• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *				     and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26 #include <trace/hooks/dtask.h>
27 
28 #include "rtmutex_common.h"
29 
30 #ifndef WW_RT
31 # define build_ww_mutex()	(false)
32 # define ww_container_of(rtm)	NULL
33 
__ww_mutex_add_waiter(struct rt_mutex_waiter * waiter,struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)34 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
35 					struct rt_mutex *lock,
36 					struct ww_acquire_ctx *ww_ctx)
37 {
38 	return 0;
39 }
40 
__ww_mutex_check_waiters(struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)41 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
42 					    struct ww_acquire_ctx *ww_ctx)
43 {
44 }
45 
ww_mutex_lock_acquired(struct ww_mutex * lock,struct ww_acquire_ctx * ww_ctx)46 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
47 					  struct ww_acquire_ctx *ww_ctx)
48 {
49 }
50 
__ww_mutex_check_kill(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)51 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
52 					struct rt_mutex_waiter *waiter,
53 					struct ww_acquire_ctx *ww_ctx)
54 {
55 	return 0;
56 }
57 
58 #else
59 # define build_ww_mutex()	(true)
60 # define ww_container_of(rtm)	container_of(rtm, struct ww_mutex, base)
61 # include "ww_mutex.h"
62 #endif
63 
64 /*
65  * lock->owner state tracking:
66  *
67  * lock->owner holds the task_struct pointer of the owner. Bit 0
68  * is used to keep track of the "lock has waiters" state.
69  *
70  * owner	bit0
71  * NULL		0	lock is free (fast acquire possible)
72  * NULL		1	lock is free and has waiters and the top waiter
73  *				is going to take the lock*
74  * taskpointer	0	lock is held (fast release possible)
75  * taskpointer	1	lock is held and has waiters**
76  *
77  * The fast atomic compare exchange based acquire and release is only
78  * possible when bit 0 of lock->owner is 0.
79  *
80  * (*) It also can be a transitional state when grabbing the lock
81  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
82  * we need to set the bit0 before looking at the lock, and the owner may be
83  * NULL in this small time, hence this can be a transitional state.
84  *
85  * (**) There is a small time when bit 0 is set but there are no
86  * waiters. This can happen when grabbing the lock in the slow path.
87  * To prevent a cmpxchg of the owner releasing the lock, we need to
88  * set this bit before looking at the lock.
89  */
90 
91 static __always_inline struct task_struct *
rt_mutex_owner_encode(struct rt_mutex_base * lock,struct task_struct * owner)92 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
93 {
94 	unsigned long val = (unsigned long)owner;
95 
96 	if (rt_mutex_has_waiters(lock))
97 		val |= RT_MUTEX_HAS_WAITERS;
98 
99 	return (struct task_struct *)val;
100 }
101 
102 static __always_inline void
rt_mutex_set_owner(struct rt_mutex_base * lock,struct task_struct * owner)103 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
104 {
105 	/*
106 	 * lock->wait_lock is held but explicit acquire semantics are needed
107 	 * for a new lock owner so WRITE_ONCE is insufficient.
108 	 */
109 	xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
110 }
111 
rt_mutex_clear_owner(struct rt_mutex_base * lock)112 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
113 {
114 	/* lock->wait_lock is held so the unlock provides release semantics. */
115 	WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
116 }
117 
clear_rt_mutex_waiters(struct rt_mutex_base * lock)118 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
119 {
120 	lock->owner = (struct task_struct *)
121 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
122 }
123 
124 static __always_inline void
fixup_rt_mutex_waiters(struct rt_mutex_base * lock,bool acquire_lock)125 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
126 {
127 	unsigned long owner, *p = (unsigned long *) &lock->owner;
128 
129 	if (rt_mutex_has_waiters(lock))
130 		return;
131 
132 	/*
133 	 * The rbtree has no waiters enqueued, now make sure that the
134 	 * lock->owner still has the waiters bit set, otherwise the
135 	 * following can happen:
136 	 *
137 	 * CPU 0	CPU 1		CPU2
138 	 * l->owner=T1
139 	 *		rt_mutex_lock(l)
140 	 *		lock(l->lock)
141 	 *		l->owner = T1 | HAS_WAITERS;
142 	 *		enqueue(T2)
143 	 *		boost()
144 	 *		  unlock(l->lock)
145 	 *		block()
146 	 *
147 	 *				rt_mutex_lock(l)
148 	 *				lock(l->lock)
149 	 *				l->owner = T1 | HAS_WAITERS;
150 	 *				enqueue(T3)
151 	 *				boost()
152 	 *				  unlock(l->lock)
153 	 *				block()
154 	 *		signal(->T2)	signal(->T3)
155 	 *		lock(l->lock)
156 	 *		dequeue(T2)
157 	 *		deboost()
158 	 *		  unlock(l->lock)
159 	 *				lock(l->lock)
160 	 *				dequeue(T3)
161 	 *				 ==> wait list is empty
162 	 *				deboost()
163 	 *				 unlock(l->lock)
164 	 *		lock(l->lock)
165 	 *		fixup_rt_mutex_waiters()
166 	 *		  if (wait_list_empty(l) {
167 	 *		    l->owner = owner
168 	 *		    owner = l->owner & ~HAS_WAITERS;
169 	 *		      ==> l->owner = T1
170 	 *		  }
171 	 *				lock(l->lock)
172 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
173 	 *				  if (wait_list_empty(l) {
174 	 *				    owner = l->owner & ~HAS_WAITERS;
175 	 * cmpxchg(l->owner, T1, NULL)
176 	 *  ===> Success (l->owner = NULL)
177 	 *
178 	 *				    l->owner = owner
179 	 *				      ==> l->owner = T1
180 	 *				  }
181 	 *
182 	 * With the check for the waiter bit in place T3 on CPU2 will not
183 	 * overwrite. All tasks fiddling with the waiters bit are
184 	 * serialized by l->lock, so nothing else can modify the waiters
185 	 * bit. If the bit is set then nothing can change l->owner either
186 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
187 	 * happens in the middle of the RMW because the waiters bit is
188 	 * still set.
189 	 */
190 	owner = READ_ONCE(*p);
191 	if (owner & RT_MUTEX_HAS_WAITERS) {
192 		/*
193 		 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
194 		 * why xchg_acquire() is used for updating owner for
195 		 * locking and WRITE_ONCE() for unlocking.
196 		 *
197 		 * WRITE_ONCE() would work for the acquire case too, but
198 		 * in case that the lock acquisition failed it might
199 		 * force other lockers into the slow path unnecessarily.
200 		 */
201 		if (acquire_lock)
202 			xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
203 		else
204 			WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
205 	}
206 }
207 
208 /*
209  * We can speed up the acquire/release, if there's no debugging state to be
210  * set up.
211  */
212 #ifndef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)213 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
214 						     struct task_struct *old,
215 						     struct task_struct *new)
216 {
217 	return try_cmpxchg_acquire(&lock->owner, &old, new);
218 }
219 
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)220 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
221 						     struct task_struct *old,
222 						     struct task_struct *new)
223 {
224 	return try_cmpxchg_release(&lock->owner, &old, new);
225 }
226 
227 /*
228  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
229  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
230  * relaxed semantics suffice.
231  */
mark_rt_mutex_waiters(struct rt_mutex_base * lock)232 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
233 {
234 	unsigned long owner, *p = (unsigned long *) &lock->owner;
235 
236 	do {
237 		owner = *p;
238 	} while (cmpxchg_relaxed(p, owner,
239 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
240 
241 	/*
242 	 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
243 	 * operations in the event of contention. Ensure the successful
244 	 * cmpxchg is visible.
245 	 */
246 	smp_mb__after_atomic();
247 }
248 
249 /*
250  * Safe fastpath aware unlock:
251  * 1) Clear the waiters bit
252  * 2) Drop lock->wait_lock
253  * 3) Try to unlock the lock with cmpxchg
254  */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)255 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
256 						 unsigned long flags)
257 	__releases(lock->wait_lock)
258 {
259 	struct task_struct *owner = rt_mutex_owner(lock);
260 
261 	clear_rt_mutex_waiters(lock);
262 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
263 	/*
264 	 * If a new waiter comes in between the unlock and the cmpxchg
265 	 * we have two situations:
266 	 *
267 	 * unlock(wait_lock);
268 	 *					lock(wait_lock);
269 	 * cmpxchg(p, owner, 0) == owner
270 	 *					mark_rt_mutex_waiters(lock);
271 	 *					acquire(lock);
272 	 * or:
273 	 *
274 	 * unlock(wait_lock);
275 	 *					lock(wait_lock);
276 	 *					mark_rt_mutex_waiters(lock);
277 	 *
278 	 * cmpxchg(p, owner, 0) != owner
279 	 *					enqueue_waiter();
280 	 *					unlock(wait_lock);
281 	 * lock(wait_lock);
282 	 * wake waiter();
283 	 * unlock(wait_lock);
284 	 *					lock(wait_lock);
285 	 *					acquire(lock);
286 	 */
287 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
288 }
289 
290 #else
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)291 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
292 						     struct task_struct *old,
293 						     struct task_struct *new)
294 {
295 	return false;
296 
297 }
298 
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)299 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
300 						     struct task_struct *old,
301 						     struct task_struct *new)
302 {
303 	return false;
304 }
305 
mark_rt_mutex_waiters(struct rt_mutex_base * lock)306 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
307 {
308 	lock->owner = (struct task_struct *)
309 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
310 }
311 
312 /*
313  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
314  */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)315 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
316 						 unsigned long flags)
317 	__releases(lock->wait_lock)
318 {
319 	lock->owner = NULL;
320 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
321 	return true;
322 }
323 #endif
324 
__waiter_prio(struct task_struct * task)325 static __always_inline int __waiter_prio(struct task_struct *task)
326 {
327 	int prio = task->prio;
328 	int waiter_prio = 0;
329 
330 	trace_android_vh_rtmutex_waiter_prio(task, &waiter_prio);
331 	if (waiter_prio > 0)
332 		return waiter_prio;
333 
334 	if (!rt_prio(prio))
335 		return DEFAULT_PRIO;
336 
337 	return prio;
338 }
339 
340 static __always_inline void
waiter_update_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)341 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
342 {
343 	waiter->prio = __waiter_prio(task);
344 	waiter->deadline = task->dl.deadline;
345 }
346 
347 /*
348  * Only use with rt_mutex_waiter_{less,equal}()
349  */
350 #define task_to_waiter(p)	\
351 	&(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
352 
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)353 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
354 						struct rt_mutex_waiter *right)
355 {
356 	if (left->prio < right->prio)
357 		return 1;
358 
359 	/*
360 	 * If both waiters have dl_prio(), we check the deadlines of the
361 	 * associated tasks.
362 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
363 	 * then right waiter has a dl_prio() too.
364 	 */
365 	if (dl_prio(left->prio))
366 		return dl_time_before(left->deadline, right->deadline);
367 
368 	return 0;
369 }
370 
rt_mutex_waiter_equal(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)371 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
372 						 struct rt_mutex_waiter *right)
373 {
374 	if (left->prio != right->prio)
375 		return 0;
376 
377 	/*
378 	 * If both waiters have dl_prio(), we check the deadlines of the
379 	 * associated tasks.
380 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
381 	 * then right waiter has a dl_prio() too.
382 	 */
383 	if (dl_prio(left->prio))
384 		return left->deadline == right->deadline;
385 
386 	return 1;
387 }
388 
rt_mutex_steal(struct rt_mutex_waiter * waiter,struct rt_mutex_waiter * top_waiter)389 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
390 				  struct rt_mutex_waiter *top_waiter)
391 {
392 	bool ret = false;
393 
394 	if (rt_mutex_waiter_less(waiter, top_waiter))
395 		return true;
396 
397 	trace_android_vh_rt_mutex_steal(waiter->prio, top_waiter->prio, &ret);
398 	if (ret)
399 		return true;
400 
401 #ifdef RT_MUTEX_BUILD_SPINLOCKS
402 	/*
403 	 * Note that RT tasks are excluded from same priority (lateral)
404 	 * steals to prevent the introduction of an unbounded latency.
405 	 */
406 	if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
407 		return false;
408 
409 	return rt_mutex_waiter_equal(waiter, top_waiter);
410 #else
411 	return false;
412 #endif
413 }
414 
415 #define __node_2_waiter(node) \
416 	rb_entry((node), struct rt_mutex_waiter, tree_entry)
417 
__waiter_less(struct rb_node * a,const struct rb_node * b)418 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
419 {
420 	struct rt_mutex_waiter *aw = __node_2_waiter(a);
421 	struct rt_mutex_waiter *bw = __node_2_waiter(b);
422 
423 	if (rt_mutex_waiter_less(aw, bw))
424 		return 1;
425 
426 	if (!build_ww_mutex())
427 		return 0;
428 
429 	if (rt_mutex_waiter_less(bw, aw))
430 		return 0;
431 
432 	/* NOTE: relies on waiter->ww_ctx being set before insertion */
433 	if (aw->ww_ctx) {
434 		if (!bw->ww_ctx)
435 			return 1;
436 
437 		return (signed long)(aw->ww_ctx->stamp -
438 				     bw->ww_ctx->stamp) < 0;
439 	}
440 
441 	return 0;
442 }
443 
444 static __always_inline void
rt_mutex_enqueue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)445 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
446 {
447 	rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
448 }
449 
450 static __always_inline void
rt_mutex_dequeue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)451 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
452 {
453 	if (RB_EMPTY_NODE(&waiter->tree_entry))
454 		return;
455 
456 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
457 	RB_CLEAR_NODE(&waiter->tree_entry);
458 }
459 
460 #define __node_2_pi_waiter(node) \
461 	rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
462 
463 static __always_inline bool
__pi_waiter_less(struct rb_node * a,const struct rb_node * b)464 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
465 {
466 	return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
467 }
468 
469 static __always_inline void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)470 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
471 {
472 	rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
473 }
474 
475 static __always_inline void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)476 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
477 {
478 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
479 		return;
480 
481 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
482 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
483 }
484 
rt_mutex_adjust_prio(struct task_struct * p)485 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
486 {
487 	struct task_struct *pi_task = NULL;
488 
489 	lockdep_assert_held(&p->pi_lock);
490 
491 	if (task_has_pi_waiters(p))
492 		pi_task = task_top_pi_waiter(p)->task;
493 
494 	rt_mutex_setprio(p, pi_task);
495 }
496 
497 /* RT mutex specific wake_q wrappers */
rt_mutex_wake_q_add(struct rt_wake_q_head * wqh,struct rt_mutex_waiter * w)498 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
499 						struct rt_mutex_waiter *w)
500 {
501 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && w->wake_state != TASK_NORMAL) {
502 		if (IS_ENABLED(CONFIG_PROVE_LOCKING))
503 			WARN_ON_ONCE(wqh->rtlock_task);
504 		get_task_struct(w->task);
505 		wqh->rtlock_task = w->task;
506 	} else {
507 		wake_q_add(&wqh->head, w->task);
508 	}
509 }
510 
rt_mutex_wake_up_q(struct rt_wake_q_head * wqh)511 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
512 {
513 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
514 		wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
515 		put_task_struct(wqh->rtlock_task);
516 		wqh->rtlock_task = NULL;
517 	}
518 
519 	if (!wake_q_empty(&wqh->head))
520 		wake_up_q(&wqh->head);
521 
522 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
523 	preempt_enable();
524 }
525 
526 /*
527  * Deadlock detection is conditional:
528  *
529  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
530  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
531  *
532  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
533  * conducted independent of the detect argument.
534  *
535  * If the waiter argument is NULL this indicates the deboost path and
536  * deadlock detection is disabled independent of the detect argument
537  * and the config settings.
538  */
539 static __always_inline bool
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)540 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
541 			      enum rtmutex_chainwalk chwalk)
542 {
543 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
544 		return waiter != NULL;
545 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
546 }
547 
task_blocked_on_lock(struct task_struct * p)548 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
549 {
550 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
551 }
552 
553 /*
554  * Adjust the priority chain. Also used for deadlock detection.
555  * Decreases task's usage by one - may thus free the task.
556  *
557  * @task:	the task owning the mutex (owner) for which a chain walk is
558  *		probably needed
559  * @chwalk:	do we have to carry out deadlock detection?
560  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
561  *		things for a task that has just got its priority adjusted, and
562  *		is waiting on a mutex)
563  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
564  *		we dropped its pi_lock. Is never dereferenced, only used for
565  *		comparison to detect lock chain changes.
566  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
567  *		its priority to the mutex owner (can be NULL in the case
568  *		depicted above or if the top waiter is gone away and we are
569  *		actually deboosting the owner)
570  * @top_task:	the current top waiter
571  *
572  * Returns 0 or -EDEADLK.
573  *
574  * Chain walk basics and protection scope
575  *
576  * [R] refcount on task
577  * [P] task->pi_lock held
578  * [L] rtmutex->wait_lock held
579  *
580  * Step	Description				Protected by
581  *	function arguments:
582  *	@task					[R]
583  *	@orig_lock if != NULL			@top_task is blocked on it
584  *	@next_lock				Unprotected. Cannot be
585  *						dereferenced. Only used for
586  *						comparison.
587  *	@orig_waiter if != NULL			@top_task is blocked on it
588  *	@top_task				current, or in case of proxy
589  *						locking protected by calling
590  *						code
591  *	again:
592  *	  loop_sanity_check();
593  *	retry:
594  * [1]	  lock(task->pi_lock);			[R] acquire [P]
595  * [2]	  waiter = task->pi_blocked_on;		[P]
596  * [3]	  check_exit_conditions_1();		[P]
597  * [4]	  lock = waiter->lock;			[P]
598  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
599  *	    unlock(task->pi_lock);		release [P]
600  *	    goto retry;
601  *	  }
602  * [6]	  check_exit_conditions_2();		[P] + [L]
603  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
604  * [8]	  unlock(task->pi_lock);		release [P]
605  *	  put_task_struct(task);		release [R]
606  * [9]	  check_exit_conditions_3();		[L]
607  * [10]	  task = owner(lock);			[L]
608  *	  get_task_struct(task);		[L] acquire [R]
609  *	  lock(task->pi_lock);			[L] acquire [P]
610  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
611  * [12]	  check_exit_conditions_4();		[P] + [L]
612  * [13]	  unlock(task->pi_lock);		release [P]
613  *	  unlock(lock->wait_lock);		release [L]
614  *	  goto again;
615  */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex_base * orig_lock,struct rt_mutex_base * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)616 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
617 					      enum rtmutex_chainwalk chwalk,
618 					      struct rt_mutex_base *orig_lock,
619 					      struct rt_mutex_base *next_lock,
620 					      struct rt_mutex_waiter *orig_waiter,
621 					      struct task_struct *top_task)
622 {
623 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
624 	struct rt_mutex_waiter *prerequeue_top_waiter;
625 	int ret = 0, depth = 0;
626 	struct rt_mutex_base *lock;
627 	bool detect_deadlock;
628 	bool requeue = true;
629 
630 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
631 
632 	/*
633 	 * The (de)boosting is a step by step approach with a lot of
634 	 * pitfalls. We want this to be preemptible and we want hold a
635 	 * maximum of two locks per step. So we have to check
636 	 * carefully whether things change under us.
637 	 */
638  again:
639 	/*
640 	 * We limit the lock chain length for each invocation.
641 	 */
642 	if (++depth > max_lock_depth) {
643 		static int prev_max;
644 
645 		/*
646 		 * Print this only once. If the admin changes the limit,
647 		 * print a new message when reaching the limit again.
648 		 */
649 		if (prev_max != max_lock_depth) {
650 			prev_max = max_lock_depth;
651 			printk(KERN_WARNING "Maximum lock depth %d reached "
652 			       "task: %s (%d)\n", max_lock_depth,
653 			       top_task->comm, task_pid_nr(top_task));
654 		}
655 		put_task_struct(task);
656 
657 		return -EDEADLK;
658 	}
659 
660 	/*
661 	 * We are fully preemptible here and only hold the refcount on
662 	 * @task. So everything can have changed under us since the
663 	 * caller or our own code below (goto retry/again) dropped all
664 	 * locks.
665 	 */
666  retry:
667 	/*
668 	 * [1] Task cannot go away as we did a get_task() before !
669 	 */
670 	raw_spin_lock_irq(&task->pi_lock);
671 
672 	/*
673 	 * [2] Get the waiter on which @task is blocked on.
674 	 */
675 	waiter = task->pi_blocked_on;
676 
677 	/*
678 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
679 	 */
680 
681 	/*
682 	 * Check whether the end of the boosting chain has been
683 	 * reached or the state of the chain has changed while we
684 	 * dropped the locks.
685 	 */
686 	if (!waiter)
687 		goto out_unlock_pi;
688 
689 	/*
690 	 * Check the orig_waiter state. After we dropped the locks,
691 	 * the previous owner of the lock might have released the lock.
692 	 */
693 	if (orig_waiter && !rt_mutex_owner(orig_lock))
694 		goto out_unlock_pi;
695 
696 	/*
697 	 * We dropped all locks after taking a refcount on @task, so
698 	 * the task might have moved on in the lock chain or even left
699 	 * the chain completely and blocks now on an unrelated lock or
700 	 * on @orig_lock.
701 	 *
702 	 * We stored the lock on which @task was blocked in @next_lock,
703 	 * so we can detect the chain change.
704 	 */
705 	if (next_lock != waiter->lock)
706 		goto out_unlock_pi;
707 
708 	/*
709 	 * There could be 'spurious' loops in the lock graph due to ww_mutex,
710 	 * consider:
711 	 *
712 	 *   P1: A, ww_A, ww_B
713 	 *   P2: ww_B, ww_A
714 	 *   P3: A
715 	 *
716 	 * P3 should not return -EDEADLK because it gets trapped in the cycle
717 	 * created by P1 and P2 (which will resolve -- and runs into
718 	 * max_lock_depth above). Therefore disable detect_deadlock such that
719 	 * the below termination condition can trigger once all relevant tasks
720 	 * are boosted.
721 	 *
722 	 * Even when we start with ww_mutex we can disable deadlock detection,
723 	 * since we would supress a ww_mutex induced deadlock at [6] anyway.
724 	 * Supressing it here however is not sufficient since we might still
725 	 * hit [6] due to adjustment driven iteration.
726 	 *
727 	 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
728 	 * utterly fail to report it; lockdep should.
729 	 */
730 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
731 		detect_deadlock = false;
732 
733 	/*
734 	 * Drop out, when the task has no waiters. Note,
735 	 * top_waiter can be NULL, when we are in the deboosting
736 	 * mode!
737 	 */
738 	if (top_waiter) {
739 		if (!task_has_pi_waiters(task))
740 			goto out_unlock_pi;
741 		/*
742 		 * If deadlock detection is off, we stop here if we
743 		 * are not the top pi waiter of the task. If deadlock
744 		 * detection is enabled we continue, but stop the
745 		 * requeueing in the chain walk.
746 		 */
747 		if (top_waiter != task_top_pi_waiter(task)) {
748 			if (!detect_deadlock)
749 				goto out_unlock_pi;
750 			else
751 				requeue = false;
752 		}
753 	}
754 
755 	/*
756 	 * If the waiter priority is the same as the task priority
757 	 * then there is no further priority adjustment necessary.  If
758 	 * deadlock detection is off, we stop the chain walk. If its
759 	 * enabled we continue, but stop the requeueing in the chain
760 	 * walk.
761 	 */
762 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
763 		if (!detect_deadlock)
764 			goto out_unlock_pi;
765 		else
766 			requeue = false;
767 	}
768 
769 	/*
770 	 * [4] Get the next lock
771 	 */
772 	lock = waiter->lock;
773 	/*
774 	 * [5] We need to trylock here as we are holding task->pi_lock,
775 	 * which is the reverse lock order versus the other rtmutex
776 	 * operations.
777 	 */
778 	if (!raw_spin_trylock(&lock->wait_lock)) {
779 		raw_spin_unlock_irq(&task->pi_lock);
780 		cpu_relax();
781 		goto retry;
782 	}
783 
784 	/*
785 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
786 	 * lock->wait_lock.
787 	 *
788 	 * Deadlock detection. If the lock is the same as the original
789 	 * lock which caused us to walk the lock chain or if the
790 	 * current lock is owned by the task which initiated the chain
791 	 * walk, we detected a deadlock.
792 	 */
793 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
794 		ret = -EDEADLK;
795 
796 		/*
797 		 * When the deadlock is due to ww_mutex; also see above. Don't
798 		 * report the deadlock and instead let the ww_mutex wound/die
799 		 * logic pick which of the contending threads gets -EDEADLK.
800 		 *
801 		 * NOTE: assumes the cycle only contains a single ww_class; any
802 		 * other configuration and we fail to report; also, see
803 		 * lockdep.
804 		 */
805 		if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
806 			ret = 0;
807 
808 		raw_spin_unlock(&lock->wait_lock);
809 		goto out_unlock_pi;
810 	}
811 
812 	/*
813 	 * If we just follow the lock chain for deadlock detection, no
814 	 * need to do all the requeue operations. To avoid a truckload
815 	 * of conditionals around the various places below, just do the
816 	 * minimum chain walk checks.
817 	 */
818 	if (!requeue) {
819 		/*
820 		 * No requeue[7] here. Just release @task [8]
821 		 */
822 		raw_spin_unlock(&task->pi_lock);
823 		put_task_struct(task);
824 
825 		/*
826 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
827 		 * If there is no owner of the lock, end of chain.
828 		 */
829 		if (!rt_mutex_owner(lock)) {
830 			raw_spin_unlock_irq(&lock->wait_lock);
831 			return 0;
832 		}
833 
834 		/* [10] Grab the next task, i.e. owner of @lock */
835 		task = get_task_struct(rt_mutex_owner(lock));
836 		raw_spin_lock(&task->pi_lock);
837 
838 		/*
839 		 * No requeue [11] here. We just do deadlock detection.
840 		 *
841 		 * [12] Store whether owner is blocked
842 		 * itself. Decision is made after dropping the locks
843 		 */
844 		next_lock = task_blocked_on_lock(task);
845 		/*
846 		 * Get the top waiter for the next iteration
847 		 */
848 		top_waiter = rt_mutex_top_waiter(lock);
849 
850 		/* [13] Drop locks */
851 		raw_spin_unlock(&task->pi_lock);
852 		raw_spin_unlock_irq(&lock->wait_lock);
853 
854 		/* If owner is not blocked, end of chain. */
855 		if (!next_lock)
856 			goto out_put_task;
857 		goto again;
858 	}
859 
860 	/*
861 	 * Store the current top waiter before doing the requeue
862 	 * operation on @lock. We need it for the boost/deboost
863 	 * decision below.
864 	 */
865 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
866 
867 	/* [7] Requeue the waiter in the lock waiter tree. */
868 	rt_mutex_dequeue(lock, waiter);
869 
870 	/*
871 	 * Update the waiter prio fields now that we're dequeued.
872 	 *
873 	 * These values can have changed through either:
874 	 *
875 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
876 	 *
877 	 * or
878 	 *
879 	 *   DL CBS enforcement advancing the effective deadline.
880 	 *
881 	 * Even though pi_waiters also uses these fields, and that tree is only
882 	 * updated in [11], we can do this here, since we hold [L], which
883 	 * serializes all pi_waiters access and rb_erase() does not care about
884 	 * the values of the node being removed.
885 	 */
886 	waiter_update_prio(waiter, task);
887 
888 	rt_mutex_enqueue(lock, waiter);
889 
890 	/* [8] Release the task */
891 	raw_spin_unlock(&task->pi_lock);
892 	put_task_struct(task);
893 
894 	/*
895 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
896 	 *
897 	 * We must abort the chain walk if there is no lock owner even
898 	 * in the dead lock detection case, as we have nothing to
899 	 * follow here. This is the end of the chain we are walking.
900 	 */
901 	if (!rt_mutex_owner(lock)) {
902 		/*
903 		 * If the requeue [7] above changed the top waiter,
904 		 * then we need to wake the new top waiter up to try
905 		 * to get the lock.
906 		 */
907 		top_waiter = rt_mutex_top_waiter(lock);
908 		if (prerequeue_top_waiter != top_waiter)
909 			wake_up_state(top_waiter->task, top_waiter->wake_state);
910 		raw_spin_unlock_irq(&lock->wait_lock);
911 		return 0;
912 	}
913 
914 	/* [10] Grab the next task, i.e. the owner of @lock */
915 	task = get_task_struct(rt_mutex_owner(lock));
916 	raw_spin_lock(&task->pi_lock);
917 
918 	/* [11] requeue the pi waiters if necessary */
919 	if (waiter == rt_mutex_top_waiter(lock)) {
920 		/*
921 		 * The waiter became the new top (highest priority)
922 		 * waiter on the lock. Replace the previous top waiter
923 		 * in the owner tasks pi waiters tree with this waiter
924 		 * and adjust the priority of the owner.
925 		 */
926 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
927 		rt_mutex_enqueue_pi(task, waiter);
928 		rt_mutex_adjust_prio(task);
929 
930 	} else if (prerequeue_top_waiter == waiter) {
931 		/*
932 		 * The waiter was the top waiter on the lock, but is
933 		 * no longer the top priority waiter. Replace waiter in
934 		 * the owner tasks pi waiters tree with the new top
935 		 * (highest priority) waiter and adjust the priority
936 		 * of the owner.
937 		 * The new top waiter is stored in @waiter so that
938 		 * @waiter == @top_waiter evaluates to true below and
939 		 * we continue to deboost the rest of the chain.
940 		 */
941 		rt_mutex_dequeue_pi(task, waiter);
942 		waiter = rt_mutex_top_waiter(lock);
943 		rt_mutex_enqueue_pi(task, waiter);
944 		rt_mutex_adjust_prio(task);
945 	} else {
946 		/*
947 		 * Nothing changed. No need to do any priority
948 		 * adjustment.
949 		 */
950 	}
951 
952 	/*
953 	 * [12] check_exit_conditions_4() protected by task->pi_lock
954 	 * and lock->wait_lock. The actual decisions are made after we
955 	 * dropped the locks.
956 	 *
957 	 * Check whether the task which owns the current lock is pi
958 	 * blocked itself. If yes we store a pointer to the lock for
959 	 * the lock chain change detection above. After we dropped
960 	 * task->pi_lock next_lock cannot be dereferenced anymore.
961 	 */
962 	next_lock = task_blocked_on_lock(task);
963 	/*
964 	 * Store the top waiter of @lock for the end of chain walk
965 	 * decision below.
966 	 */
967 	top_waiter = rt_mutex_top_waiter(lock);
968 
969 	/* [13] Drop the locks */
970 	raw_spin_unlock(&task->pi_lock);
971 	raw_spin_unlock_irq(&lock->wait_lock);
972 
973 	/*
974 	 * Make the actual exit decisions [12], based on the stored
975 	 * values.
976 	 *
977 	 * We reached the end of the lock chain. Stop right here. No
978 	 * point to go back just to figure that out.
979 	 */
980 	if (!next_lock)
981 		goto out_put_task;
982 
983 	/*
984 	 * If the current waiter is not the top waiter on the lock,
985 	 * then we can stop the chain walk here if we are not in full
986 	 * deadlock detection mode.
987 	 */
988 	if (!detect_deadlock && waiter != top_waiter)
989 		goto out_put_task;
990 
991 	goto again;
992 
993  out_unlock_pi:
994 	raw_spin_unlock_irq(&task->pi_lock);
995  out_put_task:
996 	put_task_struct(task);
997 
998 	return ret;
999 }
1000 
1001 /*
1002  * Try to take an rt-mutex
1003  *
1004  * Must be called with lock->wait_lock held and interrupts disabled
1005  *
1006  * @lock:   The lock to be acquired.
1007  * @task:   The task which wants to acquire the lock
1008  * @waiter: The waiter that is queued to the lock's wait tree if the
1009  *	    callsite called task_blocked_on_lock(), otherwise NULL
1010  */
1011 static int __sched
try_to_take_rt_mutex(struct rt_mutex_base * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)1012 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1013 		     struct rt_mutex_waiter *waiter)
1014 {
1015 	lockdep_assert_held(&lock->wait_lock);
1016 
1017 	/*
1018 	 * Before testing whether we can acquire @lock, we set the
1019 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1020 	 * other tasks which try to modify @lock into the slow path
1021 	 * and they serialize on @lock->wait_lock.
1022 	 *
1023 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1024 	 * as explained at the top of this file if and only if:
1025 	 *
1026 	 * - There is a lock owner. The caller must fixup the
1027 	 *   transient state if it does a trylock or leaves the lock
1028 	 *   function due to a signal or timeout.
1029 	 *
1030 	 * - @task acquires the lock and there are no other
1031 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
1032 	 *   the end of this function.
1033 	 */
1034 	mark_rt_mutex_waiters(lock);
1035 
1036 	/*
1037 	 * If @lock has an owner, give up.
1038 	 */
1039 	if (rt_mutex_owner(lock))
1040 		return 0;
1041 
1042 	/*
1043 	 * If @waiter != NULL, @task has already enqueued the waiter
1044 	 * into @lock waiter tree. If @waiter == NULL then this is a
1045 	 * trylock attempt.
1046 	 */
1047 	if (waiter) {
1048 		struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1049 
1050 		/*
1051 		 * If waiter is the highest priority waiter of @lock,
1052 		 * or allowed to steal it, take it over.
1053 		 */
1054 		if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1055 			/*
1056 			 * We can acquire the lock. Remove the waiter from the
1057 			 * lock waiters tree.
1058 			 */
1059 			rt_mutex_dequeue(lock, waiter);
1060 		} else {
1061 			return 0;
1062 		}
1063 	} else {
1064 		/*
1065 		 * If the lock has waiters already we check whether @task is
1066 		 * eligible to take over the lock.
1067 		 *
1068 		 * If there are no other waiters, @task can acquire
1069 		 * the lock.  @task->pi_blocked_on is NULL, so it does
1070 		 * not need to be dequeued.
1071 		 */
1072 		if (rt_mutex_has_waiters(lock)) {
1073 			/* Check whether the trylock can steal it. */
1074 			if (!rt_mutex_steal(task_to_waiter(task),
1075 					    rt_mutex_top_waiter(lock)))
1076 				return 0;
1077 
1078 			/*
1079 			 * The current top waiter stays enqueued. We
1080 			 * don't have to change anything in the lock
1081 			 * waiters order.
1082 			 */
1083 		} else {
1084 			/*
1085 			 * No waiters. Take the lock without the
1086 			 * pi_lock dance.@task->pi_blocked_on is NULL
1087 			 * and we have no waiters to enqueue in @task
1088 			 * pi waiters tree.
1089 			 */
1090 			goto takeit;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Clear @task->pi_blocked_on. Requires protection by
1096 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
1097 	 * case, but conditionals are more expensive than a redundant
1098 	 * store.
1099 	 */
1100 	raw_spin_lock(&task->pi_lock);
1101 	task->pi_blocked_on = NULL;
1102 	/*
1103 	 * Finish the lock acquisition. @task is the new owner. If
1104 	 * other waiters exist we have to insert the highest priority
1105 	 * waiter into @task->pi_waiters tree.
1106 	 */
1107 	if (rt_mutex_has_waiters(lock))
1108 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1109 	raw_spin_unlock(&task->pi_lock);
1110 
1111 takeit:
1112 	/*
1113 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1114 	 * are still waiters or clears it.
1115 	 */
1116 	rt_mutex_set_owner(lock, task);
1117 
1118 	return 1;
1119 }
1120 
1121 /*
1122  * Task blocks on lock.
1123  *
1124  * Prepare waiter and propagate pi chain
1125  *
1126  * This must be called with lock->wait_lock held and interrupts disabled
1127  */
task_blocks_on_rt_mutex(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct ww_acquire_ctx * ww_ctx,enum rtmutex_chainwalk chwalk)1128 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1129 					   struct rt_mutex_waiter *waiter,
1130 					   struct task_struct *task,
1131 					   struct ww_acquire_ctx *ww_ctx,
1132 					   enum rtmutex_chainwalk chwalk)
1133 {
1134 	struct task_struct *owner = rt_mutex_owner(lock);
1135 	struct rt_mutex_waiter *top_waiter = waiter;
1136 	struct rt_mutex_base *next_lock;
1137 	int chain_walk = 0, res;
1138 
1139 	lockdep_assert_held(&lock->wait_lock);
1140 
1141 	/*
1142 	 * Early deadlock detection. We really don't want the task to
1143 	 * enqueue on itself just to untangle the mess later. It's not
1144 	 * only an optimization. We drop the locks, so another waiter
1145 	 * can come in before the chain walk detects the deadlock. So
1146 	 * the other will detect the deadlock and return -EDEADLOCK,
1147 	 * which is wrong, as the other waiter is not in a deadlock
1148 	 * situation.
1149 	 */
1150 	if (owner == task)
1151 		return -EDEADLK;
1152 
1153 	trace_android_vh_task_blocks_on_rtmutex(lock, waiter, task, ww_ctx, &chwalk);
1154 	raw_spin_lock(&task->pi_lock);
1155 	waiter->task = task;
1156 	waiter->lock = lock;
1157 	waiter_update_prio(waiter, task);
1158 
1159 	/* Get the top priority waiter on the lock */
1160 	if (rt_mutex_has_waiters(lock))
1161 		top_waiter = rt_mutex_top_waiter(lock);
1162 	rt_mutex_enqueue(lock, waiter);
1163 
1164 	task->pi_blocked_on = waiter;
1165 
1166 	raw_spin_unlock(&task->pi_lock);
1167 
1168 	if (build_ww_mutex() && ww_ctx) {
1169 		struct rt_mutex *rtm;
1170 
1171 		/* Check whether the waiter should back out immediately */
1172 		rtm = container_of(lock, struct rt_mutex, rtmutex);
1173 		res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1174 		if (res) {
1175 			raw_spin_lock(&task->pi_lock);
1176 			rt_mutex_dequeue(lock, waiter);
1177 			task->pi_blocked_on = NULL;
1178 			raw_spin_unlock(&task->pi_lock);
1179 			return res;
1180 		}
1181 	}
1182 
1183 	if (!owner)
1184 		return 0;
1185 
1186 	raw_spin_lock(&owner->pi_lock);
1187 	if (waiter == rt_mutex_top_waiter(lock)) {
1188 		rt_mutex_dequeue_pi(owner, top_waiter);
1189 		rt_mutex_enqueue_pi(owner, waiter);
1190 
1191 		rt_mutex_adjust_prio(owner);
1192 		if (owner->pi_blocked_on)
1193 			chain_walk = 1;
1194 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1195 		chain_walk = 1;
1196 	}
1197 
1198 	/* Store the lock on which owner is blocked or NULL */
1199 	next_lock = task_blocked_on_lock(owner);
1200 
1201 	raw_spin_unlock(&owner->pi_lock);
1202 	/*
1203 	 * Even if full deadlock detection is on, if the owner is not
1204 	 * blocked itself, we can avoid finding this out in the chain
1205 	 * walk.
1206 	 */
1207 	if (!chain_walk || !next_lock)
1208 		return 0;
1209 
1210 	/*
1211 	 * The owner can't disappear while holding a lock,
1212 	 * so the owner struct is protected by wait_lock.
1213 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1214 	 */
1215 	get_task_struct(owner);
1216 
1217 	raw_spin_unlock_irq(&lock->wait_lock);
1218 
1219 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1220 					 next_lock, waiter, task);
1221 
1222 	raw_spin_lock_irq(&lock->wait_lock);
1223 
1224 	return res;
1225 }
1226 
1227 /*
1228  * Remove the top waiter from the current tasks pi waiter tree and
1229  * queue it up.
1230  *
1231  * Called with lock->wait_lock held and interrupts disabled.
1232  */
mark_wakeup_next_waiter(struct rt_wake_q_head * wqh,struct rt_mutex_base * lock)1233 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1234 					    struct rt_mutex_base *lock)
1235 {
1236 	struct rt_mutex_waiter *waiter;
1237 
1238 	raw_spin_lock(&current->pi_lock);
1239 
1240 	waiter = rt_mutex_top_waiter(lock);
1241 
1242 	/*
1243 	 * Remove it from current->pi_waiters and deboost.
1244 	 *
1245 	 * We must in fact deboost here in order to ensure we call
1246 	 * rt_mutex_setprio() to update p->pi_top_task before the
1247 	 * task unblocks.
1248 	 */
1249 	rt_mutex_dequeue_pi(current, waiter);
1250 	rt_mutex_adjust_prio(current);
1251 
1252 	/*
1253 	 * As we are waking up the top waiter, and the waiter stays
1254 	 * queued on the lock until it gets the lock, this lock
1255 	 * obviously has waiters. Just set the bit here and this has
1256 	 * the added benefit of forcing all new tasks into the
1257 	 * slow path making sure no task of lower priority than
1258 	 * the top waiter can steal this lock.
1259 	 */
1260 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1261 
1262 	/*
1263 	 * We deboosted before waking the top waiter task such that we don't
1264 	 * run two tasks with the 'same' priority (and ensure the
1265 	 * p->pi_top_task pointer points to a blocked task). This however can
1266 	 * lead to priority inversion if we would get preempted after the
1267 	 * deboost but before waking our donor task, hence the preempt_disable()
1268 	 * before unlock.
1269 	 *
1270 	 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1271 	 */
1272 	preempt_disable();
1273 	rt_mutex_wake_q_add(wqh, waiter);
1274 	raw_spin_unlock(&current->pi_lock);
1275 }
1276 
__rt_mutex_slowtrylock(struct rt_mutex_base * lock)1277 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1278 {
1279 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1280 
1281 	/*
1282 	 * try_to_take_rt_mutex() sets the lock waiters bit
1283 	 * unconditionally. Clean this up.
1284 	 */
1285 	fixup_rt_mutex_waiters(lock, true);
1286 
1287 	return ret;
1288 }
1289 
1290 /*
1291  * Slow path try-lock function:
1292  */
rt_mutex_slowtrylock(struct rt_mutex_base * lock)1293 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1294 {
1295 	unsigned long flags;
1296 	int ret;
1297 
1298 	/*
1299 	 * If the lock already has an owner we fail to get the lock.
1300 	 * This can be done without taking the @lock->wait_lock as
1301 	 * it is only being read, and this is a trylock anyway.
1302 	 */
1303 	if (rt_mutex_owner(lock))
1304 		return 0;
1305 
1306 	/*
1307 	 * The mutex has currently no owner. Lock the wait lock and try to
1308 	 * acquire the lock. We use irqsave here to support early boot calls.
1309 	 */
1310 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1311 
1312 	ret = __rt_mutex_slowtrylock(lock);
1313 
1314 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1315 
1316 	return ret;
1317 }
1318 
__rt_mutex_trylock(struct rt_mutex_base * lock)1319 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1320 {
1321 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1322 		return 1;
1323 
1324 	return rt_mutex_slowtrylock(lock);
1325 }
1326 
1327 /*
1328  * Slow path to release a rt-mutex.
1329  */
rt_mutex_slowunlock(struct rt_mutex_base * lock)1330 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1331 {
1332 	DEFINE_RT_WAKE_Q(wqh);
1333 	unsigned long flags;
1334 
1335 	/* irqsave required to support early boot calls */
1336 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1337 
1338 	debug_rt_mutex_unlock(lock);
1339 
1340 	/*
1341 	 * We must be careful here if the fast path is enabled. If we
1342 	 * have no waiters queued we cannot set owner to NULL here
1343 	 * because of:
1344 	 *
1345 	 * foo->lock->owner = NULL;
1346 	 *			rtmutex_lock(foo->lock);   <- fast path
1347 	 *			free = atomic_dec_and_test(foo->refcnt);
1348 	 *			rtmutex_unlock(foo->lock); <- fast path
1349 	 *			if (free)
1350 	 *				kfree(foo);
1351 	 * raw_spin_unlock(foo->lock->wait_lock);
1352 	 *
1353 	 * So for the fastpath enabled kernel:
1354 	 *
1355 	 * Nothing can set the waiters bit as long as we hold
1356 	 * lock->wait_lock. So we do the following sequence:
1357 	 *
1358 	 *	owner = rt_mutex_owner(lock);
1359 	 *	clear_rt_mutex_waiters(lock);
1360 	 *	raw_spin_unlock(&lock->wait_lock);
1361 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1362 	 *		return;
1363 	 *	goto retry;
1364 	 *
1365 	 * The fastpath disabled variant is simple as all access to
1366 	 * lock->owner is serialized by lock->wait_lock:
1367 	 *
1368 	 *	lock->owner = NULL;
1369 	 *	raw_spin_unlock(&lock->wait_lock);
1370 	 */
1371 	while (!rt_mutex_has_waiters(lock)) {
1372 		/* Drops lock->wait_lock ! */
1373 		if (unlock_rt_mutex_safe(lock, flags) == true)
1374 			return;
1375 		/* Relock the rtmutex and try again */
1376 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1377 	}
1378 
1379 	/*
1380 	 * The wakeup next waiter path does not suffer from the above
1381 	 * race. See the comments there.
1382 	 *
1383 	 * Queue the next waiter for wakeup once we release the wait_lock.
1384 	 */
1385 	mark_wakeup_next_waiter(&wqh, lock);
1386 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1387 
1388 	rt_mutex_wake_up_q(&wqh);
1389 }
1390 
__rt_mutex_unlock(struct rt_mutex_base * lock)1391 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1392 {
1393 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1394 		return;
1395 
1396 	rt_mutex_slowunlock(lock);
1397 }
1398 
1399 #ifdef CONFIG_SMP
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1400 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1401 				  struct rt_mutex_waiter *waiter,
1402 				  struct task_struct *owner)
1403 {
1404 	bool res = true;
1405 
1406 	rcu_read_lock();
1407 	for (;;) {
1408 		/* If owner changed, trylock again. */
1409 		if (owner != rt_mutex_owner(lock))
1410 			break;
1411 		/*
1412 		 * Ensure that @owner is dereferenced after checking that
1413 		 * the lock owner still matches @owner. If that fails,
1414 		 * @owner might point to freed memory. If it still matches,
1415 		 * the rcu_read_lock() ensures the memory stays valid.
1416 		 */
1417 		barrier();
1418 		/*
1419 		 * Stop spinning when:
1420 		 *  - the lock owner has been scheduled out
1421 		 *  - current is not longer the top waiter
1422 		 *  - current is requested to reschedule (redundant
1423 		 *    for CONFIG_PREEMPT_RCU=y)
1424 		 *  - the VCPU on which owner runs is preempted
1425 		 */
1426 		if (!owner->on_cpu || need_resched() ||
1427 		    !rt_mutex_waiter_is_top_waiter(lock, waiter) ||
1428 		    vcpu_is_preempted(task_cpu(owner))) {
1429 			res = false;
1430 			break;
1431 		}
1432 		cpu_relax();
1433 	}
1434 	rcu_read_unlock();
1435 	return res;
1436 }
1437 #else
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1438 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1439 				  struct rt_mutex_waiter *waiter,
1440 				  struct task_struct *owner)
1441 {
1442 	return false;
1443 }
1444 #endif
1445 
1446 #ifdef RT_MUTEX_BUILD_MUTEX
1447 /*
1448  * Functions required for:
1449  *	- rtmutex, futex on all kernels
1450  *	- mutex and rwsem substitutions on RT kernels
1451  */
1452 
1453 /*
1454  * Remove a waiter from a lock and give up
1455  *
1456  * Must be called with lock->wait_lock held and interrupts disabled. It must
1457  * have just failed to try_to_take_rt_mutex().
1458  */
remove_waiter(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)1459 static void __sched remove_waiter(struct rt_mutex_base *lock,
1460 				  struct rt_mutex_waiter *waiter)
1461 {
1462 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1463 	struct task_struct *owner = rt_mutex_owner(lock);
1464 	struct rt_mutex_base *next_lock;
1465 
1466 	lockdep_assert_held(&lock->wait_lock);
1467 
1468 	raw_spin_lock(&current->pi_lock);
1469 	rt_mutex_dequeue(lock, waiter);
1470 	current->pi_blocked_on = NULL;
1471 	raw_spin_unlock(&current->pi_lock);
1472 
1473 	/*
1474 	 * Only update priority if the waiter was the highest priority
1475 	 * waiter of the lock and there is an owner to update.
1476 	 */
1477 	if (!owner || !is_top_waiter)
1478 		return;
1479 
1480 	raw_spin_lock(&owner->pi_lock);
1481 
1482 	rt_mutex_dequeue_pi(owner, waiter);
1483 
1484 	if (rt_mutex_has_waiters(lock))
1485 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1486 
1487 	rt_mutex_adjust_prio(owner);
1488 
1489 	/* Store the lock on which owner is blocked or NULL */
1490 	next_lock = task_blocked_on_lock(owner);
1491 
1492 	raw_spin_unlock(&owner->pi_lock);
1493 
1494 	/*
1495 	 * Don't walk the chain, if the owner task is not blocked
1496 	 * itself.
1497 	 */
1498 	if (!next_lock)
1499 		return;
1500 
1501 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1502 	get_task_struct(owner);
1503 
1504 	raw_spin_unlock_irq(&lock->wait_lock);
1505 
1506 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1507 				   next_lock, NULL, current);
1508 
1509 	raw_spin_lock_irq(&lock->wait_lock);
1510 }
1511 
1512 /**
1513  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1514  * @lock:		 the rt_mutex to take
1515  * @ww_ctx:		 WW mutex context pointer
1516  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1517  *			 or TASK_UNINTERRUPTIBLE)
1518  * @timeout:		 the pre-initialized and started timer, or NULL for none
1519  * @waiter:		 the pre-initialized rt_mutex_waiter
1520  *
1521  * Must be called with lock->wait_lock held and interrupts disabled
1522  */
rt_mutex_slowlock_block(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1523 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1524 					   struct ww_acquire_ctx *ww_ctx,
1525 					   unsigned int state,
1526 					   struct hrtimer_sleeper *timeout,
1527 					   struct rt_mutex_waiter *waiter)
1528 {
1529 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1530 	struct task_struct *owner;
1531 	int ret = 0;
1532 
1533 	trace_android_vh_rtmutex_wait_start(lock);
1534 	for (;;) {
1535 		/* Try to acquire the lock: */
1536 		if (try_to_take_rt_mutex(lock, current, waiter))
1537 			break;
1538 
1539 		if (timeout && !timeout->task) {
1540 			ret = -ETIMEDOUT;
1541 			break;
1542 		}
1543 		if (signal_pending_state(state, current)) {
1544 			ret = -EINTR;
1545 			break;
1546 		}
1547 
1548 		if (build_ww_mutex() && ww_ctx) {
1549 			ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1550 			if (ret)
1551 				break;
1552 		}
1553 
1554 		if (waiter == rt_mutex_top_waiter(lock))
1555 			owner = rt_mutex_owner(lock);
1556 		else
1557 			owner = NULL;
1558 		raw_spin_unlock_irq(&lock->wait_lock);
1559 
1560 		if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1561 			schedule();
1562 
1563 		raw_spin_lock_irq(&lock->wait_lock);
1564 		set_current_state(state);
1565 	}
1566 
1567 	trace_android_vh_rtmutex_wait_finish(lock);
1568 	__set_current_state(TASK_RUNNING);
1569 	return ret;
1570 }
1571 
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1572 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1573 					     struct rt_mutex_waiter *w)
1574 {
1575 	/*
1576 	 * If the result is not -EDEADLOCK or the caller requested
1577 	 * deadlock detection, nothing to do here.
1578 	 */
1579 	if (res != -EDEADLOCK || detect_deadlock)
1580 		return;
1581 
1582 	if (build_ww_mutex() && w->ww_ctx)
1583 		return;
1584 
1585 	/*
1586 	 * Yell loudly and stop the task right here.
1587 	 */
1588 	WARN(1, "rtmutex deadlock detected\n");
1589 	while (1) {
1590 		set_current_state(TASK_INTERRUPTIBLE);
1591 		schedule();
1592 	}
1593 }
1594 
1595 /**
1596  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1597  * @lock:	The rtmutex to block lock
1598  * @ww_ctx:	WW mutex context pointer
1599  * @state:	The task state for sleeping
1600  * @chwalk:	Indicator whether full or partial chainwalk is requested
1601  * @waiter:	Initializer waiter for blocking
1602  */
__rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,enum rtmutex_chainwalk chwalk,struct rt_mutex_waiter * waiter)1603 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1604 				       struct ww_acquire_ctx *ww_ctx,
1605 				       unsigned int state,
1606 				       enum rtmutex_chainwalk chwalk,
1607 				       struct rt_mutex_waiter *waiter)
1608 {
1609 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1610 	struct ww_mutex *ww = ww_container_of(rtm);
1611 	int ret;
1612 
1613 	lockdep_assert_held(&lock->wait_lock);
1614 
1615 	/* Try to acquire the lock again: */
1616 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1617 		if (build_ww_mutex() && ww_ctx) {
1618 			__ww_mutex_check_waiters(rtm, ww_ctx);
1619 			ww_mutex_lock_acquired(ww, ww_ctx);
1620 		}
1621 		return 0;
1622 	}
1623 
1624 	set_current_state(state);
1625 
1626 	ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1627 	if (likely(!ret))
1628 		ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1629 
1630 	if (likely(!ret)) {
1631 		/* acquired the lock */
1632 		if (build_ww_mutex() && ww_ctx) {
1633 			if (!ww_ctx->is_wait_die)
1634 				__ww_mutex_check_waiters(rtm, ww_ctx);
1635 			ww_mutex_lock_acquired(ww, ww_ctx);
1636 		}
1637 	} else {
1638 		__set_current_state(TASK_RUNNING);
1639 		remove_waiter(lock, waiter);
1640 		rt_mutex_handle_deadlock(ret, chwalk, waiter);
1641 	}
1642 
1643 	/*
1644 	 * try_to_take_rt_mutex() sets the waiter bit
1645 	 * unconditionally. We might have to fix that up.
1646 	 */
1647 	fixup_rt_mutex_waiters(lock, true);
1648 	return ret;
1649 }
1650 
__rt_mutex_slowlock_locked(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1651 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1652 					     struct ww_acquire_ctx *ww_ctx,
1653 					     unsigned int state)
1654 {
1655 	struct rt_mutex_waiter waiter;
1656 	int ret;
1657 
1658 	rt_mutex_init_waiter(&waiter);
1659 	waiter.ww_ctx = ww_ctx;
1660 
1661 	ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1662 				  &waiter);
1663 
1664 	debug_rt_mutex_free_waiter(&waiter);
1665 	return ret;
1666 }
1667 
1668 /*
1669  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1670  * @lock:	The rtmutex to block lock
1671  * @ww_ctx:	WW mutex context pointer
1672  * @state:	The task state for sleeping
1673  */
rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1674 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1675 				     struct ww_acquire_ctx *ww_ctx,
1676 				     unsigned int state)
1677 {
1678 	unsigned long flags;
1679 	int ret;
1680 
1681 	/*
1682 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1683 	 * be called in early boot if the cmpxchg() fast path is disabled
1684 	 * (debug, no architecture support). In this case we will acquire the
1685 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1686 	 * enable interrupts in that early boot case. So we need to use the
1687 	 * irqsave/restore variants.
1688 	 */
1689 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1690 	ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1691 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1692 
1693 	return ret;
1694 }
1695 
__rt_mutex_lock(struct rt_mutex_base * lock,unsigned int state)1696 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1697 					   unsigned int state)
1698 {
1699 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1700 		return 0;
1701 
1702 	return rt_mutex_slowlock(lock, NULL, state);
1703 }
1704 #endif /* RT_MUTEX_BUILD_MUTEX */
1705 
1706 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1707 /*
1708  * Functions required for spin/rw_lock substitution on RT kernels
1709  */
1710 
1711 /**
1712  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1713  * @lock:	The underlying RT mutex
1714  */
rtlock_slowlock_locked(struct rt_mutex_base * lock)1715 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1716 {
1717 	struct rt_mutex_waiter waiter;
1718 	struct task_struct *owner;
1719 
1720 	lockdep_assert_held(&lock->wait_lock);
1721 
1722 	if (try_to_take_rt_mutex(lock, current, NULL))
1723 		return;
1724 
1725 	rt_mutex_init_rtlock_waiter(&waiter);
1726 
1727 	/* Save current state and set state to TASK_RTLOCK_WAIT */
1728 	current_save_and_set_rtlock_wait_state();
1729 
1730 	task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1731 
1732 	for (;;) {
1733 		/* Try to acquire the lock again */
1734 		if (try_to_take_rt_mutex(lock, current, &waiter))
1735 			break;
1736 
1737 		if (&waiter == rt_mutex_top_waiter(lock))
1738 			owner = rt_mutex_owner(lock);
1739 		else
1740 			owner = NULL;
1741 		raw_spin_unlock_irq(&lock->wait_lock);
1742 
1743 		if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1744 			schedule_rtlock();
1745 
1746 		raw_spin_lock_irq(&lock->wait_lock);
1747 		set_current_state(TASK_RTLOCK_WAIT);
1748 	}
1749 
1750 	/* Restore the task state */
1751 	current_restore_rtlock_saved_state();
1752 
1753 	/*
1754 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1755 	 * We might have to fix that up:
1756 	 */
1757 	fixup_rt_mutex_waiters(lock, true);
1758 	debug_rt_mutex_free_waiter(&waiter);
1759 }
1760 
rtlock_slowlock(struct rt_mutex_base * lock)1761 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1762 {
1763 	unsigned long flags;
1764 
1765 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1766 	rtlock_slowlock_locked(lock);
1767 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1768 }
1769 
1770 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1771