• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
profile_setup(char * str)57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	int par;
63 
64 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66 		force_schedstat_enabled();
67 		prof_on = SLEEP_PROFILING;
68 		if (str[strlen(sleepstr)] == ',')
69 			str += strlen(sleepstr) + 1;
70 		if (get_option(&str, &par))
71 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 		pr_info("kernel sleep profiling enabled (shift: %u)\n",
73 			prof_shift);
74 #else
75 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83 		pr_info("kernel schedule profiling enabled (shift: %u)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel KVM profiling enabled (shift: %u)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95 		prof_on = CPU_PROFILING;
96 		pr_info("kernel profiling enabled (shift: %u)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
profile_init(void)104 int __ref profile_init(void)
105 {
106 	int buffer_bytes;
107 	if (!prof_on)
108 		return 0;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 
113 	if (!prof_len) {
114 		pr_warn("profiling shift: %u too large\n", prof_shift);
115 		prof_on = 0;
116 		return -EINVAL;
117 	}
118 
119 	buffer_bytes = prof_len*sizeof(atomic_t);
120 
121 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
122 		return -ENOMEM;
123 
124 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
125 
126 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
127 	if (prof_buffer)
128 		return 0;
129 
130 	prof_buffer = alloc_pages_exact(buffer_bytes,
131 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
132 	if (prof_buffer)
133 		return 0;
134 
135 	prof_buffer = vzalloc(buffer_bytes);
136 	if (prof_buffer)
137 		return 0;
138 
139 	free_cpumask_var(prof_cpu_mask);
140 	return -ENOMEM;
141 }
142 
143 /* Profile event notifications */
144 
145 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
146 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
147 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
148 
profile_task_exit(struct task_struct * task)149 void profile_task_exit(struct task_struct *task)
150 {
151 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
152 }
153 
profile_handoff_task(struct task_struct * task)154 int profile_handoff_task(struct task_struct *task)
155 {
156 	int ret;
157 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
158 	return (ret == NOTIFY_OK) ? 1 : 0;
159 }
160 
profile_munmap(unsigned long addr)161 void profile_munmap(unsigned long addr)
162 {
163 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
164 }
165 
task_handoff_register(struct notifier_block * n)166 int task_handoff_register(struct notifier_block *n)
167 {
168 	return atomic_notifier_chain_register(&task_free_notifier, n);
169 }
170 EXPORT_SYMBOL_GPL(task_handoff_register);
171 
task_handoff_unregister(struct notifier_block * n)172 int task_handoff_unregister(struct notifier_block *n)
173 {
174 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
175 }
176 EXPORT_SYMBOL_GPL(task_handoff_unregister);
177 
profile_event_register(enum profile_type type,struct notifier_block * n)178 int profile_event_register(enum profile_type type, struct notifier_block *n)
179 {
180 	int err = -EINVAL;
181 
182 	switch (type) {
183 	case PROFILE_TASK_EXIT:
184 		err = blocking_notifier_chain_register(
185 				&task_exit_notifier, n);
186 		break;
187 	case PROFILE_MUNMAP:
188 		err = blocking_notifier_chain_register(
189 				&munmap_notifier, n);
190 		break;
191 	}
192 
193 	return err;
194 }
195 EXPORT_SYMBOL_GPL(profile_event_register);
196 
profile_event_unregister(enum profile_type type,struct notifier_block * n)197 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
198 {
199 	int err = -EINVAL;
200 
201 	switch (type) {
202 	case PROFILE_TASK_EXIT:
203 		err = blocking_notifier_chain_unregister(
204 				&task_exit_notifier, n);
205 		break;
206 	case PROFILE_MUNMAP:
207 		err = blocking_notifier_chain_unregister(
208 				&munmap_notifier, n);
209 		break;
210 	}
211 
212 	return err;
213 }
214 EXPORT_SYMBOL_GPL(profile_event_unregister);
215 
216 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
217 /*
218  * Each cpu has a pair of open-addressed hashtables for pending
219  * profile hits. read_profile() IPI's all cpus to request them
220  * to flip buffers and flushes their contents to prof_buffer itself.
221  * Flip requests are serialized by the profile_flip_mutex. The sole
222  * use of having a second hashtable is for avoiding cacheline
223  * contention that would otherwise happen during flushes of pending
224  * profile hits required for the accuracy of reported profile hits
225  * and so resurrect the interrupt livelock issue.
226  *
227  * The open-addressed hashtables are indexed by profile buffer slot
228  * and hold the number of pending hits to that profile buffer slot on
229  * a cpu in an entry. When the hashtable overflows, all pending hits
230  * are accounted to their corresponding profile buffer slots with
231  * atomic_add() and the hashtable emptied. As numerous pending hits
232  * may be accounted to a profile buffer slot in a hashtable entry,
233  * this amortizes a number of atomic profile buffer increments likely
234  * to be far larger than the number of entries in the hashtable,
235  * particularly given that the number of distinct profile buffer
236  * positions to which hits are accounted during short intervals (e.g.
237  * several seconds) is usually very small. Exclusion from buffer
238  * flipping is provided by interrupt disablement (note that for
239  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
240  * process context).
241  * The hash function is meant to be lightweight as opposed to strong,
242  * and was vaguely inspired by ppc64 firmware-supported inverted
243  * pagetable hash functions, but uses a full hashtable full of finite
244  * collision chains, not just pairs of them.
245  *
246  * -- nyc
247  */
__profile_flip_buffers(void * unused)248 static void __profile_flip_buffers(void *unused)
249 {
250 	int cpu = smp_processor_id();
251 
252 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
253 }
254 
profile_flip_buffers(void)255 static void profile_flip_buffers(void)
256 {
257 	int i, j, cpu;
258 
259 	mutex_lock(&profile_flip_mutex);
260 	j = per_cpu(cpu_profile_flip, get_cpu());
261 	put_cpu();
262 	on_each_cpu(__profile_flip_buffers, NULL, 1);
263 	for_each_online_cpu(cpu) {
264 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
265 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
266 			if (!hits[i].hits) {
267 				if (hits[i].pc)
268 					hits[i].pc = 0;
269 				continue;
270 			}
271 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
272 			hits[i].hits = hits[i].pc = 0;
273 		}
274 	}
275 	mutex_unlock(&profile_flip_mutex);
276 }
277 
profile_discard_flip_buffers(void)278 static void profile_discard_flip_buffers(void)
279 {
280 	int i, cpu;
281 
282 	mutex_lock(&profile_flip_mutex);
283 	i = per_cpu(cpu_profile_flip, get_cpu());
284 	put_cpu();
285 	on_each_cpu(__profile_flip_buffers, NULL, 1);
286 	for_each_online_cpu(cpu) {
287 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
288 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
289 	}
290 	mutex_unlock(&profile_flip_mutex);
291 }
292 
do_profile_hits(int type,void * __pc,unsigned int nr_hits)293 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
294 {
295 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
296 	int i, j, cpu;
297 	struct profile_hit *hits;
298 
299 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
300 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
301 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
302 	cpu = get_cpu();
303 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
304 	if (!hits) {
305 		put_cpu();
306 		return;
307 	}
308 	/*
309 	 * We buffer the global profiler buffer into a per-CPU
310 	 * queue and thus reduce the number of global (and possibly
311 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
312 	 */
313 	local_irq_save(flags);
314 	do {
315 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
316 			if (hits[i + j].pc == pc) {
317 				hits[i + j].hits += nr_hits;
318 				goto out;
319 			} else if (!hits[i + j].hits) {
320 				hits[i + j].pc = pc;
321 				hits[i + j].hits = nr_hits;
322 				goto out;
323 			}
324 		}
325 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
326 	} while (i != primary);
327 
328 	/*
329 	 * Add the current hit(s) and flush the write-queue out
330 	 * to the global buffer:
331 	 */
332 	atomic_add(nr_hits, &prof_buffer[pc]);
333 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
334 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
335 		hits[i].pc = hits[i].hits = 0;
336 	}
337 out:
338 	local_irq_restore(flags);
339 	put_cpu();
340 }
341 
profile_dead_cpu(unsigned int cpu)342 static int profile_dead_cpu(unsigned int cpu)
343 {
344 	struct page *page;
345 	int i;
346 
347 	if (cpumask_available(prof_cpu_mask))
348 		cpumask_clear_cpu(cpu, prof_cpu_mask);
349 
350 	for (i = 0; i < 2; i++) {
351 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
352 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
353 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
354 			__free_page(page);
355 		}
356 	}
357 	return 0;
358 }
359 
profile_prepare_cpu(unsigned int cpu)360 static int profile_prepare_cpu(unsigned int cpu)
361 {
362 	int i, node = cpu_to_mem(cpu);
363 	struct page *page;
364 
365 	per_cpu(cpu_profile_flip, cpu) = 0;
366 
367 	for (i = 0; i < 2; i++) {
368 		if (per_cpu(cpu_profile_hits, cpu)[i])
369 			continue;
370 
371 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
372 		if (!page) {
373 			profile_dead_cpu(cpu);
374 			return -ENOMEM;
375 		}
376 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
377 
378 	}
379 	return 0;
380 }
381 
profile_online_cpu(unsigned int cpu)382 static int profile_online_cpu(unsigned int cpu)
383 {
384 	if (cpumask_available(prof_cpu_mask))
385 		cpumask_set_cpu(cpu, prof_cpu_mask);
386 
387 	return 0;
388 }
389 
390 #else /* !CONFIG_SMP */
391 #define profile_flip_buffers()		do { } while (0)
392 #define profile_discard_flip_buffers()	do { } while (0)
393 
do_profile_hits(int type,void * __pc,unsigned int nr_hits)394 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
395 {
396 	unsigned long pc;
397 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
398 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
399 }
400 #endif /* !CONFIG_SMP */
401 
profile_hits(int type,void * __pc,unsigned int nr_hits)402 void profile_hits(int type, void *__pc, unsigned int nr_hits)
403 {
404 	if (prof_on != type || !prof_buffer)
405 		return;
406 	do_profile_hits(type, __pc, nr_hits);
407 }
408 EXPORT_SYMBOL_GPL(profile_hits);
409 
profile_tick(int type)410 void profile_tick(int type)
411 {
412 	struct pt_regs *regs = get_irq_regs();
413 
414 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
415 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
416 		profile_hit(type, (void *)profile_pc(regs));
417 }
418 
419 #ifdef CONFIG_PROC_FS
420 #include <linux/proc_fs.h>
421 #include <linux/seq_file.h>
422 #include <linux/uaccess.h>
423 
prof_cpu_mask_proc_show(struct seq_file * m,void * v)424 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
425 {
426 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
427 	return 0;
428 }
429 
prof_cpu_mask_proc_open(struct inode * inode,struct file * file)430 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431 {
432 	return single_open(file, prof_cpu_mask_proc_show, NULL);
433 }
434 
prof_cpu_mask_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)435 static ssize_t prof_cpu_mask_proc_write(struct file *file,
436 	const char __user *buffer, size_t count, loff_t *pos)
437 {
438 	cpumask_var_t new_value;
439 	int err;
440 
441 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
442 		return -ENOMEM;
443 
444 	err = cpumask_parse_user(buffer, count, new_value);
445 	if (!err) {
446 		cpumask_copy(prof_cpu_mask, new_value);
447 		err = count;
448 	}
449 	free_cpumask_var(new_value);
450 	return err;
451 }
452 
453 static const struct proc_ops prof_cpu_mask_proc_ops = {
454 	.proc_open	= prof_cpu_mask_proc_open,
455 	.proc_read	= seq_read,
456 	.proc_lseek	= seq_lseek,
457 	.proc_release	= single_release,
458 	.proc_write	= prof_cpu_mask_proc_write,
459 };
460 
create_prof_cpu_mask(void)461 void create_prof_cpu_mask(void)
462 {
463 	/* create /proc/irq/prof_cpu_mask */
464 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
465 }
466 
467 /*
468  * This function accesses profiling information. The returned data is
469  * binary: the sampling step and the actual contents of the profile
470  * buffer. Use of the program readprofile is recommended in order to
471  * get meaningful info out of these data.
472  */
473 static ssize_t
read_profile(struct file * file,char __user * buf,size_t count,loff_t * ppos)474 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475 {
476 	unsigned long p = *ppos;
477 	ssize_t read;
478 	char *pnt;
479 	unsigned long sample_step = 1UL << prof_shift;
480 
481 	profile_flip_buffers();
482 	if (p >= (prof_len+1)*sizeof(unsigned int))
483 		return 0;
484 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
485 		count = (prof_len+1)*sizeof(unsigned int) - p;
486 	read = 0;
487 
488 	while (p < sizeof(unsigned int) && count > 0) {
489 		if (put_user(*((char *)(&sample_step)+p), buf))
490 			return -EFAULT;
491 		buf++; p++; count--; read++;
492 	}
493 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494 	if (copy_to_user(buf, (void *)pnt, count))
495 		return -EFAULT;
496 	read += count;
497 	*ppos += read;
498 	return read;
499 }
500 
501 /*
502  * Writing to /proc/profile resets the counters
503  *
504  * Writing a 'profiling multiplier' value into it also re-sets the profiling
505  * interrupt frequency, on architectures that support this.
506  */
write_profile(struct file * file,const char __user * buf,size_t count,loff_t * ppos)507 static ssize_t write_profile(struct file *file, const char __user *buf,
508 			     size_t count, loff_t *ppos)
509 {
510 #ifdef CONFIG_SMP
511 	extern int setup_profiling_timer(unsigned int multiplier);
512 
513 	if (count == sizeof(int)) {
514 		unsigned int multiplier;
515 
516 		if (copy_from_user(&multiplier, buf, sizeof(int)))
517 			return -EFAULT;
518 
519 		if (setup_profiling_timer(multiplier))
520 			return -EINVAL;
521 	}
522 #endif
523 	profile_discard_flip_buffers();
524 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525 	return count;
526 }
527 
528 static const struct proc_ops profile_proc_ops = {
529 	.proc_read	= read_profile,
530 	.proc_write	= write_profile,
531 	.proc_lseek	= default_llseek,
532 };
533 
create_proc_profile(void)534 int __ref create_proc_profile(void)
535 {
536 	struct proc_dir_entry *entry;
537 #ifdef CONFIG_SMP
538 	enum cpuhp_state online_state;
539 #endif
540 
541 	int err = 0;
542 
543 	if (!prof_on)
544 		return 0;
545 #ifdef CONFIG_SMP
546 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
547 				profile_prepare_cpu, profile_dead_cpu);
548 	if (err)
549 		return err;
550 
551 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
552 				profile_online_cpu, NULL);
553 	if (err < 0)
554 		goto err_state_prep;
555 	online_state = err;
556 	err = 0;
557 #endif
558 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
559 			    NULL, &profile_proc_ops);
560 	if (!entry)
561 		goto err_state_onl;
562 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
563 
564 	return err;
565 err_state_onl:
566 #ifdef CONFIG_SMP
567 	cpuhp_remove_state(online_state);
568 err_state_prep:
569 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
570 #endif
571 	return err;
572 }
573 subsys_initcall(create_proc_profile);
574 #endif /* CONFIG_PROC_FS */
575