }
1092
1093 /**
1094 * kthread_flush_work - flush a kthread_work
1095 * @work: work to flush
1096 *
1097 * If @work is queued or executing, wait for it to finish execution.
1098 */
kthread_flush_work(struct kthread_work * work)1099 void kthread_flush_work(struct kthread_work *work)
1100 {
1101 struct kthread_flush_work fwork = {
1102 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1103 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1104 };
1105 struct kthread_worker *worker;
1106 bool noop = false;
1107
1108 worker = work->worker;
1109 if (!worker)
1110 return;
1111
1112 raw_spin_lock_irq(&worker->lock);
1113 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1114 WARN_ON_ONCE(work->worker != worker);
1115
1116 if (!list_empty(&work->node))
1117 kthread_insert_work(worker, &fwork.work, work->node.next);
1118 else if (worker->current_work == work)
1119 kthread_insert_work(worker, &fwork.work,
1120 worker->work_list.next);
1121 else
1122 noop = true;
1123
1124 raw_spin_unlock_irq(&worker->lock);
1125
1126 if (!noop)
1127 wait_for_completion(&fwork.done);
1128 }
1129 EXPORT_SYMBOL_GPL(kthread_flush_work);
1130
1131 /*
1132 * Make sure that the timer is neither set nor running and could
1133 * not manipulate the work list_head any longer.
1134 *
1135 * The function is called under worker->lock. The lock is temporary
1136 * released but the timer can't be set again in the meantime.
1137 */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1138 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1139 unsigned long *flags)
1140 {
1141 struct kthread_delayed_work *dwork =
1142 container_of(work, struct kthread_delayed_work, work);
1143 struct kthread_worker *worker = work->worker;
1144
1145 /*
1146 * del_timer_sync() must be called to make sure that the timer
1147 * callback is not running. The lock must be temporary released
1148 * to avoid a deadlock with the callback. In the meantime,
1149 * any queuing is blocked by setting the canceling counter.
1150 */
1151 work->canceling++;
1152 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1153 del_timer_sync(&dwork->timer);
1154 raw_spin_lock_irqsave(&worker->lock, *flags);
1155 work->canceling--;
1156 }
1157
1158 /*
1159 * This function removes the work from the worker queue.
1160 *
1161 * It is called under worker->lock. The caller must make sure that
1162 * the timer used by delayed work is not running, e.g. by calling
1163 * kthread_cancel_delayed_work_timer().
1164 *
1165 * The work might still be in use when this function finishes. See the
1166 * current_work proceed by the worker.
1167 *
1168 * Return: %true if @work was pending and successfully canceled,
1169 * %false if @work was not pending
1170 */
__kthread_cancel_work(struct kthread_work * work)1171 static bool __kthread_cancel_work(struct kthread_work *work)
1172 {
1173 /*
1174 * Try to remove the work from a worker list. It might either
1175 * be from worker->work_list or from worker->delayed_work_list.
1176 */
1177 if (!list_empty(&work->node)) {
1178 list_del_init(&work->node);
1179 return true;
1180 }
1181
1182 return false;
1183 }
1184
1185 /**
1186 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1187 * @worker: kthread worker to use
1188 * @dwork: kthread delayed work to queue
1189 * @delay: number of jiffies to wait before queuing
1190 *
1191 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1192 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1193 * @work is guaranteed to be queued immediately.
1194 *
1195 * Return: %false if @dwork was idle and queued, %true otherwise.
1196 *
1197 * A special case is when the work is being canceled in parallel.
1198 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1199 * or yet another kthread_mod_delayed_work() call. We let the other command
1200 * win and return %true here. The return value can be used for reference
1201 * counting and the number of queued works stays the same. Anyway, the caller
1202 * is supposed to synchronize these operations a reasonable way.
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1206 * for details.
1207 */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1208 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1209 struct kthread_delayed_work *dwork,
1210 unsigned long delay)
1211 {
1212 struct kthread_work *work = &dwork->work;
1213 unsigned long flags;
1214 int ret;
1215
1216 raw_spin_lock_irqsave(&worker->lock, flags);
1217
1218 /* Do not bother with canceling when never queued. */
1219 if (!work->worker) {
1220 ret = false;
1221 goto fast_queue;
1222 }
1223
1224 /* Work must not be used with >1 worker, see kthread_queue_work() */
1225 WARN_ON_ONCE(work->worker != worker);
1226
1227 /*
1228 * Temporary cancel the work but do not fight with another command
1229 * that is canceling the work as well.
1230 *
1231 * It is a bit tricky because of possible races with another
1232 * mod_delayed_work() and cancel_delayed_work() callers.
1233 *
1234 * The timer must be canceled first because worker->lock is released
1235 * when doing so. But the work can be removed from the queue (list)
1236 * only when it can be queued again so that the return value can
1237 * be used for reference counting.
1238 */
1239 kthread_cancel_delayed_work_timer(work, &flags);
1240 if (work->canceling) {
1241 /* The number of works in the queue does not change. */
1242 ret = true;
1243 goto out;
1244 }
1245 ret = __kthread_cancel_work(work);
1246
1247 fast_queue:
1248 __kthread_queue_delayed_work(worker, dwork, delay);
1249 out:
1250 raw_spin_unlock_irqrestore(&worker->lock, flags);
1251 return ret;
1252 }
1253 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1254
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1255 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1256 {
1257 struct kthread_worker *worker = work->worker;
1258 unsigned long flags;
1259 int ret = false;
1260
1261 if (!worker)
1262 goto out;
1263
1264 raw_spin_lock_irqsave(&worker->lock, flags);
1265 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1266 WARN_ON_ONCE(work->worker != worker);
1267
1268 if (is_dwork)
1269 kthread_cancel_delayed_work_timer(work, &flags);
1270
1271 ret = __kthread_cancel_work(work);
1272
1273 if (worker->current_work != work)
1274 goto out_fast;
1275
1276 /*
1277 * The work is in progress and we need to wait with the lock released.
1278 * In the meantime, block any queuing by setting the canceling counter.
1279 */
1280 work->canceling++;
1281 raw_spin_unlock_irqrestore(&worker->lock, flags);
1282 kthread_flush_work(work);
1283 raw_spin_lock_irqsave(&worker->lock, flags);
1284 work->canceling--;
1285
1286 out_fast:
1287 raw_spin_unlock_irqrestore(&worker->lock, flags);
1288 out:
1289 return ret;
1290 }
1291
1292 /**
1293 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1294 * @work: the kthread work to cancel
1295 *
1296 * Cancel @work and wait for its execution to finish. This function
1297 * can be used even if the work re-queues itself. On return from this
1298 * function, @work is guaranteed to be not pending or executing on any CPU.
1299 *
1300 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1301 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1302 *
1303 * The caller must ensure that the worker on which @work was last
1304 * queued can't be destroyed before this function returns.
1305 *
1306 * Return: %true if @work was pending, %false otherwise.
1307 */
kthread_cancel_work_sync(struct kthread_work * work)1308 bool kthread_cancel_work_sync(struct kthread_work *work)
1309 {
1310 return __kthread_cancel_work_sync(work, false);
1311 }
1312 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1313
1314 /**
1315 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1316 * wait for it to finish.
1317 * @dwork: the kthread delayed work to cancel
1318 *
1319 * This is kthread_cancel_work_sync() for delayed works.
1320 *
1321 * Return: %true if @dwork was pending, %false otherwise.
1322 */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1323 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1324 {
1325 return __kthread_cancel_work_sync(&dwork->work, true);
1326 }
1327 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1328
1329 /**
1330 * kthread_flush_worker - flush all current works on a kthread_worker
1331 * @worker: worker to flush
1332 *
1333 * Wait until all currently executing or pending works on @worker are
1334 * finished.
1335 */
kthread_flush_worker(struct kthread_worker * worker)1336 void kthread_flush_worker(struct kthread_worker *worker)
1337 {
1338 struct kthread_flush_work fwork = {
1339 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1340 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1341 };
1342
1343 kthread_queue_work(worker, &fwork.work);
1344 wait_for_completion(&fwork.done);
1345 }
1346 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1347
1348 /**
1349 * kthread_destroy_worker - destroy a kthread worker
1350 * @worker: worker to be destroyed
1351 *
1352 * Flush and destroy @worker. The simple flush is enough because the kthread
1353 * worker API is used only in trivial scenarios. There are no multi-step state
1354 * machines needed.
1355 */
kthread_destroy_worker(struct kthread_worker * worker)1356 void kthread_destroy_worker(struct kthread_worker *worker)
1357 {
1358 struct task_struct *task;
1359
1360 task = worker->task;
1361 if (WARN_ON(!task))
1362 return;
1363
1364 kthread_flush_worker(worker);
1365 kthread_stop(task);
1366 WARN_ON(!list_empty(&worker->work_list));
1367 kfree(worker);
1368 }
1369 EXPORT_SYMBOL(kthread_destroy_worker);
1370
1371 /**
1372 * kthread_use_mm - make the calling kthread operate on an address space
1373 * @mm: address space to operate on
1374 */
kthread_use_mm(struct mm_struct * mm)1375 void kthread_use_mm(struct mm_struct *mm)
1376 {
1377 struct mm_struct *active_mm;
1378 struct task_struct *tsk = current;
1379
1380 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1381 WARN_ON_ONCE(tsk->mm);
1382
1383 task_lock(tsk);
1384 /* Hold off tlb flush IPIs while switching mm's */
1385 local_irq_disable();
1386 active_mm = tsk->active_mm;
1387 if (active_mm != mm) {
1388 mmgrab(mm);
1389 tsk->active_mm = mm;
1390 }
1391 tsk->mm = mm;
1392 membarrier_update_current_mm(mm);
1393 switch_mm_irqs_off(active_mm, mm, tsk);
1394 local_irq_enable();
1395 task_unlock(tsk);
1396 #ifdef finish_arch_post_lock_switch
1397 finish_arch_post_lock_switch();
1398 #endif
1399
1400 /*
1401 * When a kthread starts operating on an address space, the loop
1402 * in membarrier_{private,global}_expedited() may not observe
1403 * that tsk->mm, and not issue an IPI. Membarrier requires a
1404 * memory barrier after storing to tsk->mm, before accessing
1405 * user-space memory. A full memory barrier for membarrier
1406 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1407 * mmdrop(), or explicitly with smp_mb().
1408 */
1409 if (active_mm != mm)
1410 mmdrop(active_mm);
1411 else
1412 smp_mb();
1413
1414 to_kthread(tsk)->oldfs = force_uaccess_begin();
1415 }
1416 EXPORT_SYMBOL_GPL(kthread_use_mm);
1417
1418 /**
1419 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1420 * @mm: address space to operate on
1421 */
kthread_unuse_mm(struct mm_struct * mm)1422 void kthread_unuse_mm(struct mm_struct *mm)
1423 {
1424 struct task_struct *tsk = current;
1425
1426 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1427 WARN_ON_ONCE(!tsk->mm);
1428
1429 force_uaccess_end(to_kthread(tsk)->oldfs);
1430
1431 task_lock(tsk);
1432 /*
1433 * When a kthread stops operating on an address space, the loop
1434 * in membarrier_{private,global}_expedited() may not observe
1435 * that tsk->mm, and not issue an IPI. Membarrier requires a
1436 * memory barrier after accessing user-space memory, before
1437 * clearing tsk->mm.
1438 */
1439 smp_mb__after_spinlock();
1440 sync_mm_rss(mm);
1441 local_irq_disable();
1442 tsk->mm = NULL;
1443 membarrier_update_current_mm(NULL);
1444 /* active_mm is still 'mm' */
1445 enter_lazy_tlb(mm, tsk);
1446 local_irq_enable();
1447 task_unlock(tsk);
1448 }
1449 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1450
1451 #ifdef CONFIG_BLK_CGROUP
1452 /**
1453 * kthread_associate_blkcg - associate blkcg to current kthread
1454 * @css: the cgroup info
1455 *
1456 * Current thread must be a kthread. The thread is running jobs on behalf of
1457 * other threads. In some cases, we expect the jobs attach cgroup info of
1458 * original threads instead of that of current thread. This function stores
1459 * original thread's cgroup info in current kthread context for later
1460 * retrieval.
1461 */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1462 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1463 {
1464 struct kthread *kthread;
1465
1466 if (!(current->flags & PF_KTHREAD))
1467 return;
1468 kthread = to_kthread(current);
1469 if (!kthread)
1470 return;
1471
1472 if (kthread->blkcg_css) {
1473 css_put(kthread->blkcg_css);
1474 kthread->blkcg_css = NULL;
1475 }
1476 if (css) {
1477 css_get(css);
1478 kthread->blkcg_css = css;
1479 }
1480 }
1481 EXPORT_SYMBOL(kthread_associate_blkcg);
1482
1483 /**
1484 * kthread_blkcg - get associated blkcg css of current kthread
1485 *
1486 * Current thread must be a kthread.
1487 */
kthread_blkcg(void)1488 struct cgroup_subsys_state *kthread_blkcg(void)
1489 {
1490 struct kthread *kthread;
1491
1492 if (current->flags & PF_KTHREAD) {
1493 kthread = to_kthread(current);
1494 if (kthread)
1495 return kthread->blkcg_css;
1496 }
1497 return NULL;
1498 }
1499 EXPORT_SYMBOL(kthread_blkcg);
1500 #endif
1501